

A Comprehensive Roadmap Towards the Generation of an Influenza B Reporter Assay Using a Single DNA Polymerase-Based Cloning of the Reporter RNA Construct

1 **Nandita Kedia¹, Saptarshi Banerjee¹, Arindam Mondal^{1*}**

2 ¹School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur -721302, India

3 *** Correspondence:**

4 Arindam Mondal

5 arindam.mondal@iitkgp.ac.in

6 **Keywords: Influenza B, reporter construct, ribonucleoprotein, polymerase activity assay,**
7 **antiviral screening.**

8 **Abstract**

9 Mini-genome reporter assay is a key tool for conducting RNA virus research. But, procedural
10 complications and lack of adequate literature pose a major challenge in developing these assay systems.
11 Here, we present a novel yet generic and simple cloning strategy for the construction of influenza B
12 virus reporter RNA template and describe an extensive standardization of the reporter RNP/
13 polymerase activity assay for monitoring viral RNA synthesis in an infection free setting. Using this
14 assay system, we, for the first time showed the effect of viral protein NS1 and host protein PKC-Delta
15 upon influenza B virus RNA synthesis. Additionally, the assay system showed promising results in
16 evaluating the efficacy of antiviral drugs targeting viral RNA synthesis and virus propagation.
17 Together, this work offers a detailed protocol for standardization of influenza virus mini-genome assay
18 and an excellent tool for screening of host factors and antivirals in a fast, user-friendly and high
19 throughput manner.

20 **1 Introduction**

21 First discovered in 1940(1), the influenza B virus has since been causing significant morbidity and
22 mortality in the global population(2). As per the recent surveillance, (seasons 2010–2018) influenza B
23 viruses are responsible for 15-30% of total influenza-like illness, with several complications like
24 fevers, body ache, fatigue and even life-threatening acute respiratory distress syndrome for patients
25 having pre-existing lung diseases(3,4). There are two different lineages of influenza B virus, Victoria
26 and Yamagata. These circulate in the human population with various degrees of predominance in
27 different influenza seasons(5,6). Due to the constant increase in the influenza B virus related infections
28 and limited cross protection offered by influenza B vaccine against both of these lineages, there is a
29 gradual transition from trivalent (against two subtypes of Flu A and one lineage of Flu B) to
30 quadrivalent (against two subtypes of Flu A and two lineages of Flu B) flu shots offered across the
31 world(7). In spite of its immense importance in the context of global healthcare ecosystem, influenza
32 B virus research has drawn significantly lesser attention compared to the closely related influenza A
33 viruses, largely due to the scarcity of the tools required to study virus replication cycle. This also
34 severely restricts antiviral drug discovery directed towards influenza B virus therapy(8).

35 Influenza viruses are segmented negative-strand RNA viruses of the Orthomyxoviridae family.
36 Amongst the four types A, B, C and D, only influenza A and B cause human epidemics(9). The viral

37 genome consists of eight different segments each of which remains enwrapped with multiple copies of
38 nucleoprotein (NP) in their oligomeric form and associates with a single copy of RNA dependent RNA
39 polymerase (RdRp) to form the ribonucleoprotein complexes or RNPs(10). RNPs are the self-sufficient
40 machinery for driving different modes of RNA dependent RNA synthesis events including viral gene
41 expression and genome replication, hence reside at the center of virus replication cycle(11). This is
42 why reporter RNP based assay systems remain one of the invaluable tools for studying virus
43 replication, host-pathogen interaction and high-throughput screening of antivirals without handling
44 infectious virus particles and hence avoiding biosafety associated procedural complications(12,13).

45 Influenza virus genomic segments are single-stranded RNA that are devoid of the 5'-Caps and 3'-
46 Poly(A) tails (14). Different segments harbor conserved untranslated regions of variable lengths both
47 at the 5' and 3' ends, which bracket single or multiple open reading frames (in the antisense orientation)
48 encoding viral proteins(14,15). Terminal regions of the 5' and 3' UTRs contain complementarity
49 resulting in a partial duplex structure (also known as “panhandle RNA” or “cork-screw RNA”) that
50 serves as the promoter for viral RdRp(16). Additionally, the UTRs contain cis-acting elements,
51 necessary and sufficient for the transcription and replication of viral(17–19) and non-viral reporter
52 genes(16,20–22). Several groups have established reporter RNA based assay systems where viral open
53 reading frames have been replaced with reporter genes of fluorescent, bioluminescent or
54 chemiluminescent proteins(12,13,16,23–26). These reporter RNA templates, when expressed inside
55 the cells in combination with NP and RdRp proteins, reconstitute reporter RNPs. RNA synthesis
56 activity of these RNPs could be measured by quantifying the extent of reporter gene expression.
57 Although this appears a straightforward procedure, but the successful establishment of a reporter assay
58 system requires (i) complicated cloning strategies to synthesize the reporter RNA construct, (ii)
59 construction of plasmids for expression of viral NP and RdRp subunits (PB1, PB2 and PA), and (iii)
60 optimized expression of the reporter RNA and viral proteins in required stoichiometric amounts that
61 leads to the reconstruction of reporter RNPs with maximum efficiency.

62 So far, different strategies have been used to construct plasmids expressing influenza A and B virus
63 reporter RNA template (reporter plasmid)(12,13,25–27). In a few studies, the reporter luciferase gene
64 was amplified using primers containing long overhangs corresponding to 3' and 5' UTR regions of
65 influenza A or B viruses; then, the resulting PCR fragment harboring luciferase ORF flanked by the
66 viral UTRs were inserted into the target vector for RNA polymerase-I driven expression of the same,
67 using conventional restriction digestion and subsequent ligation method(12,22,28). Alternatively, viral
68 5' and 3'-UTR containing vectors (amplified using inverse PCR from the cDNA clone of the
69 corresponding segment) were ligated with reporter gene insert predigested with compatible restriction
70 enzyme sites(29). In another cloning strategy, a double-stranded DNA linker encompassing 5' and 3'-
71 UTRs was inserted into the vector in-between the Pol-I promoter and terminator sequences with the
72 help of compatible restriction enzyme sites. The reporter gene was then inserted between the UTRs
73 using a second restriction enzyme site(25). All of these restriction enzyme based cloning strategies are
74 laborious and often introduce additional nucleotides between the UTRs and the reporter gene, which
75 may interfere with the activity of the cis/trans acting elements(25). In order to avoid these constraints,
76 restriction enzyme free cloning methods utilizing vectors and inserts containing overlapping sequences
77 have also been implemented. For example, inserts containing reporter genes flanked by the 5' and 3'-
78 UTRs were created using long overhang primers (containing the UTR regions) which was then stitched
79 to the vector through the use of specialized proprietary enzymes/kits(13,30). With the inherent
80 limitations of the aforesaid cloning techniques, scarcity of information about the extensive
81 experimental protocol makes it difficult to establish and standardize the reporter based RNP activity
82 assay for influenza viruses. This situation gets further complicated for influenza B viruses due to the
83 larger size of the UTRs compared to the same for influenza A viruses.

84 Here, we present a novel yet fairly simple cloning strategy, independent of any restriction enzyme or
85 specialized reagents or kits, to construct a firefly luciferase based reporter plasmid capable of
86 generating a reporter genome template for influenza B/Brisbane/60/2008 virus. Additionally, we
87 present extensive standardization of this reporter plasmid-based RNP activity assay through
88 optimization of various parameters regulating viral RNA synthesis. Using the reporter assay system,
89 we have shown for the first time the effect of viral non-structural protein-1 (NS1) and host protein
90 kinase C delta (PKCD) upon influenza B virus RNA synthesis. We have also demonstrated the ability
91 of this assay system to be used as a high throughput screening platform for the identification of antiviral
92 drugs specifically inhibiting RNA polymerase activity of the virus. Together, this work presents a great
93 resource for cloning, standardization and implementation of reporter-based RNP activity assay for
94 influenza and other related viruses.

95 **2 Materials and methods**

96 **2.1 Cell lines and Viruses**

97 Human embryonic kidney 293T (HEK 293T) cells were maintained in Dulbecco's modified Eagle's
98 medium (DMEM; GibcoTM, Cat no. #12800017) supplemented with 10% (v/v) fetal bovine serum
99 (FBS; GibcoTM, Cat no. #10082147), 2mM GlutaMAXTM (GibcoTM, Cat no. #35050061), 1%
100 penicillin-streptomycin (GibcoTM, Cat no. #1514122), incubated at 37°C in a humidified 5% CO₂
101 incubator. Madin-Darby Canine Kidney (MDCK) cells were maintained in the same conditions with
102 10% FBS (GibcoTM, FBS; Cat no. #10270106). Influenza B/Brisbane/60/2008 virus was used in this
103 study.

104 **2.2 Virus amplification and RNA Extraction**

105 3×10⁶ MDCK cells were seeded in 10cm dishes, 24 hours before the infection. Prior to infection, the
106 cell monolayer was washed with PBS twice and subsequently infected at an M.O.I. of 0.001. For each
107 10 cm dish, 1 ml virus inoculum was prepared in virus growth media (VGM; containing DMEM, 0.2%
108 bovine serum albumin (Sigma; Cat no. #A8412), 25 mM N-(2-hydroxyethyl) piperazine-N'-
109 ethanesulfonic acid (HEPES; Invitrogen, Cat no. #15630080) buffer, 2 mM GlutaMAXTM, 1%
110 penicillin-streptomycin and 0.5 µg/ml TPCK-trypsin (Thermo ScientificTM, Cat no. #20233)). Virus
111 attachment was performed with 1ml of inoculum for 1 hour at 37 °C in humidified 5% CO₂ incubator
112 with intermittent shaking at every 10 minutes to prevent drying of cell monolayer and homogenous
113 distribution of the inoculum. Post attachment, each 10 cm dish was supplemented with 6 ml of VGM
114 and incubated at 33 °C in a humidified 5% CO₂ incubator. At 72 hours post-infection, the supernatants
115 were collected and centrifuged at 3200 g for 10 minutes at 4 °C to remove the cell debris. The
116 supernatants were collected and aliquots were stored at 80 °C refrigerator for further applications(31).

117 **2.3 Reverse transcription (RT)-PCR**

118 Viral RNA was extracted from amplified virus stock using Trizol reagent (Invitrogen; Cat no.
119 #15596018). Reverse transcription was carried out using in-house produced Moloney murine leukemia
120 virus (MMLV) Reverse transcriptase (RT) enzyme and the primer 'Uni9', which is complementary to
121 all the segments of Influenza B/Brisbane/60/2008 virus. Sequences of primers are mentioned in Table
122 1. Briefly, 10 µl of viral RNA (~500 ng), 1 µl of 2 µM Uni9 primer and 1µl of 10 mM dNTP (Thermo
123 ScientificTM, Cat no. # R0181) were mixed and warmed at 65 °C for 5 minutes. This is followed by
124 snap chilling at ice for 2 minutes. After snap chilling the reaction, the premixed solution containing 4
125 µl of 5×RT buffer (Invitrogen, Cat no. #18080044), 2µl of 0.1 M DTT (kit component of Invitrogen,
126 Cat no. #18080044), 0.25 µl of RNase inhibitor (Thermo ScientificTM, Cat no. #EO0381), 1µl of

127 MMLV RT and 0.75 μ l of sterile nuclease-free water (AMRESCO, Cat no. # E476-1L) were added to
128 the tube containing snap chilled mix. The reaction was carried out at 42°C for 50 minutes and was
129 terminated by heating at 70 °C for 15 minutes. After the RT reaction, in which cDNA for all 8 segments
130 have been generated; the PCR reaction was carried out using NA-NB segment specific primer to enrich
131 the fragment specific for segment 6 using the primers ‘NA-NB_F’ and ‘NA-NB_R’(primer sequences
132 are listed in Table 1). Each of the 50 μ l PCR reaction mixture consisted of 10 μ l of 5 \times Phusion HF
133 Buffer, 5 μ l each of 5 μ M primers, 5 μ l of 2 mM dNTPs, 5 μ l each of the synthesized cDNAs, 19.5 μ l
134 of sterile nuclease-free water, and 0.5 μ l of Phusion High-Fidelity DNA Polymerase (Thermo
135 Scientific™, Cat no. #F530S). The cycling conditions for the PCR reaction is stated in Table 2. For
136 RT reactions, the lyophilized primers were dissolved and diluted in sterile nuclease free water. For
137 PCR specific primers, the initial stocks were dissolved using 10 mM Tris-HCl (pH=8) and working
138 stocks were diluted in sterile nuclease free water.The PCR products were purified using PCR
139 Purification Kit (Invitrogen; Cat No. # K310001). The yield and quality of the purified products were
140 checked measuring the UV absorbance at 260 nm and 280 nm, and subsequently by running it on
141 agarose gel electrophoresis.

142 **Table 1.** Primers used in this study.

Name of the primer	Sequence (5'->3')
Uni 9	AGCAGAACG
NA-NB_F	AGTAGTAACAAGAGCATTTCAG
NA-NB_R	AGCAGAACGAGACATC
5' UTR_F	CATTTGGGCCGCCGGTTATTAGTAGTAACAAGAGCATTTCAG
5' UTR_R	CGGAAAGATCGCCGTAAATGGAGGAATGGTTGAGTC
3' UTR_F	CTTATGTTTGGCGCTTCCATTGTTATTTGGCCTATTG
3' UTR_R	CCTCGAAGTTGGGGGGAGCAGAACGAGCATCTTC
PHH21_F	CCCCCCCAACTTCGGAGG
PHH21_R	AATAACCCGGCGGCCAAAATG
PHH21 SEQ2	AAAACGCTGGCGTTAATCAAAGAGGCG
PHH21 SEQ1	GGGGGACACTTCGGACATCTGGTC
pcDNA3-V5 For	GATCCGGAGGTAAGCTATCCCTAACCTCTCGTCTCGATTCTACGTAGTAAGC
pcDNA3-V5 Rev	GGCCGCTTACTACGTAGAACATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCTCCG
NP_For	ATTGGGGTACCGCACCATGTCACATGGATATTGACG
NP_Rev_V5	ATTCGGGATCCACCATATAATCGAGGTCAATCATAATCCTC
NP_Rev_Stop	ATTCGGGATCTTAATAATCGAGGTCAATCATAATCCTC
PB1_For	TAAGCGGAATTCACCATGAATATAAACCTTATTTCCTCTTC
PB1_Rev_FLAG	ATTGAGGCCGCCGCTATGTACCCAATCTACCAAG
PB1_Rev_Stop	ATTGAGGCCGCCGCTTATATGTACCCAATCTCACC
PB2_For	TAAGCGGAATTCACCATGACATTGGCCAAAATTGAATTG
PB2_Rev_FLAG	ATTGAGGCCGCCGCTCAAGGCCACCC
PB2_Rev_Stop	ATTGAGGCCGCCGCTTACGCTCAAGGCCACCC
PA_For	TAAGCGGAATTCACCATGGATACTTTATTACAAGAAACT
PA_Rev_FLAG	ATTGAGGCCGCCGCTTACGCTCAAGGCCACCC
PA_Rev_Stop	ATTGAGGCCGCCGCTTACGCTCAAGGCCACCC

143

144

145

146

147

148

Table 2: PCR conditions used in the study for amplification of individual inserts.

PCR amplification	Forward Primer	Reverse Primer	Denaturation (temp./duration)	Cyclic denaturation, annealing and elongation (temp./duration)	No. of cycles	Final elongation
NA-NB fragment	NA-NB_F	NA-NB_R	98°C/30 seconds	98°C/10 seconds 60°C/30 seconds 72°C/95 seconds	35	72°C/5 minutes
5' UTR	5' UTR_F	5' UTR_R	98°C/30 seconds	98°C/10 seconds 60°C/25 seconds 72°C/5 seconds	35	72°C/5 minutes
3' UTR	3' UTR_F	3' UTR_R	98°C/30 seconds	98°C/10 seconds 59°C/25 seconds 72°C/5 seconds	35	72°C/5 minutes
Insert for Reporter plasmid	5' UTR double-stranded PCR product	3' UTR double-stranded PCR product	98°C/30 seconds	98°C/10 seconds 63°C/30 seconds 72°C/80 seconds	35	72°C/5 minutes
Vector for Reporter plasmid	PHH21_F	PHH21_R	98°C/30 seconds	98°C/10 seconds 67°C/30 seconds 72°C/90 seconds	35	72°C/5 minutes
PB1-FLAG	PB1_For	PB1_Rev_FLAG	98°C/30 seconds	98°C/10 seconds 60°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
PB1-STOP	PB1_For	PB1_Rev_Stop	98°C/30 seconds	98°C/10 seconds 58°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
PB2-FLAG	PB2_For	PB2_Rev_FLAG	98°C/30 seconds	98°C/10 seconds 69°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
PB2-STOP	PB2_For	PB2_Rev_Stop	98°C/30 seconds	98°C/10 seconds 69°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
PA-FLAG	PA_For	PA_Rev_FLAG	98°C/30 seconds	98°C/10 seconds 60°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
PA-STOP	PA_For	PA_Rev_Stop	98°C/30 seconds	98°C/10 seconds 58°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
NP-V5	NP_For	NP_Rev_V5	98°C/30 seconds	98°C/10 seconds 64°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes
NP-STOP	NP_For	NP_Rev_Stop	98°C/30 seconds	98°C/10 seconds 66°C/30 seconds 72°C/90 seconds	35	72°C/10 minutes

149

150

151 **2.4 PCR and Cloning**

152 **2.4.1 Amplification of 5' and 3' UTR**

153 The RT-PCR amplified DNA corresponding to segment 6 of the viral genome was used as a template
154 for the amplification of 5'UTR and 3'UTR using Phusion High-Fidelity DNA Polymerase using 5'
155 UTR_F, 5' UTR_R and 3' UTR_F, 3' UTR_R primers pairs, (all the primer sequences are listed in
156 Table 1 and the PCR conditions are listed in Table 2) respectively. The PCR product were purified
157 using Quick gel extraction kit (Invitrogen: Cat no. # K210012). The purified double-stranded 5'UTR
158 fragment and 3'UTR fragment (containing overhangs for insert and vector fragment) were then used
159 as primers for the amplification of luciferase gene (insert amplification) as described in the next section.

160 **2.4.2 Preparation of Insert**

161 The luciferase ORF was amplified using the pH21-vNA-Luc as a template, kindly provided by Dr.
162 Andrew Mehle, as a template. The plasmid encodes firefly luciferase gene flanked by Influenza A
163 UTR's. This plasmid encodes firefly luciferase gene flanked by Influenza A UTR's. The double-
164 stranded 5'UTR and 3'UTR fragments, synthesized in the previous step, were used as primers (5 μ M
165 final concentration) for the PCR amplification of Luciferase ORF using Phusion high fidelity DNA
166 polymerase, following manufacturer's protocol (for primer sequences and PCR conditions, refer to
167 Table 1 and Table 2, respectively). The PCR product was analysed on 0.8% agarose gel and purified
168 using PCR purification kit.

169 **2.4.3 Preparation of Vector**

170 The vector was amplified using the pH21-vNA-Luc as a template. PHH21_F' & 'PHH21_R' primers
171 (listed in Table 1) were used to amplify and linearize the vector using Phusion high fidelity DNA
172 polymerase using 5x Phusion GC rich buffer following manufacturers' protocol. Primer sequences and
173 PCR conditions are listed in Table 1 and Table 2, respectively. The PCR product was analysed on 0.8%
174 agarose gel and purified using PCR purification kit.

175 **2.4.4 Circular Polymerase Extension Cloning**

176 In the final CPEC assembly and cloning reaction(32), four different CPEC reactions have been set up
177 using the purified linearized vector (mentioned in section 3.4.3.) and inserts(mentioned in section
178 3.4.2.) maintaining a molar ratio (V:I) = 1:0, 1:1, 1:2 and 1:3 respectively(Figure 2D).The reaction
179 mixture composition are described below:

Initial Concentration	Volume per 20 μ l reaction	Final amount per 20 μ l reaction
Phusion HF buffer (5x)	4 μ l	1x
dNTP mix (40 mM)	0.4 μ l	0.8 mM
Phusion high-Fidelity DNA polymerase	0.25 μ l	0.5 U
Vector DNA	--	100ng
Insert DNA	variable	0 ng, 65.4 ng, 130.8 ng & 196.14 ng (for V:I molar ratio 1:0, 1:1, 1:2 & 1:3)
nuclease-free water	upto 20 μ l	--

180

181

182 Cycling conditions for the CPEC assembly and cloning reactions are described below:

Cycle number	Denature	Anneal and Extend	Extend
1	98°C, 30 s		
25	98°C, 10 s	72°C, 90 s	
26			72°C, 10 min

183 To assess if a CPEC reaction is successful or not, 10µl of each product was analysed on agarose gel
184 electrophoresis (Figure 2D). The V:I =1:3 reaction showing highest intensity of the high molecular
185 weight band (corresponding to the total length of vector and insert) was selected for transformation.

186 2.5 Transformation

187 *E. Coli*. DH5 α competent cells were prepared by modified rubidium chloride method as described by
188 Glover et al.(33). For transformation, 10 µl of the CPEC reaction mixture were added to the competent
189 cells. Followed by an incubation period on ice for 30 minutes, cells were subjected to a brief heat shock
190 at 42°C for 35 seconds followed by 5 minutes incubation in ice. 400µl of Luria bertani broth (Himedia,
191 Cat no. # M1245; 2.5% in double distilled water) were added immediately after the incubation and the
192 cells were grown for 1.5 hours in 37 °C incubator with shaking at 220 rpm. Once the shaking period is
193 over, and the entire culture volume was spread upon LB-agar plates containing 100 µg/ml of
194 Ampicillin. Positive clones were identified by colony PCR and confirmed by Sanger's sequencing.

195 2.6 Generation of polymerase protein expressing plasmids

196 The PB2, PB1 and PA ORFs were cloned into the pCDNA-3×-FLAG vector (generously provided by
197 Dr. Andrew Mehle) which is a modified version of pcDNA3.1 (addgene) vector expressing proteins
198 under CMV promoter. This vector contains three FLAG epitopes joined in tandem (3×-FLAG) after
199 the NotI site at its MCS followed by a Cytosine. This results in the expression of a protein having tri-
200 alanine linker in between the individual ORFs and the C terminal 3×-FLAG tag. For the expression of
201 untagged version of each RdRp subunit, the stop codon has been kept intact at the end of ORF. For the
202 expression of V5 tagged NP, pcDNA3 vector has been modified in order to have glycine-glycine-
203 serine-glycine linker in between the ORF and the C terminal V5 epitope tag. Briefly, two primers of
204 58 nucleotide length ('pcDNA3-V5 For' & 'pcDNA3-V5 Rev') were annealed to create double-
205 stranded piece of DNA (the V5 linker) having sticky ends on both the sides (BamHI restriction site at
206 the beginning of the sequence and the NotI site at the end of the sequence). The thermal protocol for
207 ramp down annealing was as follows: 95 °C for 5 minutes, 70 cycles of 95 °C (-1 °C/cycle) each for 1
208 minute, followed by hold at 4 °C. The V5 linker was phosphorylated at 5' end by treatment with T4
209 Polynucleotide Kinase (PNK, Cat no. # M0201S). The pcDNA3.1 (addgene) vector was digested with
210 BamHI and NotI, treated with Calf alkaline phosphatase (CIP; NEB, Cat no. #M0290S) and ligated
211 with the V5 linker in V: I = 1:20 ratio.

212 Each individual insert fragment has been amplified using the cDNA template with the primers
213 containing restriction enzyme overhangs. The PB2, PB1 and PA have been amplified with EcoRI and
214 NotI overhang in two different PCR sets, one omitting the stop codon and the other including the stop
215 codon in the reverse primer. The NP has been amplified using primers with KpnI and BamHI
216 overhangs. For each amplification, 50 µl of PCR reaction consisted of 10 µl of 5×Phusion HF buffer,
217 5 µl each of the forward and reverse 5 µM primers, 5 µl of 2 mM dNTPs, 5 µl of cDNA template,
218 19.5 µl sterile nuclease free water and 0.5 µl of Phusion High-Fidelity DNA Polymerase. All the

219 primer sequences and the specific PCR conditions are listed in are listed in Table 1 and Table 2,
220 respectively). The modified pcDNA3-3×-FLAG have been digested with EcoRI & NotI (NEB) and the
221 pcDNA3-V5 vector has been digested with KpnI & BamHI, followed by treatment with CIP. The
222 digested vectors as well as insert fragments were gel excised and ligated in a vector to insert ratio of
223 1:3 using T4 DNA ligase (Thermo Scientific™, Cat no. # EL0011) as per manufacturer's protocol. 10
224 μ l of ligation mixture was transformed into DH5 α competent cells (as described in section 3.5, except
225 that 150 μ l of culture volume was spread upon LB-agar plates at the end of the transformation). All the
226 positive clones were identified by colony PCR and confirmed by Sanger's sequencing.

227 2.7 Transfection

228 For examining the protein expression level of each plasmid, HEK293T cells were transfected using
229 lipofectamine 3000 (Invitrogen: Cat no. # L3000015). Each plasmid was prepared using plasmid DNA
230 isolation kit (Promega, Cat No. # A1222) and 100 ng working stocks were prepared. The pcDNA3.1
231 blank vector was used for control sets. Briefly, 26 μ l mixture of optiMEM (25 μ l, Thermo Scientific™,
232 Cat no. #31985-070) and p3000(1 μ l) were added to 500ng of plasmid DNA and mixed well. 26.5 μ l
233 mixture of optiMEM (25 μ l) and lipofectamine 3000 (1.5 μ l) were further added to the DNA-p3000
234 premix, mixed well and incubated for 15 minutes at room temperature. 2.5 \times 10 5 HEK293T cells were
235 seeded into 24 well plates, the transfection mixture was added to the respective wells and kept for
236 incubation at 37 °C humidified CO₂ incubator. The media was changed 12 hours post-transfection and
237 incubated for 36 (or stated otherwise) hours following transfection.

238 2.8 Western Blot

239 Protein levels for transiently transfected cells were assessed by Western blotting. Transfected cells
240 were lysed for 20 minutes in pre-chilled Co-Immunoprecipitation buffer (50mM Tris-HCl pH 7.4,
241 150mM NaCl, 0.53% NP-40) supplemented with 1 \times protease inhibitor (Roche-Sigma, Cat no. #
242 11873580001) and 1 \times phosphatase inhibitor (Thermo Scientific™, Cat No. #78420). The lysates were
243 centrifuged at 21,000g at 4 °C to remove the cell debris, the supernatant were collected, mixed with
244 sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer and boiled for 10 minutes.
245 The total protein were separated via 8% SDS-PAGE and transferred to polyvinylidene difluoride
246 (PVDF, Bio-Rad, Cat no. #1620177) membrane using transfer buffer (25 mM Tris, 191 mM glycine,
247 0.025% SDS & 10% methanol (vol/vol) in Trans-Blot Turbo Transfer System (Bio-Rad). After
248 incubation with 5% nonfat milk in TBST (50 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Tween 20) for 60
249 min, the membrane was washed once with TBST and incubated with antibodies against FLAG (1:5000,
250 Sigma, Cat no. # F3165), V5 (1:5000, CST, Cat no. # D3H8Q), HA (1:5000, CST, Cat no. # C29F4),
251 GAPDH (1:5000, Biobharati LifeScience Pvt. Ltd, Cat no. # BB-AB0060) BNP (1:5000, generated in
252 collaboration with BioBharati LifeScience Pvt. Ltd, India), at 4°C for 12 h. Membranes were washed
253 with TBST three times for 5 minutes and incubated with a 1:25,000 dilution of horseradish peroxidase-
254 conjugated anti-mouse (Sigma, Cat no. # A9044-2ML6) or anti-rabbit (Sigma, Cat no. # A0545-1ML)
255 antibodies for 1 h. Blots were washed with TBST three times for 5 minutes and developed with the
256 ECL system (ThermoFisher, Cat No. #34095) according to the manufacturer's protocols.

257 2.9 Polymerase activity assay

258 For polymerase activity assay, the sets where no additional plasmid DNA were used other than the core
259 RNP components (e.g. Figure 3 D,E, Figure 5 C,D), 2.5 \times 10 5 HEK293T cells were co-transfected with
260 118 ng of each of the pcDNA3-PB2-FLAG, pcDNA-PB1, 15 ng of pcDNA-PA, 125 ng of pcDNA3-
261 BNP and 125 ng of pH21-BNA-Luc plasmids to reconstitute 500ng of total DNA(1/4th BNP, 1/4th
262 pH21-BNA-Luc, and the half of the total amount of DNA have been divided as 8:8:1 ratio for PB2,

263 PB1 and PA). For the negative control set, pcDNA3.1 blank vector was used instead of PB2 subunit.
264 For the experiment of Figure 3A, 100ng of each polymerase subunit have been transfected which has
265 been updated in the subsequent experiments. For polymerase activity assay with additional plasmid
266 components (e.g. Figure 4 A & B), the total RNP reconstituting plasmids have been reduced to 400 ng
267 by transfecting 94.11 ng of each of the pcDNA3-PB2-FLAG, pcDNA-PB1, 11.76 ng of pcDNA-PA,
268 100 ng of pcDNA3-BNP and 100 ng of pH21-BNA-Luc expressing plasmids. The additional
269 plasmids were used in various amounts (NS1:50ng & 75ng; PKC delta Cat:15ng, 30ng, 60ng & 90ng
270 respectively) and topped up by blank vector upto 100 ng in order to keep the total amount of DNA
271 same in all the sets.. The transfection mix were prepared with Lipofectamine 3000 as stated earlier. All
272 the transfections for luciferase activity assay have been performed in triplicates. At 12 hours, the media
273 was changed very carefully without dislodging any cell to avoid manual variation among the sets. The
274 cells were harvested at 36 hours (or as mentioned) post transfection and luciferase activity assay was
275 performed using Promega Luciferase Assay System (Promega, #E1500 & #E1910). Briefly, the media
276 was aspirated and 250 μ l (1x CCLR for firefly luciferase assay) & 100 μ l (1x PLB for dual luciferase
277 assay) of lysis buffer (supplemented with 1x protease inhibitor and 1x phosphatase inhibitor) was added
278 to each well and incubated for 20 minutes at 4 °C (firefly luciferase assay) and room temperature (dual
279 luciferase assay) respectively. The assay was performed as per manufacturer's protocol using
280 luminometer (Promega Glomax 20/20) and data was analysed as stated in statistical analysis section.
281 The lysates from the 3 triplicate wells were pulled together for western blot analysis.

282 **2.10 Ribavirin and Favipiravir dose-response assays in HEK293T cells**

283 Ribavirin (Sigma-Aldrich, Cat no. # R9644) was dissolved in water to prepare 80 mM stock, aliquoted
284 and stored at – 20 °C refrigerator. Favipiravir (MedChemExpress, Cat no. #HY-14768) was dissolved
285 in DMSO (Sigma, Cat no. #D2650) to prepare a 200 mM stock ,aliquoted and stored at – 80°C until
286 used. Working stocks for both the compounds were prepared in complete media. 0.2×10^6 HEK293T
287 cells were seeded in 24-well plates and post 24 hours were treated with specified concentrations of
288 ribavirin or favipiravir for 2.5 hours at 37°C with 5% CO₂. Subsequently, cells were transfected with
289 lipofectamine 3000 as per manufacturers protocol and incubated in fresh media containing specified
290 concentrations of drugs were for 36 hours. Polymerase activity was then assayed as described above.
291 The IC₅₀ value was calculate by fitting the data to four parameter nonlinear equation.

292 **2.11 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Assay**

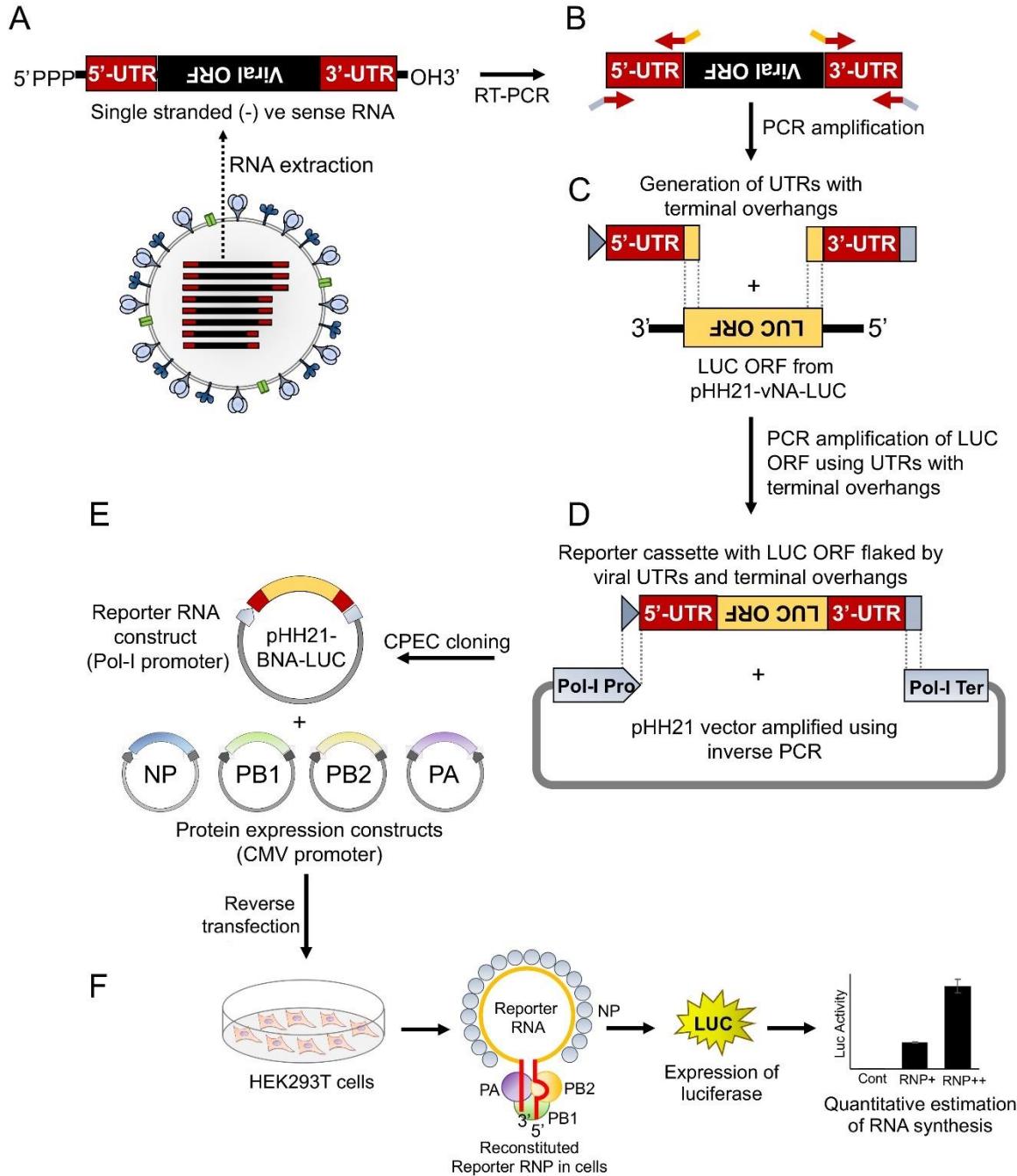
293 3×10^4 HEK293T cells were seeded in a 96-well plate. After 24 hours of seeding, the cells were treated
294 with different concentrations of drugs in triplicates for 36 hours. Post-treatment, 100 μ L of MTT
295 reagent (5 mg/ml, SRL, Cat No. # 33611(2049101)) dissolved in phosphate-buffered saline (PBS) was
296 added to the cells and incubated for 3 hours at 37°C. Subsequently, the reagent was removed and the
297 formazan crystals were dissolved by adding 100 μ L of dimethyl sulfoxide (DMSO) to each well. The
298 absorbance of the suspension was measured at 595 nm using an Epoch 2 microplate reader (BioTek
299 Instruments). The percentages of drug treated metabolically active cells were compared with the
300 percentage of control cells treated with vehicle control.

301 **2.12 Transfection-Infection assay**

302 0.1×10^6 HEK293T cells were seeded in 48-well plates. After 20 hours of seeding, the cells were
303 transfected with 0.25 ug of reporter plasmid using lipofectamine 3000 and 22 hours post-transfection,
304 the cells were pre-treated with half-maximal inhibitory concentrations (IC₅₀) of the drugs
305 (Ribavirin:18.54 μ M; Favipiravir:25.46 μ M) for 2.5 hours at 37°C with 5% CO₂. Following 2.5 hours

306 of treatment, the cells were infected with Influenza B virus at a MOI of 0.1 in presence of drugs and
307 the polymerase activity was assayed at 16 hours of post-infection.

308 **2.13 Statistical analysis**


309 The arithmetic mean and standard deviation of the firefly luciferase signal were calculated from three
310 biological replicates for each experiment. The mean intensity of luminescence (in arbitrary units)
311 obtained from the luminometer was plotted in a bar diagram with standard deviations as error bars. For
312 dual luciferase assay, the polymerase activity was reported as the ratio of firefly to renilla signal. In
313 firefly luciferase assays involving the host factors, viral factors, antiviral molecules and dual luciferase
314 assays; normalized mean and standard deviation were calculated against the control. The normalized
315 mean was calculated by dividing the arithmetic mean of the experimental sets by the mean of the
316 control set and converting them into a percentage value. Normalized standard deviation was calculated
317 by normalizing the coefficient of variations against the control and augmenting it with the normal
318 mean. A two-tailed Student's T-test was performed for comparison of individual data sets. Intra assay
319 variability was analysed by calculating the percentage coefficient of variation (%CV) of different sets
320 with biological replicate. Student's T-test was performed to compare the %CV of different assays.
321 Inter-assay % CV was calculated from the mean %CV of three independent experiments.

322 **3 Results**

323 **3.1 Generation of influenza B virus reporter plasmid for expression of viral reporter RNA in
324 mammalian cells**

325 In order to establish a reporter based RNP activity assay, a template RNA harboring the reporter gene
326 flanked by the viral UTRs needs to be expressed under the control of RNA polymerase I promoter.
327 This ensures that the reporter RNAs are devoid of any 5'- or 3'- terminal modifications, hence
328 mimicking authentic viral genomic RNA. To achieve this, firstly we have constituted the "insert"
329 harboring the firefly luciferase gene in reverse orientation flanked by viral 5'- and 3'- UTRs.
330 Subsequently, this cassette was introduced into the pH21 vector in between the RNA polymerase I
331 promoter and terminator. The entire process of constituting authentic viral UTRs, assembling them
332 with the reporter gene and introducing this cassette into the pH21 vector utilized a single DNA
333 polymerase enzyme without the need for any restriction enzyme or specialized kits (Figure 1). The
334 sequences of 5'UTR, 3'UTR and primers corresponding to annealing regions are depicted in
335 supplementary Figure S1.

Establishment of Flu B reporter system

336

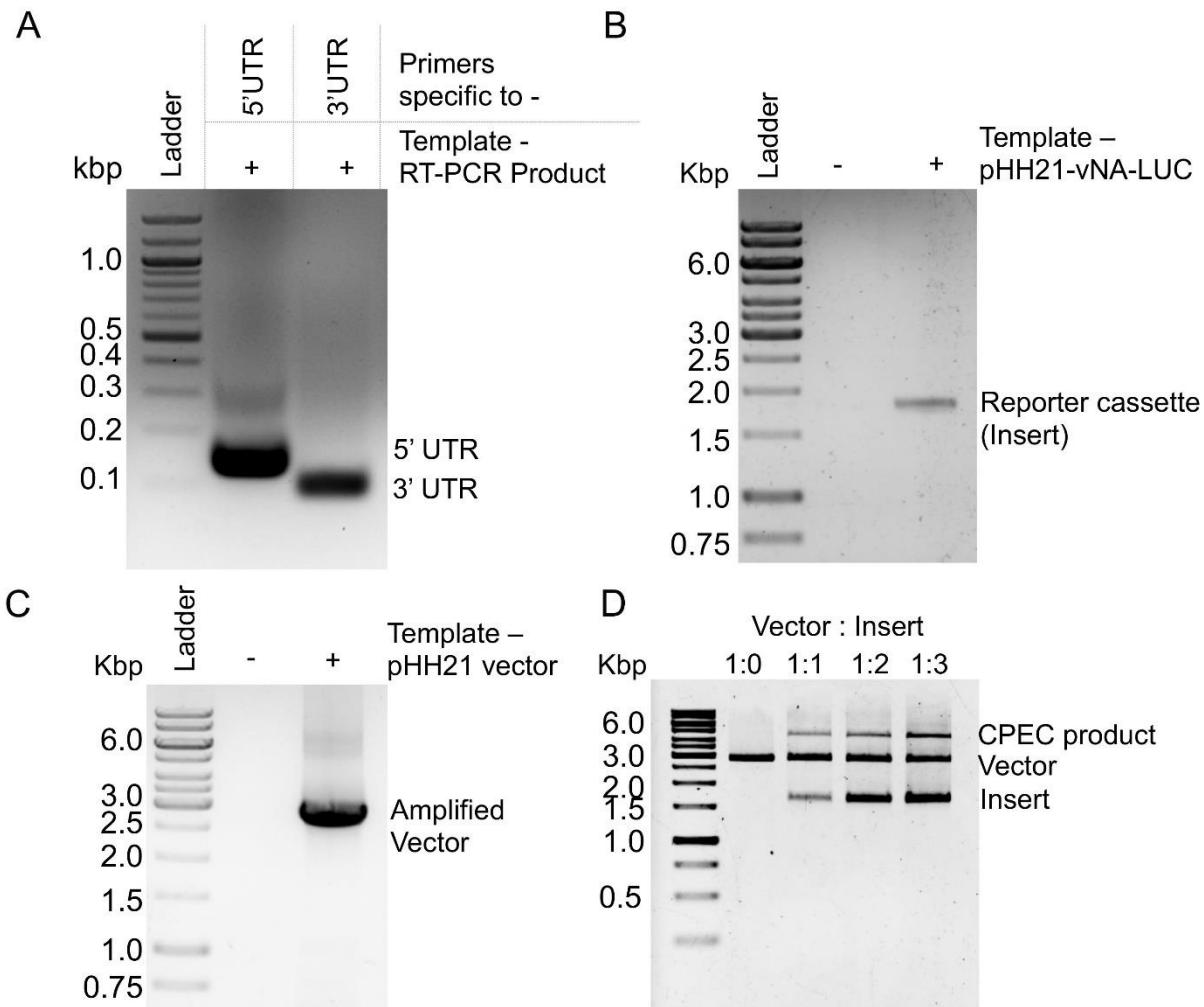
337

338

339

340

341


342

343

344

Figure 1: An overview of cloning strategy of influenza B reporter plasmid and reporter assay (A) Total RNA was isolated from amplified stocks of Influenza B/Brisbane/60/2008 virus (B) total RNA was converted to cDNA by performing RT-PCR and 5' & 3' UTRs were amplified using specific primers containing overhangs. (C) The double-stranded 5' and 3' UTRs containing overlapping regions were used as primers to amplify the luciferase ORF. (D) The resulting PCR product was used as an insert for CPEC assembly with the PCR amplified vector fragment. (E-F) The generated reporter and other protein expressing plasmids upon co-transfection in HEK293T cells reconstitute the luciferase RNP's that express luciferase enzyme under the

345 control of the viral promoter. The quantification of the luciferase signal gives the measure of
346 viral polymerase activity.

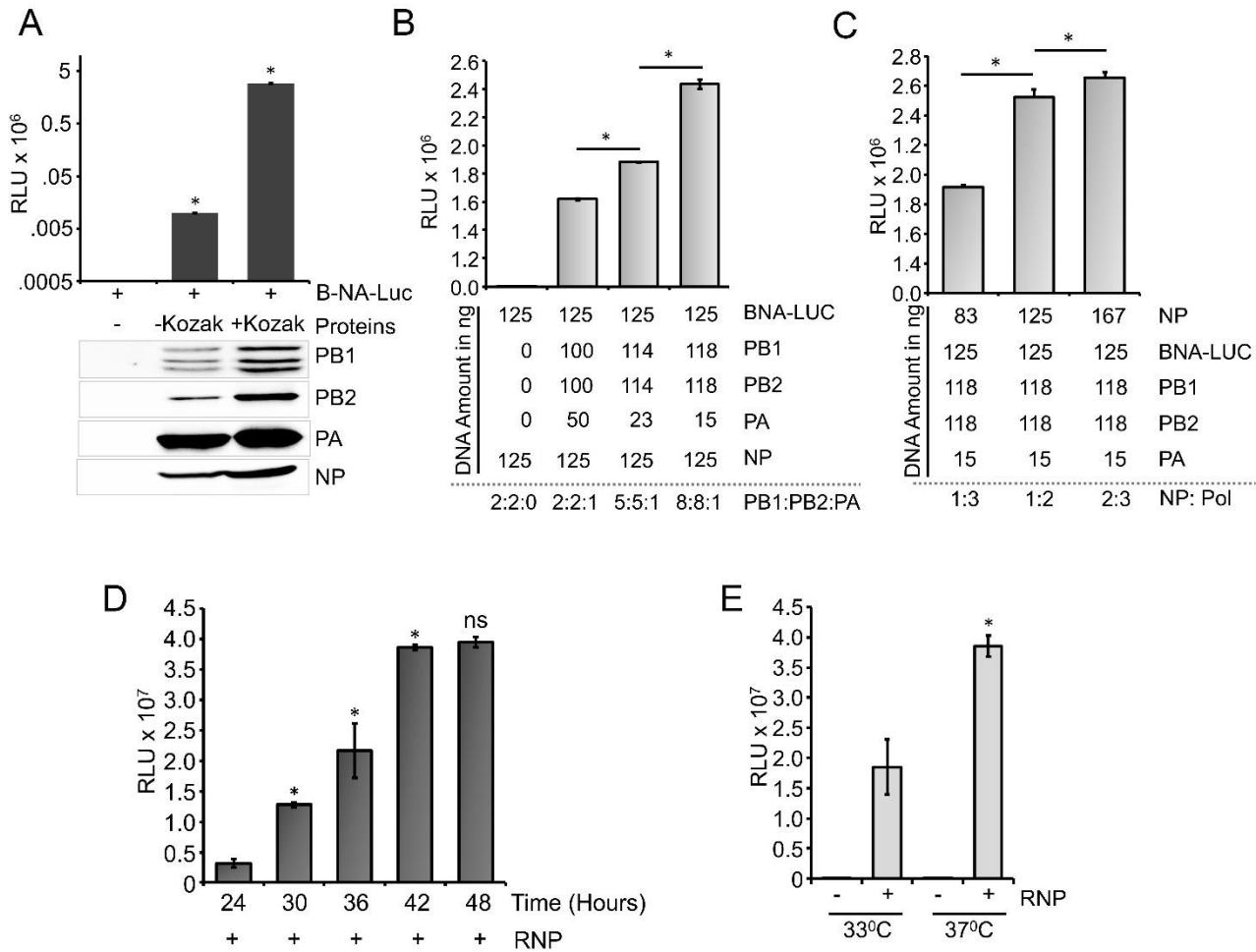
347

348 **Figure 2:** PCR amplification and CPEC reaction for construction of reporter construct: Agarose
349 gel electrophoresis images of (A) PCR amplification products corresponding to the 5'UTR and
350 3'UTR of NA-NB segment. (B) PCR amplification product of luciferase ORF using double-
351 stranded PCR products corresponding to 5' and 3' UTRs as primers. (C) PCR amplification of
352 pHH21 vector. (D) CPEC products with different ratio of vector to insert.

353

354 Viral genomic RNA, purified from influenza B/Brisbane/60/2008 virus particles (as depicted in Figure
355 1A), was used as a source for the amplification of the 5'- and 3'-UTRs (103 nucleotides and 53
356 nucleotides respectively), using sequence specific primers with 18-24 nucleotide overhanging
357 sequences corresponding to the vector and the reporter gene (Figure 1B, 2A). The resulting PCR
358 products thus contain (i) viral 5'UTR flanked by the overlapping sequences with the Pol-I promoter
359 and 3'-termini of the reporter gene of the total 144 base pairs in length and (ii) viral 3'UTR region

360 flanked by the overlapping sequence with 5'-termini of reporter gene and Pol-I terminator of total 95
361 base pairs in length. These double-stranded PCR products were then used as primers to amplify the
362 firefly luciferase gene from the pH21-vNA-Luc plasmid, kindly provided by Prof. Andrew Mehle,
363 University of Wisconsin Madison (Figure1C, 2B). The final PCR product, constitutes reporter gene
364 flanked by viral 5'- and 3'- UTR regions along with partial sequences from the Pol-I promoter and
365 terminator regions at the extreme 5'- and 3'- termini respectively. In order to synthesize the final
366 reporter plasmid construct, named as pH21-BNA-Luc, this cassette was inserted into the pH21
367 vector (amplified in a separate PCR reaction; Figure 2C) using the Circular Polymerase Extension
368 Cloning (CPEC), as originally described by Quan et al(32,34) (outlined in the Figure 1D). A vector to
369 insert molar ratio of 1:3 generated maximum amount of assembled product (Figure 2D). Reaction
370 product was transformed in chemically competent *E. coli* and the successful incorporation of the insert
371 was confirmed by the colony PCR screening method. All the PCR amplifications were performed using
372 a single Phusion High-Fidelity DNA polymerase as described in further detail in the methods section.


373 To reconstitute functional reporter RNPs inside the cells, reporter RNA template needs to be co-
374 expressed with NP and the RdRp subunits, PB1, PB2 and PA (Figure 1E, F). The RdRp subunits were
375 cloned into the pCDNA-3x-FLAG vector (generously provided by Dr. Andrew Mehle) under the
376 control of CMV promoter with the help of EcoRI and NotI restriction enzymes, which results in
377 incorporation of a tri-alanine linker in between the individual ORFs and the three FLAG epitopes
378 joined in tandem (3x-FLAG). For expression of untagged proteins, ORFs with the stop codon were
379 cloned using the same strategy. The NP gene was cloned into a modified pcDNA3 vector harboring
380 V5 epitope tag (mentioned in the methods section) with the help of the KpnI and BamHI sites, with a
381 glycine-glycine-serine-glycine linker in between the ORF and the V5 epitope tag.

382 3.2 Standardization of influenza B virus RNP activity assay

383 Influenza B virus reporter RNPs were reconstituted in HEK293T cells through transient transfection
384 of the reporter plasmid (pH21-BNA-Luc) either in the absence (negative control) or the presence of
385 the plasmids expressing PB1, PB2, PA and NP proteins (Figure 3A). Cells were harvested at 24 hours
386 of post-transfection and luciferase activity was measured to quantitate the Influenza B RNP activity.
387 To our surprise, the positive control set showed only $\sim 10^4$ signal (luciferase light unit or RLU) which
388 is only two log higher than the negative control set ($\sim 10^2$ RLU), suggesting suboptimal activity of the
389 reconstituted RNPs. This could be due to the poor expression levels of the RdRp subunits, PB1 and
390 PB2, in comparison to the PA and NP proteins, as observed from the western blot analysis using
391 specific antibodies, hence prohibiting the successful assembly of reporter RNPs inside the cells. We
392 analysed the expression of individual polymerase proteins, PB2, PB1 and PA by transfecting them at
393 increasing amounts into HEK293T cells and further western blot analysis as shown in supplementary
394 Figure S2. It was observed that the expression of PA subunit is significantly higher than PB2 and PB1.
395 To investigate this further, we examined the sequences of the constructs carefully and noticed that all
396 of the protein expression plasmids lack the upstream Kozak sequence which may result in their
397 suboptimal translation. The conserved Kozak sequence (GCCRCCATGG) plays the critical role for
398 recognition initiator ATG codon by ribosome to attain a high level of translation. Two specific
399 positions, -3 and +4 from the adenine of initiator codon ATG are found (GCCRCCATGG) to be critical
400 for the optimal protein expression(35–38). The PA gene have a Guanosine at +4 position in its ORF
401 but PB1 and PB2 do not have this Guanosine in their ORF. This makes the expression of PA gene
402 better than PB2 and PB1. To address this, we performed site-directed mutagenesis to introduce partial
403 Kozak sequences in each of these plasmids without any alteration in the ORF and repeated the
404 polymerase activity assay with them. As evident from Figure 3A, the introduction of the Kozak
405 sequence significantly boosted the expression of all of the RNP proteins which together resulted in

Establishment of Flu B reporter system

406 reporter activity of 10^6 RLU, four logs higher than the negative control set. Interestingly, the expression
407 levels of the PA subunit still remained severalfold higher than the other two subunits of RdRp, PB1
408 and PB2 (Figure 3A). Precise abundance of the PB1, PB2 and PA subunits in equimolar amounts is a
409 pre-requisite for the successful assembly of the heterotrimeric RdRp complex and hence, reconstitution
410 of reporter RNPs to optimum levels. Therefore, we tried to optimize the amount of the plasmids to be
411 transfected in order to have a comparable expression of the RdRp subunits. Reporter RNPs were
412 reconstituted using different ratios of RdRp subunit plasmids, while keeping the amount of the reporter
413 RNA and NP plasmids constant. As shown in Figure 3B, increasing the amount of PB1 and PB2
414 expressing plasmids compared to the PA led to a gradual increase in reporter activity and a ratio of
415 8:8:1 for PB1: PB2: PA resulted in comparable expression of all three polymerase subunits and
416 maximum reporter activity. Protein expression level for all polymerase subunits have been shown by
417 western blot analysis in supplementary Figure S3. Subsequently, keeping the ratio of the polymerase
418 subunit plasmids constant, we increased the amount of the NP expressing plasmid, which resulted in
419 increase in the reporter activity, hence stretching the sensitivity of this reporter assay to the maximum
420 level (Figure 3C). Individual protein expression levels are shown in supplementary Figure S4 as
421 western blot analysis. The NP to polymerase proportion up to 1:2 results in increase in polymerase
422 activity. Further increase in the amount of NP does not result in substantial increase in polymerase
423 activity. Hence for our further experiments, we have used this ratio of RNP reconstituting plasmids.
424 Once we optimize the amounts of various plasmids reconstituting reporter RNPs, we have performed
425 a time kinetics experiment in order to assess the optimum time required to obtain a signal of 10^6 RLU
426 or more (Figure 3D).

427

428

Figure 3: Optimization of the reporter system: (A) Effect of Kozak sequence on expression of viral polymerase proteins and influenza B RNP activity assay (B) Reporter RNP activity assay with different ratio of PA protein expression plasmid with respect to PB1 and PB2. (C) Reporter RNP activity assay with various amount of NP expression plasmid. (D) Optimization of time for reporter activity assay (E) Optimization of incubation temperature for influenza B RNP activity assay ($n=3 \pm$ standard deviation, $*p<0.05$ one-way ANOVA with post hoc Student's t-test when compared to the preceding set, for Figure E, comparison was performed in between two RNP positive sets, ns = not significant).

436

437

438

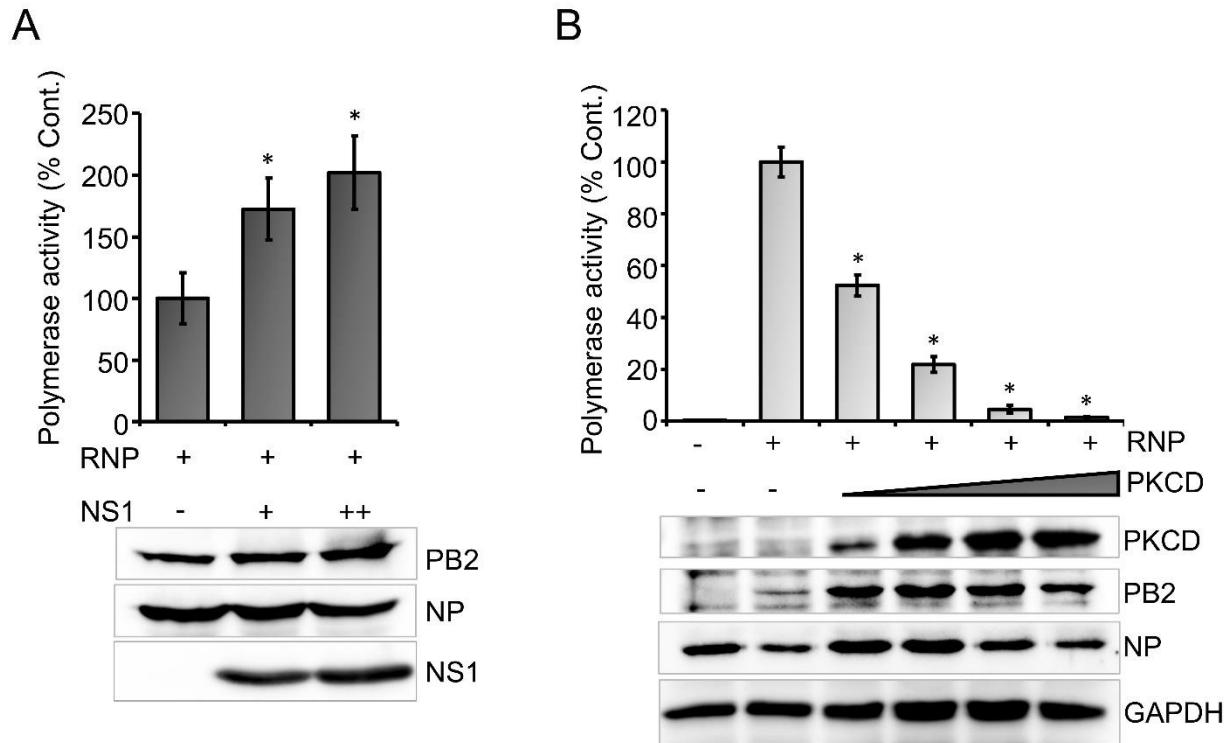
439

440

441

442

A time-dependent increase in the reporter activity was observed which reaches a plateau at 42 h post transfection. Additionally, influenza B polymerase activity was assessed at different temperatures (33 °C and 37 °C) by reconstituting the polymerase through transient transfection at 37 °C for 12 hours followed by an additional incubation of 30 hours at respective temperatures (Figure 3E). As observed at 37 °C, reporter activity was almost two fold higher than the activity at 33 °C, a data corroborated perfectly with the previous results obtained by Santos et al(39). Together, we present a fast sensitive


443 and high throughput reporter assay for monitoring influenza B virus RNA synthesis in an infection free
444 setting.

445 All of the assays were performed in 24-, 48- and 96- well plates, in triplicates for each of the biological
446 sets (data presented in this manuscript is from 24 well plates), hence confirming that this assay system
447 is high-throughput compatible. Additionally, five log difference between the signal and background
448 readouts provides a wide dynamic range for this reporter-based assay system. There is no significant
449 difference in the intra-assay variability among individual experiments as shown in supplementary
450 Figure S5. The inter-assay coefficient of variation remains within 10% (supplementary Figure S5).
451 Together, we have been able to establish a fast, reliable and high-throughput compatible assay system
452 for monitoring influenza B virus RNP/ polymerase activity, which is suitable for assessing the effect
453 of various viral or cellular factors in modulating RNP activity and hence viral RNA synthesis.

454 **3.3 The influenza B RNP activity assay is suitable for evaluating the efficacy of viral or host
455 factors in regulating viral RNA synthesis**

456 To this end, we set out to evaluate the efficacy of the newly developed polymerase activity assay in
457 identifying novel viral and host factors that may regulate viral RNA synthesis. Influenza virus
458 Nonstructural Protein 1 (NS1) is a multifunctional protein participating mainly in the suppression of
459 antiviral defense mechanisms exerted by a wide variety of host factors (40,41). Additionally, influenza
460 A virus NS1 protein has been shown to boost viral RNA synthesis(42–44), possibly through interfering
461 with antiviral activity of DDX21 and RAP55 (45,46). While the immune suppression activity of
462 influenza B NS1 was well studied(41,47,48), little is known about the role of NS1 in regulating
463 influenza B virus RNA synthesis. Hence, we evaluated the ability of influenza B virus NS1 protein to
464 promote viral RNA synthesis with the newly developed reporter RNP activity assay. Influenza B virus
465 NS1 ORF was cloned into the pCDNA-3x-FLAG vector that resulted in the expression of the C-
466 terminally FLAG tagged NS1 protein. Influenza B reporter RNPs were reconstituted in HEK293T cells
467 either in the absence or presence of increasing amounts of NS1 protein and reporter activity was
468 monitored to assess the extent of viral RNA synthesis. Increasing amount of NS1 resulted in 1.5 to 2
469 folds increase in reporter activity (Figure 4A) establishing it as a positive regulator of viral RNA
470 synthesis. Furthermore, reconstituting reporter RNPs in the presence of NS1 presents an assay system
471 that closely resembles RNA synthesis, which occurs during the course of infection.

472 Subsequently, we tested the ability of a host factor to regulate influenza B virus RNA synthesis using
473 our reporter RNP activity assay. Host Protein Kinase C, specifically the delta isoform, has been shown
474 to positively influence influenza A virus RNA synthesis by regulating the phosphorylation and
475 subsequent assembly of viral nucleoproteins into RNPs. Interestingly, the constitutively active catalytic
476 domain of PKC delta (PKCD), when overexpressed, negatively regulates influenza A virus RNA
477 synthesis (49). To determine the role of PKCD in regulating influenza B virus RNA synthesis we
478 employed the newly developed reporter RNP activity assay. As evident from Figure 4B, increasing
479 amounts of PKCD resulted in a gradual decrease in RNP activity and hence viral RNA synthesis
480 without any severe impact upon the translation of viral proteins. These data not only substantiate the
481 role of PKCD in regulating influenza B virus RNP activity, but also validates the efficacy of our assay
482 system in studying the effect of pro- or antiviral factors regulating viral RNA synthesis.

483

484

485

486

487

488

Figure 4: Effect of host & viral factors upon viral RNA synthesis: (A) Effect of an increasing amount of viral NS1 protein on Influenza B RNP activity assay (B) Effect of an increasing amount of constitutively active host protein kinase c delta (PKCD) protein on B RNP activity assay. (n=3± standard deviation. *p<0.05 one-way ANOVA with post hoc student's t-test when compared to the preceding set.

489

490

491

3.4 Reporter based RNP activity assay as high throughput screening platform for antiviral drugs

492

493

494

495

496

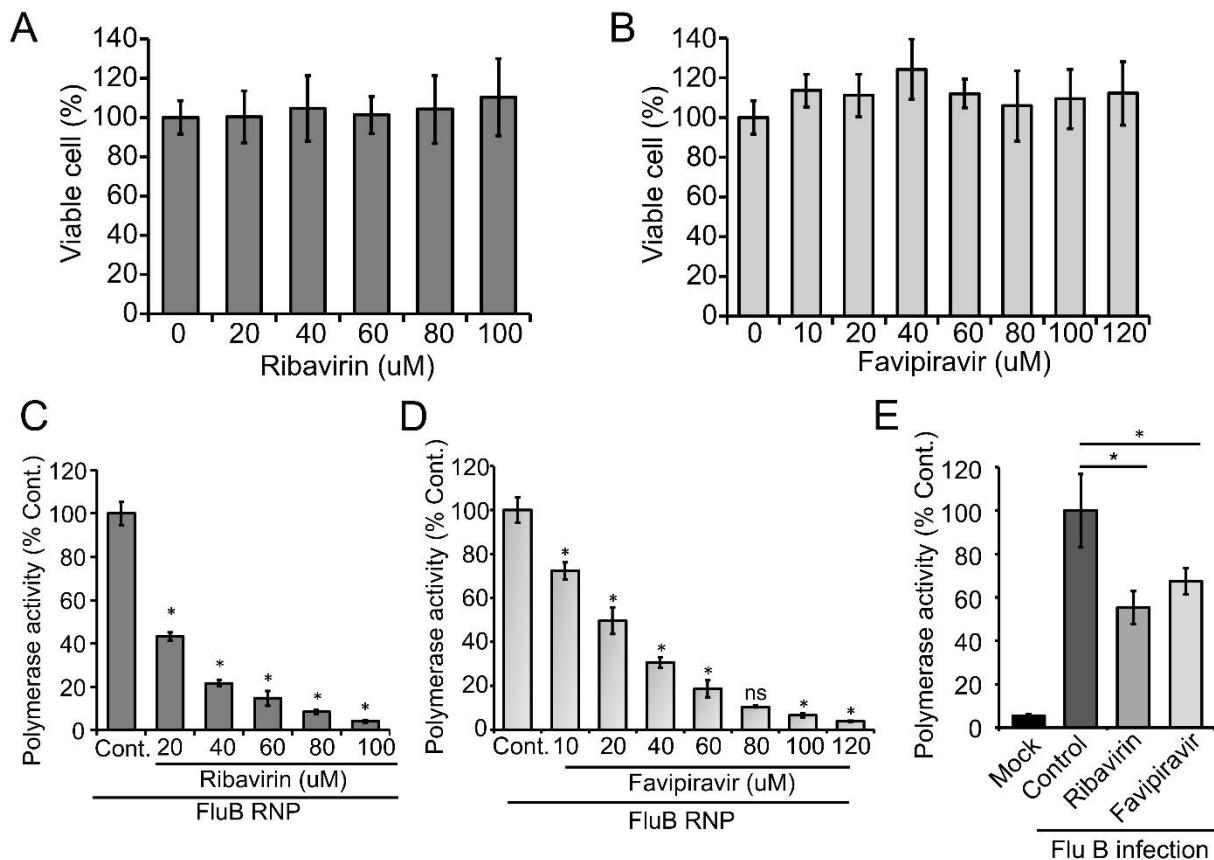
497

498

499

500

501


502

503

504

Finally, we intend to establish the suitability of the RNP activity assay as a high throughput screening platform for antiviral drugs that can inhibit viral RNA synthesis and hence virus replication. Ribavirin and Favipiravir are nucleoside (purine) analogues, which inhibit the replication of a wide variety of RNA viruses by acting as an alternative substrate for viral RNA polymerase(50,51). Additionally, Ribavirin also inhibits inosine monophosphate dehydrogenase thereby depleting the GTP and creating an imbalance in the nucleotide pool inside the cell(52). Both Ribavirin and Favipiravir has been approved as chemoprophylaxis as well as therapy against influenza A and B viruses(53–55). Hence, we used these two drugs as positive controls to test the efficacy of our assay system for antiviral screening. MTT assay was performed in HEK293T cells (Figure 5A, B), where neither of the drugs show any cytotoxicity upto investigated concentrations. HEK293T cells were pretreated with different concentrations of the drugs followed by forward transfection to reconstitute the influenza B reporter RNPs and subsequent incubation with the drugs for 36 hours. Reporter activities were measured and expressed as relative percentages with respect to the vehicle control. Data presented in Figure 5 C, D,

505 shows a dose-dependent decrease in the reporter activity and hence viral RNA synthesis with increasing
506 amounts of the drugs with IC₅₀ values of 18.54 μ M and 25.46 μ M for Ribavirin and Favipiravir
507 respectively.

508

509 **Figure 5:** Effect of antiviral drugs upon viral RNA synthesis in infection-free and infection
510 setting: (A, B) MTT assay to determine the cytotoxicity of Ribavirin and Favipiravir on
511 HEK293T cells. (C, D & E) Effect of Ribavirin and Favipiravir on influenza B virus RNP
512 activity. Viral polymerase proteins in HEK293T cells are expressed either by transient
513 transfection (C, D) or by infecting the cells with Influenza B virus (E). (n=3 \pm standard deviation,
514 *p<0.05 one-way ANOVA with post hoc Student's t-test when compared to the preceding set,
515 for Figure E, comparison was performed with control set, ns = not significant).

516

517 To further extend the scope of the assay system, we sought to check if this system is capable of
518 assessing the effect of host factors or antivirals upon the overall progress of infection. For this purpose,
519 we transfected HEK293T cells with the reporter construct and subsequently infected them with
520 influenza B virus at 20 hours post transfection. It is expected that in infected cells reporter RNA
521 template will get transcribed with the help of RdRp and NP proteins expressed from viral genomic
522 RNA segments. As evident from Figure 5E, infected cells supported successful generation of reporter
523 RNPs and hence showed high reporter activity, while the uninfected cells showed no such effect.
524 Interestingly, when parallel set of cells were treated with Ribavirin and Favipiravir prior to infection

525 with Influenza B virus, significant reduction in reporter activity were observed, hence suggesting an
526 overall reduction in viral gene expression and hence virus replication in presence of the drugs. Together
527 our data reconfirms the activity of the two well established antiviral drugs against influenza B virus
528 RNA synthesis machinery and also establishes the newly developed reporter-based influenza B virus
529 RNP activity assay as a high throughput screening platform for antivirals specifically inhibiting viral
530 RNA synthesis.

531 **4 Discussion**

532 Luciferase based reporter assay systems remain a key tool for analyzing gene expression in a wide
533 variety of organisms; viruses are not exception. While, for positive sense RNA viruses, introduction of
534 the single sub-genomic reporter RNA template in cells is sufficient for expression of reporter genes;
535 but for negative sense RNA viruses, RNP associated viral proteins needs to be synthesized along with
536 the reporter RNA in order to reconstitute complete RNPs, which then leads to the expression of reporter
537 enzyme as a proxy of viral genes(20,56,57). This is why, successful reconstruction of reporter viral
538 RNPs require extensive cloning of multiple RNA and protein expressing constructs, standardization of
539 their expression in right stoichiometric ratios and optimization of other crucial parameters like time,
540 temperatures etc. Although, several groups have reported reporter assay systems for monitoring
541 influenza A and B virus RNA synthesis, non-availability of detailed methodical description makes the
542 process of establishing the assay system non-trivial(13,20,25–27). In this work, we have established a
543 firefly luciferase-based influenza B virus RNP activity assay and presented the detailed methodology
544 of the entire procedure which could be easily followed for the development of such viral and non-viral
545 reporter assay systems.

546 We have introduced a unique cloning strategy for the construction of the influenza B virus reporter
547 RNA construct that is devoid of restriction enzymes or any other specialized enzymes. This cloning
548 strategy utilizes a single DNA polymerase, which is widely used for regular molecular biology work
549 and hence easily available. Using this polymerase, two consecutive PCR amplification reactions led to
550 the generation of the reporter RNA cassette encompassing the reporter ORF flanked by viral 5'- and
551 3'-UTR regions which were then inserted into the vector using CPEC cloning method. While the vector
552 and the insert used for CPEC, are also compatible for Gibson assembly based cloning method, we
553 intentionally avoided use of any specialized enzymes to make the overall procedure simple and user-
554 friendly that could be adapted for cloning of any other reporter RNA constructs. In addition to reporter
555 RNA construct, we also cloned ORFs corresponding to viral PB1, PB2, PA and NP proteins and
556 optimized their expression to reconstitute reporter RNPs at maximum levels. The robustness of this
557 assay system was substantiated by testing the efficacy of antiviral drugs, Ribavirin and Favipiravir, to
558 inhibit influenza B virus RNA synthesis either in the context of reconstituted RNPs (through
559 transfection) or during the course of infection. The fact that the reporter RNA template can be
560 preferentially recognized by viral NP and RdRp subunits to reconstitute reporter RNPs during the
561 course of infection, confirms that the reporter RNA mimics viral genomic RNA segments and hence
562 validates its suitability to be used for the study of viral RNA synthesis and effect of various viral and
563 host factors upon the same. In fact, using the newly developed reporter RNP system, we for the first
564 time showed that viral NS1 protein can boost influenza B virus RNA synthesis and constitutively active
565 form of host PKCD can downregulate the same. While effect of NS1 and PKCD proteins has been
566 previously characterized in case of influenza A virus(42–44,49), our results substantiates that these
567 proteins participate similarly regulate influenza B virus RNA synthesis as well.

568 Altogether, we present a comprehensive roadmap for development, characterization and validation of
569 a reporter-based Influenza B virus polymerase/ RNP activity assay and made it generic enough to be

570 followed by others who intend to develop similar assay systems for influenza and other negative sense
571 RNA viruses. We also made all the resources publicly available (upon request) to enrich the armoury
572 for combating influenza B viruses and hope that it will be widely utilized to identify new therapeutic
573 strategies against this deadly human pathogen.

574 **5 Conflict of Interest**

575 *The authors declare that the research was conducted in the absence of any commercial or financial
576 relationships that could be construed as a potential conflict of interest.*

577 **6 Author Contributions**

578 N.K designed and performed the experiment, standardized methodology, analysed the data, wrote the
579 original draft, reviewed and edited the manuscript. S.B. - designed and performed experiments,
580 analyzed the data, reviewed and edited the manuscript. A.M conceptualized the work, designed and
581 supervised the project, arranged for funds, wrote the original draft, reviewed and edited the manuscript.
582 All authors have read and approved this final manuscript.

583 **7 Funding**

584 Financial support from the following sources is gratefully acknowledged. DBT Ramalingaswami re-
585 entry fellowship (BT/RLF/Re-entry/02/2015), Department of Biotechnology, Government of India;
586 DST-SERB, Early Career Research Award (ECR/2017/001896), Science and Engineering Research
587 Board, Department of Science and Technology, Government of India; and “Scheme for
588 Transformational and Advanced Research in Science” {STARS/APR2019/BS/369/FS (Project ID:
589 369)}, Ministry of Education, Government of India.

590 **8 Acknowledgments**

591 We sincerely acknowledge Prof. Andrew Mehle (University of Wisconsin Madison) for proving us
592 various valuable plasmids. We acknowledge Indian Institute of Technology Kharagpur for providing
593 us infrastructural support. A.M. acknowledges DBT, Ramalingaswami re-entry fellowship
594 (BT/RLF/Re-entry/02/2015), DST-SERB, Early Career Research Award (ECR/2017/001896) and
595 MHRD, “Scheme for Transformational and Advanced Research in Science”
596 {STARS/APR2019/BS/369/FS (Project ID: 369)} for financial support. N.K. (File number
597 09/081(1316)/2017-EMR-I) and S.B. (File number 09/081(1301)/2017-EMR-I) acknowledge the
598 Council of Scientific and Industrial Research for their fellowship.

599 **9 References**

- 600 1. Francis T. A new type of virus from epidemic influenza. *Science* (80-). 1940;92(2392):405–8.
- 601 2. Sharma L, Rebaza A, Cruz CS Dela. When “B” becomes “A”: the emerging threat of influenza
602 B virus. *Eur Respir J* [Internet]. 2019 Aug 1 [cited 2021 Oct 12];54(2). Available from:
603 <https://erj.ersjournals.com/content/54/2/1901325>
- 604 3. U.S. Influenza Surveillance: Purpose and Methods | CDC [Internet]. [cited 2021 Nov 2].
605 Available from: <https://www.cdc.gov/flu/weekly/overview.htm>
- 606 4. Flu Symptoms & Complications | CDC [Internet]. [cited 2021 Nov 2]. Available from:

607 <https://www.cdc.gov/flu/symptoms/symptoms.htm>

608 5. JA M, T S, AR I. Multiple genotypes of influenza B virus circulated between 1979 and 2003. *J Virol* [Internet]. 2004 Dec [cited 2021 Nov 2];78(23):12817–28. Available from: <https://pubmed.ncbi.nlm.nih.gov/15542634/>

611 6. Xu C, Chan K-H, Tsang TK, Fang VJ, Fung ROP, Ip DKM, et al. Comparative Epidemiology of Influenza B Yamagata- and Victoria-Lineage Viruses in Households. *Am J Epidemiol* [Internet]. 2015 Oct 15 [cited 2021 Nov 2];182(8):705–13. Available from: <https://academic.oup.com/aje/article/182/8/705/207118>

615 7. Ambrose CS, Levin MJ. The rationale for quadrivalent influenza vaccines. *Hum Vaccin Immunother* [Internet]. 2012 [cited 2021 Nov 2];8(1):81. Available from: [/pmc/articles/PMC3350141/](https://pmc/articles/PMC3350141/)

618 8. Dumm RE, Heaton NS. The development and use of reporter influenza b viruses. *Viruses* [Internet]. 2019 [cited 2021 Nov 2];11(8). Available from: www.mdpi.com/journal/viruses

620 9. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. *Nat Rev Dis Prim* 2018 41 [Internet]. 2018 Jun 28 [cited 2021 Nov 2];4(1):1–21. Available from: <https://www.nature.com/articles/s41572-018-0002-y>

623 10. Bouvier NM, Palese P. The biology of influenza viruses. *Vaccine*. 2008 Sep 12;26(SUPPL. 4):D49–53.

625 11. H F, AP W, L C, JR K, I SM, D K, et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. *Nature* [Internet]. 2019 Sep 12 [cited 2021 Nov 2];573(7773):287–90. Available from: <https://pubmed.ncbi.nlm.nih.gov/31485076/>

628 12. A L, J D, PD O, A P. Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. *J Virol Methods* [Internet]. 2005 [cited 2021 Nov 2];126(1–2):13–20. Available from: <https://pubmed.ncbi.nlm.nih.gov/15847914/>

631 13. Zhu W, Zhou J, Qin K, Du N, Liu L, Yu Z, et al. A reporter system for assaying influenza virus RNP functionality based on secreted *Gaussia* luciferase activity. *Virol J* [Internet]. 2011 [cited 2021 Nov 2];8:29. Available from: [/pmc/articles/PMC3039597/](https://pmc/articles/PMC3039597/)

634 14. Dadonaitė B, Gilbertson B, Knight ML, Trifkovic S, Rockman S, Laederach A, et al. The structure of the influenza A virus genome. *Nat Microbiol* 2019 411 [Internet]. 2019 Jul 22 [cited 2021 Nov 3];4(11):1781–9. Available from: <https://www.nature.com/articles/s41564-019-0513-7>

638 15. Szymkowiak C, Kwan WS, Su Q, Toner TJ, Shaw AR, Youil R. Rapid method for the characterization of 3' and 5' UTRs of influenza viruses. *J Virol Methods*. 2003 Jan 1;107(1):15–20.

641 16. Flick R, Hobom G. Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. *J Gen Virol* [Internet]. 1999 Oct 1 [cited 2021 Nov 3];80(10):2565–72. Available from: <https://www.microbiologyresearch.org/content/journal/jgv/10.1099/0022-1317-80-10-2565>

645 17. Ferhadian D, Contrant M, Printz-Schweigert A, Smyth RP, Paillart J-C, Marquet R. Structural
646 and Functional Motifs in Influenza Virus RNAs. *Front Microbiol.* 2018 Mar 29;0(MAR):559.

647 18. Park YW, Katze MG. Translational Control by Influenza Virus IDENTIFICATION OF CIS-
648 ACTING SEQUENCES AND TRANS-ACTING FACTORS WHICH MAY REGULATE
649 SELECTIVE VIRAL mRNA TRANSLATION*. 1995;

650 19. Fodor E, Palese † Peter, Brownlee GG, Garcí'a A, Garcí'a-Sastre G. Attenuation of Influenza
651 A Virus mRNA Levels by Promoter Mutations. *J Virol [Internet]*. 1998 Aug [cited 2021 Nov
652 19];72(8):6283. Available from: /pmc/articles/PMC109764/

653 20. Lutz A, Dyall J, Olivo PD, Pekosz A. Virus-inducible reporter genes as a tool for detecting
654 and quantifying influenza A virus replication. *J Virol Methods [Internet]*. 2005 Jun [cited 2019
655 Feb 25];126(1–2):13–20. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15847914>

656 21. Neumann G, Zobel A, Hobom G. RNA Polymerase I-Mediated Expression of Influenza Viral
657 RNA Molecules. *Virology*. 1994 Jul 1;202(1):477–9.

658 22. Sherry L, Smith M, Davidson S, Jackson D. The N Terminus of the Influenza B Virus
659 Nucleoprotein Is Essential for Virus Viability, Nuclear Localization, and Optimal
660 Transcription and Replication of the Viral Genome. 2014;

661 23. Luytjes W, Krystai M, Enami M, Parvin JD, Ralese P. Amplification, Expression, and
662 Packaging of a Foreign Gene by Influenza Virus. *Cell*. 1989;59:1107–13.

663 24. Parvin JD, Palese P, Honda A, Ishihama A, Krystal M. Promoter analysis of influenza virus
664 RNA polymerase. *J Virol [Internet]*. 1989 Dec [cited 2021 Nov 3];63(12):5142–52. Available
665 from: <https://journals.asm.org/doi/abs/10.1128/jvi.63.12.5142-5152.1989>

666 25. Li Y, Larrimer A, Curtiss T, Kim J, Jones A, Baird-Tomlinson H, et al. Influenza virus assays
667 based on virus-inducible reporter cell lines. *Influenza Other Respi Viruses*. 2009;3(5):241–51.

668 26. Wang Z, Duke GM. Virology Journal Cloning of the canine RNA polymerase I promoter and
669 establishment of reverse genetics for influenza A and B in MDCK cells. 2007 [cited 2021 Nov
670 3]; Available from: <http://www.virologyj.com/content/4/1/102>

671 27. Moncorge O, Long JS, Cauldwell A V., Zhou H, Lycett SJ, Barclay WS. Investigation of
672 Influenza Virus Polymerase Activity in Pig Cells. *J Virol [Internet]*. 2013 Jan 1 [cited 2021
673 Nov 3];87(1):384–94. Available from: <http://dx.doi.org>

674 28. Wakai C, Iwama M, Mizumoto K, Nagata K. Recognition of Cap Structure by Influenza B
675 Virus RNA Polymerase Is Less Dependent on the Methyl Residue than Recognition by
676 Influenza A Virus Polymerase. *J Virol [Internet]*. 2011 Aug [cited 2021 Nov 18];85(15):7504.
677 Available from: /pmc/articles/PMC3147943/

678 29. Muramoto Y, Takada A, Fujii K, Noda T, Iwatsuki-Horimoto K, Watanabe S, et al. Hierarchy
679 among Viral RNA (vRNA) Segments in Their Role in vRNA Incorporation into Influenza A
680 Virions. *J Virol*. 2006;80(5):2318–25.

681 30. Zhang Z, Zhang H, Xu L, Guo X, Wang W, Ji Y, et al. Selective usage of ANP32 proteins by

682 influenza B virus polymerase: Implications in determination of host range. 2020 [cited 2021
683 Nov 8]; Available from: <https://doi.org/10.1371/journal.ppat.1008989>

684 31. Eisfeld AJ, Neumann G, Kawaoka Y. Influenza A virus isolation, culture and identification.
685 Nat Protoc [Internet]. 2014 Nov 27 [cited 2021 Nov 10];9(11):2663–81. Available from:
686 <https://pubmed.ncbi.nlm.nih.gov/25321410/>

687 32. Quan J, Tian J. Circular polymerase extension cloning for high-throughput cloning of complex
688 and combinatorial DNA libraries. Nat Protoc. 2011 Feb 3;6(2):242–51.

689 33. Glover DM. DNA cloning: a practical approach. Volume 1. 1984.

690 34. Quan J, Tian J. Circular Polymerase Extension Cloning of Complex Gene Libraries and
691 Pathways. PLoS One [Internet]. 2009 [cited 2021 Oct 27];4(7):6441. Available from:
692 www.plosone.org

693 35. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates
694 translation by eukaryotic ribosomes. Cell [Internet]. 1986 Jan 31 [cited 2022 Apr
695 2];44(2):283–92. Available from: <https://pubmed.ncbi.nlm.nih.gov/3943125/>

696 36. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs.
697 Nucleic Acids Res [Internet]. 1987 Oct 26 [cited 2022 Apr 2];15(20):8125–48. Available
698 from: <https://pubmed.ncbi.nlm.nih.gov/3313277/>

699 37. Kozak M. Recognition of AUG and alternative initiator codons is augmented by G in position
700 +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J [Internet].
701 1997 May 1 [cited 2022 Apr 2];16(9):2482–92. Available from:
702 <https://onlinelibrary.wiley.com/doi/full/10.1093/emboj/16.9.2482>

703 38. Sakai H, Washio T, Saito R, Shinagawa A, Itoh M, Shibata K, et al. Correlation between
704 sequence conservation of the 5' untranslated region and codon usage bias in *Mus musculus*
705 genes. Gene [Internet]. 2001 Oct 3 [cited 2022 Apr 2];276(1–2):101–5. Available from:
706 www.elsevier.com/locate/gene

707 39. Santos JJS, Finch C, Sutton T, Obadan A, Aguirre I, Wan Z, et al. Development of an
708 Alternative Modified Live Influenza B Virus Vaccine. J Virol [Internet]. 2017 Jun 15 [cited
709 2021 Nov 18];91(12). Available from: <https://doi.org/10.1128/JVI.00056-17>.

710 40. Tisoncik JR, Billharz R, Burmakina S, Belisle SE, Proll SC, Korth MJ, et al. The NS1 protein
711 of influenza A virus suppresses interferon-regulated activation of antigen-presentation and
712 immune-proteasome pathways. J Gen Virol [Internet]. 2011 Sep [cited 2021 Nov 10];92(Pt
713 9):2093. Available from: [/pmc/articles/PMC353386/](https://PMC353386)

714 41. Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R, et al. Functional
715 Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and
716 in vivo. Front Microbiol. 2019 Dec 17;10:2862.

717 42. Mahmoudian S, Auerochs S, Gröne M, Marschall M. Influenza A virus proteins PB1 and NS1
718 are subject to functionally important phosphorylation by protein kinase C. J Gen Virol
719 [Internet]. 2009 [cited 2021 Nov 10];90(Pt 6):1392–7. Available from:

720 https://pubmed.ncbi.nlm.nih.gov/19264651/

721 43. Huang X, Zheng M, Wang P, Wing-Yee Mok B, Liu S, Lau S-Y, et al. ARTICLE An NS-
722 segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells.
723 2017 [cited 2021 Nov 10]; Available from: www.nature.com/naturecommunications

724 44. Salvatore M, Basler CF, Parisien J-P, Horvath CM, Bourmakina S, Zheng H, et al. Effects of
725 Influenza A Virus NS1 Protein on Protein Expression: the NS1 Protein Enhances Translation
726 and Is Not Required for Shutoff of Host Protein Synthesis. *J Virol*. 2002;76(3):1206–12.

727 45. Chen G, Liu CH, Zhou L, Krug RM. Cellular DDX21 RNA helicase inhibits influenza A virus
728 replication but is counteracted by the viral NS1 protein. *Cell Host Microbe* [Internet].
729 2014;15(4):484–93. Available from: <http://dx.doi.org/10.1016/j.chom.2014.03.002>

730 46. Mok BW-Y, Song W, Wang P, Tai H, Chen Y, Zheng M, et al. The NS1 Protein of Influenza
731 A Virus Interacts with Cellular Processing Bodies and Stress Granules through RNA-
732 Associated Protein 55 (RAP55) during Virus Infection. *J Virol* [Internet]. 2012 Dec 1 [cited
733 2021 Nov 10];86(23):12695. Available from: /pmc/articles/PMC3497642/

734 47. Dauber B, Heins G, Wolff T. The Influenza B Virus Nonstructural NS1 Protein Is Essential for
735 Efficient Viral Growth and Antagonizes Beta Interferon Induction. *J Virol* [Internet]. 2004 Feb
736 15 [cited 2021 Nov 10];78(4):1865. Available from: /pmc/articles/PMC369500/

737 48. Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon
738 (IFN)-induced ubiquitin-like ISG15 protein. *EMBO J* [Internet]. 2001 Feb 1 [cited 2021 Nov
739 10];20(3):362. Available from: /pmc/articles/PMC133459/

740 49. Mondal A, Dawson AR, Potts GK, Freiberger EC, Baker SF, Moser LA, et al. Influenza virus
741 recruits host protein kinase C to control assembly and activity of its replicat ion machinery.
742 *Elife* [Internet]. 2017 Jul 31 [cited 2018 Aug 20];6. Available from:
743 <https://elifesciences.org/articles/26910>

744 50. Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. *Rev Med
745 Virol* [Internet]. 2006 Jan 1 [cited 2021 Nov 10];16(1):37–48. Available from:
746 <https://onlinelibrary.wiley.com/doi/full/10.1002/rmv.483>

747 51. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral
748 RNA polymerase. *Proc Jpn Acad Ser B Phys Biol Sci* [Internet]. 2017 [cited 2021 Nov
749 10];93(7):449–63. Available from: <https://pubmed.ncbi.nlm.nih.gov/28769016/>

750 52. Gish RG. Treating HCV with ribavirin analogues and ribavirin-like molecules. *J Antimicrob
751 Chemother* [Internet]. 2006 Jan 1 [cited 2021 Nov 10];57(1):8–13. Available from:
752 <https://academic.oup.com/jac/article/57/1/8/915042>

753 53. Oxford JS. Inhibition of the replication of influenza A and B viruses by a nucleoside analogue
754 (ribavirin). *J Gen Virol* [Internet]. 1975 [cited 2021 Nov 10];28(3):409–14. Available from:
755 <https://pubmed.ncbi.nlm.nih.gov/1176969/>

756 54. Cheung PPH, Watson SJ, Choy KT, Sia SF, Wong DDY, Poon LLM, et al. Generation and
757 characterization of influenza A viruses with altered polymerase fidelity. *Nat Commun* 2014 51

Establishment of Flu B reporter system

758 [Internet]. 2014 Sep 3 [cited 2021 Nov 10];5(1):1–13. Available from:
759 <https://www.nature.com/articles/ncomms5794>

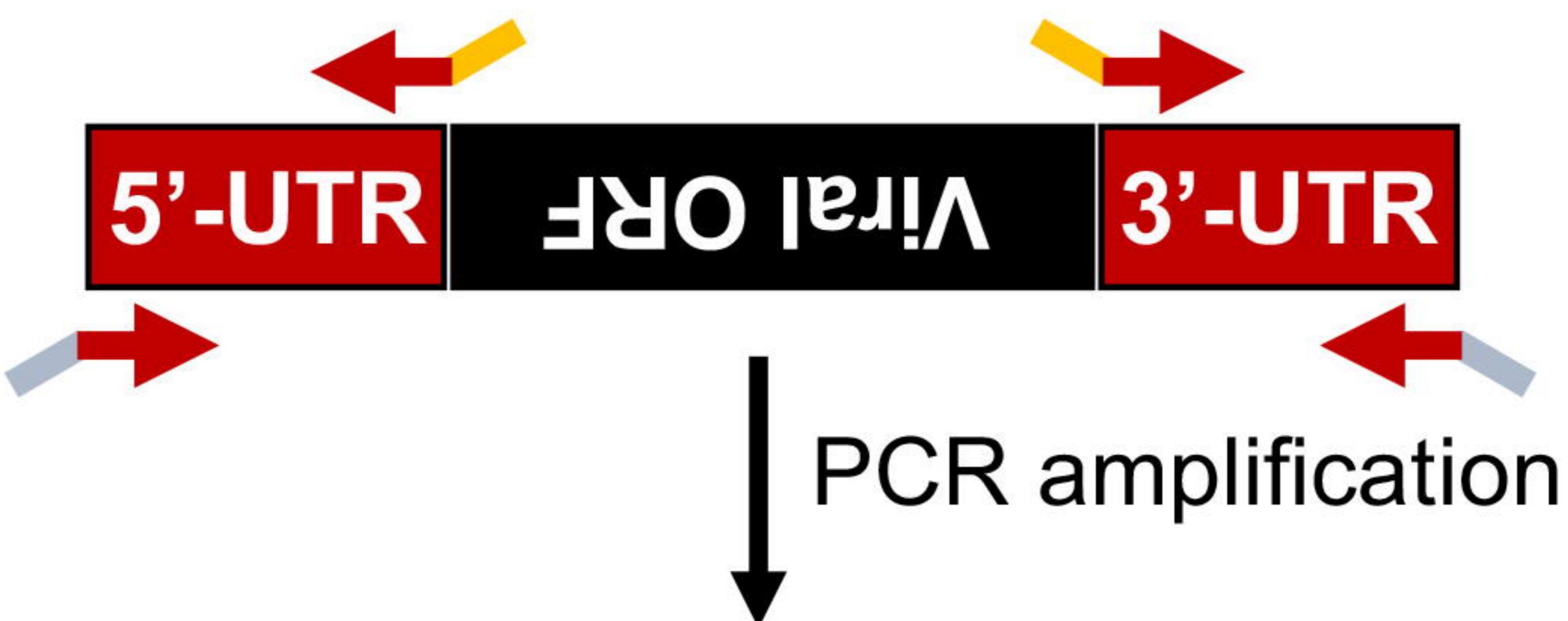
760 55. McCracken EA, McCracken EA. Double-Blind Clinical Assessment of Ribavirin (Virazole) in
761 the Prevention of Induced Infection with Type B Influenza Virus. *J Infect Dis* [Internet]. 1976
762 Jun 1 [cited 2021 Nov 18];133(Supplement_2):A109–13. Available from:
763 https://academic.oup.com/jid/article/133/Supplement_2/A109/867836

764 56. Ren L, Peng Z, Chen X, Ouyang H. Live Cell Reporter Systems for Positive-Sense Single
765 Strand RNA Viruses. *Appl Biochem Biotechnol* [Internet]. 2016 Apr 1 [cited 2021 Nov
766 10];178(8):1567. Available from: [/pmc/articles/PMC7091396/](https://pmc/articles/PMC7091396/)

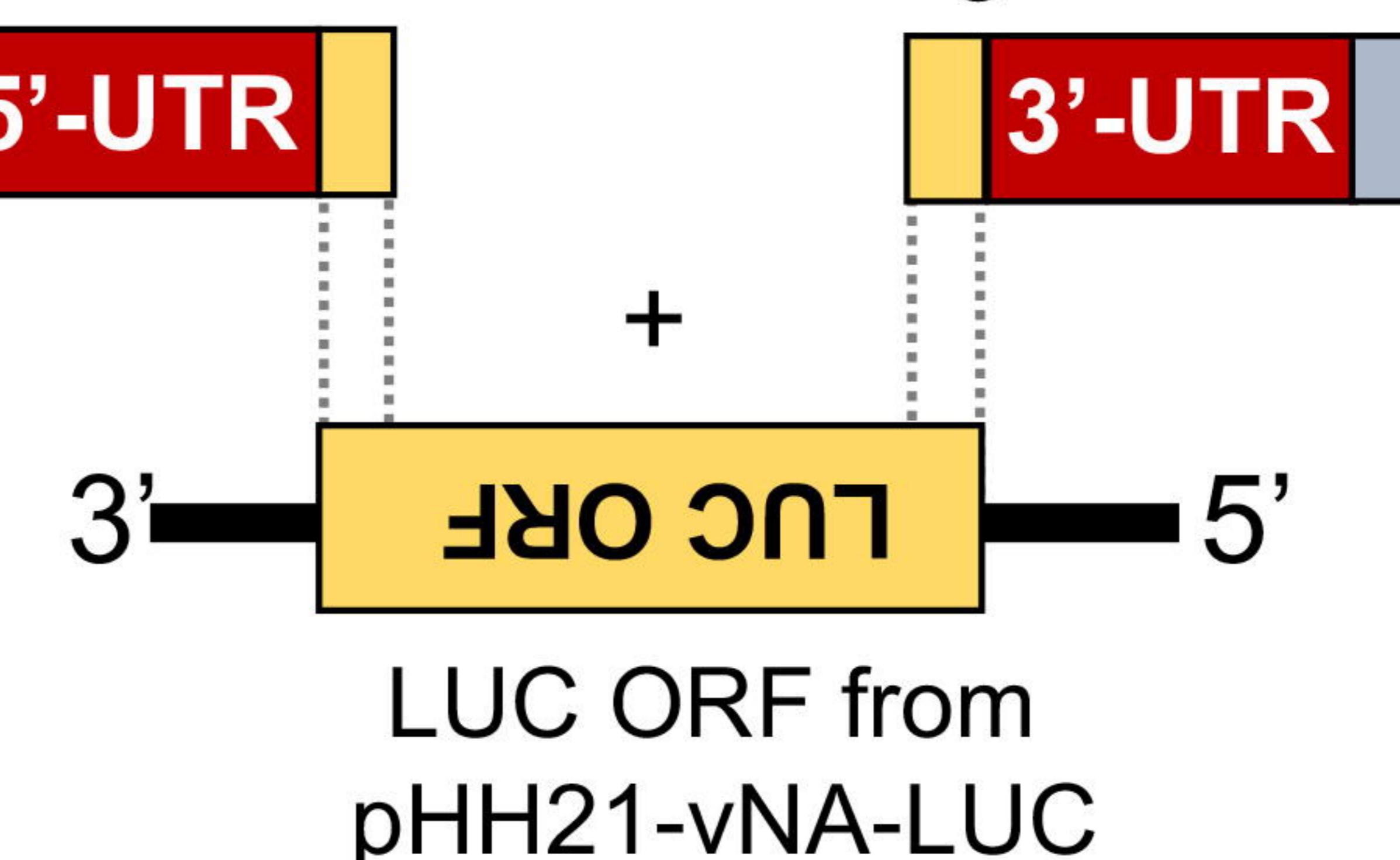
767 57. Su J, Dou Y, You Y, Cai X. Application of minigenome technology in virology research of the
768 Paramyxoviridae family. *J Microbiol Immunol Infect*. 2015 Apr 1;48(2):123–9.


769 1. Data Availability Statement

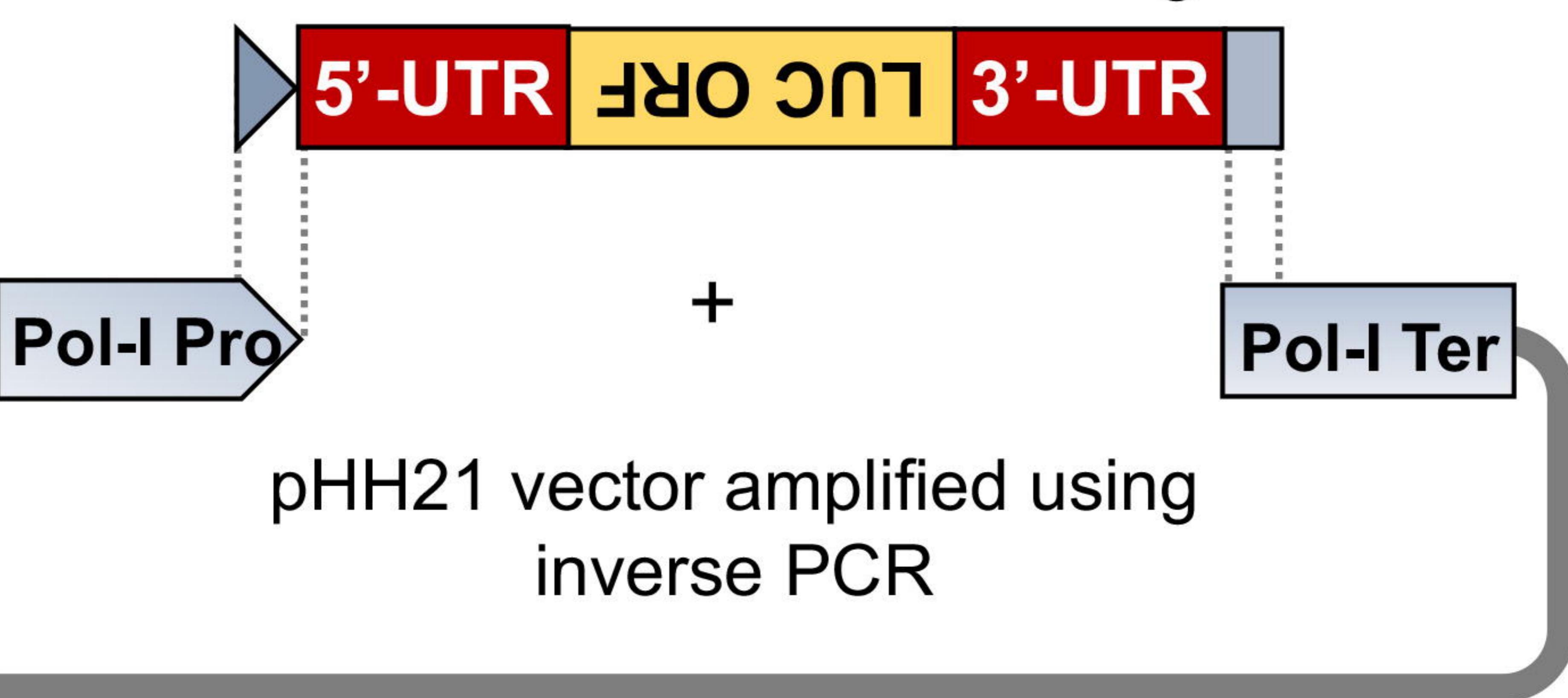
770 All data generated or analysed during this study are included in this published article.


771

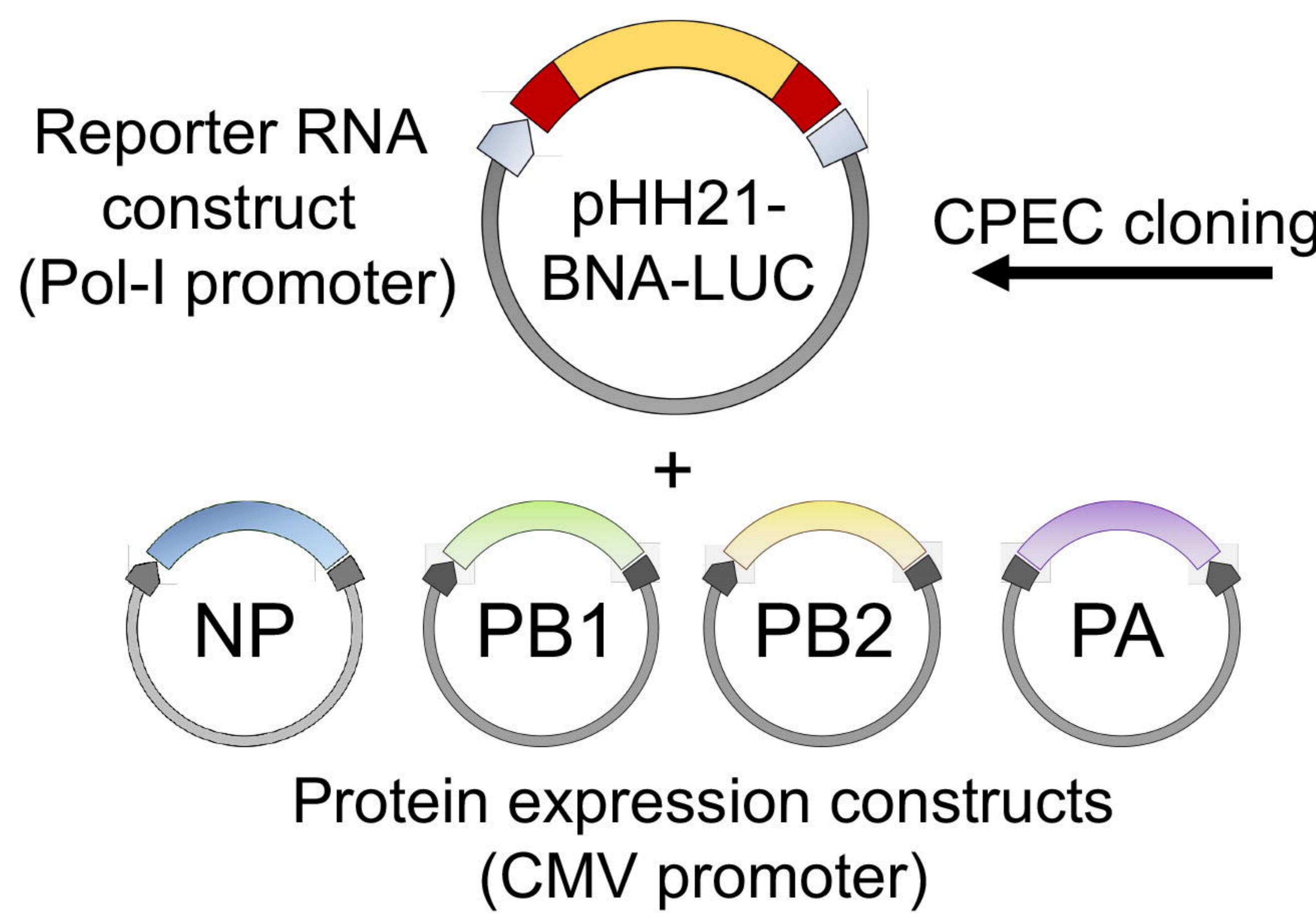
772


A

B

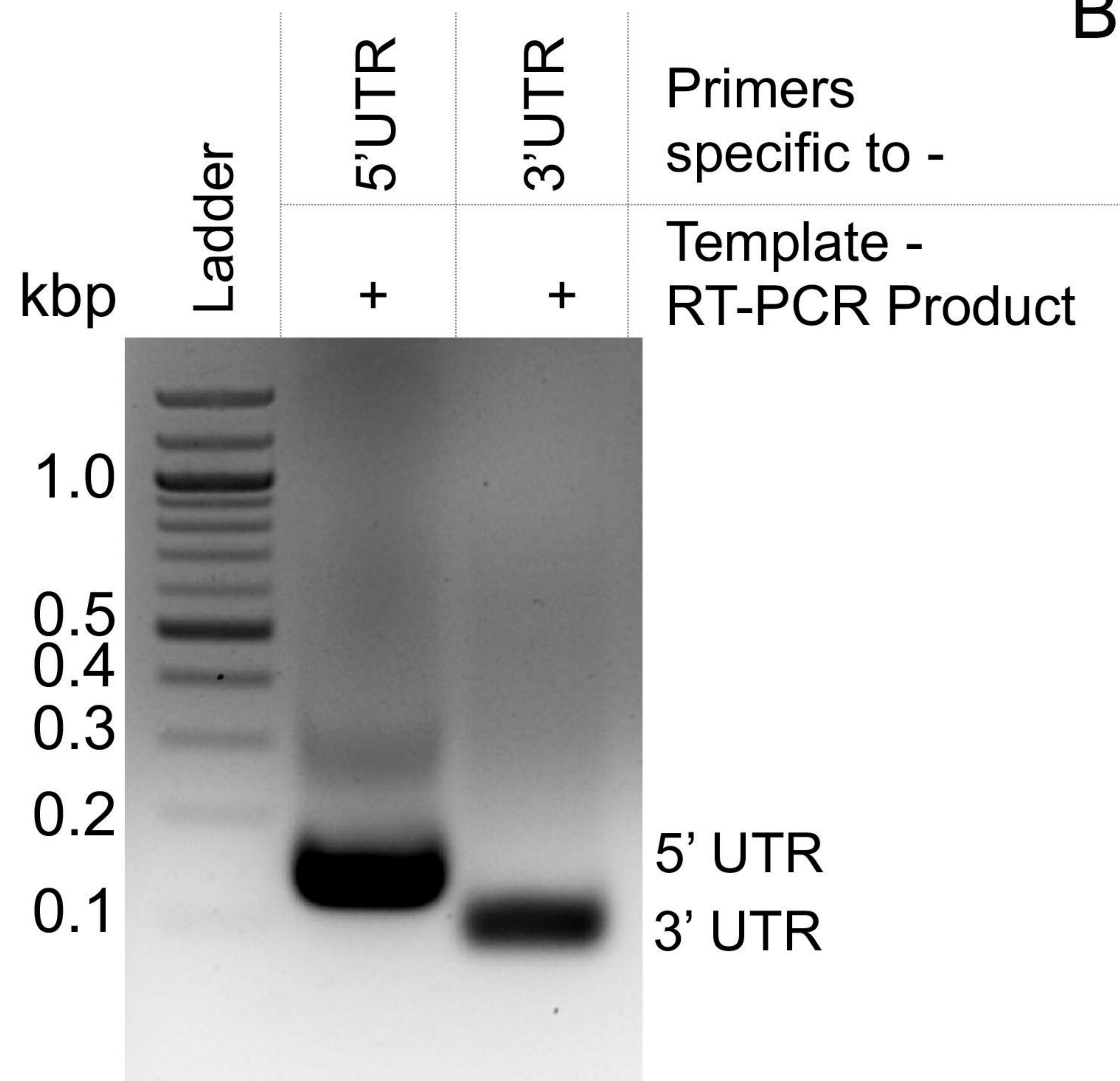


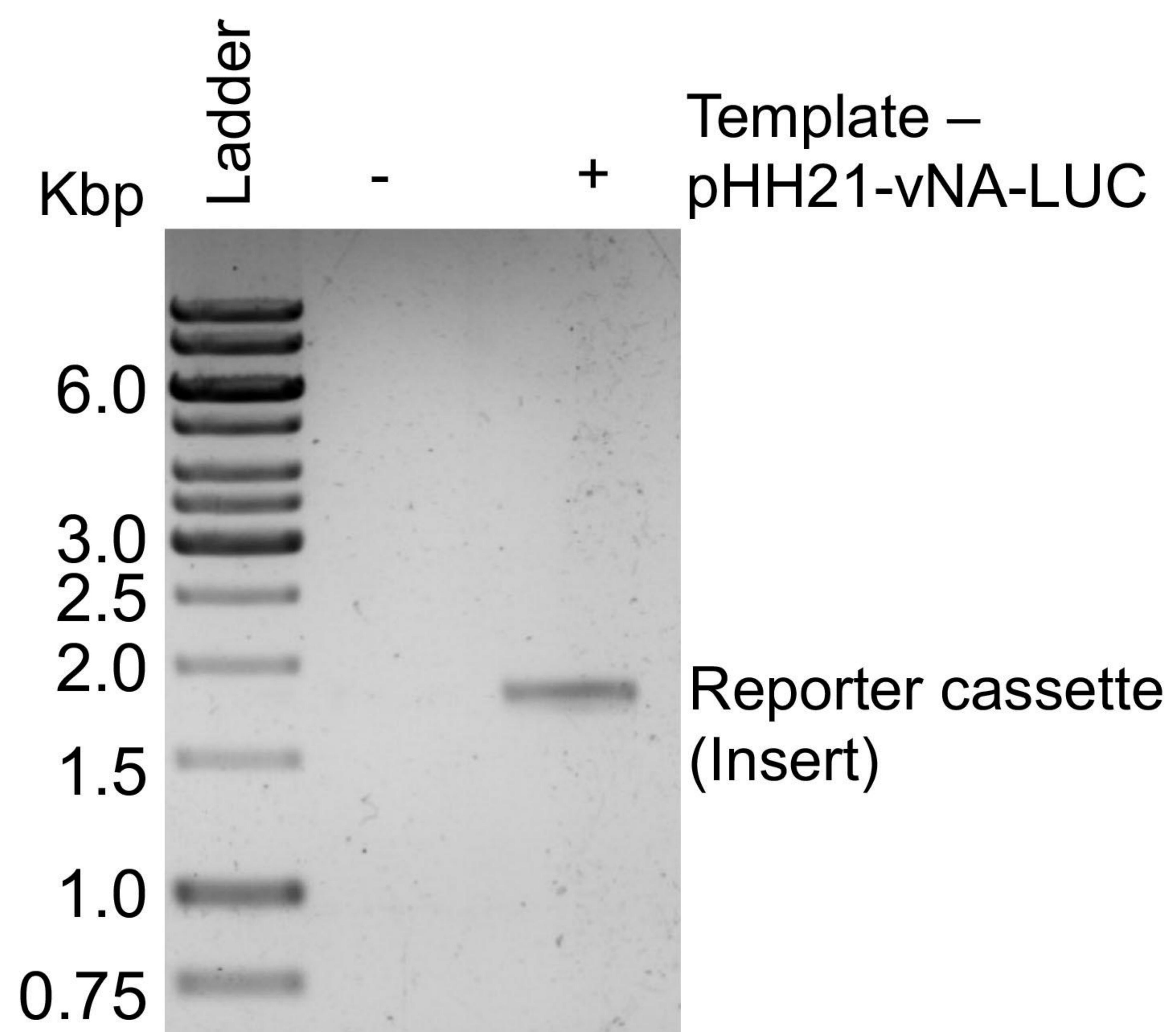
C

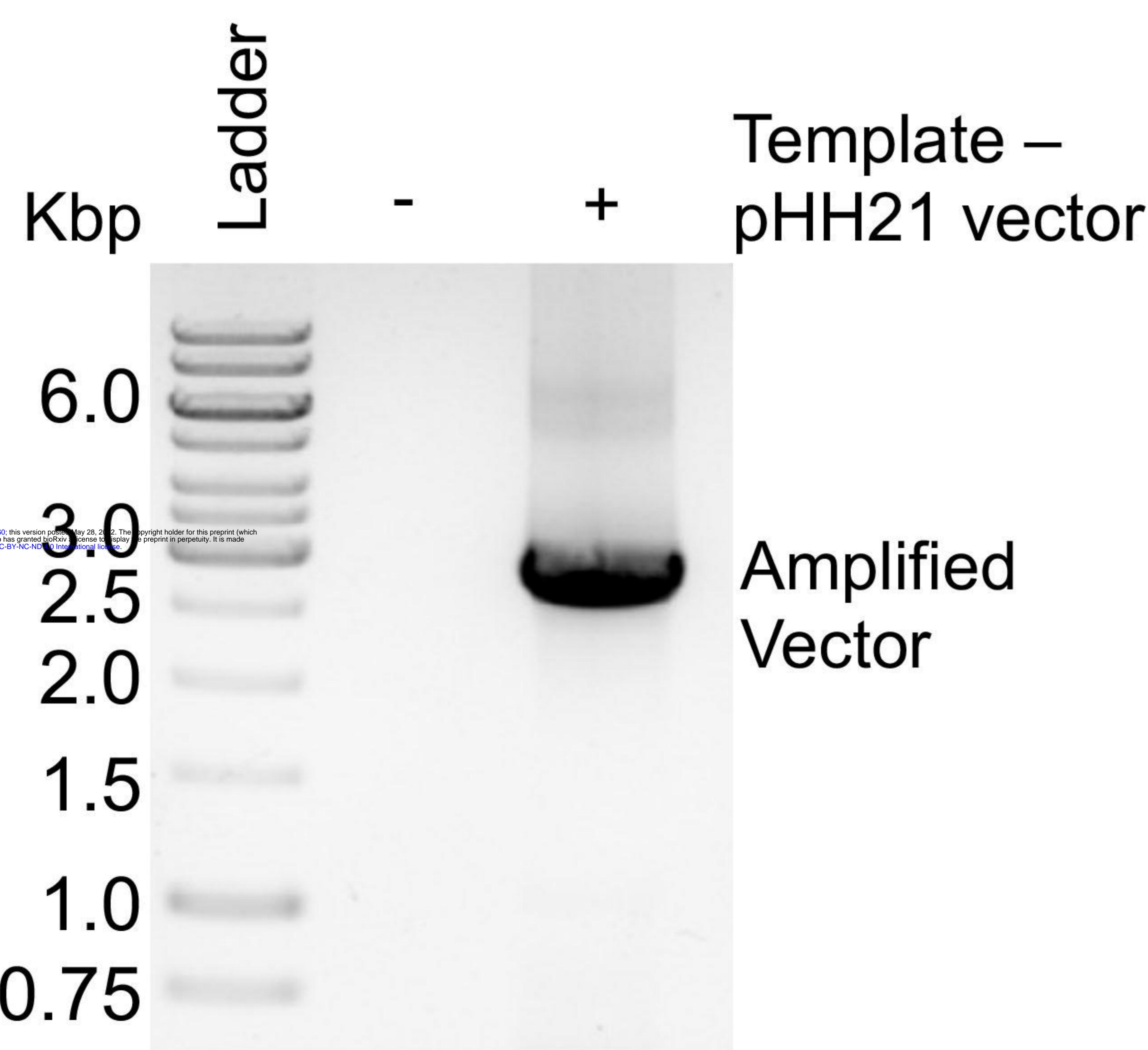


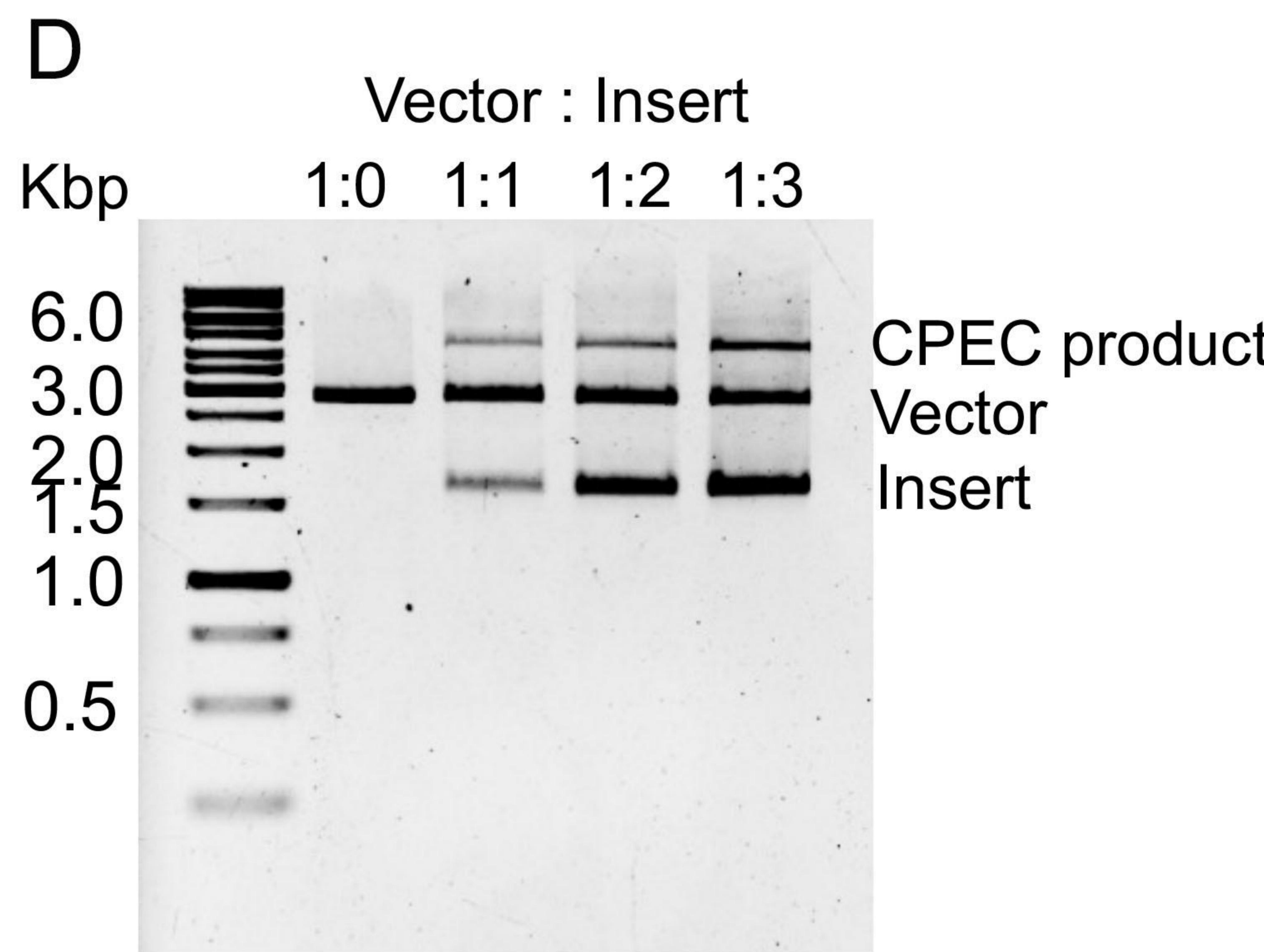
D

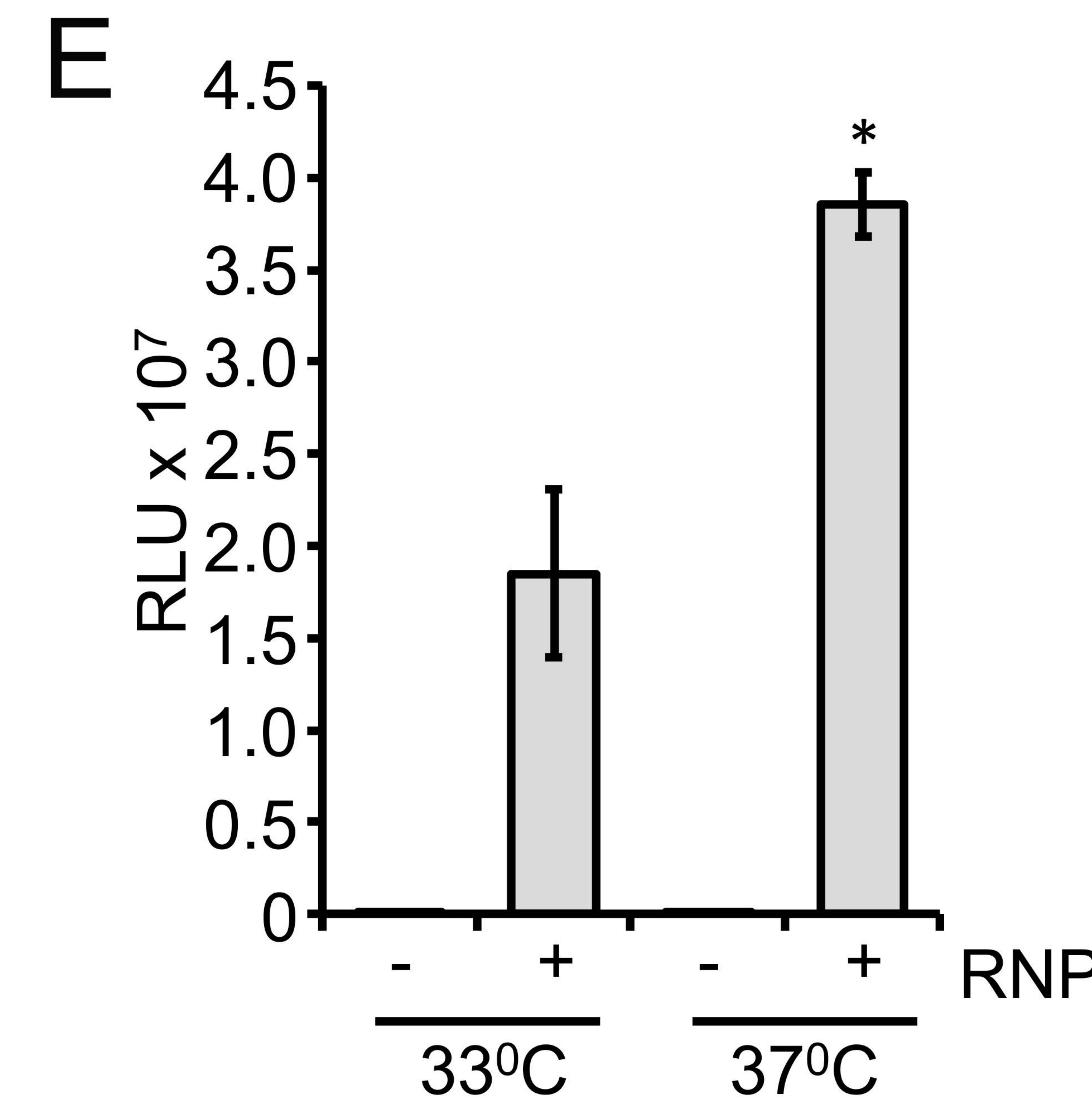
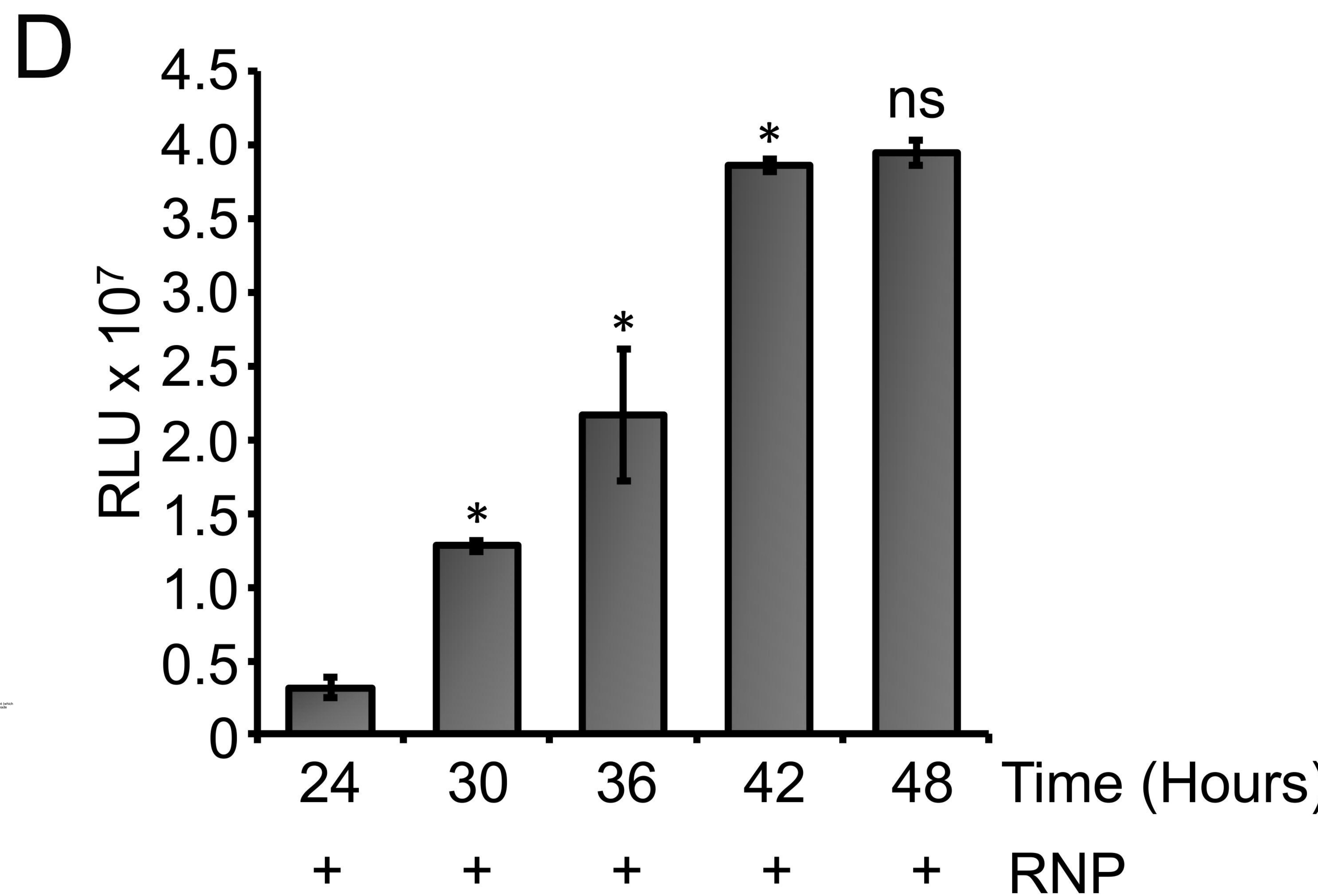
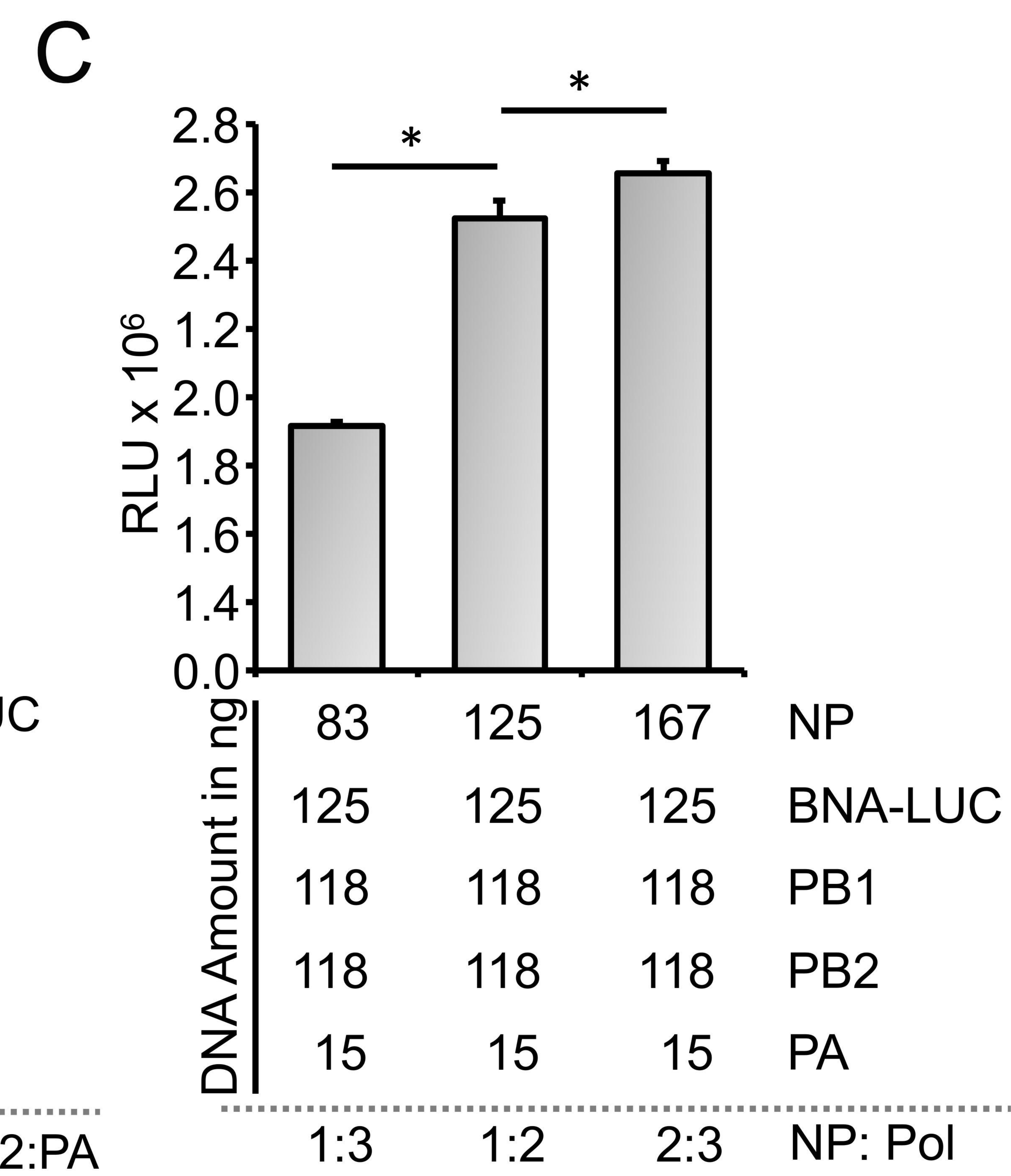
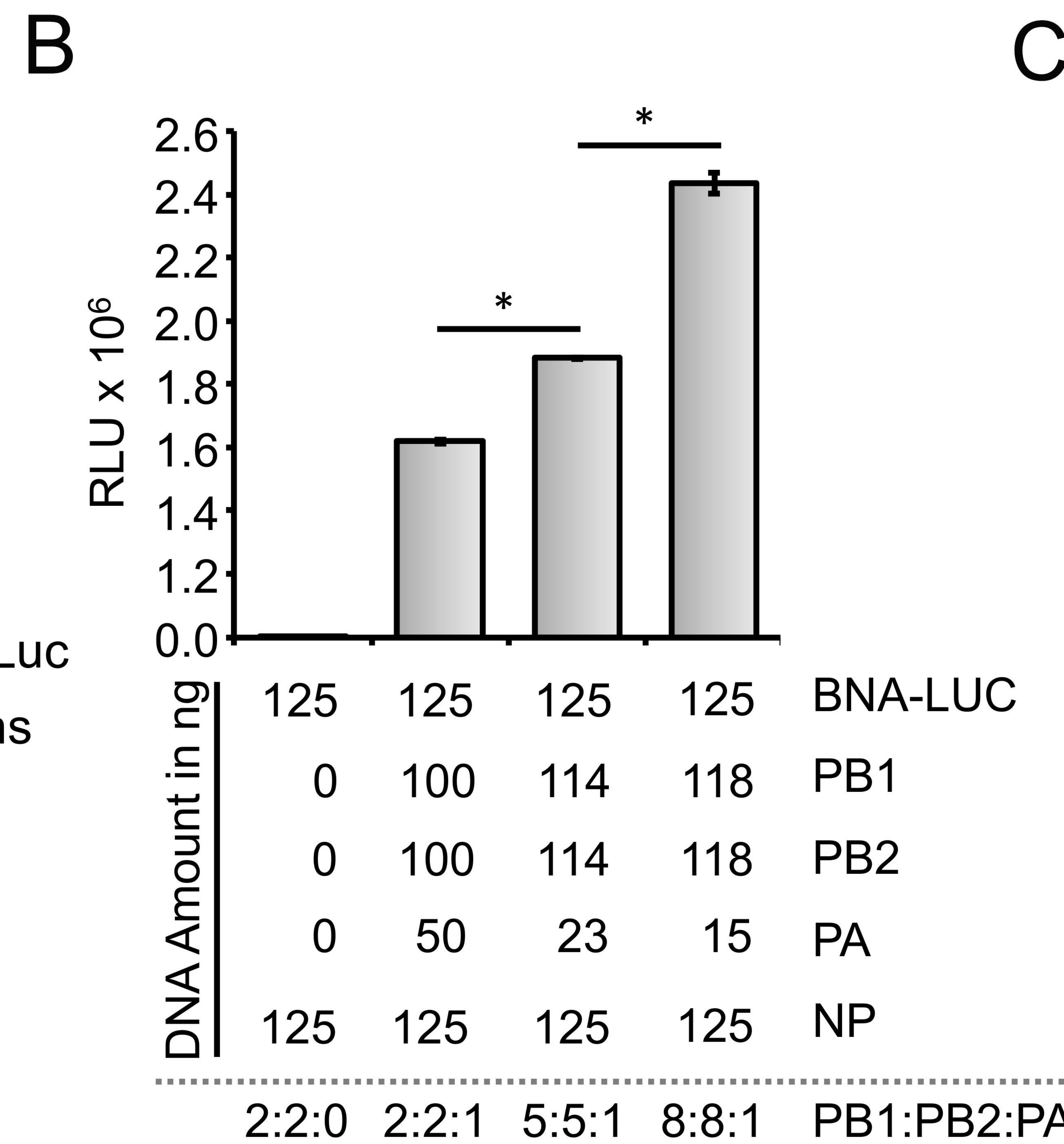
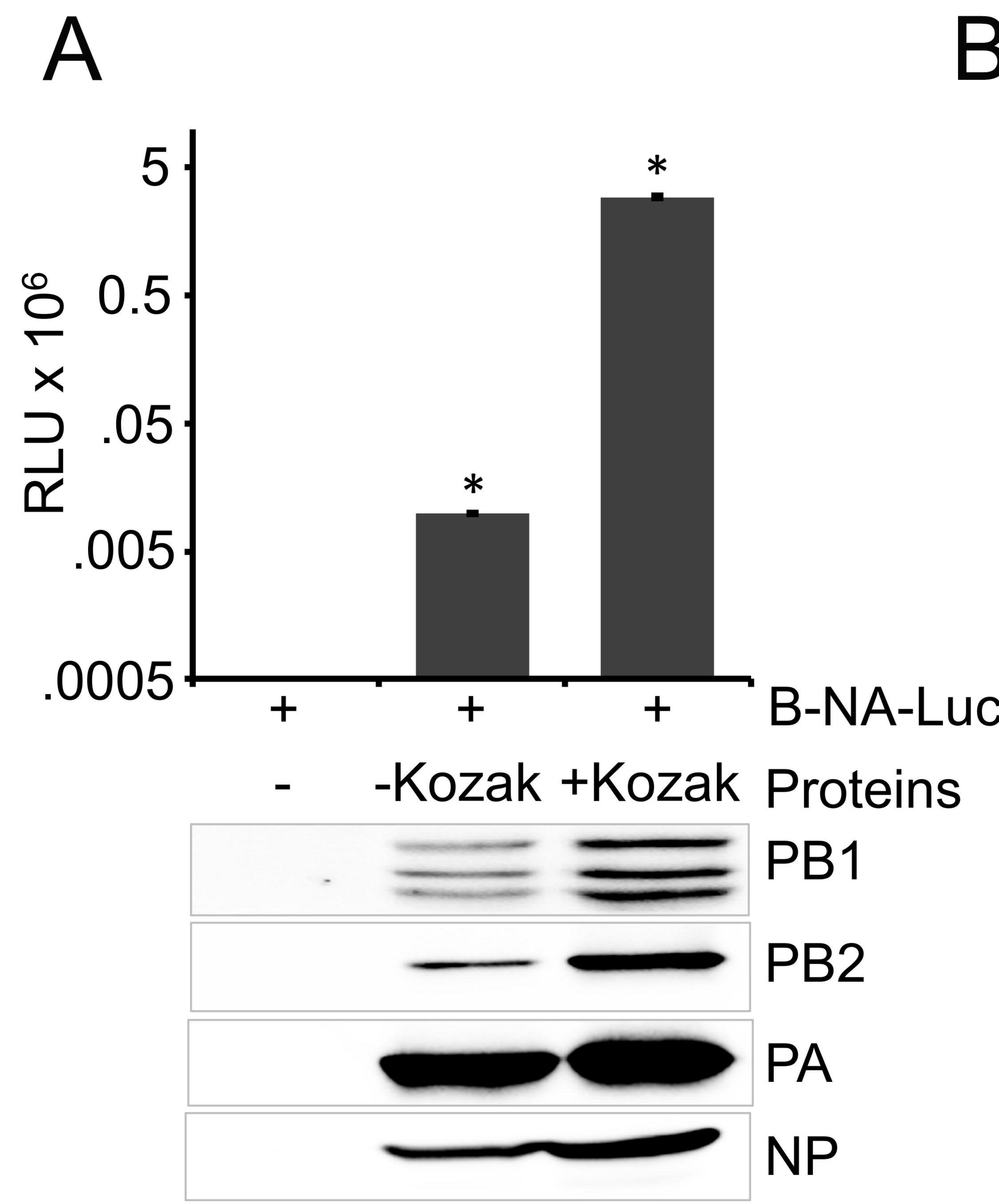
D

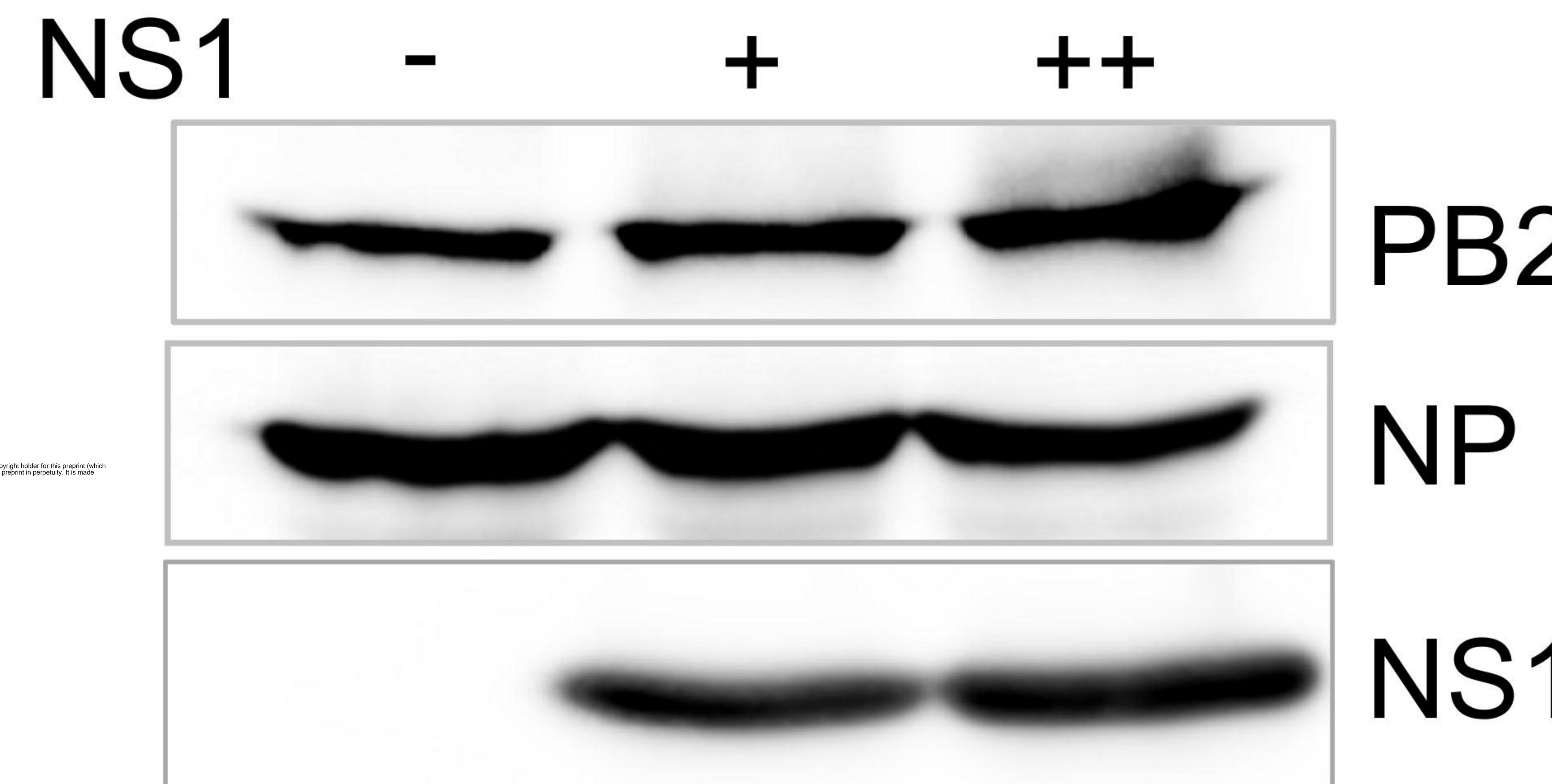
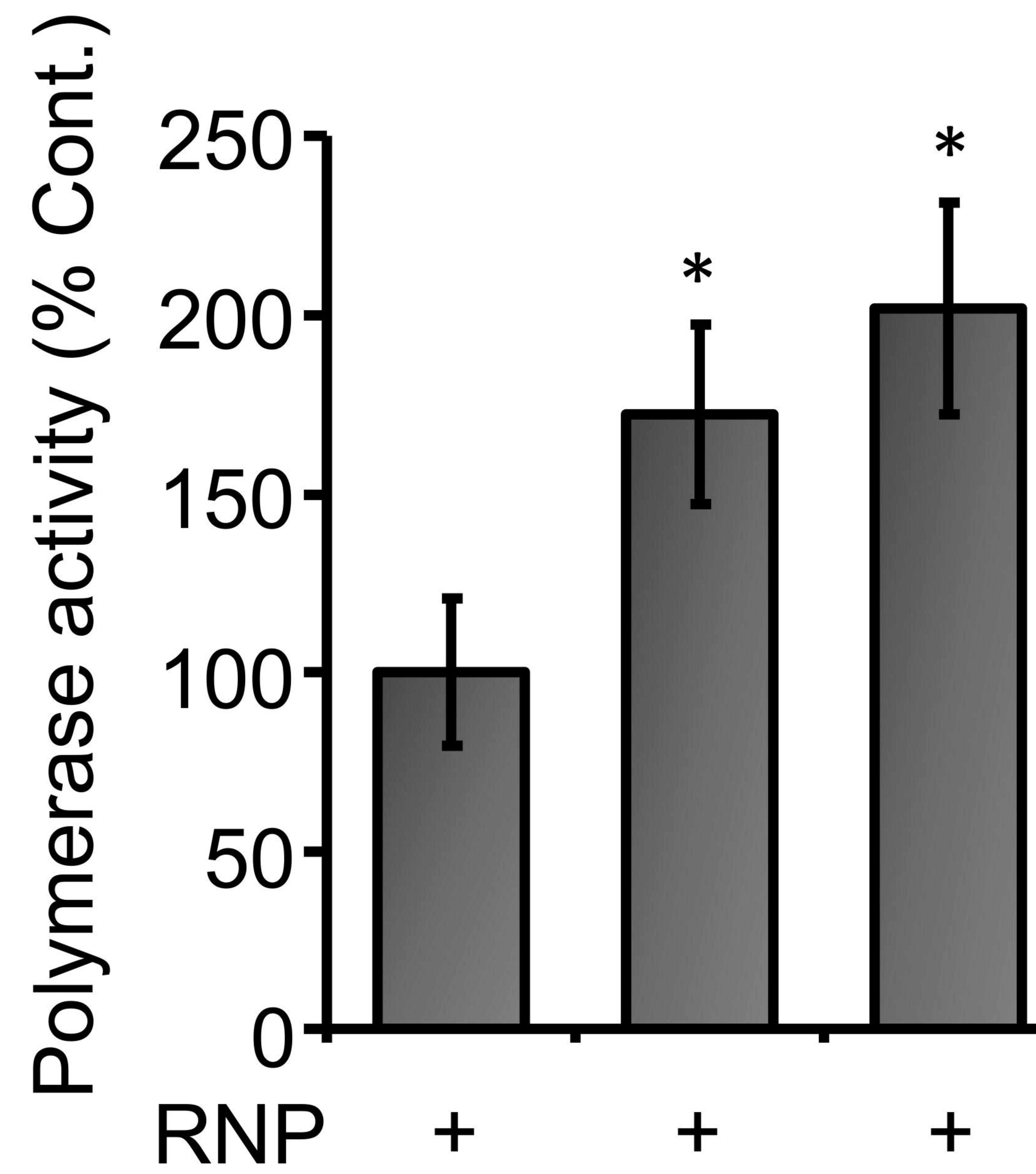
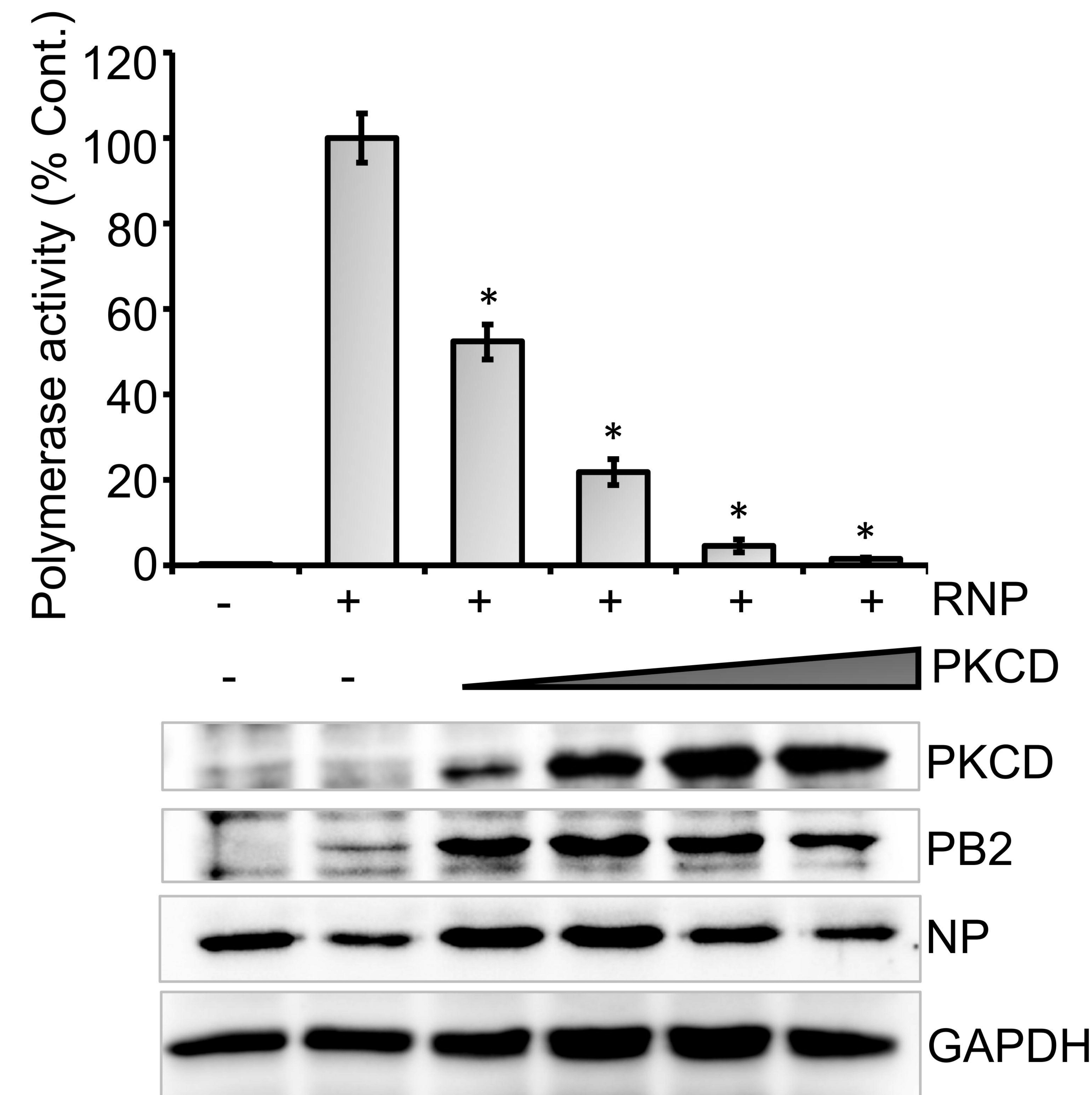

E

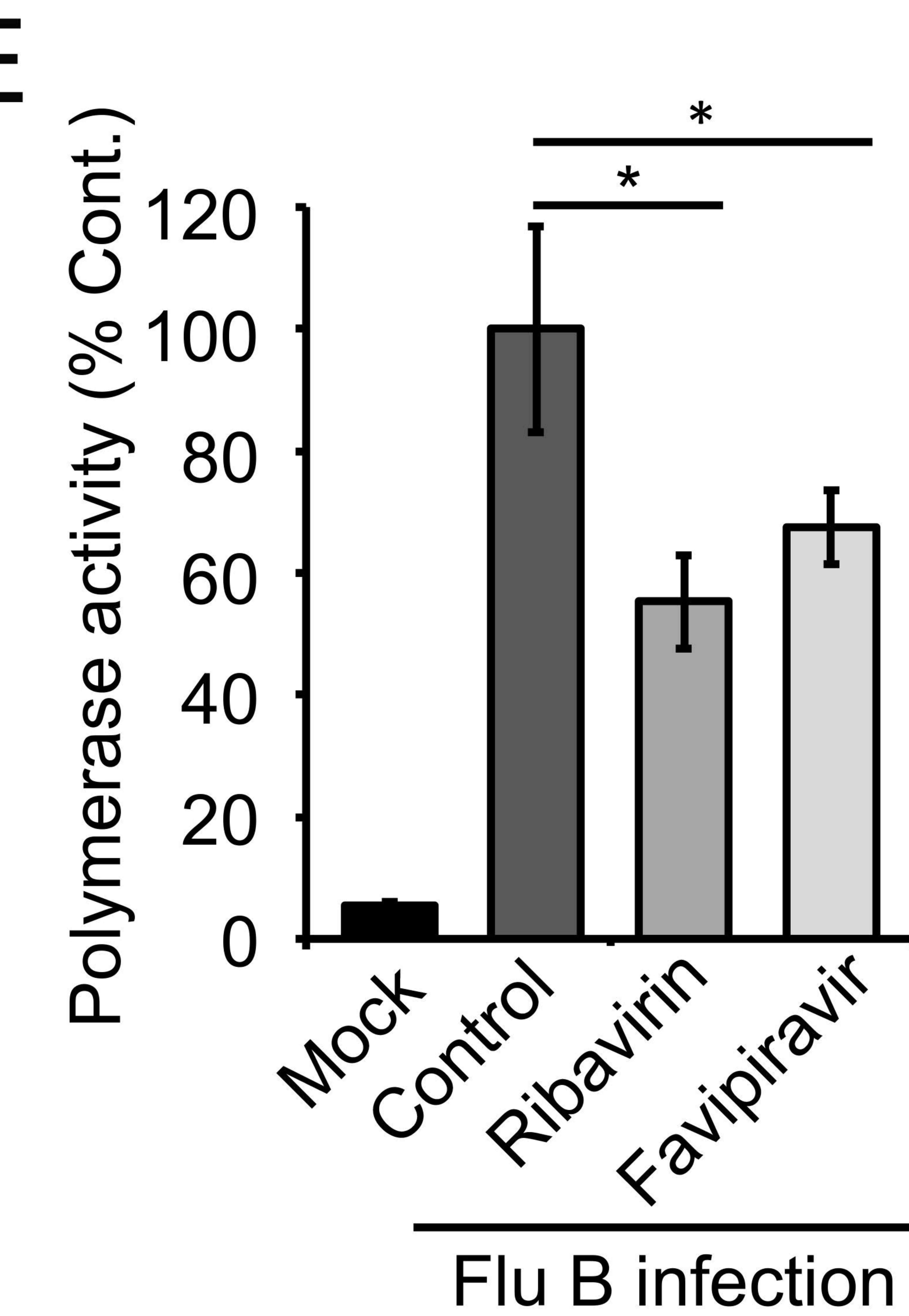
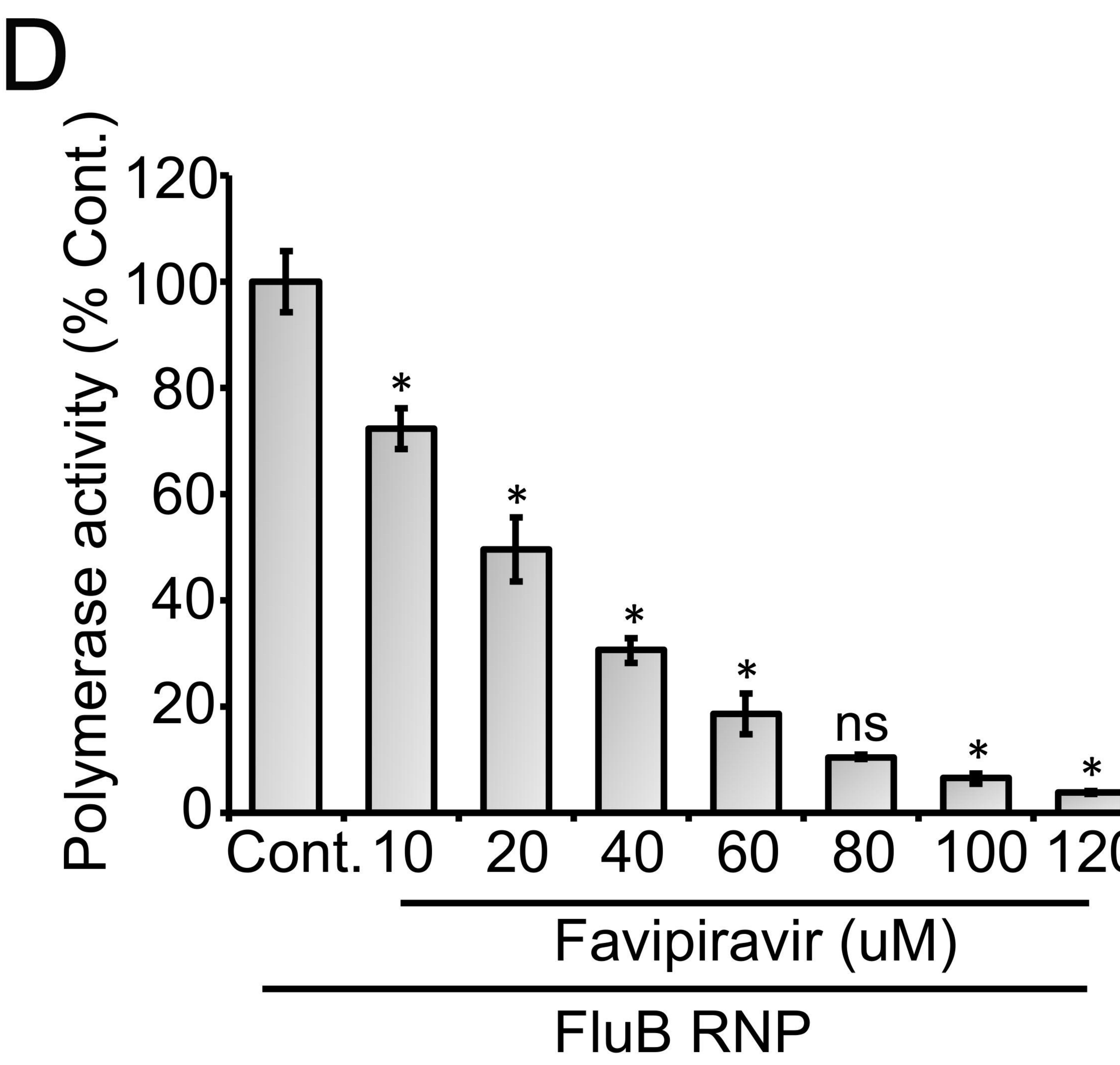
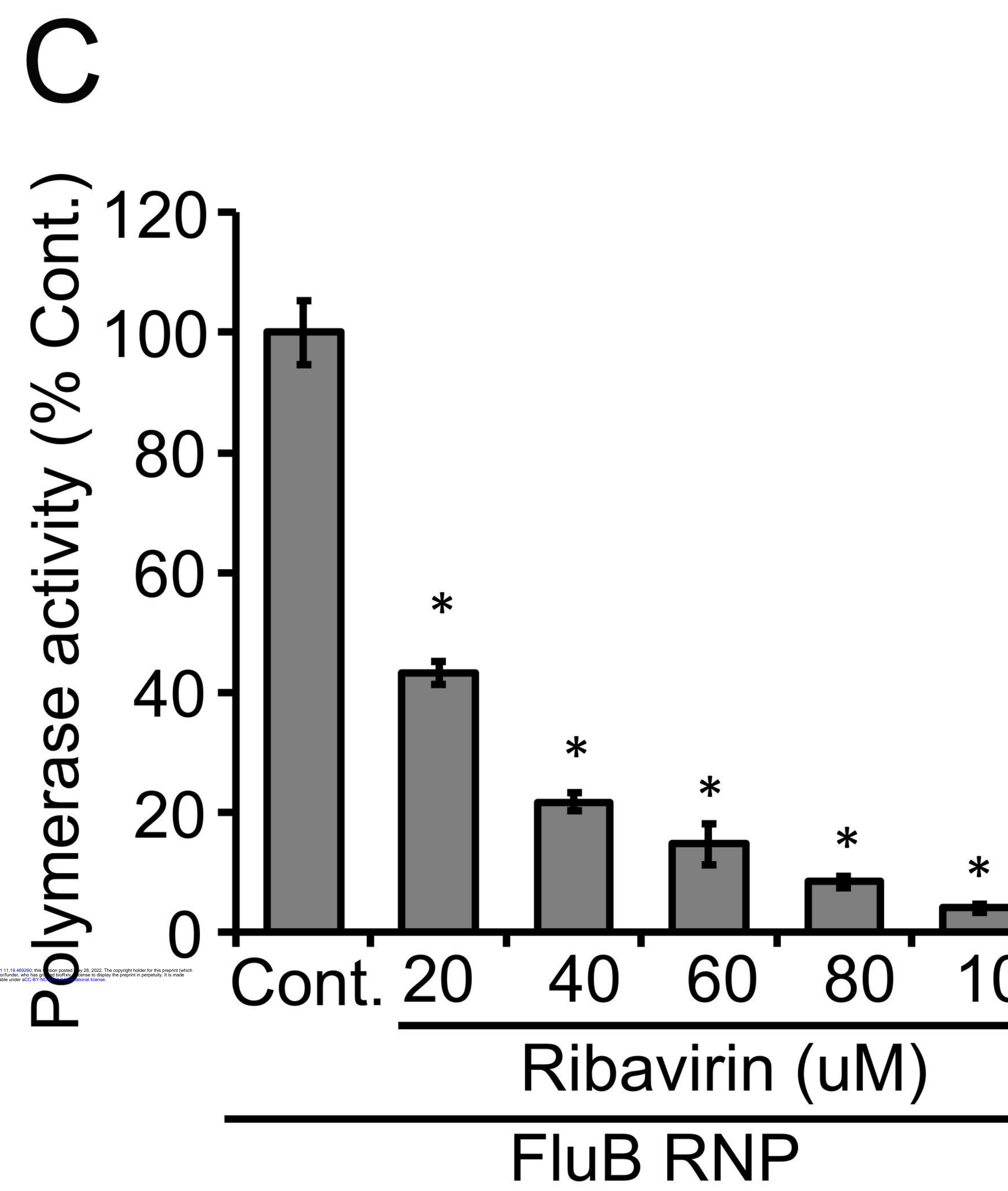
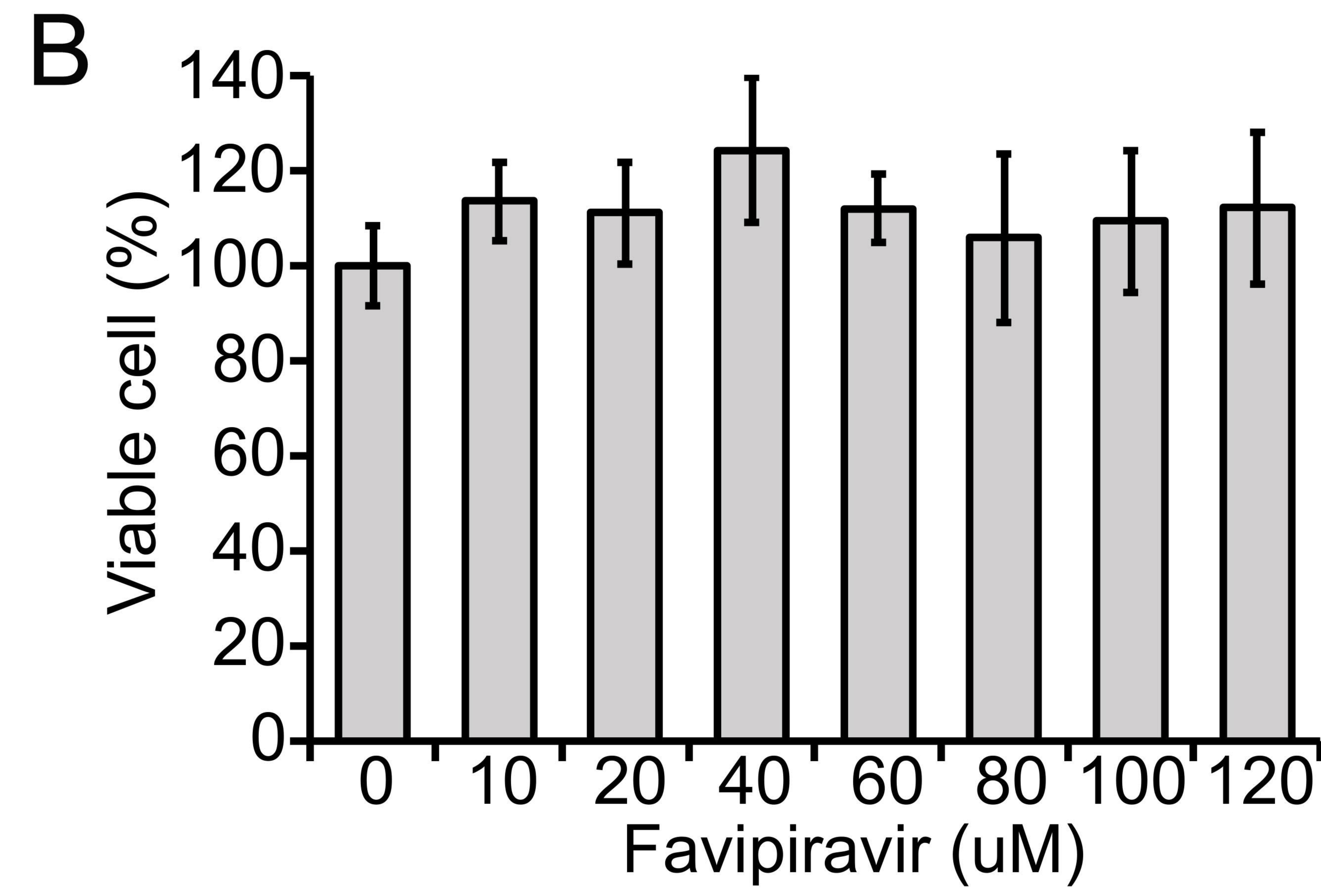
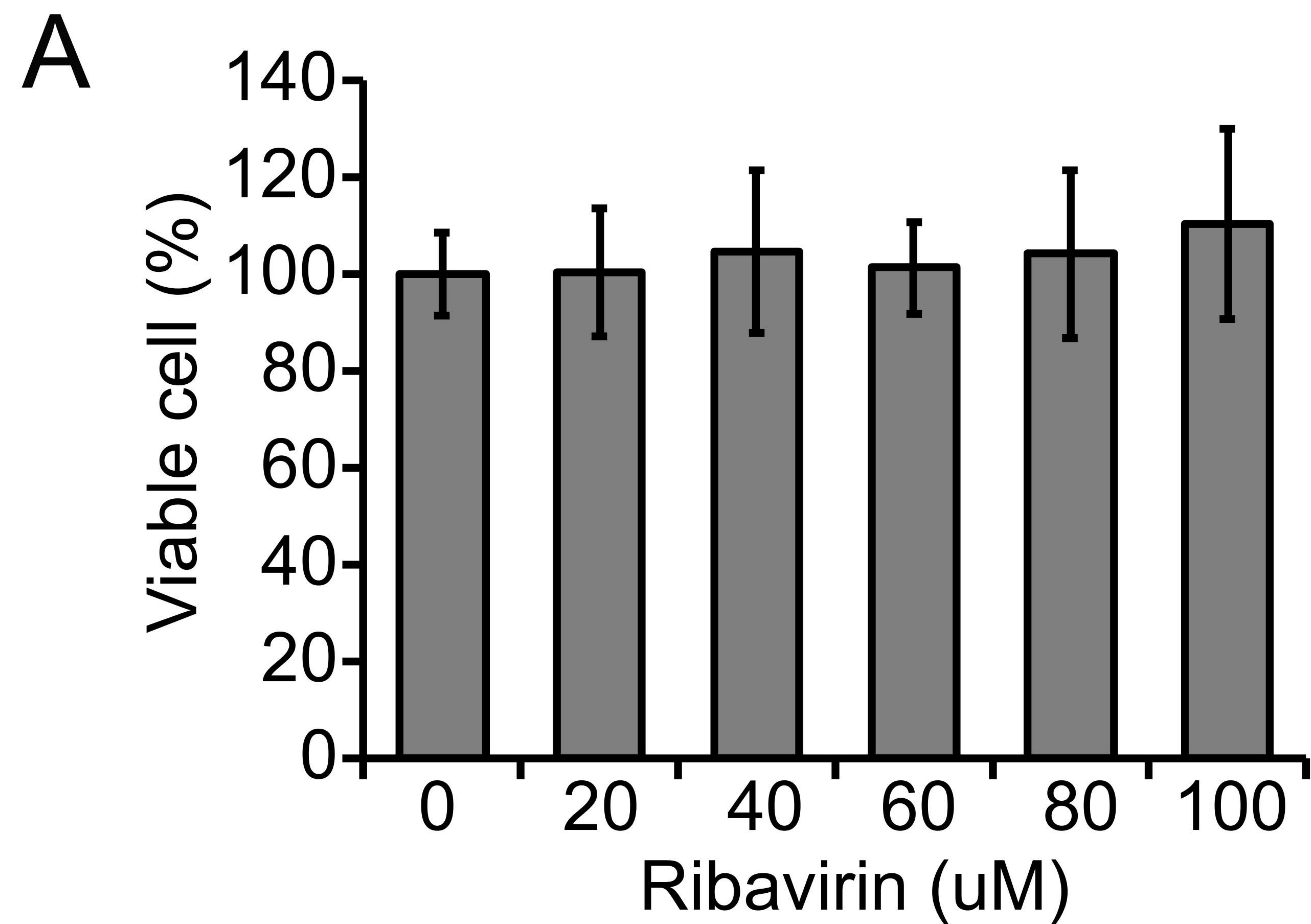

F


A


B






C






D

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.18.500002>; this version posted November 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A**B**

