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Abstract 25 

1. Three-dimensional measurements of morphology are key to gaining an 26 

understanding of a species’ biology and to answering subsequent questions 27 

regarding the processes of ecology (or palaeoecology), function, and evolution. 28 

However, the collection of morphometric data is often focused on methods designed 29 

to produce data on bilaterally symmetric morphologies which may mischaracterise 30 

asymmetric structures.  31 

2. Using 3D landmark and curve data on 3D surface meshes of specimens, we 32 

present a method for first quantifying the level of asymmetry in a specimen and 33 

second, accurately capturing the morphology of asymmetric specimens for further 34 

geometric analyses. 35 

3. We provide an example of the process from initial landmark placement, including 36 

details on how to place landmarks to quantify the level of asymmetry, and then on 37 

how to use this information to accurately capture the morphology of asymmetric 38 

morphologies or structures.  We use toothed whales (odontocetes) as a case study 39 

and include examples of the consequences of mirroring landmarks and curves, a 40 

method commonly used in bilaterally symmetrical specimens, on asymmetric 41 

specimens.  42 

4. We conclude by presenting a step-by-step method to collecting 3D landmark data 43 

on asymmetric specimens. Additionally, we provide code for placing landmarks and 44 

curves on asymmetric specimens in a manner designed to both save time and 45 

ultimately accurately quantify morphology. This method can be used as a first crucial 46 

step in morphometric analyses of any biological specimens by assessing levels of 47 

asymmetry and then if required, accurately quantifying this asymmetry. The latter not 48 
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only saves the researcher time, but also accurately represents the morphology of 49 

asymmetric structures.  50 

Keywords: asymmetry, geometric morphometrics, landmarks, morphology 51 

 52 

Introduction  53 

In recent years there has been a rapid advance in the collection and accumulation of 54 

rich morphological data sets using computer tomography (CT) and surface scanning 55 

(Davies et al., 2017). High quality data has in turn driven the demand for new 56 

methods which accurately and comprehensively capture and represent organismal 57 

morphology (Goswami et al., 2019). One such method, geometric morphometrics, 58 

often involves the use of 2D or 3D coordinates (landmarks) that are placed on the 59 

surface of a specimen or morphology and used to quantify shape independent of 60 

isometry, position, and rotation (Bookstein 1991; Zelditch et al. 2004; Lawing and 61 

Polly 2010; Adams et al. 2013; Bardua et al., 2019a). Quantifying morphology using 62 

these geometric morphometric methods has a long history, and the last few decades 63 

in particular has seen an explosion of new advances now used across the biological 64 

sciences (Lawing and Polly, 2010; Adams et al., 2013; Bardua et al., 2019a).  65 

         In addition to 2D and 3D fixed landmarks, many studies now use semi-66 

landmarks to capture the shape of the regions that fall between landmarks (Gunz et 67 

al., 2005; Gunz and Mitteroecker 2013). Semi-landmarks are used to define the 68 

outline of structures, such as sutures or ridges, or even entire surfaces, and can 69 

provide a significant increase in the shape captured compared to using just 70 

landmarks alone (Bookstein, 1991). Curve semi-landmarks (hereafter referred to as 71 

‘curves’ or ‘semi-landmarks’) have been used successfully to quantify a vast array of 72 
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organismal morphology, including green algae (Halimeda tuna: Neustupa and 73 

Nemcova, 2018), bird beaks (Cooney et al., 2017), and cranial morphology (Bardua 74 

et al., 2019b, Felice et al., 2020). Their use expands the quantification of shape to 75 

include the morphology of outlines (e.g., bone margins or veins) and ridges (Cooney 76 

et al., 2017; Bardua et al., 2019a). There are numerous reviews which cover the 77 

costs and benefits of landmarks alone vs. including semi-landmarks as well as 78 

surface semi-landmarks and automated landmarks (see Bardua et al., 2019a).  79 

         Coordinate data for structures such as the skull, which is generally bilaterally 80 

symmetrical in most species, often comprise landmarks placed on one side of the 81 

structure. This is done for several reasons. First, by landmarking only one side and 82 

then mirroring those landmarks to the other (symmetrical) side, the user greatly 83 

reduces the time required for data capture. Second, landmarking both sides of a 84 

symmetrical morphology can produce redundant shape information, but ultimately, 85 

using symmetrical data has been shown to improve superimposition (Cardini, 2016a; 86 

2016b). To accommodate these issues, Bardua et al., (2019a) recommend 87 

imputation of the missing side through mirroring of the existing landmarks along a 88 

midline plane, then removing these mirrored landmarks after Procrustes 89 

superimposition (translation to a common origin, scaling to unit centroid size, and 90 

rotation to leave only shape data; Mitteroecker and Gunz, 2009) to reduce data 91 

dimensionality and redundant information. While this method has proven to work well 92 

in capturing the shape of bilaterally symmetrical morphologies (e.g., Adams et al., 93 

2013; Dumont et al., 2016; Felice and Goswami, 2018; Bardua 2019b; Watanabe et 94 

al., 2019) into which most aspects of vertebrate anatomy fall, the same cannot be 95 

said for rarer asymmetrical morphologies (Fig. 1).  96 
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 97 

Fig. 1. Computer mirrored landmarks can misrepresent true morphology in asymmetric 98 

specimens. Landmarks and semi-landmarks are shown in blue on the skulls of two 99 

odontocetes. Nasal landmarks are shown in red to illustrate the inaccurate capture of the 100 

asymmetric morphology. Nasals and their actual positions are circled in black – ideally all 101 

red landmarks should sit within the black circle. Specimens shown are Delphinapterus 102 

leucas (USNM 305071, left) and Monodon monoceros (USNM 267959, right).  103 

 104 

Asymmetrical morphologies  105 

Symmetry in external morphology is the general rule among plants and animals, 106 

making the cases of directional asymmetry particularly interesting. However, it is now 107 

well known that some organisms do have a naturally occurring asymmetrical 108 

morphology. Directional asymmetry (DA), a type of asymmetry that occurs in a 109 

consistent direction between a pair of morphological structures, is often related to 110 

function or developmental morphology. This is typically expressed as size 111 

differences in bilaterally paired structures (e.g., limbs, muscles). This differs from 112 
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fluctuating asymmetry (FA) which is often used as a measure of stress in 113 

populations, of individual quality or of developmental instability (Graham et al., 1993; 114 

Klingenberg, 2003). FA is often minute and requires the capturing of measurement 115 

error on a different scale to the asymmetry covered in this study.  116 

         Directional asymmetry related to function is found across plants and animals 117 

with examples including the shells of turtles (yellow-bellied sliders (Trachemys 118 

scripta scripta); Parés-Casanova, 2020) and the appendicular skeleton of some 119 

cetaceans. In some cetaceans, the humerus and ulna is significantly larger on the 120 

right (dextral) side in the harbour porpoise (Phocoena phocoena) and the white-121 

beaked dolphin (Lagenorhynchus albirostris) with a larger dextral muscle mass and 122 

higher mechanical stress indicating lateralized behaviours (Galatius, 2005; 2006). 123 

Handedness and associated directional asymmetry of limbs is also detected in 124 

humans (Homo sapiens; Auerbach and Ruff, 2006) and rhesus macaques (Macaca 125 

mulatta; Falk et al., 1998), and in the pectoral appendages or walruses (Odobenus 126 

rosmarus; Levermann et al., 2003). In some taxa, such as the fox (Vulpes vulpes), 127 

directional asymmetry in the limbs, skull, and pelvis is not associated with 128 

preferential use but instead with differential biases in growth (Kharlamova et al., 129 

2010).  130 

In contrast to these size-based examples of asymmetry, some taxa exhibit 131 

directional asymmetry in the morphology or position of paired structures. In owls 132 

(Strigiformes) (Krings et al., 2020), pronounced bilateral asymmetry in the external 133 

ears is related to directional hearing, or sound localization ability (Payne I97I; 134 

Norberg, 1977; Norberg 2002; Krings et al., 2020). Asymmetry in the owl ear (both 135 

soft tissues and temporal parts of the skull, including modifications in the 136 

neurocranium and cartilaginous elements; Krings et al., 2020), serves to make the 137 
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vertical directional sensitivity patterns different between the two ears for high 138 

frequencies, thus making possible vertical localization based on binaural comparison 139 

of intensity and spectral composition of sound (Norberg, 1977). Flatfishes 140 

(Pleuronectiformes) represent a diverse clade of benthic teleost fishes that possess 141 

a striking degree of cranial asymmetry exceeding that of any other vertebrate lineage 142 

(Black and Berendzen, 2020; Evans et al., 2021). The eyes of most flatfishes sit on 143 

the same side of the head; a development that happens during the larval stage 144 

where one eye of a symmetrical lava migrates to the other side. This produces a 145 

highly asymmetric cranium and has allowed the fish to colonise and dominate 146 

benthic aquatic habitats (Evans et al., 2021). Directional asymmetry is also 147 

widespread in invertebrates (see Okumura et al., 2008; Pélabon and Hansen, 2008), 148 

including wing size and shape (Klingenberg et al., 1998; Pélabon and Hansen, 149 

2008), body shape (e.g., the Chilean magnificent beetle (Ceroglossus chilensis); 150 

Bravi and Benítez, 2013, and in the dextral spiralling of the shell in snails in the 151 

family Lymnaeidae; Okumuru et al., 2008),  and eye morphology (e.g., cockeyed 152 

squids Histioteuthis heteropsis and Stigmatoteuthis dofleini; Thomas et al., 2017). 153 

Although it constitutes most of the examples in this study, directional asymmetry is 154 

by no means restricted to Animalia. Plants exhibit forms of asymmetry analogous to 155 

"handedness" in animals (Bahadur et al., 2019). 156 

Simply, directional asymmetry is the natural condition for many taxa and 157 

avoiding the issue of left-right symmetry is not always an option if one wishes to 158 

accurately capture a specimen’s morphology. Here, we use toothed whales 159 

(odontocetes) as an example to firstly calculate how much directional asymmetry is 160 

present, and second, ensure that asymmetry is accurately quantified. Toothed 161 

whales (odontocetes) are well-known to have asymmetrical crania (Ness, 1967; 162 
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Thompson, 1990; Fahlke et al., 2011; Churchill et al., 2018). This directional 163 

asymmetry is thought to have evolved as a result of an evolutionary hyperallometric 164 

investment into sound-producing soft tissue structures which have consequently 165 

driven evolution of the underlying bony structures, to facilitate high frequency 166 

vocalisation (echolocation) (Heyning and Mead, 1990). It is not entirely clear why the 167 

shift is sinistral (rather than dextral), but some propose it may be a by-product of 168 

selection pressure for a sinistrally positioned larynx and hyoid apparatus which 169 

provides a large, right piriform sinus whilst facilitating the swallowing of prey 170 

underwater (Macleod et al., 2007).  171 

         Examples such as these (and many others) underscore the apparent ubiquity 172 

of directional asymmetry in animals and plants, further bolstering our increasing 173 

knowledge of consistent left-right asymmetries (Klingenberg and Mclntyre, 1998a; 174 

Klingenberg et al., 2002). Although an increasingly well-known natural aspect of 175 

function and sometimes developmental morphology in some taxa, directional 176 

asymmetry is not often considered during standard geometric morphometric 177 

analyses and instead may be underrepresented (Fig.1).  Further, previous studies 178 

have successfully addressed quantifying variation among individuals and asymmetry 179 

(Klingenberg et al., 1998; Klingenberg et al., 2002; Klingenberg, 2015), generally by 180 

calculating the Procrustes distance between a shape and its reflection, offering a 181 

measure of asymmetry (Bookstein 1991; Klingenberg and McIntyre 1998b; 182 

Mitteroecker and Gunz, 2009). The protocol proposed here builds on these previous 183 

methods with a focus on the benefits of using landmarks and semi-landmarks and, 184 

importantly, allowing the user to create a universal landmarking scheme regardless 185 

of a specimens’ asymmetry. This means symmetric and asymmetric specimens (for 186 
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example from different species, genera, or families) can be analysed in the same 187 

geometric morphometric workflow. 188 

         Finally, the time-consuming nature of manually applying landmarks and semi-189 

landmarks can impose limitations on data collection and project scope. For this 190 

reason, researchers use automated (Boyer et al., 2015a; 2015b) and semi-191 

automated (Schlager et al. 2019) approaches to geometric morphometrics. However, 192 

these methods are not applicable to all morphologies.  We estimate that using the 193 

method presented here reduces per-specimen processing time by about one third 194 

compared to applying semi-landmark curves to the whole specimen.  195 

 196 

Description  197 

Standard geometric morphometric methods for mirroring landmarks and semi-198 

landmarks (‘curves’) may misrepresent asymmetric specimens (Fig 1). Manually 199 

placing semi-landmarks on the entirety of an asymmetric specimen would provide a 200 

more accurate representation of the morphology; however, it is an extremely time-201 

consuming solution. Here we offer a practical method for combining the two methods 202 

of manually landmarking and semi-landmarking asymmetric bones whilst mirroring 203 

bilaterally symmetrical bones. This method provides an accurate quantification of the 204 

morphology but also minimises the need and time taken to manually semi-landmark 205 

the entire specimen. We offer a solution for:  206 

1. Quantifying asymmetry to determine whether landmarks should be manually 207 

placed rather than computer mirrored. 208 

2. Using these data to create a landmarking protocol which will capture the 209 

morphology of both asymmetrical and symmetrical parts of the morphology, 210 
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while minimising the time needed to semi-landmark the entire specimen (i.e., 211 

minimising per specimen processing time).  212 

3. Producing an accurate representation of the morphology to then carry out 213 

standard geometric morphometrics. 214 

4. Creating a pipeline that ensures both bilaterally symmetrical specimens and 215 

asymmetric specimens can be compared in the same analyses. The number 216 

and location of landmarks and semi-landmark curves is identical, only the 217 

method of placement of landmarks is different. This results in a global 218 

landmark and curve configuration that is the same among specimens 219 

regardless of whether they are asymmetrical or not, important for taxa for 220 

which some but not all specimens may have asymmetric morphologies.   221 

         222 

          Alternatively, we recommend that researchers looking at known bilaterally 223 

symmetrical specimens carry out step 1 (using landmarks only) to ascertain whether 224 

there is in fact some asymmetry or deformation in the specimen and thus whether 225 

quantifying asymmetry or reassessment of the specimen is required. If no 226 

asymmetry is detected, the researcher is assured that their specimen is bilaterally 227 

symmetric or does not have pronounced deformation and that mirroring of landmarks 228 

and semi-landmarks is sufficient to capture morphology.  229 

 230 
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Materials and Methods   231 

Specimens and scan data collection  232 

We demonstrate this approach using an example data set of odontocete (toothed 233 

whale) skulls. The data set comprises 157 odontocete skulls (Supporting 234 

Information: Table S1), representing 21 families, which range in asymmetry from no 235 

marked natural asymmetry to high levels of naso-facial asymmetry (see Coombs et 236 

al., 2020). Bilaterally symmetric mysticete (baleen whale) skulls are also used to 237 

visually illustrate the placement of curves on a bilaterally symmetrical specimen 238 

within the same analyses.  239 

         To analyse 3D geometric morphometric data that covers the entire cranium (to 240 

illustrate the point of full skull coverage of landmarks in asymmetric specimens) 241 

sampling was limited by specimen completeness and preservation. Inclusion of fossil 242 

specimens was determined by the extent of deformation and missing data. This does 243 

not mean that this method cannot be used on specimens with missing structures – 244 

see Supporting Information: Section 1: Missing and variably present bones to see 245 

how we dealt with incomplete specimens. Around 43% of specimens, including some 246 

extant specimens, had missing data, which was concentrated in the pterygoid, 247 

palate, jugal, squamosal, and tip of the rostrum (See Supporting Information: Section 248 

1: Missing and variably present bones). Specimens with obvious taphonomic or other 249 

deformation were excluded from further analysis. Sexual dimorphism was not 250 

considered in this study as many fossils lack data on sex. All specimens are adults 251 

except for Mesoplodon traversii (NMNZ TMP012996) which is a sub-adult. 252 

         We scanned skulls using a Creaform Go!SCAN 20 or Creaform Go!SCAN 50 253 

handheld surface scanner, depending on the size of the skull. Scans were initially 254 
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cleaned, merged, and exported in ply format using VXElements v.6.0, and further 255 

cleaned and decimated in Geomagic Wrap software (3D Systems). We decimated 256 

models down to 1,500,000 triangles, reducing computational demands, while 257 

retaining sufficient detail for morphometric analysis. In many morphometric studies, it 258 

is possible to digitally reconstruct bilateral elements by mirroring across the midline 259 

plane if the skull (or object) is preserved on one side (Gunz et al., 2009; Gunz and 260 

Mitteroecker, 2013; Cardini et al., 2016 a, b). Due to a natural asymmetry occurring 261 

in the odontocete skull (Fahlke et al., 2011; Coombs et al., 2020), we limited 262 

mirroring to marginally damaged bones or easily mirrored missing bones only, where 263 

it was clear that mirroring would not mask asymmetric morphology. Elements were 264 

mirrored using the ‘mirror’ function in Geomagic Wrap (3D Systems). Skulls are used 265 

as the example throughout this study, but these methods could be used on any 266 

morphology as long as a midline is determined (see Step 2: Quantifying asymmetry 267 

in the skull for details).  268 

This study focuses on how to capture the morphology of an asymmetric 269 

specimen. There are several general steps (i.e., not related to quantifying asymmetry 270 

specifically) that should be taken after Step 4: Informing the curve protocol – which 271 

curves to manually place, before mirroring curves. These additional steps have been 272 

highlighted here as a side note and are available in the detail in the Supporting 273 

Information: Section 1: Additional steps before running geometric morphometric 274 

analyses so as not to disrupt the ordering of the focus method of this paper; 275 

quantifying asymmetry.  276 

 277 

 278 
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These steps include:  279 

- Resampling: As the placement of curves onto specimens is done manually 280 

points are likely not evenly placed along the bone. Curves are resampled to 281 

create even spacing between landmark points before being slid (see 282 

Supporting Information in Botton-Divet et al. 2016; Felice, 2020). 283 

- Sliding the curves is the next crucial step, as equally spaced semi-landmarks 284 

should not (and cannot) be treated as optimally placed and the initial arbitrary 285 

placement of semi-landmarks can impose strong statistical artefacts (Gunz 286 

and Mitteroecker 2013; Bardua et al., 2019a).  287 

 288 

         These steps are not required for determining the placement of curves or in 289 

quantifying asymmetry but should be carried out once the curve protocol has been 290 

implemented. Code for these steps is provided in Felice (2020) and also via: 291 

https://github.com/EllenJCoombs/Quantifying_asymmetry  292 

 293 

Morphometric data collection – quantifying asymmetry  294 

Step 1: Landmarking protocol  295 

The placement of landmarks is the first step. These landmarks are then used to 296 

quantify asymmetry in the skull (or chosen morphology) (see Step 2: Quantifying 297 

asymmetry).  298 

         The first step is to quantify if, where, and how much asymmetry is evident in 299 

the skull. To do this, we placed 123 landmarks (sliding semi-landmarks are 300 

employed in a later step – see Step 4: Informing the curve protocol) irrespective of 301 

evidence of asymmetry over the entire surface of the skull (i.e., both sides) using 302 
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Stratovan Checkpoint (Stratovan, Davis, CA, USA) (Fig. 2). We used the ‘single 303 

point’ option to add fixed landmarks. Landmarks were defined by Type I (biology) 304 

and Type II (geometry) (Bookstein, 1991; Bookstein, 1997) and were chosen to 305 

capture clearly homologous positions, e.g., tripartite sutures. Dentition was not 306 

landmarked. The landmark configuration for this data set is detailed in Fig.2 and 307 

Supporting Information; Table S2.  308 

 309 

                310 

                              DORSAL                                                 VENTRAL 311 

 312 

 313 
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[Figure on previous page] 322 

Fig. 2. Landmark configuration on the cetacean skull. Red landmarks are placed on the left-323 

hand side (LHS) of the specimen, with corresponding green landmarks also manually placed 324 

on the right-hand side (RHS) of the specimen. Midline landmarks are shown in yellow. 325 

Numbers correspond to descriptions shown in the Supporting Information (Table S2). 326 

 327 

Step 2: Quantifying asymmetry in the skull  328 

Once a whole skull landmarking protocol has been formulated and added to 329 

specimens, the next step is to quantify where asymmetry occurs in the skull or 330 

morphology. This is so that landmarks and curves can be manually placed on these 331 

regions, rather than being mirrored by an automated procedure (hereafter referred to 332 

as computer mirroring, as can be done with bilaterally symmetrical structures). To do 333 

this, the protocol to quantify asymmetry as in Coombs et al., 2020 is followed. A brief 334 

summary of the methods is provided here and the code for quantifying asymmetry is 335 

available in detail at: https://github.com/EllenJCoombs/Quantifying_asymmetry  336 

 337 

1. Manually place landmarks on the entirety of the specimen (i.e., left and right 338 

sides, Fig. 2), as described in Step 1.   339 

2. Generate mirrored landmarks for one side of the skull. To mirror the 340 

landmarks, we used 9 midline landmarks as an anchor (yellow landmarks, 341 

Fig. 2). We used the mirrorfill function in the R package paleomorph 342 

v.0.1.4 (Lucas and Goswami, 2017). NB. We decided to mirror the left-hand 343 

landmarks because of chirality in cetaceans, i.e., nasals are sinistrally shifted. 344 

This will be organism specific, and consideration must be taken to ensure 345 
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specific morphologies are captured. In this example, mirroring the right-hand 346 

landmarks in cetaceans would exclude the nasals in some species. 347 

Consistency must be maintained between the side landmarks are mirrored 348 

from and to.  349 

3. Compare the positions of the computer mirrored landmarks to those of the 350 

original, manually placed landmarks measuring the amount of landmark 351 

displacement between the two configurations.  352 

4. Superimpose the specimens to remove all non-shape elements, i.e., size 353 

(scaling), translation, and rotation (positioning) from the data using 354 

Generalized Procrustes Analysis, here implemented in the gpagen function 355 

from the geomorph R package v.3.1.0 (Adams et al., 2019) 356 

5. Calculate the Euclidean distances between a reference specimen (the 357 

computer-mirrored, landmarked specimen) (Rn) and a focal specimen (the 358 

manually landmarked specimen) (Fn). Both Rn and Fn are defined by three 359 

coordinates (x, y, z). The landmark displacements are measured for each 360 

landmark individually using the spherical coordinates system which measures 361 

between the nth landmark of the Fn and the Rn specimens respectively, here 362 

implemented in the R package landvR v0.4 (Guillerme and Weisbecker, 363 

2019).  364 

6. If the specimen is asymmetric, the computer-mirrored landmark does not 365 

accurately reflect its morphology (Fig. 1). Estimate differences 366 

between Fn and Rn in the spherical coordinates system using the 367 

coordinates.difference function in landvR and extract the ρ (radius) for 368 

each landmark, for each specimen. This provides a measure of the Euclidean 369 
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distance between a manually placed landmark which accurately represents 370 

the specimen’s morphology (Fn) and a computer -mirrored landmark (Rn).  371 

7. The larger the radii for a corresponding landmark the more displacement 372 

between Fn and Rn. We then interpret a higher ρ as an indication of more 373 

asymmetry in the skull (see Fig. 3 for a visualisation of this).  374 

 375 

Step 3: Locating asymmetry in the skull or structure  376 

 377 

 378 

 379 

 380 

 381 

 382 
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[Figure on previous page] 383 

Fig. 3. Visualisation of p (radii) from landvR showing asymmetry in the toothed whale skull. 384 

Landmarks are shown on a mesh of the skulls. The white spheres (landmarks) on the 385 

landvR outputs show the fixed landmarks (1–66) on the left-hand side (LHS) of the skull. The 386 

landmarks on the RHS of the skull vary in colour depending on how much difference there is 387 

between a computer-mirrored landmark (Rn) (which assumes the skull is bilaterally 388 

symmetrical) and a manually placed landmark (Fn) (which accurately depicts asymmetry). 389 

The larger the difference between the computer-mirrored landmark and the manually placed 390 

landmark, the hotter the colour. The highest amount of asymmetry is shown in red and dark 391 

orange, less asymmetry is shown in pale orange and yellow. The tails coming from each of 392 

the landmarks show how much and in which direction the landmarks have moved from 393 

where the computer mirrored them, to where the landmarks sit when manually placed. 394 

Specimens a-c show most asymmetry in the frontal, nasal, and dorsal, posterior premaxilla 395 

as is common in many odontocetes and is associated with echolocation (see Coombs et al., 396 

2020 for details). Specimens d-f show areas of asymmetry in the nasal and frontal (d and e) 397 

but also in the orbit, lateral process of the maxilla, and the tip of the rostrum (f). Some ventral 398 

landmarks are shown to assist with visual interpretation – landmarks shown are dependent 399 

on the specimen and orientation of that skull for illustration of the method only. Specimens: 400 

a. Delphinapterus leucas (USNM 305071), b. Delphinus delphis (AMNH 75332), c. Monodon 401 

monoceros (USNM 267959), d. Phocoena spinipinnis (NHM 1900.5.7.29), e. Pliopontos 402 

littoralis (SAS 193), f. Tagicetus joneti (IRSNB/RBINS M.1892). Not shown to scale. 403 

 404 

Using landvR outputs for each of the specimens we can obtain a visual 405 

representation of where asymmetry occurs in the skull (Fig. 3) or structure. We 406 

recommend visualisation as a first step to ascertaining areas of asymmetry in the 407 

morphology. LandvR uses a ‘heat map’ approach to reflect displacement magnitude 408 
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as shown in Fig. 3 (see Weisbecker et al., 2019 and Viacava et al., 2020 for further 409 

examples). Generally, we advise focusing on landmarks with the hottest colours (red, 410 

dark orange) at the least and investigating them further to a) check they are logical 411 

and b) obtain a numerical measure of the magnitude of asymmetry.  412 

         We can obtain a numerical value for asymmetry (i.e., displacement) by pulling 413 

out the radius value for each landmark and further calculating an average radius 414 

value for each landmark across the data set. This allows us to determine which 415 

landmarks exhibit the highest asymmetry. We then identify landmarks with high 416 

asymmetry for manual landmarking as they are the ones most likely to be 417 

misrepresented by mirroring alone. In this data set, the highest landmarks of 418 

variation are shown in Table 1. Fig. 3 shows the parts of the skull that were then 419 

considered for manual landmarking using the output from landvR.  420 

         To investigate the landmarks of highest variation (and thus potential candidates 421 

for manual placement) we extract the ‘radii’ which is the radius per landmark for each 422 

specimen and ‘radii_mean’ which is the mean radius per landmark. An example is 423 

provided below. Details are provided on Github 424 

(https://github.com/EllenJCoombs/Quantifying_asymmetry). An example of the 425 

results you can obtain using the below code are shown in Table 1.  Much more can 426 

be done with these results should the user wish to investigate and visualise mean 427 

shapes and Procrustes distance, to name just two possibilities. See Guillerme and 428 

Weisbecker (2019) for further code and visualisations.  429 
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########################################## 
#                                        # 
#   quantifying the level of asymmetry   # 
#                                        # 
########################################## 
 
#load packages and define model inputs 
 
library(landvR) 
N=123 #number of total landmarks  
nfixed = 66 #number of fixed landmarks  
specs = 157 #number of specimens  
k = 3 #number of dimensions in the matrix 
colfunc <- colorRampPalette(c("red", "yellow", "white")) #create colour function for visualising 
landmarks 
colfunc(10) #choose number of increments for colour scale  

 

#make the array for analyses:  
all_combined = array(dim=c(N,3,specs)) #3 is the columns of data we need (radii, azimuth, polar) 

#manual_data is the fully landmarked skull (reference data) 
#mirrored_data is the half-landmarked skull that has been mirrored  

#calculate the coordinates.differences between these data sets (i.e. how much the landmarks move 
between the manually placed landmarks and the mirrored landmarks)  
 
i=1 
for (i in 1:specs) 
{ 
  all_differences <- coordinates.difference(coordinates = mirrored_data[,,i], 
                                            reference = manual_data[,,i], 
                                            type = "spherical", 
                                            rounding = 9) 
   
  all_combined[,,i]=all_differences[[1]] 
   
  i=i+1 
} 
 
 
#landmarks 1:66 (nfixed) in this example are fixed and therefore have the value of zero  
all_combined[1:nfixed, 1:k, 1:specs] <- c(0.000000, 0.000000, 0.000000) 
 
#save output if desired using: write.csv(all_combined, file = 'all_combined.csv') 
 
radii=all_combined[,1,] #radius per landmark for each specimen (second column of whole dataset with 
just the radii [,1,]) 
 
radii_mean=apply(radii, c(1), mean) #c(1) look at the first column - the radii  
#radii_mean is a mean radius value per landmark  
 
#save radii and radii_mean as .csv files for further analyses  
 
#example 
#looking at the average radii compared to specimen 21 (or choose an average specimen if preferred) 
get.col.spectrum <- landvR::procrustes.var.plot(manual_data[,,21], mirrored_data[,,21], col.val = 
radii_mean, col = colfunc) 

 

 
 430 

 431 

 432 
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[Snippet on previous page] 433 

Code snippet 1: Extracting the radii and average radii for each specimen using the landvR 434 

package  435 

 436 

[Table on next page] 437 

Table 1. An example of the numerical outputs from landvR that help to inform areas of 438 

asymmetry in the skull or chosen morphology. Shown are the five landmarks with the 439 

greatest variation across the cranium for odontocetes in this study. x̄ρland is the average sum 440 

radii per landmark. Skull shown is Monodon monoceros (USNM 267959).  441 

 442 

 443 

 444 

 445 

 446 
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 447 

 448 

Average 

asymmetry in 

the skull 

(x̄ρ) 

1st highest landmark of 

variation  

2nd highest landmark of 

variation  

3rd highest landmark of 

variation  

4th highest landmark of 

variation  

5th highest landmark of 

variation  

Specimen showing 

top 5 landmarks (red) 

Landmark 

description  

x̄ρland Landmark 

description 

x̄ρland Landmark 

description 

x̄ρland Landmark 

description 

x̄ρland Landmark 

description 

x̄ρland 

0.245 

 

L71:  Posterior 

dorsal 

premaxilla 

0.013 L74:  Dorsal 

medial 

maxilla 

(suture with 

nasal and 

premaxilla) 

0.011 L68:  Posterior 

lateral corner 

of nasal 

0.010 L121: Posterior 

point of nasal 

0.009 L75:  Nasal-

frontal-maxilla 

suture 

(posterior 

medial maxilla) 

0.009 
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Step 4: Informing the curve protocol – which curves to manually place 449 

For this data set, the top landmarks of variation were concentrated in the nasals, 450 

frontal, premaxilla, and maxilla (Fig. 3, Table 1). Asymmetry was also found in the 451 

orbit, lateral process of the maxilla, and the tip of the rostrum (Fig. 3 d-f). This 452 

informs our protocol for manually placing landmarks and curves on these bones, 453 

instead of mirroring. It also informs the landmarks and curves which can be mirrored, 454 

i.e., those that showed little asymmetry (pale yellow) such as the ventral and 455 

posterior of the skull in this example. Curves are then manually placed on one side 456 

of the skull for symmetrical structures (as is standard in bilaterally symmetrical 457 

specimens), with the addition of manual placement of curves on both sides of the 458 

face (maxilla, premaxilla, nasals, and frontal) to capture the morphology of 459 

asymmetric bones (Fig. 4). See Supporting Information; Table S3 for curve 460 

information.  461 

         See the methods section for infromation on resampling and sliding curves. This 462 

step is not specific to the asymmetric protocol that we address in this study but 463 

would be carried out at this stage, before mirroring curves.  464 

 465 
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                        466 

                    OBLIQUE                                                                        DORSAL  467 

Fig. 4. Curves and landmarks manually placed on the asymmetric cetacean face. Note the 468 

asymmetry in the posterior of the skull near the nasal. The manual placement of landmarks 469 

on the right hand side (RHS) of the skull are selected based on the results from landvR 470 

(Table 1, Fig. 3). Note the RHS posterior and the ventral skull are not shown with curves 471 

here because these are bilaterally symmetrical parts of the morphology (smaller radii values 472 

from landvR on the posterior and ventral of the skull) and thus landmarks and semi-landmark 473 

curves can be computer mirrored onto these sections (see Fig. 5 for full skull details). The 474 

skull on the left is shown in oblique view, the skull on the right is shown in dorsal view. 475 

Specimen shown is Delphinapterus leucas (USNM 305071).                                                                                                                                                                                                                                                                                                                                                                                             476 

 477 

 478 

 479 
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Step 5: Placing landmarks and semi-landmarks on asymmetrical specimens  480 

We use the results from landvR to determine which of the bones in the skull were 481 

asymmetric and thus requiring manual landmarking and which could be reliably 482 

placed by mirroring bilaterally symmetric landmarks across the skull midline. For the 483 

asymmetric specimens, we placed 57 landmarks on the LHS of the skull and nine 484 

landmarks on the midline. We mirrored 33 landmarks to symmetrical bones on the 485 

right-hand side (RHS) of the skull and we manually placed 24 landmarks on 486 

asymmetric bones on the RHS of the skull. We manually placed 60 curves using the 487 

‘curve’ option in Checkpoint, on the sutures between bones on the LHS of the skull 488 

and four curves on the midline (Fig. 5). We manually placed 21 curves on 489 

asymmetrical bones (the face) on the RHS, mostly concentrated in the nasals, dorsal 490 

premaxilla, dorsal maxilla, orbit and rostrum, and the rest were computer-mirrored 491 

from the LHS (Fig. 5). Curves should then be resampled and slid (see Methods).  492 

         Code snippet 2 shows how to mirror bilaterally symmetrical curves only, whilst 493 

leaving manually placed (asymmetric) curves untouched. This results in manually 494 

placed asymmetric curves and computer mirrored bilaterally symmetrical curves 495 

being combined to cover the entire skull or morphology (Fig. 5). Using this method 496 

(code snippet 2) ensures that both bilaterally symmetrical specimens and 497 

asymmetric specimens (for example if specimens in the sample, e.g., a specific 498 

species, sex, or developmental stage have asymmetry, but other specimens do not) 499 

can still be compared in the same analyses as the number and location of landmarks 500 

and semi-landmark curves are identical, only the method of placement is different.   501 

 502 
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########################################## 
#                                        # 
#   landmarking asymmetrical specimens   # 
#                                        # 
########################################## 
 
library(rgl) 
library(paleomorph) 
library(SURGE) 
 
#import .csv defining curves  
curve_table <- read_csv('new curves.csv') 
my_curves <- create_curve_info(curve_table, n_fixed = 123) #define fixed curves  
 
 
#slidedlms is resampled, slid landmarks with missing landmarks and variably present bones corrected 
(see github for full code and ‘side notes’ section of methods) 
 
#midline landmarks (anchor points via which landmarks are mirrored) in this example: 
midline <-as.integer(c(38,40,48,49,51,54,55,56,61,1114,1115)) 
 
slidedlms <- Shape_data_with_bilats #see above 
#define the curves and landmarks on each side  
left.curves<-c(1:64)  
left.lm <- c(1:37,39,41:47,50,52,53,57:60,62:66)  
right.lm <- c(120,121,67:82,122,123,83:119) 
right.curves <- c(65:85) 
left.curve.list<-unlist(my_curves$Curve.in[left.curves]) 
right.curve.list<-unlist(my_curves$Curve.in[right.curves]) 
leftside<-c(left.lm,left.curve.list)  
rightside<-c(right.lm, right.curve.list) 
num.missing<-(length(leftside)-length(rightside))  
blanks<-c((dim(slidedlms)[1]+1):(dim(slidedlms)[1]+num.missing)) #to fill in blanks from one row past 
the last current point, for the number of rows needed (num.missing) 
rightside<-c(rightside,blanks) 
add_col_or_row = function(x, n = 1, add_col = T, fill = 0) 
{ 
  m1 = matrix(x, ncol = if(add_col) nrow(x) * ncol(x) else nrow(x), byrow = T) 
  m2 = matrix(fill, nrow = if(add_col) dim(x)[3] else prod(dim(x)[-1]), 
              ncol = if(add_col) nrow(x) * n else n) 
  array(t(cbind(m1, m2)), 
        c(nrow(x) + ((!add_col) * n), ncol(x) + (add_col * n), dim(x)[3])) 
} 
specimens<-add_col_or_row(slidedlms,n=num.missing,add_col=FALSE,fill=NA) 
dimnames(specimens)[3]<-dimnames(slidedlms)[3] #make sure the specimens match up  
bilats<-cbind(leftside,rightside) #bind the left and the right side  
newarray<-mirrorfill(specimens,l1=midline,l2=bilats) #newarray = final, correctly mirrored landmarks  
dimnames(newarray)[3]<-dimnames(slidedlms)[3] #make sure the specimens match up 
 
#plot how the mirrored landmarks look 
open3d(); 
spheres3d(newarray[,,3],radius=1.5) #plot whole skull to check asymmetric curve and symmetric curve 
placement  
spheres3d(newarray[bilats[,1],,1],col='red',radius = 1.5) #plot left side 
spheres3d(newarray[bilats[,2],,1],col='blue',radius = 1.5) #plot right side  
spheres3d(newarray[midline,,1], col = 'yellow', radius = 1.5) #plot midline 
 

 

 
 503 

Code snippet 2: Code for mirroring bilaterally symmetrical curves alongside manually 504 

placed asymmetric curves. Complete code for mirroring symmetrical specimens is available 505 

at: https://github.com/EllenJCoombs/Quantifying_asymmetry  506 

 507 
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Results  508 

Landmark and curve placement on asymmetrical specimens  509 

Once these steps are followed, the user will have quantified where asymmetry exists 510 

in the specimen(s) and created a curve protocol that not only captures asymmetry in 511 

the structure or specimen but also accounts for any bilateral symmetry if present in 512 

that same structure or in other specimens in the data set. Examples of successful 513 

placement of curves in asymmetric and symmetric specimens are shown here (Fig. 514 

5-7). 515 

 516 

 517 

 518 

 519 

 520 

 521 
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[Figure on previous page] 522 

Fig. 5. Landmark configuration on an asymmetric skull. Red = manually placed landmarks 523 

on asymmetric bones, green = computer mirrored landmarks on symmetric bones, blue = 524 

manually placed curves (semi-landmarks) on asymmetric bones, yellow = computer mirrored 525 

curves (semi-landmarks) on symmetric bones. Specimen is Delphinapterus leucas (USNM 526 

305071). 527 

 528 

Additionally: Mirroring landmarks on bilaterally symmetrical specimens  529 

On symmetrical specimens, here represented by the mysticetes (baleen whales) 530 

(see Fahlke and Hampe, 2015; Coombs et al., 2020) (Fig. 6), we placed 57 531 

landmarks on the left-hand side (LHS) of the skull and nine landmarks on the 532 

midline. We placed 60 sliding semi-landmark curves on the sutures between bones 533 

on the LHS of the skull and four curves on the midline. These curves and landmarks 534 

were then mirrored (using the midline landmarks and curves as an anchor) using the 535 

mirrorfill function in the R package ‘paleomorph’ v.0.1.4 (See: 536 

https://github.com/EllenJCoombs/Quantifying_asymmetry). This method (see code 537 

snippet 2) ensures that both bilaterally symmetrical specimens and asymmetric 538 

specimens can be compared in the same analyses as landmark and curve numbers 539 

match between specimens. This results in a global landmark and curve configuration 540 

that is the same among specimens regardless of whether they are asymmetrical or 541 

not (Fig. 7).  542 

 543 

 544 
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 545 

Fig.6. Landmark configuration on a symmetric skull. Landmark protocol for the symmetric 546 

mysticete. Red = manually placed landmarks, green = computer mirrored landmarks, blue = 547 

manually placed curves (semi-landmarks), yellow = computer mirrored curves (semi-548 

landmarks). Specimen is Balaenoptera acutorostrata (NHM 1965.11.2.1).  549 

 550 

 551 
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 552 

 553 

Fig 7. Final landmark and curve sliding semi-landmark placement on all skulls regardless of 554 

asymmetry. The landmarks in red are type I and type II landmarks. The curves in blue define 555 

outlines and margins of bones. There are 123 landmarks and 124 curves on this specimen. 556 

Landmarks and curves shown on a beluga (Delphinapterus leucas (USNM 305071)) 557 

specimen. The methods of placement of these landmarks and curves are different 558 

depending on whether the specimen is bilaterally symmetrical or asymmetrical; however, the 559 

finished result (i.e., number of landmarks and curves and placement on bones) is uniform 560 

across all specimens so that morphology is comparable.  561 

 562 

Some odontocetes, such as phocoenids show little asymmetry in the skull (Cranford 563 

et al., 1996; Marx et al., 2016). However, others, particularly highly asymmetrical 564 

specimens such as the kogiids and physeteroids could be misrepresented in the 565 

morphospace when using computer landmarks. In the example below we see that 566 

asymmetric species (circled; Fig. 8) do shift in morphospace position if landmarks 567 

are mirrored or manually placed. This is particularly evident in asymmetric 568 
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specimens such as monodontids, kogiids (Ness, 1967), and Physeteroidea (Coombs 569 

et al., 2020).   570 

 571 

 572 

 573 

 574 

 575 

 576 
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[Figure on previous page] 577 

Fig. 8. An example of how specimens with some asymmetry (here concentrated in the naso-578 

facial region of the skull) will sit in the morphospace when landmarked manually or using 579 

computer mirrored landmarks. The specimens with the greatest difference between their 580 

computer mirrored landmarks and manually placed landmarks (circled in yellow) are those 581 

with higher asymmetry. Morphospace of 157 odontocete skulls with landmark and semi-582 

landmarks over the entirety of the skull (both asymmetric and symmetric bones).  583 

Finally, for this specific data set, landmarking a skull using the method presented 584 

here took the researcher around a third less time than manually landmarking the 585 

whole skull.  586 

 587 

Discussion  588 

Directional asymmetry in organisms is a fascinating phenomenon but can complicate 589 

data collection by making automated mirroring of morphometric data inappropriate. 590 

Methods such as mirroring landmarks is a standard technique used for bilaterally 591 

symmetrical specimens (Gunz et al., 2009; Cardini et al., 2010; Gunz and 592 

Mitteroecker, 2013) which provide an accurate quantification of morphology whilst 593 

reducing the time needed to landmark the entire surface of the skull (Bardua et al., 594 

2019a). However, while this is a suitable technique for bilaterally symmetrical 595 

structures, it may misrepresent asymmetric structures. Further, it can be difficult to 596 

detect asymmetry ‘by eye’ and then landmark a specimen as such based on a visual 597 

interpretation. Not accurately quantifying asymmetry in the initial stages could result 598 

in asymmetry being missed or perhaps even overrepresented. Here we offer a 599 

practical method to accurately quantify the morphology but also minimise the time by 600 

about a third (in this example data set) to manually landmark the entire specimen. 601 
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         Natural, directional asymmetry occurs when one side of the structure is 602 

consistently different (e.g., in size or shape) (Graham et al., 1993; Parés‐Casanova, 603 

2020). Directional asymmetry is recorded in many specimens, from algae and leaf 604 

blades to corals, turtles, and birds. In some taxa, asymmetry can be genus or even 605 

sex specific, for example, male speckled wood butterflies (Pararge aegeria) have 606 

directional asymmetry in the fore and hindwing and forewing width (Windig and 607 

Nylin, 1999) and in cetaceans, families such as the monodontids and the kogiids 608 

have more naso-facial asymmetry than families such as the delphinids (Ness, 1967). 609 

It is therefore useful to have a protocol that can be used to capture morphology in 610 

both asymmetric and symmetric specimens that are to be analysed together.  This 611 

protocol results in a global landmark and curve configuration that is the same among 612 

specimens regardless of whether they are asymmetrical or not (Fig. 6; Fig. 7).  613 

         This protocol provides a substantial increase in data collection speed. The 614 

time-consuming nature of digitising 3D landmark and semi-landmark data can 615 

impose limitations on sampling in resource-limited research projects. This has led 616 

some researchers to seek automated (Boyer et al., 2015a; 2015b) or semi-617 

automated (Schlager et al. 2019) approaches to geometric morphometrics, but these 618 

methods are not applicable to all morphologies or hypotheses.  We estimate that 619 

using the method presented here (i.e., manually semi-landmarking asymmetric 620 

bones and mirroring semi-landmarks for bilaterally symmetric bones only) reduces 621 

per-specimen processing time by about one third compared to applying semi-622 

landmark curves to the whole skull. Gains in digitisation speed will be specific to the 623 

data set in question, for example, taxa with more asymmetry would require more 624 

manual landmarking and thus an increased time investment to accurately capture 625 

the asymmetric morphology.  626 
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         A time effective method is desirable to any researcher but most important is the 627 

accurate representation of a specimen and its morphology. This method helps to first 628 

quantify any asymmetry in the morphology, and then to accurately represent it. In the 629 

example shown (Fig. 8) this goes as follows; computer mirrored landmarks and 630 

curves and manually placed landmarks and curves are placed on odontocete skulls 631 

to observe the difference that incorrectly placed landmarks can have on reporting 632 

morphology. Importantly, the difference between manual and mirrored specimens 633 

can be as great as the difference between species (Fig. 8) and thus has the potential 634 

to mislead downstream analyses. We find that the incorrect placing of specimens in 635 

the morphospace (via incorrect landmarking) can place specimens as far from their 636 

true morphology (if correctly landmarked) as from other species. This in turn could 637 

influence results that may be looking at, for example, ecological influences on 638 

morphology, such as species-specific diet, habitat, or other ecological factors. It is 639 

therefore central to ascertain which specimens in a sample could be misrepresented 640 

by mirroring of landmarks.  641 

 642 

Limitations  643 

Finally, there are some limitations to this exploratory approach. Firstly, the method is 644 

most likely useful for studies where measurement error is small compared to 645 

biological variation, for example, macroevolutionary studies, interspecific studies, 646 

ontogenetic studies, and studies of sexual dimorphism. Variation in intraspecific 647 

studies may be small and difficult to quantify using this method. That said, we still 648 

recommend quantifying asymmetry in intraspecific cohorts and on specimens with 649 

assumed bilateral symmetry if only to a) confirm the latter and thus support the 650 
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mirroring of landmarks from one half of the morphology to the other, or b) highlight 651 

any deformation in specimens, especially fossils. Secondly, an understanding of the 652 

specimen’s morphology is desirable to interpreting the outputs from landvR, for 653 

example, it is useful to know whether landmarks that show up in hotter colours (red, 654 

dark orange) are reflective of the biology or an artefact of deformation.  An in-depth 655 

anatomical knowledge of study specimens is not a prerequisite, but we do 656 

recommend considering asymmetric landmarks carefully to ascertain whether any 657 

observed asymmetry is likely biological or deformational.   658 

 659 

The code for these analyses is available at: 660 

https://github.com/EllenJCoombs/Quantifying_asymmetry. The code relies heavily on 661 

functions available in the SURGE package (Felice, 2020) and the Paleomorph 662 

package (Lucas and Goswami, 2017). Due to advances in coding and imaging 663 

technologies, we anticipate continual updates to these methods and welcome user 664 

suggestions and contributions. 665 
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