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Abstract

Spermatozoal morphology is highly variable both among and within species and in ways
that can significantly impact fertilization success. In Drosophila melanogaster, paternity
success depends on sperm length of both competing males and length of the female’s
primary sperm storage organ. We found that genes upregulated in long sperm testes are
enriched for IncRNAs and seminal fluid proteins (Sfps). Transferred in seminal fluid to
the female during mating, Sfps are secreted by the male accessory glands (AG) and
affect female remating rate, physiology, and behavior with concomitant advantages for
male reproductive success. Despite being upregulated in long sperm testes, they have
no known function in testis tissue. We found that Sex Peptide and ovulin (Acp26Aa)
knockouts resulted in shorter sperm, suggesting that Sfps may regulate sperm length
during spermatogenesis. However, knockout of AG function did not affect sperm length,
suggesting that AG expression has no influence on spermatogenic processes. We also
found that long sperm males are better able to delay female remating, suggesting higher
Sfp expression in AG. These results might suggest that long sperm males have a double
advantage in sperm competition by both delaying female remating, likely through
transfer of more Sfps, and by resisting sperm displacement. However, we also found
that this extra advantage does not necessarily translate to more progeny or higher
paternity success. Thus, we found that multiple components of the ejaculate coordinate
to promote male reproductive success at different stages of reproduction, but the
realized fithess advantages in sperm competition are uncertain.

Significance Statement

The ejaculate is comprised of sperm produced in the testis and seminal fluid primarily
produced in the male accessory glands (AG). These complementary components are
both critical for male reproductive success, but they are largely considered to be
functionally, genetically, and developmentally independent. In a quest to understand
genetic mechanisms of sperm length variation, we found that genes upregulated in long
sperm testes are enriched for INcRNAs and seminal fluid proteins (Sfps). Knockout of
two Sfps, Sex Peptide and ovulin, results in shorter sperm, though knockout of AG
function has no effect. Moreover, long sperm males delay female remating longer. These
results suggest sophisticated testis-AG coordination that amplifies male reproductive
success, with implications for evolutionary integration of sexually selected traits.
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55 Introduction

56  Understanding how diversity arises and is maintained is a central goal of evolutionary

57  biology. Spermatozoa are among the most diverse cell types and have been the focus of
58 many studies seeking to understand selective principles driving their evolution. The most
59  familiar sperm bauplan typically features a head, a midpiece housing the mitochondria,
60 and a flagellum tail, but variations include up to 100 flagella, no flagella, helical heads (1,
61  2), undulating membranes, radial symmetry, amoeboid moatility (3), immobility, multiple
62  sperm morphs from a single male, and conjugated multi-sperm structures thought to

63  behave cooperatively (4, 5). Evolutionary forces driving such extreme diversification

64  remain poorly understood but are thought to be related to factors like fertilization mode
65  (6), the fertilization environment mediated by the female (7—12), and postcopulatory

66  sexual selection (13—-17). A full understanding of sperm evolutionary diversification is

67  impossible without understanding its development, yet we know relatively little about

68  how regulatory divergence in spermatogenesis contributes to sperm phenotypic

69  diversity.

70  In Drosophila fruit flies, sperm length varies over two orders of magnitude from 224 ym
71  in D. subobscura (18) to 58,290 um in D. bifurca (19). Within D. melanogaster, sperm
72 length is under postcopulatory sexual selection, with complex interactions mediating the
73  outcome of both sperm competition and cryptic female choice. Sperm length interacts
74  with sperm numbers as well as with length of the primary female sperm storage organ,
75 the seminal receptacle (SR), in a way that is contingent on phenotypes of the first male,
76  second male, and female (7, 12, 20-22). Specifically, the effect of sperm length on

77  fertilization success depends on SR length, such that longer sperm have a competitive
78 advantage in long SRs, while shorter sperm are advantageous in short SRs (12, 20).

79  Sperm length and SR length are positively correlated across Drosophila species (23), a
80  pattern that may be mediated by these functional sperm-SR interactions as well as by a
81  genetic correlation between the two traits (22). In terms of other fitness effects, both long
82  sperm and long SRs are associated with enhanced longevity and few overall fithess

83  costs (24). However, trade-offs and condition-dependence of sperm length become

84  more apparent in species with extremely long sperm, consistent with giant sperm

85  evolving as an exaggerated sexual ornament (22). Indeed, runaway selection may be an
86  important factor in sperm length evolution, fueled by the genetic correlation between the
87  female choice trait (SR length) and the male ornament (sperm length) (22).

88 A key missing component in our understanding of sperm length evolution is knowing

89  how sperm elongation is developmentally regulated during spermatogenesis. In D.

90 melanogaster, spermatogenesis begins at the apical tip of the testis, when progenitor

91  stem cells undergo asymmetrical mitosis to yield a diploid spermatogonium. This

92  spermatogonium is born enclosed within two somatic cyst cells that all together comprise
93  the cyst, the primary unit of synchronous spermatogenesis. The spermatogonium

94  completes four rounds of mitosis, yielding 16 spermatocytes that undergo a period of

95 dramatic growth and transcription, followed by meiosis to yield 64 haploid spermatids.
3
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96  Syncytial bridges linking spermatids within a cyst help coordinate synchronous

97 development and elongation (25). Spermatids elongate 150- to 185-fold to reach their

98 final length, requiring intensive reconstruction of the cytoskeleton and membrane (26,

99  27). Within each spermatid, microtubules arrange themselves along a pair of fused
100  mitochondrial derivatives to form a stable zone near the nucleus, while dynamic
101  microtubules continually extend the tail at the most distal point (27). After elongation, full-
102  length cysts undergo individualization, in which an actin-rich individualization complex
103  (IC) assembles around the spermatid nuclei and travels along the cyst toward the tail,
104 condensing excess cytoplasm and unnecessary organelles into a cystic bulge that
105 accumulates as a waste bag at the end of the cyst. As the IC migrates, it also breaks the
106  syncytial bridges and separates spermatids into individual sperm, which then are stored
107 in the seminal vesicles (28, 29).

108 Despite a detailed understanding of spermatogenesis and mechanisms of spermatid
109 elongation, developmental processes that regulate production of sperm length diversity
110 remain a mystery. A number of genes have been identified whose disruption interrupts
111 elongation and is required for successful spermatogenesis (e.g., 30, 31), but fewer

112 genetic manipulations produce sperm that differ in length but are still functional (32).
113 During spermatogenesis, transcriptional activity is highest in late spermatogonia and
114  early spermatocytes and lowest in late spermatids (33), confirming that post-meiotic
115  transcription is low relative to pre-meiotic, and many gene products necessary for late
116  stages are transcribed during earlier stages (34). It is therefore likely that genes involved
117  in regulation of sperm length variation may be expressed at earlier stages of

118  spermatogenesis. To identify these genes at all stages, we sequenced the

119 transcriptomes of whole testes from males with long or short sperm derived from

120  populations that previously underwent bidirectional selection for sperm length (20).

121 We found that differentially expressed (DE) genes were generally upregulated in long
122 sperm testes, and that DE genes were enriched for Sfps and IncRNAs. To further

123 explore the potential role of Sfps in spermatogenesis, we confirmed a putative role for
124  two Sfps, Sex Peptide and ovulin, in sperm length variation and ruled out effects of

125  accessory gland (AG) expression. We also found that a genetically independent

126  population of long sperm males delays female remating relative to short sperm males, a
127  post-mating response known to be induced by Sfp transfer during mating (35). This

128  result suggests that Sfp expression in AG and testis is coordinated and is associated
129  with sperm length. Our results identify a potential novel role for Sfps in regulating sperm
130 length variation and elucidate possible mechanisms regulating natural phenotypic

131 variation. Most Sfps are expressed both in AG and testis, they are rapidly evolving (36—
132 39), and many are evolutionarily young (40). Moreover, the testis is a hotspot for

133 evolution of de novo genes (41, 42). We may therefore be able to use this system to
134  interrogate broader questions about the evolution of pleiotropy and tissue-specificity in
135  de novo genes.
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Results

Overview of RNAseq data

We quantified gene expression in testes from inbred isolines derived from two D.
melanogaster populations that had been previously selected for long or short sperm (20,
described in 24). After confirming sperm length differences for each isoline, we collected
three replicate samples of 200 testes (from 100 males) from each isoline for a total of 12
samples. We generated RNAseq libraries from each sample, generating a total of 426.6
million mapped reads (37-51M reads/library, average of 42.6 million; Table S1). After
filtering, we retained 10,766 annotated genes that were expressed in the testes, 9,625 of
which were protein-coding. Expression profiles for all genes exhibited moderate
clustering by treatment (Fig. S1) with a biological coefficient of variation (BCV) of 0.417,
which is in line with what is expected for whole tissues (43). This BCV indicates that
there was variability among samples within sperm length phenotypes but clear
differences in expression profiles between phenotypes. We estimated tissue specificity
using RNAseq data from 14 tissues (downloaded from FlyBase). Out of the 10,766
expressed genes, 49.7% (5347) were induced in testis and 30% (3310) had higher
expression in testis compared to other tissues. The majority (3264; 61.0%) of the testis-
induced genes were also induced in the accessory glands (AG), but only 9% (481) had
higher expression in AG compared to other tissues. Overall, we found many genes that
were highly expressed in both testis and AG, but most had the highest expression in
testis. We also found a high proportion (121/176; 68.8%) of known Sfps expressed in our
testes samples (33).

DE genes between short and long sperm testes

Comparisons between short and long sperm lines revealed 317 DE genes, including 221
protein-coding genes (Supplementary File 1), 91 non-coding RNAs, and 5
pseudogenes. Over one third (114/317) of the DE genes were unique to D.
melanogaster, and only 26% (82/317) were conserved across Drosophila. DE genes
were distributed across the genome (Fig 1, Table S2) and the majority of DE genes
(188/317; 59%) were upregulated in long sperm testes, while 129 DE genes were
upregulated in short sperm testes. Across all genes, median expression levels were
similar in short and long sperm testes (Fig S2A, Wilcoxon rank sum, FDR p-value =
0.58), but DE genes tended to have higher median expression in long sperm testes (Fig
S2B, Wilcoxon rank sum, FDR p-value = 0.06).
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Figure 1. Genomic distribution of DE genes between short and long sperm
producing testes. Genes with higher expression in short sperm testes (negative logFC)
are blue, genes with higher expression in long sperm testes (positive logFC) are orange,
and the x-axis position of each point indicates the magnitude of expression difference.
Number of genes in each category per chromosome are in bold.

DE genes are highly expressed in testes and accessory glands

DE genes had significantly higher tissue specificity relative to all genes (median + SE 1:
all genes 0.811 + 0.002; DE genes 0.974 + 0.006, minimum T of DE genes 0.596).
Approximately two thirds of DE genes (208/317) were induced in testis and almost one
third had their highest expression in the testes relative to other tissues (65/208), most of
which were genes that encoded INcCRNAs (42/65, 65%; Fig 2, Supplementary File 1).
Over half of the DE genes were induced in AG (162/317), and many of these had their
highest expression in AG (90/162). Indeed, there were 54 known Sfps (44 )differentially
expressed between short and long sperm testes, all of which were induced in both the
testes and the AG, but had the highest expression in the AG (Fig 2). There were only a
handful of DE genes that were more highly expressed in other tissues (2-17
genesl/tissue), and no other tissue had a high proportion of DE genes. Together,
IncRNAs and Sfps comprised nearly half of the DE genes (134/317, 42%).
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201  Figure 2. DE genes were largely testis- and AG-induced, with many Sfps and

202  IncRNAs. Bars indicate the number of DE genes in each category, with colors indicating
203  subcategories of genes.

204

205

206  Timing of expression during spermatogenesis

207 To determine at what stages during spermatogenesis our DE genes are expressed, we
208 generated a heatmap depicting stage-specific expression for 279 of our DE genes that
209 overlapped with a previously published single-cell RNAseq dataset (33); Fig 3). DE

210 genes are expressed at multiple stages of spermatogenesis and in both germline and
211  somatic cells. Specifically, clusters of DE genes are highly expressed in epithelial cells,
212 spermatogonia, and late spermatids. Other DE genes are also moderately expressed in
213 cyst cells, hub cells, and spermatocytes. Of note is the small but distinct set of genes
214  that have the highest expression in late spermatids, which is when morphogenesis and
215  elongation occurs. Sfps and IncRNAs are differentially expressed in many cell types,
216  with epithelial cells expressing more DE Sfps than IncRNAs, and spermatocytes and
217  early spermatids expressing more IncRNAs than Sfps. DE genes expressed in late

218  spermatids have a higher proportion of Sfps and IncRNAs over other gene classes.
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219
220 Figure 3. DE genes are expressed in the germline at different stages during

221  spermatogenesis as well as in somatic cells (epithelial, cyst). Stage-specific

222 expression derived from single-cell RNAseq dataset from (33). Only genes DE in our

223  dataset are shown, genes are grouped by transcript type (Sfps, INCRNA, other) and by

224  whether they were upregulated in long sperm (positive logFC) or short sperm (negative

225 logFC) testes.

226

227  Gene enrichment

228  DE genes are most enriched for reproduction, specifically mating, sperm-related

229  processes, and oviposition, a result likely driven primarily by the high proportion of Sfps
8


https://doi.org/10.1101/2021.11.15.468624
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468624; this version posted November 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

230
231
232
233

234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

available under aCC-BY-NC-ND 4.0 International license.

among our DE genes (Fig 4). The GO terms with highest enrichment are associated with
oviposition and the (often negative) regulation of female post-mating receptivity
(GO:0018991; GO:0045434, GO:0046008, GO:0007621). The next highest categories
are related to sperm processes including sperm competition and sperm storage.

Oviposition - )
Regulation of Female Receptivity - )
Sperm Competition - ]
Sperm Storage - ™
Insemination - Y Genes
Copulation - P @ >
Mating Behavior - ® @
Multicellular Organism Process - () . 130

Reproduction - ‘
Behavior- @

Cellular Process - @
Metabolic Process -@
0 10 20 30 40 50
Fold Enrichment

Figure 4. Gene ontology (GO) categories and enrichment. This bubble plot shows
the top 12 GO term results from PANTHER enrichment analysis of the 317 selected DE
genes. Terms are arranged in descending order by fold enrichment, and bubble size
indicates the number of genes enriched for that category.

Ruling out contamination from AG

Differential expression of Sfps in our testis samples is not likely to be due to
contamination from AG tissue during dissections. Many AG-expressed genes are not
expressed in our testis samples, including 55 Sfps (66) and 66 out of 74 AG-specific
genes (defined as greater than low expression in AG and no/very low expression in all
other tissues 45). Contamination from AG tissue would cause widespread expression of
AG-expressed genes in a subset of our samples. Instead, our testis samples show
expression for some AG-expressed genes, but not all, and that expression is variable
depending on the gene (Fig S3). For example, one sample, HO8C, had higher than
average expression for DE Sfps, but expression of non-DE Sfps were comparable to
other samples (Fig S3). Moreover, Sfp expression has been found in other testis
expression studies. Witt et al. (2019) found Sfps that are expressed in different cell types
and stages of spermatogenesis (66; Fig 3), and in modENCODE data, 89% of Sfps are
also testis-induced (45). Finally, expression of Sfps in tissues integral to the testis, such
as the epididymis and seminal vesicles, is well-documented in mammals (e.g., 46).

Sperm size and testis length

Differential expression can result from both divergence in cellular composition or gene
regulation (47). If longer sperm develop in longer testes, then expression differences
between long and short sperm males could be due to overall testis size. We examined
the relationship between sperm and testis length in a wild type population of D.
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melanogaster and found that they are not significantly correlated (F143 = 2.5673; P =
0.1164; Fig S4), suggesting that sperm length is fairly independent of testis length. This
relationship was still non-significant after removing three outliers with long testes (F1.40 =
3.28; P = 0.078) and after applying a non-linear least squares regression to the full
dataset (model: Sperm ~ a * Testis/(b + Testis); b not significantly different from 0 with
ti43= 1.61; P=0.116). Thus, we can conclude that DE genes in our dataset are
associated with sperm length and not testis size.

Sfp knockout results in slightly shorter sperm

To interrogate the role of Sfps in sperm length variation, we performed three knockout
experiments. We measured sperm in two separate genetic knockouts of Sex Peptide
(SP) and ovulin (Acp26Aa), and we disrupted AG function to see if processes controlled
by the AG broadly play any role in spermatogenesis within the testis. SP knockout males
had slightly but significantly shorter sperm, by 33.81 um in the A325 x A130 cross (X? =
6.25, df = 1, P = 0.012; Fig 5a) but not in the reciprocal cross (A130 x A325; X? = 0.93,
df =1, P=0.334; Fig 5b). Acp26Aa knockout males also had slightly but significantly
shorter sperm than control males, by 72.91 um (X? = 9.89, df = 1, P = 0.0017; Fig 5c).
However, any possible role of Sfps in spermatogenesis seems to be restricted to
expression in testis, since knockout of AG function did not significantly alter sperm
length (Fs111 = 1.38; P = 0.254; Fig 5d). Thus, while Sfp expression in testis may
influence spermatogenesis, it is unlikely that AG secretions play any role in sperm length
variation.

10
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286  Figure 5. Sfp knockout in testis but not in AG may impact sperm length. Sperm are
287  shorter in SP knockout males when knockout and deficiency lines are crossed in one
288  direction (A; P =0.019) but not the other (B; P = 0.334). Acp26Aa knockout males also
289  have shorter sperm (C; P = 0.00075), but any role of Sfps is limited to processes in the
290 testis, because AG knockout did not change sperm length (D; P = 0.169). AG size was
291  scored from O (underdeveloped and non-functional) to 3 (fully developed).

292

293  Long sperm males induce a stronger PMR

294  In D. melanogaster, Sfps are known to induce the female post-mating response (PMR),
295 a syndrome of behavioral and physiological responses that occur after mating and

296 include increased ovulation and oviposition, decreased receptivity to remating, and

297  facilitation of sperm storage and release for fertilization (35). We wanted to know if

298 increased expression of Sfps in testes producing longer sperm corresponded to higher
299  Sfp expression in AG and thus an enhanced ability to induce the PMR. We mated wild
300 type females first to males with long or short sperm and measured their latency to

301 remate with a standard competitor male. Latency to remate was quantified as the time in
302 days for half the females to remate (RT50). Long and short sperm males came from a
303 genetically independent lineage from the RNAseq sample stocks. Males derived from a
304 total of four recombinant inbred lines (RILs) with known sperm lengths from the

305 Drosophila Synthetic Population Resource (48): two replicate RILs with long sperm and
306 two RILs with short sperm. In order to assess relative fithess associated with induction of
307 the PMR, we counted the number of progeny produced prior to remating (“prior

11
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progeny”). Because longer sperm can have an advantage in sperm competition(12, 20),
we also scored paternity in progeny produced after remating, defined as P2: the
proportion of progeny sired by the second (standard competitor) male.

Females mated to long sperm males took 47% longer to remate on average (0.75 days)
than females mated to short sperm males. Average RT50 for mates of long sperm males
was 2.35 days, compared to 1.4 days for mates of short sperm males (RIL 22059: 2.2
days, 22096: 2.5 days, 22097: 1.8 days, 22125: 1.4 days; Fig 6a). However, this delay in
female remating was not enough to result in more prior progeny (X? = 0.404, df =1, P =
0.525). Long sperm also did not provide an advantage in sperm competition, because
there was no difference in paternity success between long sperm and short sperm males
(z=-0.218, P=0.828).
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323  Figure 6. Long sperm males delayed female remating but did not have an associated
324  increase in fitness. (A) Females mated to long sperm males delayed remating relative to
325 mates of short sperm males, but (B) this did not translate into more prior progeny (P =
326 0.525). (C) Long sperm males also did not have higher paternity success against a

327  standard competitor male (P = 0.828). Long sperm RILs are in yellow, short sperm in
328  Dblue.

329
330
331 Discussion

332 In this study, we set out to find candidate genes that may control natural variation in

333  sperm length in healthy males exhibiting a typical range of phenotypic variation. Our DE
334  genes were enriched for IncRNAs and Sfps, and sperm length in SP and ovulin

335  knockouts was slightly but significantly shorter than wild type controls. We ruled out the
336  possibility that the Sfp effect was due to cross-communication from AG-expressed Sfps
337 by showing that sperm length was not affected by knocking out AG function. Next, we
338 asked if higher expression of Sfps in long sperm testis was also associated with higher
339  expression of Sfps in AG. We assayed males with known sperm lengths from a

340 genetically independent synthetic population for their ability to induce the female post-
341  mating response. We found that long sperm males delay female remating for longer than
342  short sperm males, but this delay did not yield significant advantages in the number of
343  prior progeny or paternity success. Thus, we have found that male reproductive success
344  is mediated by coordination of two distinct tissues in the male reproductive tract that

345  each contribute different and essential components of the ejaculate. However, despite
346  abundant evidence for the importance of both Sfps and sperm length in post-copulatory
347  sexual selection, the fithess advantages of such coordination within a competitive

348  context are not clear. It is possible that although the fithess advantage is undetectable in
349  our dataset under lab conditions, it could be enough to significantly impact the

350 evolutionary trajectory of a large wild population. Selection on the amount of Sfps

351 transferred may be weak if a threshold amount is sufficient to induce the female PMR.
352  As aresult, natural variation in Sfp transfer appears to cause differences in female

353  remating latency but not at a level that will affect fecundity and paternity success.

354 In D. melanogaster, 176 Sfps have been confirmed that are produced in the male
355  reproductive tract and transferred to females (44). They are a diverse set of proteins,
356 including small signaling peptides, proteases, protease inhibitors, lectins, anti-oxidants,
357 odorant-binding proteins, and large pro-hormones (35, 44, 49). Some of these molecules
358 enter the female reproductive tract in a physiologically inert state and become activated
359 upon proteolytic cleavage (50-53). After mating, Sfps induce changes in female
360 physiology, behavior, gene expression, and morphology, including increased oviposition,
361  sperm storage, feeding, and reduced receptivity to remating (35, 49, reviewed in 54-57).
362 These changes can occur over the course of hours or days and are collectively referred
363  to as the post-mating response (PMR). Sfps are also subject to sexually antagonistic
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coevolution, such that females that mate more die faster (58), especially when not
allowed to coevolve with males under polyandry (59). Some Sfps have been shown to
contribute to competitive fertilization success (60, 61), and like other reproductive
proteins, tend to evolve rapidly (37, 40, 62—-64). Although historically attributed to
positive selection, recent analysis that incorporates intraspecific polymorphisms has
found that this rapid evolution may not always be adaptive in nature but rather a
consequence of relaxed selection associated with the evolution of sex-biased expression
(65, 66). In any case, rapid evolution of Sfps means that they are often not conserved
across more distantly related species. It remains to be seen whether upregulation of
Sfps is a consistent hallmark of longer sperm in other species and whether it is
dependent on species-specific sperm lengths. It is possible that developmental
regulation of intraspecific variation in sperm length depends on whether sperm length is
2 mmor 2cm.

We selected SP and ovulin for further investigation, because they are among the best-
studied Sfps in Drosophila. SP is a small 36-aa peptide that binds to sperm tails in the
SR and is slowly released over several days, mediating the decline of female receptivity
that characterizes the long-term PMR (67). In testis, SP expression is highest in
spermatocytes and cyst cells (33), so they may be important for downstream processes,
but SP localization in testis is unknown. One question that arises from our results is
whether SP binds to sperm during spermatogenesis in addition to binding after
ejaculation in the female reproductive tract (67, 68). It is also possible that longer sperm
can bind more SP, which could affect the PMR, but both of these factors remain to be
demonstrated. More recently, SP was shown to be required for assembly and
disassembly of lipid-rich microcarriers that mediate transfer of seminal fluid components
in the ejaculate (68). Exosomes in mouse testis are transporters of non-coding RNAs
that are required for sperm maturation (69) and normal embryonic development (70), but
the function of testis-based exosomes in Drosophila spermatogenesis is unknown.
Ovulin is a large 264 aa pro-hormone (71) that is cleaved in the female reproductive tract
into two products that, along with SP and other Sfps, stimulate oviposition as part of the
short-term PMR (72). It is possible that ovulin undergoes testis-specific cleavage to
serve a different function in that tissue. It is upregulated by over five-fold in late-stage
spermatids (33), suggesting it is important during spermatid elongation. Future research
should focus on localizing SP, ovulin, and other Sfps in the testis as well as conducting
additional genetic manipulation experiments to further elucidate the roles Sfps play in
spermatogenesis.

Among our DE genes, over half are induced in AG, including nearly one third of known
Sfps. These genes are typically expressed primarily or exclusively in the male
reproductive tract with the highest and next-highest expression levels in the AG and
testis, respectively. We know of no other examples of such closely coordinated gene
expression between two tissues, and it is unclear why this coordination has evolved or
how it is accomplished mechanistically. Though both tissues are part of the male

14


https://doi.org/10.1101/2021.11.15.468624
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468624; this version posted November 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444
445

available under aCC-BY-NC-ND 4.0 International license.

reproductive tract, testis and AG are morphologically, physiologically, and
developmentally distinct. AG is epithelial in origin and arises during metamorphosis from
the male genital primordium of the genital disc (73), while testes (and ovaries) develop
during embryogenesis from mesodermal cells that differentiate into somatic gonadal
precursors and then gonads (74). In the testis, gene expression is regulated at different
spermatogenic stages by shifting suites of transcriptional regulators including testis-
specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors
(tTAF), which prevent meiosis until terminal differentiation genes have sufficiently
accumulated in spermatocytes (75). In AG, HR39 (76), dve (77), and prd (78) are each
required for Sfp expression and male fertility. They are all also expressed in the testis,
and dve is upregulated 5-fold in late spermatid cysts (33). HR39 knockout also
decreases expression of genes in the testis (76), pointing to one potential mechanism for
testis-AG coordination. It is not out of the question that there can be gene network
interactions among different tissues of the reproductive tract (e.g., 79), but the fact that
AG ablation doesn’t affect sperm length suggests that in this case, coordination is
accomplished by other means. Characterization of regulatory mechanisms for Sfps
compared to truly AG- or testis-specific genes may yield additional insights.

LncRNAs comprised 25% of our DE genes, and though less well-annotated than the
Sfps, they may be just as important in regulating sperm length. LncRNAs generally
regulate gene expression in many different tissues via diverse mechanisms (80). Many
IncRNAs are testis-specific, expressed in all stages and cell types (81), and are
differentially expressed in association with male fertility (82). In Drosophila testis, most
IncRNAs with stage-biased expression are upregulated post-meiotically during
elongation, suggesting they play a significant role in sperm morphogenesis and
maturation (83). Indeed, functional characterization of a testis-specific INcRNA in
Drosophila resulted in significant defects during late spermatogenesis (84). Another
knockout screen found fertility defects in 31% of testis-specific IncRNAs examined (85),
including three DE genes in our dataset (CR43633, CR44344, and CR44371). Next
steps should characterize mechanisms of the male subfertility phenotype for these
genes to better understand their roles in spermatid elongation and maturation.

Reproduction is already a complicated affair, and knowing that sperm length is
associated with Sfp expression adds another layer of complexity. Competitive
reproductive success is a function of male traits, female traits, and their interactions over
the course of the reproductive process from mating to fertilization. During mating, sperm
and seminal fluids mingle in the female’s bursa (68) and enter the SR, where sperm
physically displace resident sperm from previous matings back into the bursa (86, 87).
Displacement continues until the female ejects excess sperm from the bursa, and the
timing of this ejection influences the proportion of second-male sperm remaining in the
SR for fertilizations (87, 88). Several hours after ejection, females begin to ovulate,
sperm are released from the SR according to a fair raffle (86), and eggs are fertilized in
the bursa. Sfps are known to influence several aspects of this process, and
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displacement is also a function of SR length and the difference in sperm lengths
between the two males (12). Sperm length and SR length are positively genetically
correlated, as are SR length and remating rate (22). Here, we showed that long sperm
are associated with a delay in female remating, but these two traits are not genetically
correlated (22). Delayed female ejection is also associated with long sperm (12),
suggesting that Sfps may influence the timing of ejection as well, which would further
amplify competitive fertilization success for long sperm males.

All these coordinated advantages of sperm length, Sfps, delayed remating, and delayed
ejection suggest that long sperm males should have an ultra advantage in sperm
competition, but this does not seem to be the case. In this study, long sperm males did
not sire more progeny either before remating (prior progeny) or after remating (paternity
success). Male competitive fertilization success is non-transitive, such that one male is
never successful against all other males when mating with all other females. Rather,
male (and female) success is a function of many interacting factors, including sperm
length, SR length, sperm numbers, female size, and Sfps (12, 89). In other words, the
fithess value conferred by a phenotype depends largely on other interacting phenotypes,
and these direct and indirect genetic effects have implications for the direction and rate
of phenotypic evolution (90). The end result is that selection on sperm length in D.
melanogaster is not simply directional (or stabilizing). This context-dependent selection
complicates the fitness landscape and makes it less predictable, while also likely
maintaining high rates of sperm length variation within populations.

The genetic covariance of sperm and seminal fluid components of the ejaculate is not
necessarily surprising. After all, quantitative genetic theory predicts that functional and
developmental integration of traits will lead to their genetic integration, which in turn
leads to evolutionary integration (91). Sperm and Sfps are arguably not developmentally
integrated, based on our inability to generate a sperm length phenotype after knockdown
of AG function. However, sperm and Sfps are certainly functionally integrated, given that
Sfps are required for normal sperm function (92). Recently, genetic covariance has also
been found in D. bipectinata between male sex combs (which help grasp the female
during mating) and Sfp expression, leading to enhanced competitive fertilization success
for males with larger sex combs (93). This coordination of Sfps with a non-genitalic
copulatory trait suggests that evolutionary integration could be expected for an even
wider range of sexually selected traits. Indeed, such evolutionary integration between a
male ornament and female preference is required for Fisherian runaway selection (but
see 94, 95) and has been found for trait-preference/perception systems in Drosophila
(22, 96, 97), cricket (98), dung beetle (99), and medaka (100). The molecular
mechanisms and evolutionary consequences for integration of sexually selected traits
are not well-understood (101), but the Drosophila ejaculate and female reproductive tract
can be used as a well-characterized model system in which to further explore these
questions. Moreover, because the testis is a hotspot for de novo gene evolution (41),
this system can also be harnessed to test hypotheses about how pleiotropy evolves over
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the course of a new gene’s developmental trajectory. One question asks whether newer
genes are less likely to be functionally integrated with AG and whether older sex-biased
genes have evolved specificity of expression in non-testis tissues. Answers to these
questions will inform our understanding of the evolution of novelty and complexity in the
context of sexual selection.

Materials and Methods

RNAseq libraries and analysis

We used inbred isolines derived from two D. melanogaster populations that had been
previously selected for long or short sperm (20, described in 24). Briefly, the original
populations underwent 17 generations of selection for sperm length, followed by
approximately 300 generations of random mating. They were then inbred through 10
generations of full-sibling mating, resulting in a panel of isolines with short or long sperm.
To confirm the differences in sperm length for each isoline, approximately five sperm
from at least four males (range 4—8 sperm, average: 5.56 sperm) were measured (see
24). We selected two isolines with long sperm (H08, H20) and two with short sperm
(LO8, L17) and maintained breeding vials at 23°C with a 12:12 light:dark cycle on sugar-
yeast-agar diet in vials with approximately 1.5 cm® medium supplemented with live
yeast.

We collected three replicate samples of 200 testes (from 100 males) from each
isoline for a total of 12 samples. We collected males within 24 hours of eclosion and
aged them 4 to 6 days in food vials with live yeast, at densities of up to 20 males per
vial. We dissected testes under ether anesthesia with fine Dumont tweezers (Ted Pella
cat. no. 505) into a droplet of sterile Grace’s physiological insect medium. We washed
testes in fresh medium, transferred them to 200 pl of Trizol and froze them at -80°C until
RNA extraction. We isolated total RNA using a low sample volume Trizol-chloroform
extraction (protocol from 102) and quantified RNA using an Agilent Bioanalyzer 2000.
We omitted two low quality samples and all but one of the remaining 10 samples had
RIN > 7.0. Total RNA was sent to the Huntsman Cancer Institute at the University of
Utah, which prepared lllumina TruSeq Stranded mRNA libraries with PolyA selection and
rRNA depletion. Libraries were pooled and sequenced on an lllumina HiSeq 2000 (PE,
100bp).

We trimmed adaptors and removed low quality reads using TRIMMOMATIC
v0.39 (103). We mapped reads to the D. melanogaster genome (BDGP6.28) using
HISAT2 v2.2.0 (104) with default settings. We counted the number of reads that uniquely
mapped to annotated genes (Ensembl release 100) using FEATURECOUNTS v1.4.4
(105). We analyzed gene expression using BIOCONDUCTOR v3.0 package edgeR
v3.30.3 (106) in R v4.0.1 We normalized our data using the scaling factor method and
restricted our analysis to genes with a minimum expression of FPKM > 1 in at least four
samples. For all analyses, we tested alternative normalization methods (weighted
trimmed mean of M-values) and found qualitatively similar results. We fit our data with a
negative binomial generalized linear model with Cox-Reid tagwise dispersion estimates
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(107). To evaluate differential expression, we used likelihood ratio tests, dropping one
coefficient from the design matrix and comparing that to the full model. For all of our
results we used a p-value adjusted for a false discovery rate (FDR) of 5% (108).

We quantified tissue specificity using RNAseq tissue expression data from
FlyBase (gene_rpkm_report_fb_2020_04.tsv) for fourteen tissues (see Supplementary
File 1). We defined a gene as testis-induced if its expression was greater than twice its
median expression in other tissues. We estimated tissue specificity (1) following the
recommendations of Liao and Zhang (109). The 1 value ranges from 0 to 1 with higher
values indicative of expression restricted to one or a few tissues (109—-111). We used the
PANTHER Gene Ontology (GO) resource (112) to perform an over-enrichment test on
all 317 differentially expressed (DE) genes between long and short sperm. Specifically,
we performed a Fisher’s exact test with FDR correction, comparing our gene list with a
D. melanogaster reference set from the PANTHER database (113, 114).

Testis size and sperm length

We tested the relationship between sperm and testis length in a wild type population of
D. melanogaster (LHm; 115). This stock was reared on sugar-yeast-agar medium
sprinkled with live yeast at room temperature (~23°C) with ambient light. We collected
45 newly eclosed virgin males and aged them for 3-5 days in same-sex vials at densities
of up to 20 per vial. We anesthetized males with ether and isolated sperm from one
testis and mounted the other testis for measurement. To obtain sperm, we dissected
seminal vesicles into a large droplet of 1X phosphate-buffered saline (PBS) on a glass
slide and ruptured the tissue to release motile sperm. We dried the droplet down at 50-
60 °C and fixed the sperm in 3:1 methanol:acetic acid, mounted in glycerol, and sealed
the coverslip with nail polish. We visualized sperm on a Nikon Ni-U upright light
microscope at 100X or 200X magnification under darkfield, captured images with an
Andor Zyla 4.2 camera, and measured sperm length using the segmented line tool in
ImageJ (https://imagej.nih.goV/ij/), adjusting for scale at different magnifications. We
measured 1-7 sperm per male, with an average of 4. These sample sizes are standard
(e.g., 24, 32) and sufficient to capture variation among males (Fig S$5). To measure
testis size, we dissected a testis with attached seminal vesicle using fine forceps in 1X
PBS and transferred the tissue to 40 pl of PBS, mounted under a cover slip, imaged
immediately at 100X under phase contrast, and measured using the segmented line tool
in ImagedJ. We assessed the relationship between testis length and sperm length using
both linear regression (Im) and nonlinear least squares regression (nls) in R v3.4.3.

Sfps and sperm length

All stocks and crosses were maintained for at least two prior generations on sugar-
yeast-agar medium sprinkled with live yeast at 23 °C with 12:12 light:dark cycle. We
generated SP null mutant males by crossing the SP knockout line A325/TM3, Sb, ry with
an SP deficiency line, A130/TM3, Sb, ry (116), in both directions (A325 female x A130
male; A7130 female x A325 male). Experimental knockout males were identified by wild
type Sb+ phenotype, while control siblings were Sb. To knock out ovulin, we crossed the
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mutant stock Acp26Aa1 (117) with a chromosomal deficiency mutant missing a 140 kb
region on chromosome 2L that includes Acp26Aa (“Df(2L)Exel6014”; Bloomington
Drosophila Stock Center #7500; , 118). This knockout cross was also set up in both
directions, but only Acp26Aa (female) x Df(2L)Exel6014 (male) yielded enough progeny.
Experimental knockout Cy+ males were compared with control Cy siblings. Both the SP
and ovulin knockout crossing schemes allow us to examine the knockout phenotype
while minimizing associated genetic effects that may have accumulated within the
individual lines.

The AG knockout was achieved by inducing strong endoplasmic reticulum stress
within the AG, inhibiting maturation and full AG function (119). This was done by driving
UAS-mediated expression of the misfolded protein associated with allele Rh1G69D
(120) with the AG-specific prd-GAL4 driver (78). The ensuing unfolded protein response
(UPR) resulted in AGs that were small, underdeveloped, and empty. Progeny included
knockout siblings (Cy+, Sb+) and control siblings expressing either TM3 balancer (Sb;
prd-GAL4; Bloomington Drosophila Stock Center #1947) or CyO (Cy, UAS-Rh1G69D).
Because not all knockout siblings had nonfunctional AGs, we examined the relationship
of sperm length with AG phenotype directly, rather than with Sb+ or Cy+ phenotypes.
AG phenotype was scored on a scale from 0 (underdeveloped and non-functional) to 3
(fully developed and wild type).

For all knockouts, adult males were collected from two replicate vials (A and B)
within 24 hours of eclosion, aged 5-7 days, and sperm were collected, prepared, and
measured as described above. Numbers of sperm measured per male varied from 1 to
13, with an average of 6.8 to 7.7 sperm per male. All stocks were generously provided
by Dr. Mariana Wolfner, including Rh1G69D with permission from Dr. Hyung Dong Roo.

All statistical analyses were performed in R v3.6.3. Depending on the dataset,
outliers below 1000 or 1300 um and above 2000 or 2300 um were presumed to be
broken sperm or human error and removed, resulting in omission of 1 to 34
measurements per dataset. SP and ovulin knockout data were analyzed using linear
mixed-model regression (Imer in the package Ime4) fitted by restricted maximum
likelihood (REML). The model consisted of treatment (knockout or control) as a fixed
effect, and replicate vial and male as random effects nested within treatment (model:
sperm length ~ treatment + (1 | male : replicate : treatment)). Significance was estimated
using a Type Il Wald chi square test implemented with Anova in the car package. AG
knockout data were analyzed using simple ANOVA of sperm length across AG sizes
using aov.

Sperm length and the post-mating response

Wild type females were from an M3 wild type stock collected from Silver Spring,
Maryland by one of the authors (MKM) in 2018. Long and short sperm males came from
a total of four recombinant inbred lines (RILs) with known sperm lengths from the
Drosophila Synthetic Population Resource (48): two replicate RILs with long sperm (RIL
ID no. 22059, 22096) and two RILs with short sperm (ID no. 22097, 22125) that were
originally phenotyped as part of another study in 2019. The standard competitor male
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derived from a Canton-S stock with a protamine-GFP construct that is expressed in
sperm heads as well as an external GFP eye marker for scoring paternity (32). All stocks
new to the lab were reared for at least two prior generations on yeast-sugar-agar
medium at 23 °C sprinkled with live yeast at moderate densities.

We remeasured sperm lengths in the RILs to verify their phenotype, by
dissecting and preparing sperm samples as described above, measuring 5 sperm per
male for 3 males per RIL. Sperm length distributions for long and short lines remained
non-overlapping, with long lines averaging 1933 + 19.7 ym and 1874 + 13.0 ym, and
short lines averaging 1555 + 90.4 ym and 1555 + 15.2 ym. Average sperm length for
the standard competitor Canton-S GFP stock was 1854 + 23.4 ym, and average SR
length of the M3 stock was 2515 + 47.2 um (Fig S6).

To assess remating latency, M3 virgin females (aged 3-4 days post-eclosion)
were aspirated (without anesthesia) into individual food vials supplemented with live
yeast and left overnight to acclimate. The next morning, a single male from one of the
four RILs (aged 3 days) was aspirated into each female vial. If copulation occurred, the
male was removed and discarded, and a standard competitor male (aged 2-6 days) was
introduced into the vial (Vial 1). Females were provided with a daily four-hour opportunity
to mate and remate over four consecutive days. We noted the time of male introduction,
as well as start and end times of first and second copulations. When females remated,
the second male was discarded, and females were transferred to a fresh food vial (Vial
2), where they laid eggs for seven days. Progeny were scored for paternity from Vial 2,
and prior progeny were counted from Vial 1. The experiment ended when at least 50%
of females mated to each RIL remated. Remating rate for each RIL was quantified as the
time in days until 50% of females remated (“RT50”). Imaged was used to precisely
measure RT50 for each RIL from its cumulative remating curve.

We used mixed model regression to test for an effect of sperm length on the
number of prior progeny using linear mixed-model regression (Imer in the package Ime4)
fitted by restricted maximum likelihood (REML). The model consisted of sperm length
(long or short) as a fixed effect and two random effects: replicate RIL nested within
treatment and number of days to remate (model: prior progeny ~ sperm length + (1 |
days to remate) + (1 | sperm length : RIL)). Significance was estimated using a Type I
Wald chi square test implemented with Anova in the car package.

Paternity scoring with the Canton-S GFP stock was complicated by partial loss of
the transgene, along with weak or lost GFP eye signal. To work around this challenge,
we limited paternity scoring to sons and examined GFP-protamine expression in testes.
If at least one son expressed GFP-protamine, we scored paternity in all sons from that
female. This approach allowed us to score paternity for 13 to 21 families in each RIL
treatment. To test for differences in P2 (proportion of progeny sired by the second male),
we used logistic regression with a logit link function and binomial error distribution (after
ensuring no overdispersion in the data), implemented using gim in R v3.6.3.

Stocks used in all experiments are listed in Table S3.
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658 The data reported in this paper are available through the National Center for
659  Biotechnology Information Sequence Read Archive under accession number XXXXXXX
660 and on Dryad under access number XXXXXX.
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IncRNAs. Bars indicate the number of DE genes in each category, with colors indicating
subcategories of genes.
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Figure 4. Gene ontology (GO) categories and enrichment. This bubble plot shows
the top 12 GO term results from PANTHER enrichment analysis of the 317 selected DE
genes. Terms are arranged in descending order by fold enrichment, and bubble size
indicates the number of genes enriched for that category.
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Figure 5. Sfp knockout in testis but not in AG may impact sperm length. Sperm are
shorter in SP knockout males when knockout and deficiency lines are crossed in one
direction (A; P = 0.019) but not the other (B; P = 0.334). Acp26Aa knockout males also
have shorter sperm (C; P = 0.00075), but any role of Sfps is limited to processes in the
testis, because AG knockout did not change sperm length (D; P = 0.169). AG size was
scored from O (underdeveloped and non-functional) to 3 (fully developed).
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Figure 6. Long sperm males delayed female remating but did not have an associated
increase in fitness. (A) Females mated to long sperm males delayed remating relative to
mates of short sperm males, but (B) this did not translate into more prior progeny (P =
0.525). (C) Long sperm males also did not have higher paternity success against a
standard competitor male (P = 0.828). Long sperm RILs are in yellow, short sperm in
blue.
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Supplemental Files

Supplementary File 1. Summary of DE genes between short and long sperm
producing testis. This summary file (.csv) contains each gene’s FlyBase ID, Gene
name, Chromosome, Gene type (i.e., protein coding, ncRNA etc), logFC between short
and long sperm producing testes, and FDR corrected p-value. It also contains a
summary of expression in typical D. melanogaster using data from FlyBase, including
the tissue specificity index (tsi), whether the gene was expressed in typical D.
melanogaster testes, expressed in short sperm, long sperm, induced or had the highest
expression in typical D. melanogaster testes, male accessory glands, what type of
ncRNA and whether the gene is a characterized Sfp.
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1045 Figure S1. Clustering of gene expression profiles. Multidimensional scaling plots
1046  (MDS) of the Euclidean distance among gene expression profiles. Distance

1047  approximates the typical log2 fold changes between samples for the 500 genes with the
1048  greatest expression differences among treatments. Samples from short sperm testes are
1049  blue triangles and samples from long sperm testes are orange circles. There was

1050 moderate variation among samples (biological coefficient of variation = 0.417), which is
1051  overall consistent with other whole-tissue gene expression profiles (47).
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Figure S2. Normalized expression for A) all expressed genes and B) DE genes in
short and long sperm producing testes. These violin plots show the probability of
density of expression values with wider portions indicating a greater number of genes
with that expression value. The boxplots at the center of each violin plot are the median
expression and quartiles. We tested for differences in median expression between short
and long sperm producing testes using a Wilcoxon Rank Sum test with FDR corrected p-
values.
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1062
1063  Fig. S3. AG-expressed genes are expressed to varying degrees within and across

1064  samples, suggesting DE of Sfps is not due to contamination. Heat map showing
1065  gene expression across long (N = 6) and short (N = 4) sperm samples for Sfps that are
1066  DE and non-DE as well as genes thought to be AG-specific.
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1069 Figure S4. Sperm length is not correlated with testis length. For 45 wild type males,
1070  sperm length and testis length are not significantly correlated (P = 0.1164), suggesting
1071  that differential gene expression is not also a function of testis size.
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1075  Figure S5. Distribution of sperm lengths within and among a subset of wild type males
1076  used to examine relationship between sperm length and testis length.
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1080 Fig. S6. Sperm lengths for long sperm (22059, 22096) and short sperm DSPR RILs
1081 (22097, 22125), standard males (GFP), and SR lengths for standard females (M3).
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Table S1. Summary of RNAseq libraries for Drosophila with short or long sperm
producing testes. There were two replicate inbred isofemale lines for each sperm type:
short (LO8, L17) and long (HO8, H20). Age indicates the days post-eclosion when males

were dissected for RNA extraction.

Sperm length Sample Male Age RIN Raw Reads Mapped Reads
Short LO8_A 6 days 8.2 51,529,690 41,383,983
L08 B 6 days 8.0 55,011,804 39,047,004

L17_B 4-6 days 8.0 48,480,536 38,547,711

L17_C 5-6 days 7.6 64,392,800 44,188,295

Long HO8 A 5-6 days 7.7 68,174,383 51,032,772
HO08_B 5-6 days 7.3 58,918,527 41,370,628

HO08_C 5-6 days 6.3 64,118,639 49,661,976

H20_A 5-6 days 7.9 55,229,124 37,227,203

H20_B 6 days 8.3 56,032,571 45,009,281

H20_C 6 days 8.3 51369699 39182439

Total 573,257,773 426,651,292
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1093

1094

1095

1096 Table S2. Summary of expression by chromosome. Genes that are expressed have
1097 an FPKM > 1 in a minimum of 4 samples. Genes that are induced in the testes (testis-
1098 induced) or accessory glands (AG-induced) had expression in that tissue that was higher
1099 than median expression in other tissues, based RNAseq tissue expression data from

=a

1100  FlyBase. Arrows represent genes in each category that have positive (&) or negative
1101 (&9) logFC in comparisons between short and long sperm producing testes. Positive
1102  logFC indicates higher expression in long sperm producing testes.

1103
Expressed DE Testis-induced  AG-induced
Chr (3 o a 1] a o a 1]
| | | | | | | | | |
2L 969 1,172 33 81 18 59 15 52
2R 1005 1,176 39 43 15 29 8 23
3L 971 1,154 39 41 25 32 14 26
3R 1,315 1,297 12 17 10 15 5 14
4 12 45 0 0 0 0 0 0
X 960 662 5 6 3 2 3 2
Y 11 17 1 0 0 0 0 0
1104
1105
1106
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1107 Table S3. Stocks used in this study.
Stock(s) Experiment Provided by Reference
| LO8, L17, HO8, H20 | Testis | Co-author Manier | Zajitschek et al. (2019)
transcriptomes
A130/TM3, Sb, ry SP knockout Mariana Wolfner  Liu & Kubli (2003)
A325/TM3, Sb, ry SP knockout Mariana Wolfner  Liu & Kubli (2003)
Acp26Aat Acp26Aa knockout  Mariana Wolfner  Herndon & Wolfner (1995)
Df(2L)Exel6014 Acp26Aa knockout  Mariana Wolfner  Parks et al. (2004)
prd-GAL4 AG knockout Mariana Wolfner  Xue & Noll (2002)
UAS-Rh1G69D AG knockout Mariana Wolfner  Ryoo et al. (2007)
LHm Testis size and Co-author Manier Rice et al. (2002)
sperm length
22059, 22096, PMR Stuart King et al. (2012)
22097, 22125 MacDonald
M3 PMR Co-author Manier This study
Canton-S GFP PMR Geoff Findlay Chebbo et al. 2020
1108
1109
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