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2 
 

Abstract 37 

 38 

Comprehensive integration of structural and functional connectivity data is required for 39 

the accurate modeling of brain functions. While resources for studying structural 40 

connectivity of non-human primate brains already exist, their integration with functional 41 

connectivity data has remained unavailable. Here we present a comprehensive resource 42 

that integrates the largest awake non-human primate resting-state fMRI available to date 43 

(39 marmoset monkeys, 710 runs, 12117 mins) with previously published cellular-level 44 

neuronal tracing (52 marmoset monkeys, 143 injections), and multi-resolution diffusion 45 

MRI datasets. The combination of these data allowed us to: (1) map the fine-detailed 46 

functional brain networks and cortical parcellations; (2) develop a deep-learning-based 47 

parcellation generator that preserves the topographical organization of functional 48 

connectivity and reflect individual variabilities, and (3) investigate the structural basis 49 

underlying functional connectivity by computational modeling. This resource will enable 50 

modeling structure-function relationships and facilitate future comparative and 51 

translational studies of primate brains. 52 

 53 

 54 

 55 

Keywords: Resting-state fMRI, non-human primates, functional brain parcellation, 56 

computational model, neuronal tracing 57 
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Mapping brain architecture is critical for decoding brain functions and understanding the 59 

mechanisms of brain diseases 1. Non-human primate (NHP) neuroimaging provides a 60 

granular view of the evolution of the brain 2 and could overcome constraints of human 61 

neuroimaging by integration with "ground truth" data from cellular-resolution tracing 3.  62 

 63 

As one of the few non-invasive imaging techniques capable of mapping whole-brain 64 

functional activity patterns, resting-state fMRI (rs-fMRI) provides insights into large-scale 65 

functional architecture 4. However, data-sharing initiatives of NHP neuroimaging are still 66 

at an early stage, with existing open datasets of rs-fMRI data originating in different 67 

laboratories and collected for different purposes 5. This leads to inconsistent imaging 68 

protocols and data quality, which hinder analyses across datasets. In addition, most 69 

presently available rs-fMRI datasets have been acquired in anesthetized animals, 70 

resulting in difficulties for cross-species studies, particularly relative to awake human 71 

brains 6. The final barrier is the practical difficulty of training large numbers of NHPs to be 72 

fully awake during MRI scans 7, 8. Given that, a platform for international collaborative 73 

research (PRIMatE RESOURCE EXCHANGE) was initiated to promote open resource 74 

exchange and standards for NHP neuroimaging 5, 9. 75 

 76 

The common marmoset monkey (Callithrix jacchus) has drawn considerable interest as 77 

an NHP species, offering many practical advantages for neuroscience research, including 78 

neuroimaging 10, 11, 12. Previous work from our groups has contributed ultra-high-resolution 79 

ex-vivo diffusion MRI data 13, mesoscale neural tracing data 14, and structural atlases 15, 80 
16, 17, which have enabled an unprecedented level of precision in analyses of NHP brain 81 

anatomy. However, an essential component for understanding brain architecture has 82 

been missing: integrating these anatomical datasets with rs-fMRI. To address this 83 

limitation, and in alignment with a strategic plan developed by the NHP imaging 84 

community 8, we developed standardized awake imaging protocols for NHP marmoset 85 

monkeys, which were adopted across two institutions, the National Institutes of Health 86 

(NIH), USA, and the Institute of Neuroscience (ION), China. This resulted in the largest 87 

awake NHP rs-fMRI dataset to date, which is being made available through an open-88 

access platform. Furthermore, we integrated neuronal-tracing and different diffusion MRI 89 
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datasets into the same MRI space, resulting in the comprehensive resource which allows 90 

us to explore the relationships between the structural and functional connectomes by 91 

computational modeling. 92 

 93 

Results 94 

 95 

The resource reported in this paper (summary in Fig. 1) is underpinned by a publicly 96 

available standardized dataset. Following the same protocols for animal training and MRI 97 

imaging, including the designs of the radiofrequency coil and MRI pulse sequences, we 98 

acquired an extensive awake resting-state fMRI dataset to date from 39 marmosets of 99 

two research institutes (13 from ION, age 3+/-1 years old; 26 from NIH, age 4+/-2 years 100 

old; 12117 mins in total scanning, Supplementary Table 1 for details). This is also the 101 

same range of ages used in our previous studies of structural connectivity 13, 14. For test-102 

retest evaluation, we scanned multiple runs (17 mins/run)  for each marmoset, resulting 103 

in an essentially similar data quantity of two institutes (346 ION runs and 364 NIH runs) 104 

and included two "flagship" marmosets with many runs (64 runs from the ION and 40 runs 105 

from the NIH). Besides similar quantity, we also calculated comprehensive quality 106 

measurements (tSNR, CNR, and head motions) to demonstrate the consistency of the 107 

data quality from two sites, enabling interpretability across datasets (Supplementary Fig. 108 

S1-S3).  109 

 110 

Based on these datasets, we created a comprehensive mapping of resting-state brain 111 

networks and a fine-grained cortical parcellation based on resting-state functional 112 

connectivity. Furthermore, we developed a deep-learning-based approach to map the 113 

functional cortical parcellation onto individual brains accurately. This allowed investigation 114 

of the structural basis underlying functional connectivity. For this purpose, we sampled 115 

the most extensive collection of NHP neuronal tracing data available (52 marmosets and 116 

143 injections) onto the same MRI space at the voxel or vertex level and integrated it with 117 

the same functional MRI data space mentioned above. In addition, further enhancing the 118 

capacity of our resource, we also integrated extra high-resolution ex-vivo diffusion MRI 119 
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and in-vivo diffusion MRI data obtained at 25 marmosets from the same cohort. On this 120 

basis, we investigated the relationship between structural and functional connectivity 121 

using a whole-brain computational model.  122 

 123 

 124 

 125 
Figure 1. Outline of Marmoset Brain Mapping Resource. This resource provides the 126 

largest available awake test-retest resting-state fMRI data, in-vivo diffusion MRI data from 127 

the same marmoset cohorts, and the most extensive neuronal tracing data mapped onto 128 

the same MRI space at the voxel/vertex level. In addition to the datasets, it also contains 129 

developed large-scale parcellation of whole-brain functional networks and population-130 
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based cortical parcellation (Marmoset Brain Mapping Atlas Version 4) with a deep neural 131 

network for accurate individual mapping. Finally, as the comprehensive multi-modal 132 

resource for marmoset brain research, we provide whole-brain computational modeling 133 

to investigate the relationship between structural and functional connectivity. 134 

 135 

Mapping functional brain networks 136 

 137 

Identifying functional networks of areas showing highly correlated fMRI signals is a key 138 

to characterizing the brain architecture. Using the independent component analysis (ICA), 139 

a data-driven approach for separating independent patterns in multivariate data, we 140 

identified 18 distinct functional networks from awake resting-state fMRI data, including 3 141 

subcortical and 15 cortical networks (Fig. 2 and Supplementary Fig. S4). The subcortical 142 

networks included the thalamus, the striatum, and the cerebellum (Supplementary Fig. 143 

S4 P-S). All identified components showed clear neural-like patterns spatially (all peaks 144 

located in the cortical or subcortical gray matter) and temporally (no patterns of artifacts 145 

or noises), as shown in Supplementary Fig. S5. 146 

 147 

The details of the 15 cortical networks were as follows. Six functional networks were 148 

characterized by the short-range connectivity, including the ventral somatomotor (Fig. 2A), 149 

the dorsal somatomotor (Fig. 2B), the premotor (Fig. 2C), the frontopolar (Fig. 2D), the 150 

orbitofrontal (Fig. 2E), and the parahippocampal/ temporopolar cortex (Fig. 2F). Two 151 

components are the auditory and salience-related networks, the first being primarily 152 

located in the auditory and insular cortices and weakly coupled with the anterior cingulate 153 

cortex (Fig. 2G), and the second (Fig. 2H) encompassing the anterior cingulate cortex. In 154 

addition, we also identified two trans-modal networks (Fig. 2I-J), including association 155 

areas in the dorsolateral prefrontal cortex (dlPFC), rostral premotor cortex, lateral and 156 

medial parietal cortices, and temporal cortex. According to a previous study 18, one is 157 

most likely the frontoparietal-like network (Fig. 2I), and the other is the default mode 158 

network (DMN, Fig. 2J). Importantly, the putative frontoparietal-like network has not been 159 

recognized in previous studies 19, 20; The remaining five networks represent the first 160 

complete mapping of visual-related functional networks of the marmoset cortex (Fig. 2K-161 
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O). Three networks included the primary visual cortex and parts of extrastriate areas 162 

related to far peripheral vision (Fig. 2K), near-peripheral vision (Fig. 2L), and the foveal 163 

vision (Fig. 2M). The other two networks involve hierarchically higher visual areas (Fig. 164 

2N-O), such as V3, V4, the inferior temporal cortex, the adjacent polysensory temporal 165 

cortex, and visual-related frontal regions. 166 

 167 

Based on their spatial overlap patterns and connectivity strengths (normalized Z-scores), 168 

we combined the 15 cortical networks into network-parcellation maps (Fig. 2P-Q). Due to 169 

local connectivity being stronger than long-range connectivity, the primary map (Fig. 2P-170 

Q, top rows) is dominated by the short-range networks (i.e., Fig. 2G, I, J, K, L, I, and O). 171 

Thus, we created the second one (Fig. 2P-Q, bottom rows) to cover the long-range 172 

connectivity that was not captured by the primary map. The two network-parcellation 173 

maps characterized the entire cortical networks and will likely be of great value for future 174 

functional connectivity studies of the marmoset brain. 175 

 176 

 177 

 178 

 179 
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Figure 2. Identified cortical functional networks and their parcellation maps. The 180 

networks include (A) the ventral somatomotor, (B) the dorsal somatomotor, (C) the 181 

premotor, (D) the frontal pole, (E) the orbital frontal cortex, (F) the parahippocampus and 182 

temporal pole, (G-H) the auditory and salience-related network, (I-J) two trans-modal 183 

networks, which are most likely related to the frontoparietal network and the default-184 

mode-network, and (K-O) the visual-related networks from the primary visual cortex to 185 

functional higher-level regions. These networks were combined to form two network-186 

parcellation maps (P-Q), which are dominated by the networks with short-range 187 

connectivity (P-Q, top rows) and with long-range connectivity (P-Q, bottom rows), 188 

respectively. 189 

 190 

Mapping functional connectivity boundaries 191 

 192 

The brain network maps provided a global view of cortical functional organization. Our 193 

next aim was to characterize the cortex at a finer local scale. Here, we used the functional 194 

connectivity boundary mapping approach to identify putative borders of functional parcels 195 
21, 22, 23, which represent an efficient way to map transitions in functional connectivity. 196 

 197 

Population boundary maps based on the ION, the NIH, or combined datasets are visually 198 

similar, presenting clear functional connectivity borders (Fig. 3A), and were highly 199 

reproducible with average Dice's coefficients for both hemispheres: 0.7 (ION-NIH), 0.71 200 

(ION-Both), and 0.69 (NIH-Both), respectively (see Supplementary Fig. S6). However, 201 

although consistent at the population level, boundary maps indicate variability across 202 

individuals (Fig. 3B), with an average Dice's coefficient of 0.3842 for both hemispheres 203 

(Fig. 3C-D), significantly lower than the population (the value of 0.7). We also found high 204 

across-session variability in the same individual, but more scanning runs efficiently 205 

enhanced the reproducibility (Fig. 3E). Therefore, the results suggest that both individual 206 

and across-session variability contribute to the low consistency of individual boundary 207 

maps, and the test-retest data are essential for improving the reliability of maps.  208 

 209 

 210 
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 211 
Figure 3. The functional connectivity boundary maps. (A). The population-based 212 

boundary maps from the ION, the NIH, and the combined datasets. These maps are 213 

highly consistent, with the average Dice's coefficient of 0.7. (B). Boundary maps in the 214 

left hemisphere from four exemplar marmosets (two from the NIH cohort and two from 215 

the ION, including the flagship marmosets). (C-D). The heatmap of the average Dice's 216 

coefficients for both hemispheres between individuals and its distribution histogram. (E). 217 

The change of the average Dice's coefficients for both hemispheres with the number of 218 

runs in the same individuals.  219 

 220 

 221 

  222 
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Generation of functional connectivity parcels (Marmoset Brain Mapping Atlas 223 

Version 4, MBMv4)  224 

 225 

Because the population boundary maps are more reproducible than individual maps, we 226 

used the combined ION-NIH population boundary map to generate cortical functional 227 

connectivity parcels. By the detection of the local-minima 21, "watershed-flood" region 228 

growing 24, and semi-manual optimization of parcel boundaries (Fig. 4A), we obtained 96 229 

parcels per hemisphere (Fig. 4B). Since we processed each hemisphere independently, 230 

we compared the similarity of the parcellations of the two hemispheres. The 231 

hemispherical parcellations are similar in the parcel sizes (Supplementary Fig. S7-A; 232 

Wilcoxon paired signed-rank test, N=96, p=0.7981) and functional connectivity patterns 233 

between vertices within the same parcel (Supplementary Fig. S7-B; Wilcoxon paired 234 

signed-rank test, N=96, p=0.411). This left-right symmetry corroborates the reliability of 235 

our parcel generation. For continuity with previously released resources 13, 15, 16, we 236 

named this functional connectivity-based parcellation of the cortex "Marmoset Brain 237 

Mapping Atlas Version 4" (MBMv4).  238 

 239 

To estimate the validity of the generated functional parcels, we used the distance-240 

controlled boundary coefficient (DCBC) 25. The basic idea of DCBC is that when a 241 

boundary divides two functionally homogenous regions, for any equal distance on the 242 

cortical surface, the functional connectivity pattern between vertices within the same 243 

parcel should be higher than that between vertices in different parcels (Fig. 4C). In other 244 

words, a higher DCBC (within - between) means higher within-parcel homogeneity and 245 

higher between-parcel heterogeneity. We calculated the DCBC between the vertex pairs 246 

using a range of spatial bins (0–4 mm) with a 0.5 mm step (the spatial resolution of the 247 

rs-fMRI data). Here, we compared the fit of the functional map represented by MBMv4 248 

with existing structural cortical parcellations, including MBMv1 atlas 15, the digital 249 

reconstruction of the Paxinos atlas 15, 26, and the RIKEN atlas 27. The result of DCBC in 250 

Fig. 4C demonstrates that MBMv4 has the best performance for the presentation of 251 

functional connectivity (the average DCBC values were 0.0186, 0.0135, 0.0177, 0.0330 252 
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for RIKEN, MBMv1, Paxinos, and MBMv4 atlas; multiple comparisons for One-Way 253 

ANOVA F(3,8556)=22.44, p=1.81x10-14). 254 

 255 

 256 
Figure 4. Marmoset Brain Mapping Atlas Version 4 (MBMv4). (A) The processing 257 

procedure includes generating the population functional connectivity boundary maps, 258 

defining the local minima for seeding, and generating parcels by the "watershed" 259 

algorithm. (B) The resulting 96 functional connectivity parcels per hemisphere overlaid on 260 

the white matter surface and flat map of MBMv3 16. (C) The evaluation metric of distance-261 

controlled boundary coefficient (DCBC). According to parcellations (Right panel: MBMv1, 262 
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MBMv4, Paxinos, and RIKEN atlas), all pairs of voxels/vertices were categorized into 263 

"within" or "between" parcels (left panel), and the DCBC metric was calculated by the 264 

differences (within-between) in functional connectivity as the function of distance on the 265 

surface (0-4 mm in steps of 0.5 mm). Data are presented in mean +/- s.e.m. 266 

 267 

Mapping MBMv4 in Individual Brains by Deep Neural Networks 268 

 269 

To overcome the limitation of variable individual boundary maps (see Fig. 3C-E), we 270 

employed a deep-learning approach for the individual mapping from MBMv4 (Fig. 5A). 271 

First, based on the population-level whole-brain functional connectivity, we trained a deep 272 

neural network classifier for each parcel to learn the associated fingerprint of functional 273 

connectivity. Then, the trained networks distinguished the goal parcel for every marmoset 274 

based on the corresponding functional connectivity of the searching area, consisting of 275 

the goal parcel and its neighbors. Due to the overlap of searching areas, vertices could 276 

belong to multiple parcels. Therefore, we only kept these vertices attributed to a single 277 

parcel as the seeds for the regional growing by the "watershed" algorithm. This iterative 278 

region-growing procedure would assign all vertices to a parcel, resulting in an individual 279 

cortical parcellation. 280 

 281 

Since individual parcellations should be reasonably close to the population definition 28, 282 
29, we compared the population-based MBMv4 parcellation and the automatically 283 

generated individual parcellations. By calculating the percentage of vertices sharing the 284 

same labels from both hemispheres (the metric of concordance), we found that the 285 

individual parcellations from all marmosets are similar to MBMv4 with an average of 90% 286 

concordance (Fig. 5B, the violin/box plot on the left, the examples on the right). Using the 287 

test-retest dataset, we revealed the consistency of the individual parcellations across 288 

different sessions (Fig. 5C, the violin/box plot on the left, and examples on the right). The 289 

across-session analysis yielded an average of 86.7% concordance, lower than the 290 

average value of 91.3% across-individual similarities. Furthermore, we observed that the 291 

lateral prefrontal cortex and occipital-temporal cortex had higher across-individual and 292 

across-session mapping variabilities (Supplementary Fig. S8), consistent with previous 293 
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findings in human studies 21, 30. Thus, the deep-learning approach efficiently adjusts the 294 

parcel borders to reflect the individual variabilities while maintaining high consistency with 295 

the population parcellation. 296 

 297 

 298 

 299 

Figure 5. Mapping individual functional connectivity parcellation. (A) An overview of 300 

individual mapping based on the deep neural network approach. (B) MBMv4 Mapping of 301 

each individual. Left panel: the concordance between the population MBMv4 and 302 
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individual parcellations. Data are presented by the violin and the box plots (25th percentile 303 

and 75 percentile), in which the white point represents the average value; Right panel: 304 

three examples of individual parcellations. The underlay (color-coded) presents the 305 

population MBMv4, and the overlay (black border) shows the individual parcellations. (C) 306 

Mapping of MBMv4 per session. Left panel: The concordance between every individual 307 

parcellation and the corresponding parcellation using one session data; Right panel: 308 

representative parcellations of three sessions from one marmoset. The color-coded 309 

underlay represents individual parcellation, while the black border overlay shows the 310 

session-based parcellation. (D) The distance-controlled boundary coefficient (DCBC) for 311 

the individual parcellation generated by the spatial registration (Spatial-reg, blue) and the 312 

deep neural network (DNN-reg, red). Top panel: the functional connectivity for all pairs of 313 

vertices within the same parcel and between parcels for DNN-reg and Spatial-reg, 314 

respectively. Bottom panel: the comparison of DNN-reg and Spatial-reg by DCBC. Data 315 

are presented in mean +/- s.e.m.  316 

 317 

 318 

We also used the DCBC to evaluate whether the border adjustment of the individual 319 

parcellation captured the specific features of individuals' functional connectivity patterns. 320 

We assumed that the deep learning-based method (DNN-reg) should result in a higher 321 

DCBC than the direct spatial registration of MBMv4 (Spatial-reg). Figure 5D (Top panel) 322 

presents the functional connectivity for the pairs of vertices within the same parcel 323 

(average correlation values within the same surface length 0-4 mm were 0.8331 and 324 

0.8172 for DNN-reg and Spatial-reg) and between different parcels (average correlation 325 

values were 0.8256 and 0.8171 for DNN-reg and Spatial-reg). Thus, the DNN-reg had 326 

higher DCBC (within-between) than the Spatial-reg (Fig. 5D, bottom panel; the average 327 

DCBC values were 0.0167 and 0.0085 for the DNN-reg and the Spatial-reg, respectively; 328 

multiple comparisons for One-Way ANOVA F(1,2512)=20.35, p=6.74×10-6). In sum, the 329 

border adjustment by the proposed deep learning network reflects individual functional 330 

connectivity patterns. 331 

 332 
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MBMv4 reflects accurate functional and topographical organizations 333 

 334 

As evaluated from functional connectivity, MBMv4 provides a more accurate reflection of 335 

the MRI-based functional parcellation of the cortex than current histology-based atlases. 336 

To further verify this reliability, we took a task activation map during the presentation of 337 

movie 31, in which the visual field encompassed by the movie covered 10 deg × 8 deg. 338 

This activation map was then registered onto the same individual MBMv4 map and the 339 

histology-based Paxinos et al. (2012) atlas to examine the spatial overlap between the 340 

activations and functional parcels. As a result, we found that the MBMv4 has a good 341 

correspondence with task activations by visual inspection, such as the co-activation of 342 

foveal V1, MT, and temporal parcels (Fig. 6A, flat maps). Additionally, by measuring the 343 

shortest distances from every vertex in the boundary of the activation map to the atlas 344 

boundaries (MBMv4 or Paxinos boundaries), we found that the parcel borders of MBMv4 345 

have higher consistency with the activation map than the Paxinos atlas (Fig. 6A, the 346 

scatterplots; Wilcoxon paired signed-rank test: Monkey ID 25, N=878, p=3.07×10-40 for 347 

the left hemisphere; N=816, p=6.11×10-26 for the right hemisphere. Monkey ID 15, N=826, 348 

p=2.22×10-25 for the left hemisphere; N=850, p=2.95×10-53 for the right hemisphere). Thus, 349 

MBMv4 reflects functional differences that cytoarchitectonics does not capture, possibly 350 

because the latter contains the full visual field representations. The MBMv4 provides 351 

functional localizers that can help enhance the precision of cross-species studies 32. 352 

 353 

 354 
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 355 
Figure 6. MBMv4 matches functional boundaries and preserves the topographical 356 

organization of the functional connectivity. (A) The visual activation maps from two 357 

monkeys are overlaid on the parcel boundaries from individual MBMv4 parcellation and 358 

Paxinos atlas (Left panel: monkey ID 15; Right panel: monkey ID 25). The scatter plots 359 

compare the boundary matching of the MBMv4 and the Paxinos atlas with the activation 360 

maps, measured by the shortest distance from every voxel in the borders of the activation 361 

maps to the parcel borders of the MBMv4 or the Paxinos atlas. The dashed black line 362 

represents the diagonal line, and the red line represents the linear fitting line. (B) The 363 

scatter plots in the left panel are the first two axes of gradients (the color scale of dots 364 

represents the scores of the first axis for every gradient), decomposed by the functional 365 

connectivities of the MBMv4 and the Paxinos atlas (the spectrum colors denote the 366 

gradient position in this 2D space). The heatmaps of functional connectivities sorted by 367 

the scores of the first axis (gradient 1) are shown in the right panel. 368 

 369 

 370 
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Besides the clear functional boundaries, MBMv4 also preserved the topographical 371 

organization of the functional connectivity. Recent methodological developments have 372 

allowed complex brain features to be mapped to the low-dimensional representations as 373 

gradients 33, and these gradients characterized the topographical organization of the 374 

functional brain connectome from unimodal to trans-modal networks. If the atlas complies 375 

with this topographical organization, it should be able to identify such gradients. As shown 376 

in Fig. 6B left panel, MBMv4 results in a pattern of gradient spectrum for functional 377 

connectivity. In contrast, we did not find a gradient pattern based on the Paxinos et al. 378 

(2012) atlas (right panel in Fig. 6B). Therefore, MBMv4 offers an alternative view to 379 

understanding the functional connectome of the marmoset brain by reflecting the 380 

characteristics of functional connectivity. 381 

 382 

MBMv4 is an essential link between the functional and structural connectivity 383 

 384 

Since MBMv4 offers a more accurate scheme to study the functional connectome, it is 385 

worth linking it to structural information to investigate relationships between structural and 386 

functional connectivity. To accomplish this, we used a whole-brain computational model 387 
34, 35, 36. The processing procedure is shown in Fig. 7A. We established the structural 388 

connectivity based on MBMv4 and the Paxinos et al. (2012) atlas, using either the in-vivo 389 

diffusion MRI or ex-vivo ultra-high-resolution diffusion MRI or neuronal tracing dataset. 390 

After simulating the neurodynamics of every functional parcel or brain region based on 391 

the structural connectivities, we obtained the whole-brain functional connectivity to 392 

compare with the empirical functional connectivity from the actual resting-state fMRI data. 393 

We used Pearson's correlation to measure the similarity between the simulated and the 394 

empirical functional connectivity. Additionally, we also used group-average functional 395 

connectivity as an empirical observation for the ex-vivo diffusion MRI and neuronal tracing 396 

dataset, and individual functional connectivity for the individual in-vivo diffusion MRI.  397 

 398 
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 399 
Figure 7. A computational framework links the structural-functional connectivity 400 

according to different parcellation. (A) The application of the whole-brain modeling, 401 

including the estimation of structural connectivity from the neuronal tracing or different 402 

types of diffusion MRI (in-vivo or ex-vivo) according to the Paxinos atlas or MBMv4, the 403 

simulation of functional connectivity from structural connectivity by the Hopf bifurcation 404 

neurodynamical functions, and the similarity measure with empirical connectivity from 405 

resting-state fMRI. (B) The comparison of the fitting effect based on Paxinos atlas and 406 

MBMv4 in different spatial scales. The round dot represents an example from individual 407 

in-vivo diffusion MRI, the polygon is from ex-vivo diffusion MRI, the star is from neuronal 408 

tracing, and the solid red line represents the diagonal line. (C) The estimated structural 409 
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connectivity labeling in (B) according to the Paxinos atlas or MBMv4. (D) The simulated 410 

functional connectivity from structural connectivity (C) and their empirical functional 411 

connectivity from actual data. (E). The correlation between the simulated and empirical 412 

functional connectivity from (D), Solid black lines represent marginal regression lines. 413 

 414 

The modeling results suggest that accurate estimation of structural connectivity is 415 

essential for the simulation of functional connectivity. The extra high-resolution ex-vivo 416 

diffusion MRI with the most detailed description of structural information (the polygon in 417 

Fig. 7B and results in Fig. 7C-E) resulted in the highest similarity for MBMv4 (R=0.721) 418 

and the Paxinos atlas (R=0.638). On the other hand, due to the relatively low resolution 419 

of in-vivo diffusion MRI and individual differences, in-vivo diffusion MRI resulted in a 420 

considerable variety of simulations (all circles in Fig. 6B: the average fitting values from 421 

25 animals were 0.4707 for MBMv4, and 0.3659 for Paxinos atlas, see an example with 422 

the best performance is in Fig. 7C-E). Based on the cellular connectivity from the 423 

aggregated neuronal tracing, we obtained a neutral performance with the correlation of 424 

0.525 for MBMv4 and 0.472 for Paxinos atlas (the star in Fig. 7B and results in Fig. 7C-425 

E). However, no matter which data was used for structural connectivity estimation, we 426 

always found that the modeling predicted by MBMv4 fits the empirical functional data 427 

better than the Paxinos atlas (summary in Fig. 7B; Wilcoxon paired signed-rank test: 428 

N=27, p=0.002947). Since the accuracy of the diffusion tractography may be influenced 429 

by the lengths of tracts, based on our modeling, we can reversely evaluate the structural 430 

reliability for each type of data in different connectional distances using the MBMv4. The 431 

results of modeling fitting are consistent with the prediction that the distance affects the 432 

accuracy of diffusion tractography, with low structural-functional fitting correlations for 433 

long-range connections (Supplementary Fig. S9A-C). On the contrary, the neuronal 434 

tracing data are more reliable and robust in connectivity modeling against distance 435 

(Supplementary Fig. S9D). In summary, MBMv4 preserves a crucial bridge for examining 436 

the structural and functional connectivity discrepancy. 437 

 438 
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Discussion 439 

 440 

There are many challenges in trying to adapt well-established approaches for human 441 

neuroimaging to NHP neuroimaging 5. The present study used effective and practical 442 

animal training and imaging protocols to scan a large cohort of marmosets. Despite the 443 

different scanners in two institutes (7T and 9.4T), the protocol produced similar data 444 

quality, suggesting the compatibility of our approach (see method for details, the 445 

Supplementary Fig. S1-S3). Given that, we pooled in-vivo resting-state fMRI dataset from 446 

two institutes (details in the Supplementary Table S1) to create the most comprehensive 447 

functional connectivity dataset of the NHP brain to date, which was integrated with the in-448 

vivo diffusion MRI of the same cohort, as well as the highest resolution ex-vivo diffusion 449 

MRI 13 and the most extensive mesoscale retrograde neuronal tracing 14 available. This 450 

resource expedites the mapping of marmoset brains and will allow cross-species 451 

comparisons. 452 

 453 

Like humans, the marmoset cerebral cortex is composed of large-scale functional 454 

networks. However, the first awake resting-state fMRI study of the marmosets 19 found 455 

only 12 functional networks (10 cortical networks), and another ICA-based study 456 

described 8 brain networks, possibly due to the influence of anesthesia 20. Based on the 457 

most extensive awake rs-fMRI data to date, the present study mapped the large-scale 458 

functional networks and built the first network-based parcellation, providing a more 459 

comprehensive description of functional networks in the marmoset brain, including a total 460 

of 18 networks (15 cortical networks and 3 subcortical networks in Fig. 2 and the 461 

Supplementary Fig. S4-S5). Moreover, based on functional connectivity boundary maps, 462 

we also created a population-based cortical parcellation in a fine-scale (MBMv4; Fig. 4) 463 

with a total of 192 distinct parcels (96 per hemisphere). A previous study of the human 464 

cerebral cortex identified 422 discrete functional connectivity parcels using the same 465 

approach, 206 in the left hemisphere and 216 in the right hemisphere 21. Therefore, our 466 

results align with the evidence that the number of subdivisions of the cortex increases 467 

with brain volume37. Thus, MBMv4 will be a helpful reference for cross-species 468 

comparison.  469 
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 470 

It is also emphasized that our functional parcels do not correspond to the traditional 471 

cytoarchitectonic definition of the cortical areas 38, 39. Consistent with many brain 472 

parcellations by non-invasive neuroimaging 21, 28, 40, 41, 42, our defined area-level functional 473 

parcels most likely reflect a different type of computational sub-units, agreeing with the 474 

idea that the brain is organized in multiple scales 43, 44. Therefore, compared with available 475 

structural atlases, MBMv4 captures the organization of functional connectivity accurately. 476 

For example, MBMv4 achieved better task correspondence (Fig. 6A), due to a strong link 477 

between task-fMRI and rs-fMRI 45, 46, 47. Another evidence is the topographical gradient 478 

organization of functional connectivity (Fig. 6B). Last is better modeling simulation linking 479 

with its structural connectivity (Fig. 7).  480 

 481 

Consistent with the previous findings in humans 21, 28, 42, the parcels defined in MBMv4 do 482 

not follow the boundaries of cytoarchitectonic areas, thus demonstrating an important 483 

difference between anatomical features and functional connectivity. For example, the 484 

somatomotor cortex is parcellated into subregions that appear to correspond to 485 

representations of the facial, forelimb, and trunk musculatures across multiple areas, and 486 

areas such as V1 and V2 are subdivided into several functional parcels according to the 487 

representation of eccentricity in visual field representation, which is contiguous across 488 

areas 48, but may include discontinuities 49. Previous studies also revealed that some 489 

topographically organized cytoarchitectonic areas could be dissociated from the resting-490 

state functional responses 50, 51. Thus, the present MBMv4 should be considered a 491 

functional connectivity description, providing complementary information about the 492 

organization that cannot be observed via anatomy. 493 

 494 

An essential goal of this study was to reflect individual characteristics by creating parcels 495 

from each individual subject’s data. Although the boundary map-derived parcels could be 496 

used for individual analysis, we found that the subject boundary maps had significant 497 

variations and that the reproducibility becomes lower than the group-level map (Fig. 3). 498 

This finding emphasizes the need to acquire large amounts of data for the reliable test-499 

retest of the individual boundary map. Given that, we developed a deep neural network 500 
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to map reliable population-level MBMv4 into every individual nonlinearly. As a result, we 501 

demonstrated good reliability in the test-retest dataset (across sessions from the same 502 

individual; see Fig. 5C) and the applications of task-fMRI activation mapping from the 503 

same individuals (Fig. 6A). Importantly, the locations of the most variable functional 504 

parcels are in the lateral prefrontal cortex and lateral temporal-occipital cortex (see 505 

Supplementary Fig. S8), corresponding to previously reported with exceptionally high 506 

inter-subject variability resting-state functional connectivities patterns 30. Moreover, these 507 

regions co-locate with which expanded preferentially in primate evolution (Chaplin et al., 508 

2013) and matured later in postnatal development 52. As the resting-state functional 509 

connectivities can be altered by many biological features, including development and 510 

associated with phenotypic correlations, a better understanding of the causes of inter-511 

subject parcel variation will be our future work. 512 

 513 

In addition to the functional connectome mapping, we integrated all currently available 514 

structural connectome datasets, including the in-vivo diffusion MRI, the ex-vivo high-515 

resolution diffusion MRI 13, and mesoscale tracing dataset 14. This allowed us to 516 

investigate the relationship between functional and structural connectivity with 517 

unprecedented detail. Using whole-brain modeling 35, 36, we observed the simulated 518 

functional connectivity from the structural connectivity based on MBMv4 had a high 519 

coherence with empirical data, no matter which types of structural connectivity were used 520 

(Fig. 7B and examples Fig. 7C-E). The finding corroborates the conclusion that MBMv4 521 

reflects meaningful computational sub-units from the view of whole-brain functional 522 

connectivity. Meanwhile, we also found room for modeling performance improvement by 523 

the detailed estimation of structural connectivity. For example, the ultra-high-resolution 524 

ex-vivo diffusion MRI data from a brain sample provides the most thorough structural 525 

information. Therefore, it has the best fitting results no matter which parcellation we use. 526 

Furthermore, since our modeling is simple with only two parameters that avoid overfitting 527 

simulation, the whole-brain model could be an efficient tool with broad applications to link 528 

structure and function for future studies. 529 

 530 
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Although we provided the most comprehensive multi-modal data resource for mapping 531 

the marmoset connectome, our current study still faced several limitations. First, the 532 

population used to generate the MBMv4 was sex-biased (31 males v.s. 8 females) due 533 

to the priority of colony expansion worldwide. Second, the neuronal tracing data were 534 

limited, not covering all cortical regions and missing subcortical information. Because 535 

neuronal tracing data revealed directional anatomical connections, which unidirectional 536 

diffusion tractography cannot capture, the intactness of the neuronal tracing data is critical 537 

for an accurate mapping of the future structural connectome. Third, although the resource 538 

provided the most state-of-art awake resting-state fMRI, the 0.5mm isotropic resolution 539 

may not fully capture the functional-connectivity patterns of the small marmoset brain, 540 

because of MRI technical limitations. Fourth, as robust surface reconstruction tools were 541 

not available for marmoset brains, we did not perform analysis on individual surfaces. 542 

Pooling all data onto the population-based surface may cause loss of the information 543 

about individual variability on brain morphology and reduce the accuracy of individual 544 

functional connectivity calculation and evaluation (for example, the DCBC index). Thus, 545 

automatic surface reconstruction is highly demanding for marmoset neuroimage studies. 546 

Fifth, our parcellation only used the resting-state functional connectivity information, as in 547 

many human studies21, 28, 40. However, more advanced approaches incorporated 548 

structural contrasts, especially the T1w/T2w myelin map and multiple task-fMRI data for 549 

multi-modal brain parcellation. Thus, combining more image modalities to improve the 550 

parcellation of the marmoset brain becomes essential in the future. Finally, although we 551 

adopted the well-established approach from human studies, our multi-modal data and 552 

analyzing atlas tools have the potential to accelerate the evolution of NHP neuroimaging 553 

research significantly. 554 

 555 

Methods 556 

 557 

Data Collection and Preprocessing 558 

 559 

Animals and MRI scanning 560 
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 561 

Experimental procedures followed policies established by the Chinese Laboratory Animal 562 

– Guideline for Ethical Review of Animal Welfare (ION data) or the US Public Health 563 

Service Policy on Humane Care and Use of Laboratory Animals (NIH data). All 564 

procedures were approved by the Animal Care and Use Committee (ACUC) of the 565 

Institute of Neuroscience, Chinese Academy of Sciences (ION data) or the ACUC of the 566 

National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH 567 

data). The respective ACUC-approved protocols specify group size numbers based on a 568 

power analysis to detect differences between animals, to ensure rigor and reproducibility 569 

of the results while minimizing the number of animals used in the study. Our studies are 570 

powered to detect inter-individual differences. The experimental designs are typically 2 or 571 

3-factor ANOVAs. Values of p<0.05 are considered statistically significant. The numbers 572 

of animals used is the minimum necessary to provide reliable estimates of inter-individual 573 

effects based on power considerations. Typically, sample size estimates are based on 574 

the number of animals needed to achieve a power of 0.80 for moderate effect size and 575 

0.99 for large effect size. To ensure the psychosocial well-being of the animals, both 576 

marmoset colonies are socially housed and are offered a varied diet that includes food 577 

treats. Dedicated husbandry and veterinary teams interact with the animals daily, as part 578 

of the psychological enrichment plans approved by the ACUCs of both institutions. 579 

 580 

 581 

The data acquisition procedure from both centers followed the same animal training 582 

protocol, 8-element radiofrequency (RF) coil design 53, and MRI scanning protocols. 583 

Thirteen marmosets (12 males and 1 female) were recruited from the ION cohort, from 584 

which we generated 62 awake resting fMRI sessions and 349 runs (17 min per run). As 585 

three of the 349 runs had extensive head motions (> 10% time points were motion 586 

censored based on the preprocessed pipeline described below), we excluded the three 587 

runs from the analysis, resulting in a total of 346 runs (see Supplementary Table S2 for 588 

the summary of the head-motion per run). Twenty-six marmosets (19 males and 7 589 

females) were recruited from the NIH cohort to produce 51 awake resting-state fMRI 590 

sessions and 364 runs. Therefore, the NIH data and ION data had a comparable number 591 
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of valid runs. The two datasets included 39 marmosets with 113 sessions, 710 valid fMRI 592 

runs, and 12117 mins total scan time. The detailed demographic information is provided 593 

in Supplementary Table 1. All marmosets underwent a 3-to-4 week acclimatization 594 

protocol as previously described 54. After completing the training, all marmosets were 595 

properly acclimated to laying in the sphinx position in an MRI-compatible cradle. Their 596 

heads were comfortably restrained with 3D-printed anatomically conforming helmets that 597 

allowed the resting-state fMRI (rs-fMRI) data acquisition as the animals lay relaxed in 598 

their natural resting position.  599 

 600 

All 39 marmosets were imaged using identical rs-fMRI protocols and pulse sequences, 601 

except for a minor adjustment in the echo time (TE) made to accommodate hardware 602 

differences between the ION and the NIH gradient sets. The ION marmosets were 603 

scanned in a 9.4T/30cm horizontal MRI scanner (Bruker, Billerica, USA) equipped with a 604 

20 cm gradient set capable of 300 mT/m gradient strength. The scanner was fitted with a 605 

154 mm ID quadrature RF coil used for signal excitation and an 8-channel phased-array 606 

RF coil 53 custom-built for marmosets (Fine Instrument Technology, Brazil). Multiple runs 607 

of rs-fMRI data were collected in ParaVision 6.0.1 software using a 2D gradient-echo (GE) 608 

EPI sequence with the following parameters: TR = 2 s, TE = 18 ms, flip angle = 70.4°, 609 

FOV = 28 × 36 mm, matrix size = 56 × 72, 38 axial slices, slice thickness = 0.5 mm, 512 610 

volumes (17 min) per run. The GE-EPI fMRI data were collected using two opposite 611 

phase-encoding directions (LR and RL) to compensate for EPI distortions and signal 612 

dropouts. Two sets of spin-echo EPI with opposite phase-encoding directions (LR and 613 

RL) were also collected for EPI-distortion correction (TR = 3000 ms, TE = 37.69 ms, flip 614 

angle = 90°, FOV = 28 × 36 mm, matrix size = 56 × 72, 38 axial slices, slice thickness = 0.5 615 

mm, 8 volumes for each set). After each rs-fMRI session, a T2-weighted structural image 616 

(TR = 8000 ms, TE = 10 ms, flip angle = 90°, FOV = 28 × 36 mm, matrix size = 112 × 144, 617 

38 axial slices, slice thickness = 0.5 mm) was scanned for co-registration purposes. 618 

 619 

The NIH marmosets were scanned in a 7T/30cm horizontal MRI (Bruker, Billerica, USA) 620 

equipped with a 15 cm customized gradient set capable of 450 mT/m gradient strength 621 

(Resonance Research Inc., Billerica, USA). The scanner was fitted with a 110 mm ID 622 
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linear RF coil used for signal excitation and an 8-channel phased-array RF coil custom-623 

built for marmosets 53. During each scanning session, multiple runs of rs-fMRI data were 624 

collected in ParaVision 6.0.1. software using a 2D gradient-echo (GE) EPI sequence with 625 

the following parameters: TR = 2s, TE = 22.2 ms, flip angle = 70.4°, FOV = 28 × 36 mm, 626 

matrix size = 56 × 72, 38 axial slices, slice thickness = 0.5 mm, 512 volumes (17 min) per 627 

run. The GE-EPI fMRI data were collected using two opposite phase-encoding directions 628 

(LR and RL) to compensate for EPI distortions and signal dropouts. Two sets of spin-629 

echo EPI with opposite phase-encoding directions (LR and RL) were also collected for 630 

EPI-distortion correction (TR = 3000 ms, TE = 36 ms, flip angle = 90°, FOV = 28 × 36 mm, 631 

matrix size  = 56 × 72, 38 axial slices, slice thickness = 0.5 mm, 8 volumes for each set). 632 

After each rs-fMRI session, a T2-weighted structural image (TR = 6000 ms, TE = 9 ms, flip 633 

angle = 90°, FOV = 28 × 36 mm, matrix size = 112 × 144, 38 axis slices, slice 634 

thickness = 0.5 mm) was scanned for co-registration purposes. Furthermore, multishell 635 

diffusion MRI (DTI) datasets were collected using a 2D diffusion-weighted spin-echo EPI 636 

sequence with the following parameters: TR = 5.1 s, TE = 38 ms, number of segments = 637 

88, FOV = 36 × 28 mm, matrix size = 72 × 56, slice thickness = 0.5 mm, a total of 400 638 

DWI images for two-phase encodings (blip-up and blip-down) and each has 3 b values (8 639 

b = 0, 64 b =2400, and 128 b = 4800), and the scanning duration was about 34 min. The 640 

multishell gradient sampling scheme was generated using the Q-shell sampling method 641 
55. 642 

 643 

Data Preprocessing 644 

  645 

The rs-fMRI datasets were preprocessed by the customized script involving AFNI 56, FSL 646 
57, ANTs 58, and Connectome Workbench 59. In brief, the rs-fMRI data were slice-timing-647 

corrected and motion-corrected by the "3dTshift" and "3dvolreg" commands of AFNI, and 648 

corrected for EPI distortions by the "top-up" command of FSL (see our examples in 649 

supplementary Fig. S10). The rs-fMRI datasets were further preprocessed by regressing 650 

linear and quadratic trends, demeaning, and censoring for motion using derivatives of 651 

motion parameters and motion-sensor regressors (any TRs and the previous TRs were 652 

censored if the detection motion was > 0.2 mm and temporal outlier > 0.1). Note that, for 653 
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the motion measurements, we calculated the weighted euclidean norm of six motion 654 

parameters with a 0.25 weight for the three rotation degrees (yaw, pitch, and roll), 655 

according to the relative head radius of the marmosets compared to humans. White 656 

matter and cerebrospinal fluid signal were removed, and the rs-fMRI datasets were band-657 

pass filtered (0.01–0.1 Hz). The above nuisance signal regression and band-passing 658 

filtering were carried out by the "3dDeconvolve" and "3dTproject" commands in AFNI. 659 

Next, the preprocessed data were spatially normalized to the template space of our 660 

Marmoset Brain Atlas Version-3 (MBMv3) by the "antsRegistration" routine of ANTs 16. 661 

The spatial normalization concatenated multiple transformations, including 1) rigid-body 662 

transformation of each fMRI run to the T2-weighted image acquired at the end of each 663 

session, 2) rigid-body transformation of T2-weighted images from each session to a 664 

cross-session averaged T2-weighted image from each animal, 3) affine and nonlinear 665 

transformation of the averaged T2-weighted image from each animal to the T2w template 666 

of our MBMv3 space. Finally, all preprocessed data were mapped to 3D brain surfaces 667 

of the MBMv3 using the Connectome Workbench (wb_command -volume-to-surface-668 

mapping function and ribbon constrained mapping algorithm), normalized (subtract mean 669 

and divide by standard deviation) and concatenated per session before the boundary 670 

mapping described below. The preprocessed data were smoothed with 1mm FWHM 671 

using 3dBlurInMask (for volume data) and wb_command -cifti-smoothing (for surface 672 

data), respectively, before the network analysis and cortical parcellation. 673 

 674 

The in-vivo diffusion MRI dataset was preprocessed by the DIFF_PREP, DR_BUDDI, and 675 

DR_TAMAS pipelines of TORTOISE 60. The DIFF_PREP and DR_BUDDI routines 676 

incorporated correction for eddy-currents- and EPI-induced distortions using pairs of 677 

diffusion data acquired with opposite phase encoding (blip-up and blip-down) and the T2-678 

weighted image and merging the preprocessed pairs into one dataset. The nonlinear 679 

spatial registration from the individual space to the DTI template of our MBMv3 space 16 680 

was carried out using the DR_TAMAS routine of TORTOISE. The registration information 681 

was then used to transform multiple atlases to the individual space for diffusion 682 

tractography.  683 

 684 
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All diffusion trackings were performed using the iFOD2 method of the software Mrtrix3 61. 685 

The response function of each preprocessed diffusion MRI data was calculated by the 686 

“dhollander” method of the “dwi2response” command, and then the fibre orientation 687 

distributions (FOD) were estimated using spherical deconvolution by the multi-shell multi-688 

tissue CSD method of the “dwi2fod” command. Finally, region-to-region tractography was 689 

performed using the iFOD2 method of the “tckgen” command. For each pair of cortical 690 

regions, diffusion tractography was conducted by using one region as the seed and the 691 

other as the target, and vice-versa. Thus, each pair of regions generated two sets of 692 

tracking probability maps, which were normalized by total streamlines selected, and the 693 

two probability maps were averaged into a single map to represent the final map of the 694 

connection of the two regions. Finally, all pairs of connections formed the whole cortical 695 

structural connectome for computational modeling.  696 

 697 

The neuronal tracing data were mapped onto the histological NM template from our 698 

previous study 17. The NM template is a population-based 3D cortical template generated 699 

from Nissl-stained serial sections of 20 marmosets. Since the NM template only covers 700 

the cortex and has Nissl-stain contrast and a 75µm isotropic high spatial resolution, its 701 

direct spatial transformation to our in-vivo MBMv3 template is inaccurate. Thus, we 702 

modified the 80µm isotropic ultra-high-resolution MTR template of our Marmoset Brain 703 

Atlas Version-2 (MBMv2) atlas 13 to remove the parts of the brain that were not covered 704 

in the NM template, including the cerebellum, brainstem, and parts of subcortical 705 

structures. This step increased the accuracy of registration between the NM template and 706 

the MBMv2 template. Then, the ex-vivo MTR template of the MBMv2 was transformed to 707 

the in-vivo myelin-map template of our MBMv3. By concatenating the two transformations 708 

(the NM-to-MBMv2 and the MBMv2-to-MBMv3), we accurately converted the neuronal 709 

tracing data from the NM template to the MRI template. We then mapped the neuronal 710 

tracing data onto the MBMv3 cortical surfaces. For the above registrations, we used the 711 

CC similarity metric as the cost functions and three-stage alignments (rigid alignment, 712 

affine alignment and non-linear SyN transformations), which were also the default options 713 

antsRegistrationSyN.sh. An example of registration results is shown in Supplementary 714 

Fig. S11. 715 
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 716 

Functional Networks, Cortical Parcellation and Network Modeling 717 

  718 

Brain network identification by the Group-ICA 719 

 720 

Independent Component Analysis (ICA) was performed by the Group-ICA routine of the 721 

GIFTI software (https://trendscenter.org/software/gift/) to identify the brain networks using 722 

a number of different component settings. First, preprocessed data without regression of 723 

nuisance covariates were group-ICA analyzed with increasing numbers of ICA 724 

components from 20 to 80 in steps of 10. We tested the reliability of different ICA methods, 725 

including the default "Infomax" ICA algorithm or "ICASSO" group-ICA method, on different 726 

datasets (the NIH dataset, the ION dataset, or combined both datasets) and obtained 727 

consistent results regardless of the ICA setting or dataset used. Finally, every resulting 728 

component from Group-ICA analyses was visually inspected and sorted according to its 729 

neuroanatomical features. Since the sorted elements were highly consistent across 730 

different settings of ICA-component numbers, we selected the best component to 731 

represent every labeled network. We identify 18 functional resting-state networks 732 

comprising of 15 cortical networks and 3 subcortical networks (Fig. 2A-O and 733 

Supplementary Fig. S4). 734 

 735 

We combined the 15 cortical networks according to their normalized Z scores from ICA 736 

to create a cortical-network parcellation. The details include 1) the combination of 737 

networks according to their spatial locations; 2) if they have spatial overlapping, we took 738 

the highest value according to their normalized Z scores from ICA; 3) short-range (local) 739 

connectivity is usually stronger than long-range connectivity, so the single map cannot 740 

cover long-range connectivity due to the spatial overlapping. Therefore, we created a 741 

second map to cover the components with long-range connectivity that are missed in the 742 

first map. We repeat the above step but only applied to networks with long-range 743 

connections (such as Fig. 2I-K) to obtain the second map. The primary map (Fig. 2P-Q, 744 

top rows) is mostly contributed by the short-range networks (i.e., Fig. 1G, L, I, and O) and 745 
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the second one (Fig. 2P-Q, bottom rows) is to cover the long-range connectivity that was 746 

not captured by the primary map.  747 

 748 

Boundary map generation 749 

 750 

Following similar procedures to the ones described previously in a human imaging study 751 
21, the boundary mapping of resting-state functional connectivity data was implemented 752 

in the Connectome Workbench and using customized Matlab codes (Mathworks, Natick, 753 

USA, Version 2019b; see the scripts in our open resource). First, the time course of every 754 

surface vertex for each brain hemisphere of each subject was correlated with every other 755 

surface vertex to make a correlation map. Then, a similarity map was created for every 756 

vertex by calculating pairwise spatial correlations between all correlation maps. Thirdly, 757 

the first spatial derivative was applied on the similarity map by the Connectome 758 

Workbench's function "cifti-gradient" to generate gradient maps for each brain 759 

hemisphere of each subject. Next, the gradient maps were averaged across subjects to 760 

produce the group gradient maps for each brain hemisphere. Lastly, the "watershed by 761 

flooding" algorithm was applied to identify boundaries in the gradient maps. 762 

 763 

Test-retest evaluation of the boundary map 764 

 765 

To compare the reliability of the boundary maps between the ION and the NIH datasets 766 

(Fig. 3A and Supplementary Fig. S6), between the individuals (Fig. 3C-E) and between 767 

runs from the same individual (Fig. 3E), we first thresholded two resulting boundary maps 768 

for each hemisphere to retain the cortical vertices most likely to be boundaries (i.e., 769 

retaining the top quartile of boundary values for a cumulative probability of 0.75) and 770 

assessed the overlap of the two thresholded boundaries by calculating the Dice's 771 

coefficient. The Dice similarity coefficient of two thresholded boundaries, A and B, is 772 

expressed as: 773 

 774 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴,𝐵𝐵) = 2 ∗ �
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴,𝐵𝐵)

|𝐴𝐴| + |𝐵𝐵| � 775 
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 776 

The average Dice similarity coefficient is the mean of Dice similarity coefficients across 777 

hemispheres. 778 

 779 

Cortical parcellation based on the population-level boundary map 780 

 781 

The creation of parcels was implemented by the customized Matlab scripts (see our open 782 

resource). Firstly, based on the vertices with values smaller than their neighbors that were 783 

<5 vertices away, we identified all local minima of vertices on the boundary map as seeds 784 

for parcel creation. Then, the parcels were grown from these seeds using the "watershed 785 

algorithm" procedure as above, allowing them to expand outward from the seed until they 786 

met other parcels. Because the whole process depends on the number of seeds for parcel 787 

creation, this might result in a large number of parcels. Therefore, according to the 788 

performance, we manually defined a threshold for merging adjacent parcels, which is the 789 

60th percentile of the values in the boundary map 21. It means that any two adjacent 790 

parcels with an average value below this threshold were considered not sufficiently 791 

dissimilar and should be merged. Finally, according to the population-level boundary map, 792 

we visually examined remaining parcels to identify those that needed further adjustment, 793 

including eliminating vertices and spatial smoothing. The detailed manual processings for 794 

the post-optimization included 1) manually adjusting the parcel borders, 2) manually 795 

correcting wrong areal attributions of the region growing, and 3) spatial smoothing the 796 

parcel borders by 8-neighbor vertices. We finally found the resulting cortical parcellation 797 

with 96 functional parcels in each hemisphere as our Marmoset Brain Mapping Atlas 798 

Version-4 (MBMv4) in Fig. 4B. 799 

 800 

 801 

Evaluation of cortical parcellation by the distance-controlled boundary coefficient 802 

(DCBC) 803 

Following a previous study 25, we used the distance-controlled boundary coefficient 804 

(DCBC) as a metric to evaluate functional boundaries between our parcels. The rationale 805 

for this method is that any two points belonging to any given parcel should have more 806 
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similar functional profiles than those belonging to different parcels. Furthermore, because 807 

the functional organization varies smoothly, the correlation between two points will 808 

weaken with increasing spatial distance. Thus, we calculated the correlation coefficients 809 

for all pairs of points separated by a specific surface Euclidean distance, using 0.5 mm 810 

spatial bins (same as fMRI imaging spatial resolution) ranging from 0 to 4 mm for pairs of 811 

points residing within parcels or across different parcels (between). The DCBC defines 812 

the difference between the within-parcel and between-parcel pair correlations. A higher 813 

DCBC reflects that pairs within the same region are more functional, serving as a global 814 

parcellation measure. For the group comparison across atlases (Fig. 4C), the DCBC 815 

metrics were calculated for each participant in each spatial bin and then averaged. For 816 

the same participant comparison across atlases (Fig. 5D), the DCBC metrics were 817 

calculated for each session in each spatial bin and then averaged.  818 

 819 

Comparison with alternative atlases 820 

We compared our parcellation against alternative digital parcellations created by various 821 

approaches. These alternative parcellations included: (1) Paxinos atlas 62, the most 822 

commonly used atlas in marmoset brain research, which is cytoarchitectonic 823 

characterization by immunohistochemical sections, and here we used its 3D digital 824 

version 15, 26; (2) RIKEN atlas 27: The atlas is cytoarchitecture based on Nissl-staining 825 

contrast. (3) The first atlas version of Marmoset Brain Mapping (MBMv1) 15: The borders 826 

were delineated based on the high-resolution diffusion MRI contrast and parcellated by a 827 

structural-connectivity-based approach. 828 

 829 

Deep-learning-based individual parcellation generator 830 

The group-average parcellation described in the preceding sections is desirable for 831 

generating parcellations of individual animals. Although applying our group-level 832 

parcellation to individual animals is feasible as demonstrated in the previous human study 833 
21, we still found misalignments between individuals and cannot be highly consistent with 834 

the tendency of the group-average parcellation (MBMv4) when the scanning runs are 835 

limited (Fig. 3D-E). Therefore, inspired by previous works 28, 29, we trained a multi-layer 836 

deep learning network to classify parcels based on the fingerprints from MBMv4. There 837 
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were two assumptions for this approach: (1) We assumed that individual cortical parcels 838 

were close to the group definition after the feature-based surface registration; (2) We 839 

assumed that every identified cortical parcel should be in a single class which was the 840 

combination of the target parcel and its spatially adjacent parcels (the "searchlight" for 841 

the candidate parcel). Thus, the setup of the classifier network was straightforward. Its 842 

architecture was as follows (for the graphic reference, see Fig. 5A): for each of the 96 843 

parcels in each hemisphere, a multi-layer deep neural network was designed, which 844 

comprised three layers (one input, five hidden, one output) and 384 hidden neurons (a 845 

reasonable compromise between accuracy and training speed for the classification). The 846 

whole-brain fingerprint of the candidate parcel from the MBMv4 worked as the training 847 

set for the network to classify whether or not each vertex in an individual ROI containing 848 

the parcel plus all of its neighbor parcels. Because of the spatial overlap of the 849 

"searchlight," we excluded the vertices belonging to multiple parcels. Then, we applied 850 

the same procedure of parcel creation as above, meaning that the borders of each 851 

identified parcel became the seeds to expand outward until they met other parcels using 852 

the "watershed by flooding" procedure. The whole process of individual parcellation was 853 

automatic and implemented using customized Matlab codes (example codes are shared 854 

via www.marmosetbrainmapping.org/data.html) combined with MATLAB Deep Learning 855 

Network toolbox.  856 

 857 

Evaluation by task-activation pattern  858 

We examined the functional relevance of the borders by evaluating the parcels contained 859 

within the fMRI activation pattern to a visual task (Fig. 6A) from our previous study 31. A 860 

subset of animals from the NIH dataset participated in the visual-choice task, which 861 

consisted of watching 20-s-long movies (visual field is 10deg x 8deg) and 16s resting 862 

periods (206 trials for marmoset-ID15 and 280 trials for marmoset-ID25). We performed 863 

a contrast comparison between the movie-presentation blocks and the resting blocks to 864 

generate visual-task activation statistical maps for each session. A mixed-effects analysis 865 

was then applied to all statistical maps across sessions by the 3dMEMA command of 866 

AFNI to obtain a final statistical map. The map was thresholded at a voxel-wise threshold 867 

of p < 0.05 and a cluster-wise threshold of p < 0.05 for multiple comparison corrections. 868 
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To compare the similarity of the activation map and the parcellations in each hemisphere 869 

(for results, see the flat maps in Fig. 6A), we calculated the shortest Euclidean distance 870 

of every vertex/voxel in the boundary of the activation map to the vertexs/voxels in the 871 

boundary of parcels/regions from different parcellations. We considered the parcellation 872 

with the overall shortest distances of every vertex/voxel in the boundary of the activation 873 

map as the best border consistency (for results, see the scatterplots in Fig. 6A). 874 

 875 

Evaluation by functional connectivity gradient spectrum 876 

It is widely accepted that the cerebral cortex of multiple species, including both human 877 

and macaque primates, is organized along principal functional gradients that provide a 878 

spatial framework for the co-existence of multiple large-scale networks operating in a 879 

spectrum from unimodal to transmodal functional activity 33, 63. Therefore, if the MBMv4 880 

parcellation created here accurately represents the functional organization of the 881 

marmoset cortex, we can presume that it will also reveal these principal functional 882 

gradients. Thus, as in previous studies 33, 64, we followed a workflow for gradient 883 

identification: we first computed the rs-fMRI functional connectivity (RSFC) based on 884 

MBMv4. Next, the RSFC matrix 𝑀𝑀𝑥𝑥,𝑦𝑦 with the same size as the atlas was made sparse 885 

(to a 10% sparsity), and a similarity matrix Ax,y with the normalized angle was computed 886 

according to the following equation: 887 

 888 

𝐴𝐴(𝑥𝑥, 𝑦𝑦) = 1 −
cos−1�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦)�

𝜋𝜋  889 

 890 

Next, the similarity matrix was decomposed via Laplacian transformation into a set of 891 

principal eigenvectors describing the axes of most significant variance using the following 892 

equation: 893 

 894 

𝐿𝐿𝐿𝐿 = 𝜆𝜆𝜆𝜆𝜆𝜆 895 

 896 
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Where 𝐷𝐷𝑥𝑥,𝑦𝑦 = ∑ 𝐴𝐴(𝑥𝑥,𝑦𝑦)𝑦𝑦 , 𝐿𝐿  is the graph Laplacian matrix and the eigenvectors 𝑔𝑔 897 

corresponding to the 𝑚𝑚  smallest eigenvalues 𝜆𝜆𝑘𝑘  are used to build the new low-898 

dimensional representation: 899 

 900 

𝜍𝜍𝐿𝐿𝐿𝐿 = [𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚] 901 

 902 

Finally, the first two axes 𝑔𝑔1,𝑔𝑔2 of each parcel were plotted in 2D space. Meanwhile, we 903 

used the scores 𝑔𝑔1 to sort the functional connectivity matrix (for results, see the heatmaps 904 

in Fig. 6B). 905 

 906 

The whole-brain modeling for the link between structural connectivity and 907 

functional connectivity 908 

As we know, structural connectivity and functional connectivity are closely related to each 909 

other. Therefore, lack of structural evidence generally implies biological implausibility for 910 

functional connections. Testing whether the cortical parcels created above MBMv4 are 911 

accurate representations of the functional areas in the cerebral cortex requires 912 

investigation of the underlying structural connectivity. A computational model is a powerful 913 

approach to bridge structural and functional connectivity 63, 65, 66, 67, 68. In the present study, 914 

we implemented a whole-brain model with only two free parameters from previous studies 915 
34, 35, as outlined below (for a graphic reference, see Fig. 7A, note that the fMRI data for 916 

the modeling part is frequently unfiltered, so the model used the full band of frequency): 917 

 918 

According to the whole cortical parcellations (192 total parcels, 96 per hemisphere from 919 

MBMv4 or 232 total regions, 116 regions per hemisphere from the Paxinos atlas), the 920 

structural connectivity between parcels/regions 𝐶𝐶𝑖𝑖,𝑗𝑗  was estimated from the structural 921 

datasets (see examples in Fig. 7C), either DTI data (in-vivo or ex-vivo) or the neuronal 922 

tracing data. Then, the local dynamics for every parcel/region j can be properly 923 

approximated to the normal form of a Hopf bifurcation: 924 

𝑑𝑑𝑧𝑧𝑗𝑗
𝑑𝑑𝑑𝑑 = �𝑎𝑎𝑗𝑗 + 𝑖𝑖𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗 + 𝑧𝑧𝑗𝑗�𝑧𝑧𝑗𝑗�

2 925 
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In this equation, 𝑧𝑧𝑗𝑗 is a complex-valued variable 𝑧𝑧𝑗𝑗 = 𝑥𝑥𝑗𝑗 + 𝑦𝑦𝑗𝑗, and 𝑤𝑤𝑗𝑗  is the intrinsic signal 926 

frequency of parcel/region j, which ranged from 0.04-0.07Hz and was determined by the 927 

averaged peak frequency of the bandpass-filtered fMRI signals of the parcel/region j 35, 928 
69, 70, 71, 72. 𝑎𝑎𝑗𝑗 is a bifurcation free parameter controlling the dynamics of the parcel/region 929 

j . For 𝑎𝑎𝑗𝑗 < 0,  the phase space presents a unique stable and is governed by noise. 930 

For 𝑎𝑎𝑗𝑗 > 0, the phase space presents the stable state, giving rise to a self-sustained 931 

oscillation. For 𝑎𝑎𝑗𝑗 ≈ 0 the phase presents unstable state, switching back and forth and 932 

giving rise to a mixture of oscillation and noise. 933 

The coordinated dynamics of the resting state activity for parcel/region j could be modeled 934 

by coupling determined by the above structural connectivity 𝐶𝐶𝑖𝑖,𝑗𝑗. To ensure the oscillatory 935 

dynamics for 𝑎𝑎𝑗𝑗 > 0, the structural connectivity 𝐶𝐶𝑖𝑖,𝑗𝑗 should be normalized and scaled to 936 

0.2 in a weak coupling condition before simulation starting. The coupled differential 937 

equations of the model are the following: 938 

𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 = �𝑎𝑎𝑗𝑗 − 𝑥𝑥𝑗𝑗2 − 𝑦𝑦𝑗𝑗2�𝑥𝑥𝑗𝑗 − 𝑤𝑤𝑗𝑗𝑦𝑦𝑗𝑗 + 𝐺𝐺�𝐶𝐶𝑖𝑖 ,𝑗𝑗�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�𝛽𝛽𝜂𝜂𝑗𝑗(𝑡𝑡)

𝑖𝑖

 939 

𝑑𝑑𝑦𝑦𝑗𝑗
𝑑𝑑𝑑𝑑 = �𝑎𝑎𝑗𝑗 − 𝑥𝑥𝑗𝑗2 − 𝑦𝑦𝑗𝑗2�𝑦𝑦𝑗𝑗 + 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝐺𝐺�𝐶𝐶𝑖𝑖,𝑗𝑗�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�𝛽𝛽𝜂𝜂𝑗𝑗(𝑡𝑡)

𝑖𝑖

 940 

In this equation, 𝐺𝐺 is another free parameter representing the fixed global coupling factor 941 

that scales structural connectivity 𝐶𝐶𝑖𝑖,𝑗𝑗 . 𝜂𝜂𝑗𝑗  represents additive Gaussian noise in each 942 

parcel/region and is scaled by a factor 𝛽𝛽 fixed at 0.04 according to previous studies 35. 943 

Euler-Maruyama algorithm integrated these equations with a time step of 0.1 seconds to 944 

accelerate simulation 73. 945 

The free bifurcation parameter 𝑎𝑎𝑗𝑗 for parcel/region j could be locally optimized based on 946 

fitting the spectral information of the empirical BOLD signals. To achieve this, we filtered 947 

the empirical BOLD data in the 0.04–0.25Hz band and calculated the power spectrum 948 

𝑝𝑝𝑗𝑗(𝑓𝑓) for each parcel j as below: 949 
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𝑝𝑝𝑗𝑗 =
∫ 𝑝𝑝𝑗𝑗(𝑓𝑓)𝑑𝑑𝑑𝑑0.07
0.04

∫ 𝑝𝑝𝑗𝑗(𝑓𝑓)𝑑𝑑𝑑𝑑0.25
0.04

 950 

and updated the local bifurcation parameter aj by a gradient descendent strategy: 951 

𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝜂𝜂�𝑝𝑝𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 952 

We applied the above optimization process to receive the best bifurcation parameters 𝑎𝑎𝑗𝑗 953 

of every parcel/region defined in the parcellations. Once we found the optimized set of 954 

bifurcation parameters 𝑎𝑎𝑗𝑗, we adjusted the free parameter G within the range of 0-8 in 955 

steps of 0.1 according to a reasonable compromise from previous studies 35, 73 to simulate 956 

the same number of sessions for each animal and the same number of animals. To 957 

compare the performance in different atlases, we just needed to compare fitting (similarity) 958 

metrics, Pearson's correlation coefficient between the simulated functional connectivity 959 

and the one used for the empirical data, when we fixed the same value of parameter G. 960 

Since the distributions of the optimal bifurcation parameter 𝑎𝑎 are identical in different 961 

parcellations MBMv4 or Paxinos atlas (see Supplementary Fig. S12, one way ANOVA 962 

F(1,11986)=9.09, p=0.26), we selected the best free parameter G from the Paxinos atlas for 963 

comparison performance with our MBMv4 (see results in Fig. 7B, examples in Fig. 7D-E). 964 

Moreover, we also selected the group-averaged functional connectivity from all 965 

individuals as the empirical observable for the ultra-high resolution diffusion MRI and 966 

neuronal tracing datasets and the individual functional connectivity for the corresponding 967 

in-vivo diffusion MRI. 968 

 969 

  970 
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Data availability  971 

 972 

All NIH and ION resting-state fMRI, diffusion MRI, and neuronal tracing datasets are 973 

available at www.marmosetbrainmapping.org/data.html. The volume data are in NIFTI 974 

format, and the surface data are in CIFTI format. The raw MRI data are provided in the 975 

standard BIDS format for cross-platform sharing. In addition, data with different 976 

preprocessing, including a minimal preprocessing pipeline, are provided for analyzing 977 

purposes. 978 

 979 

Code availability 980 

 981 

The codes and analyzing pipelines (with code examples) used in this study are available 982 

at www.marmosetbrainmapping.org/data.html. 983 
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Supplementary Information 

 
Figure S1. Example images of the ION and the NIH datasets. Single time points, mean 

images (averaged across time for one fMRI run), and tSNR images (calculated from one 

fMRI run) are presented for four sessions of two flagship monkeys from ION and NIH, 

respectively. The tSNR image of each session was calculated by 3dTstat of AFNI. 
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Figure S2. Similar quality measurements of the ION and the NIH datasets. (A) the 
raster plots and their histograms present the CNR (Contrast to Noise Ratio: the mean of 
the gray matter intensity values minus the mean of the white matter intensity values 
divided by the standard deviation of the values outside the brain) and the Fiber 
(Foreground to Background Energy Ratio: the variance of voxels inside the brain divided 
by the variance of voxels outside the brain) of two datasets (the blue represents the 
results from the NIH dataset, and the yellow represents the results from the ION dataset); 
the results of the Wilcoxon rank test between two datasets (N-NIH =180 N-ION =172) are 
p=0.45 and p=0.11, respectively. (B) the raster plots and their histograms present the 
average SNR, median SNR and max SNR, average tSNR, median tSNR and max tSNR 
of the cortical gray matter from two datasets (N-NIH =180 N-ION =172). The Wilcoxon 
rank tests for SNR are p=0.259 p=0.824 and p=0.968; and for tSNR are p=0.435 p=0.625 
and p=0.2, respectively. (C) presents the average SNR, median SNR and max SNR, 
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average tSNR, median tSNR and max tSNR of cortical white matter from two datasets 
(N-NIH =180 N-ION =172). The Wilcoxon rank tests for SNR are p=0.712 p=0.32 and 
p=0.42; and for tSNR are p=0.062 p=0.086 and p=0.908, respectively. The NIH and the 
ION datasets have no significant difference in the above QA measurements. The tSNR 
image of each session was calculated by 3dTstat of AFNI. The SNR and tSNR values 
were calculated by “the mean value of gray matter voxels divided by the standard 
deviation of background noises”.   
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Figure S3. Head motions of the ION and the NIH datasets. (A) the top panel presents 

head-motion (weighted euclidean norm of six motion parameters) across timepoints of 

different datasets (the blue represents the NIH dataset, and the yellow is the ION dataset). 

Each dot is the head-motion measure of each fMRI at a one-time point. The bottom panel 

presents the histogram statistics from each dataset (error bar represents 95% confidence 

interval), which indicates head-motion levels are similar across datasets. (B) presents the 

percentage of censored time points (motion > 0.2mm and temporal outlier > 0.1) for each 

fMRI. Most animals and fMRI runs (710 runs) have low head-motion and censored time 

points, suggesting the effectiveness of our head-constrained and training approaches. 

Note that the three fMRI runs with extensive head motions (more than 10% time points 

were censored) were excluded from our analysis and from the total number of valid runs 

(710) reported in our manuscript, although we included the three runs in the release of 

source (raw) data. 
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Figure S4. Identified resting-state functional networks. We found 19 networks by 

group-ICA analysis, including (A) the ventral somatomotor, (B) the dorsal somatomotor, 

(C) the premotor, (D) the frontal pole, (E) the orbital frontal cortex, (F) the 

parahippocampus/temporal pole, (G-H) the salience-related network, (I-J) two trans-

modal networks, which are frontoparietal (I) and the default-mode-network-related (J), the 

visual-related networks from primary visual cortex (K-M) to functional higher-level regions 

(N-O) and subcortical networks, the thalamus (P), the striatum (Q), and the cerebellum 

(R). 
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Figure S5. Similar to Figure S4 but with the time series and frequency power plotted 
for each component. 
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Figure S6. Boundary maps in both hemispheres from NIH and ION Dataset are 
highly similar. Top and middle panel: The boundary maps in both hemispheres from NIH 

and ION datasets after thresholding both at the 75th percentile of boundary map values. 

Bottom: The comparison between two boundary maps (Top and middle) in both 

hemispheres. Light blue: NIH boundaries; pink: ION boundaries; purple: the overlapping 

boundaries between datasets. 
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Figure S7. The functional parcels are highly similar across the hemisphere. (A) The 

parcel sizes. (B) The functional connectivity patterns of parcels. The dashed line 

represents the diagonal line. 
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Figure S8. The variation of individual mapping parcels by the deep neural network. 

(A) The concordance of inter-subject parcels. (B) The concordance of inter-session 

parcels. 
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Figure S9. The simulation results in terms of the connection distance based on 
MBMv4. In a clockwise direction, the panels present the simulation results of the in-vivo 

diffusion MRI from an example subject (A), in-vivo diffusion MRI from all subjects (B), the 

ultra-high resolution ex-vivo diffusion MRI (C), and the neuronal-tracing dataset (D). The 

solid orange lines represent marginal regression lines, and dashed lines represent a 95% 

confidence interval. 
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Figure S10. Examples of the top-up EPI distortion correction. 
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Figure S11. The registration of the histological NM template to the MBMv3 MRI 
template. The underlay is the T2w template of the MBMv3, and the overlay is the outline 

of the histological NM template that is transformed on the MBMv3 template space. The 

outline is generated by the @AddEdge function of the AFNI (using the default setting). 
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Figure S12. The distribution histogram of optimal bifurcation parameter. Blue: 

based on MBMv4 atlas; Light red: based on Paxinos atlas; 
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Table S1. The additional details of datasets. The table also included in the data release 

Click to download the table:  

https://1drv.ms/x/s!Ai5giu0ky8jkioVt17rGgJ91SNv9Dw?e=G29cCf 
 
Table S2. Summary of head motion quality control for each fMRI run. The table is 

also included in the data release. 

Click to download the table:  

https://1drv.ms/x/s!Ai5giu0ky8jkioVn6KnzDItyWzqcKw?e=MTathY 
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