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Abstract

Estimating microbe-microbe interactions is critical for understanding the ecological
laws governing microbial communities. Rapidly decreasing sequencing costs have
promised new opportunities to estimate microbe-microbe interactions across thou-
sands of uncultured, unknown microbes. However, typical microbiome datasets
are very high dimensional and accurate estimation of microbial correlations re-
quires tens of thousands of samples, exceeding the computational capabilities of
existing methodologies. Furthermore, the vast majority of microbiome studies
collect compositional metagenomics data which enforces a negative bias when com-
puting microbe-microbe correlations. The Multinomial Logistic Normal (MLN)
distribution has been shown to be effective at inferring microbe-microbe corre-
lations, however scalable Bayesian inference of these distributions has remained
elusive. Here, we show that carefully constructed Variational Autoencoders (VAEs)
augmented with the Isometric Log-ratio (ILR) transform can estimate low-rank
MLN distributions thousands of times faster than existing methods. These VAEs
can be trained on tens of thousands of samples, enabling co-occurrence inference
across tens of thousands of microbes without regularization. The latent embedding
distances computed from these VAEs are competitive with existing beta-diversity
methods across a variety of mouse and human microbiome classification and
regression tasks, with notable improvements on longitudinal studies.

1 Introduction

Understanding microbe-microbe interactions is one of the major outstanding questions in microbial
ecology. Microbes are suspected to interact through ecological relationships, whether it be through
the exchange of metabolic resources through cross feeding, through competition over resources
or through neutral interactions. Furthering our knowledge of microbe-microbe interactions has
broad implications for designing and perturbing microbial communities for bioengineering [1], drug
design and clinical trial applications [2]. Inferring these interactions is complicated by the unknown
complexity behind microbial metabolism and consequentially the vast number of microbes that have
not yet been cultured. Multiple studies have constructed microbial co-cultures [3, 4], but the logistical
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challenge of setting up these approaches limits the number of co-culture assays that can be conducted,
which pales in comparison to the combinational number of potential microbe-microbe interactions.

High throughput sequencing has presented an alternative means to understand microbe-microbe
interactions. Amplicon sequencing and shotgun metagenomics sequencing present the possibility of
counting microbial individuals within a biological specimen, and recent efforts have catalogued and
assembled genomes across millions of unculturable microbes. With these measurements, it is possible
to perform correlation analysis to narrow down potential microbe-microbe interactions to validate for
co-culturing [3]. However, metagenomic datasets present numerous statistical challenges that hamper
inference and interpretation, including high dimensionality, high sparsity and compositionality where
units of concentrations or cells per gram are often not collected. The lack of scale information is
particularly problematic; since only microbial proportions can be estimated, the collected data are
confined under a simplicial geometry. This projection limits the conclusions that can be drawn
regarding microbial interactions, since the simplex imposes a negative bias on microbe-microbe
correlations. This promotes excess false positives and false negatives when applying conventional
correlation methods [5, 6, 7].

Over the last decade, there have been numerous attempts to develop statistical estimators of microbe-
microbe correlations. SparCC [7] proposed to infer absolute correlations by exchanging the scale
identifiability issue with a heuristic sparse correlation assumption. SPEIC-EASI [8] and later gCODA
[9], MP-Lasso [10] and Flashweave [11] proposed to solidify the sparse correlation assumption with
sparsity-inducing graph regularization. However, since compositional approaches are designed for
dense data, these methods require an imputation strategy, which is problematic when dealing with
very sparse data. More recent works have proposed to utilize the Logistic-Normal distribution in com-
bination with a counting distribution such as the Multinomial or the Poisson to account for the sparsity
issue [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, due the non-conjugacy between counting
distributions and the Normal distribution, Bayesian inference based on Markov Chain Monte Carlo
(MCMC) posterior sampling is challenging to scale-up for high dimensional microbiome datasets.
Variational approximations have been developed to overcome these computational issues [15, 20, 21],
utilizing normal approximations or quadrature methods to handle the conditional non-conjugacy
between these count distributions and the logistic normal distribution. While these approaches are
much faster than MCMC, they may introduce additional estimation bias [22]. Furthermore, none of
these methods have been applied to datasets with more than a thousand samples, requiring either
excessive filtering of microbes or regularization on the logistic-normal covariance matrix to avoid
identifiability issues in the low sample size regime.

In the machine learning community, Variational Autoencoders (VAEs) have been proposed as a
scalable means around these non-conjugacy issues. By using reparameterization gradients [23], it is
possible to estimate the posterior distribution of the parameters of interest by directly evaluating and
maximizing the Evidence Lower Bound (ELBO) with stochastic gradient descent. More recently,
connections between VAEs and Probabilistic PCA (PPCA) have been identified [24], where Linear
VAEs can estimate the same principal components as PPCA. However, the connection between
VAEs and PPCA is currently limited to Gaussian distributed data and not well-suited for count data.
Showing that VAEs can recover the correct principal components from count data is nontrivial due
to the non-conjugacy issues between the logistic normal distribution and count distributions such
as the multinomial distribution. Furthermore, the parameters of the multinomial distribution are
compositional; they are constrained within the simplex and the resulting covariance matrix is singular
and non-invertible [6, 25]. Aitchison provided a means to perform PCA on compositional data [26]
and more recent efforts showed how to obtain principal components through unconstrained inference
using the Isometric Log-ratio (ILR) transform [27, 28].

Our contribution: Here we show that VAEs can be modified to estimate Multinomial Logistic
Normal (MLN) distributions with low-rank covariance matrices. Rather than utilizing coordinate
ascent variational inference as shown in Poisson PCA [15], we directly sample the ELBO with
reparameterization gradients and show that this approach can scale to datasets with tens of thousands
of samples and ten thousand microbial species. We make the case that the ILR transform is critical for
estimating the principal components in multinomial logistic normally distributed data. This provides
an opportunity to utilize compositional data analysis techniques to interpret the resulting embeddings
and extract microbial co-occurrence information.
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2 Methods

2.1 The connection between Linear VAEs and Probabilistic PCA

VAEs were originally proposed as a generative model [23], and are now commonly deployed across
scientific disciplines, making contributions to single-cell RNA sequencing [29], microbiome modeling
[30], protein modeling [31, 32, 33], natural language processing [34] and image processing [23].
Lucas et al. [24] has previously shown that the following two models can obtain the same maximum
likelihood estimates of principal componentsW :

Probabilistic PCA

p(x|z) = N (Wz + µ,Λ)

p(z) = N (0, Ik)

∣∣∣∣∣
Linear VAE

p(x|z) = N (Wz + µ,Λ) p(z) = N (0, Ik)

q(z|x) = N (V (x− µ),D)

Here, x ∈ Rd represents the real-valued d dimensional observations, z ∈ Rk represents the
corresponding latent representation reduced down to k latent dimensions. p(x|z) denotes the
likelihood of observations x given the latent representation z ∈ Rk, p(z) denotes the prior on z. In
Tipping et al, Λ = σ2I for σ ∈ R, and parameters of interest, namely the latent representation z and
the principal componentsW ∈ Rd×k, are directly estimated through Expectation-maximization [35].

It was shown that Linear VAEs can directly predict the posterior of z given by q(z|x) with a neural
network rather than than directly estimating z as additional learnable parameters [24]. As a result,
the number of model parameters does not scale with the size of the input; instead only a projection
matrix V ∈ Rk×d and a diagonal covariance matrixD ∈ Rk×k are needed approximate q(z|x). The
parameters underlying Linear VAEs are estimated by maximizing the ELBO

log p(x) ≥ Eq(z|x)
[
log p(x|z)

]
− KL

(
q(z|x)

∣∣∣∣p(z))
For Linear VAEs with a Gaussian likelihood, the variational posterior distribution q(z|x) can
be shown to analytically agree with the posterior distribution p(z|x) learned from PPCA [24].
However, deriving this connection for count-based likelihoods such as the multinomial distribution is
complicated due to non-conjugacy issues (Appendix A.2). This is further complicated by a missing
definition of Multinomial PPCA.

2.2 Multinomial Probabilistic PCA

One challenge of defining Multinomial PPCA is defining a bijection between proportions and logits
that leads to scale identifiability. The "softmax-trick" highlights such a identifiability issue where
any specified shift constant a = (a, · · · , a) ∈ Rd applied to logits x ∈ Rd will not change the
output of softmax φ(x), namely φ(x) = φ(x+a). As highlighted in the compositional data analysis
literature [26, 28], softmax is a degenerate function and not accounting for this identifiability issue
will confound principal components estimation (i.e. φ needs to be isomorphic). Another challenge
is the estimated loadings needs to encode the covariance matrix across dimensions, meaning that φ
needs to preserve row distances of x (i.e. φ needs to be isometric).

The inverse Isometric Log-ratio (ILR) transform [27] is such a function that satisfies both isomorphism
and isometry when transforming logits in Rd−1 into proportions in the simplex Sd. Due its attractive
properties, the ILR transform has been shown to be more suitable for principal components analysis
[28]. The ILR and inverse ILR are given as follows:

ILR(x) = ΨT logx ILR−1(x) =
exp(Ψx)∑d
i=1 exp(Ψx)i

(1)

where Ψ ∈ Rd×d−1 is a basis such that ΨTΨ = Id−1 and ΨΨT = Id − 1
d1d×d. Any orthonormal

basis can parameterize the ILR transform and some of these bases can be represented by binary trees
[36, 37, 38]. For our model, we use a phylogenetic tree, due to its biological interpretability and low
runtime requirements. See Appendix A.1 for further discussions on the ILR.

Letting φ(x) denote the inverse ILR transform, PPCA can then be extended to multinomially
distributed data with the following generative model:

p(x|η) = Mult(φ(η)) p(η|z) = N (Wz + µ,Λ) p(z) = N (0, Ik) (2)
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Here W ∈ Rd−1×k represents the principal components, and Λ ∈ Rd−1×d−1 is a diagonal co-
variance matrix. For a single sample, x ∈ Nd are the observed d -dimensional counts, η ∈ Rd−1

are the latent logits and z ∈ Rk is the latent representation. Unlike standard PPCA, the principal
components W cannot be used project heldout data to the latent space since the ILR transform
cannot be directly applied to counts (i.e. log(0) is not defined). Furthermore, the estimation of the
Multinomial PPCA parameters is nontrivial. The term φ(η) follows logistic normal distribution
φ(η) ∼ LN (Wz+µ,Λ), as shown by Aitchison [39], as a result the expectations of φ(η) are not an-
alytically tractable, complicating the application of Expectation-maximization. Furthermore, p(x|z)
yields a MLN distribution, which is given by marginalizing out η in p(x|z) =

∫
η
p(x|η)p(η|z)dη.

This integral is not tractable; as a result, this distribution does not have an analytically defined
probability density function, complicating maximum likelihood estimation. There have been multiple
attempts to estimate the posterior distribution with MCMC [40, 17, 14, 12], but the complexity of
this distribution requires a large number of Monte Carlo samples, limiting the scalability of these
methods. Other efforts have developed variational methods have utilized loose lower bounds of the
ELBO to combat the conditional non-conjugacy [41, 20, 21]. However these approximations have
been shown to be suboptimal to their Monte Carlo counterparts [22].

2.3 Multinomial Variational Autoencoders

Here, we argue that a Multinomial VAE can address these non-conjugacy issues by using reparame-
terization gradients. The concept of a Multinomial VAE have been previously proposed in the context
of recommender systems [42]. However, these architectures contain the scale identifiability issue
discussed above, preventing the estimation of principal components and the resulting covariance
matrix. As suggested earlier, the scaling identiability issue between the logits η and the multinomial
proportions can be resolved with the inverse ILR transform with the following reformulation:

p(x|η) = Mult(φ(η)) p(η|z;θdec) = N (Wz+ µ,Λ) p(z) = N (0, Ik) (3)

q(z|x;θenc) = N (fm
(
l̃og(x))

)
,D) (4)

where θdec = {W ,Λ} denotes the decoder parameters, θenc = {fm,D} denotes the encoder
parameters and µ ∈ Rd−1 is a bias parameter. We relax the definition of Λ to be any diagonal
covariance matrix in order to provide more flexibility in modeling overdispersion. Here, q(z|x;θenc)
denotes the variational posterior distribution of z given by the encoder fm represented as an m-
layer dense neural network with appropriate activations. This encoder is directly used to evaluate
p(η|z;θdec). Furthermore, flat priors are assumed for all variables except z. The encoder architecture
is memory efficient; by approximating the posterior distribution of z, the encoder provides a way
to project counts into the latent space without memorizing z. Unlike like previous MLN estimators
[12, 16, 17], the number of learnable parameters is fixed with respect to the number of samples.
If a single layer encoder is defined, then maximizing the ELBO becomes a biconvex optimization
(Appendix A.4). Furthermore, simulations suggest that the Multinomial VAEs exactly recovers the
Multinomial PPCA parameters when applied to completely dense data.

Estimating principal components becomes more problematic when dealing with sparse count data,
since logarithms are not defined for zeros. A common approach to this problem is to introduce a
pseudocount before applying a logarithm. To ensure scale invariance, we normalize the inputs to
proportions after adding a pseudocount, namely l̃og(x) = log(x+ 1)− 1Td log(x+ 1). The choice
of pseudocount is arbitrary and can introduce unwanted biases. To alleviate this issue, we introduce a
nonlinear, possibly deep encoder neural network fm highlighted in Equation 4; we expect that the
universal approximation theorem would apply here [43, 44] where the representation quality of z will
improve with more complex neural networks. This is supported in our simulation benchmarks; more
complex encoder architectures can lead to better estimates of principal components on sparse data.

3 Results

To showcase the merits of Multinomial VAEs, we showcase its performance across a wide variety of
benchmarks. In Section 3.1 we showcase scenarios where Multinomial VAEs can recover Multinomial
PPCA parameters. In Section 3.2 we demonstrate that Multinomial VAEs are competitive to state-
of-the-art beta-diversity metrics in the context of a mouse fecal pellet dataset with 11k samples, 5k
microbes and on a human fecal sample dataset with 25k samples, 11k microbes. In Section 3.3

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467939doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467939
http://creativecommons.org/licenses/by/4.0/


we extract the embedding information from the Multinomial VAEs to demonstrate that it can learn
meaningful ecological relationships.

3.1 Multinomial VAEs recovers Multinomial PPCA loadings in simulations

To investigate the connections between Multinomial VAEs and Multinomial PPCA, we constructed
multiple simulations using the Multinomial PPCA generative model in Equation 2. The agreement
between the estimated and ground truth principal components was measured with two metrics, namely
pairwise Pearson correlation between the estimated and ground truth correlation matrices and axis
alignment metric between the ground truth and estimated principal components.

Figure 1: Multinomial PCA simulation benchmarks: (a) Multinomial VAEs can recover the ground
truth principal components and correlations if there are no zero counts present in the dataset. (b)
Multinomial VAEs augmented with the ILR transform outperforms the ALR and Log transforms on a
simulation dataset with 40% sparsity and a single layer encoder. (c) Multinomial VAEs are orders of
magnitude faster than Multinomial PPCA fitted with Hamiltonian Monte Carlo [45]. (d) Another
simulation showing that Multinomial VAEs trained with multiple encoders can obtain higher fidelity
principal components. Lower axis-alignment metric indicates more agreement between the estimated
and ground truth principal components with respect to their directionality.

The correlation matrices are estimated through the inner product of the VAE decoder weights, namely
WW T . The axis-alignment metric is given by the average cosine distance between estimated and
ground truth eigenvectors. If the data has no zeros, the Multinomial VAEs can exactly recover the
ground truth correlations generated from Multinomial PPCA (Figure 1a). However, as more sparsity
is induced, it becomes more difficult to estimate the ground truth correlations (Figure 1b and d).
However, having a deeper encoder can lead to higher fidelity principal components (Figure 1d),
implying that higher complexity encoders may be needed to estimate the latent embeddings z for
sparse datasets.

We also find that the ILR transform plays a critical role in recovering the ground truth principal
components. The ILR transform obtains significantly better estimates of the ground truth correlations
compared to VAEs using the additive log-ratio (ALR) transform and the standard Log transform
(Figure 1b). This observation is consistent with the compositional data analysis literature; the ALR
transform and its corresponding inverse do not preserve isometry and consequentially does not
recover the ground truth correlations [46]. Most VAEs constructed to analyze single-cell RNAseq
data, including scVI [29] and LDVAE [47], use the standard softmax function to convert logits to
proportions. Our simulation benchmarks suggest that this is a suboptimal design choice if one wishes
to recover the underlying correlations from sequencing count data using a linear decoder.

One major benefit of using Multinomial VAEs over previous MLN estimators is the speed of training.
We attribute this speed up due to the reparameterization trick. Due to the ability to deploy stochastic
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gradient descent, the non-conjugacy between the Multinomial and Logistic normal are no longer the
bottleneck in training. Furthermore, the utilizing the GPU with Pytorch [48] provides an additional
speedup. Even though it can take thousands of epochs to train the Multinomial VAE [49], the
Multinomial VAE can handle datasets orders of magnitude larger than what Multinomial PPCA can
be fit to by using state-of-the-art MCMC software [45] (Figure 1c).

3.2 Multinomial VAEs are competitive in distinguishing mouse and human phenotypes

We trained the Multinomial VAE on a mouse dataset and a human dataset that were uploaded to Qiita
[50]. Our pretrained Multinomial VAEs were then compared against state-of-the-art beta-diversity
methods, including Bray-Curtis and Unifrac [51] in addition to the Linear VAE implemented in scVI
(LDVAE) [29, 47] and Latent Dirichlet Allocation (LDA) [52] on the mouse dataset. For the human
dataset, only the Multinomial VAE, Bray-Curtis and Unifrac were benchmarked.

Figure 2: Classification benchmarks : (a) Classification across multiple tasks with LDA, LDVAE,
Bray-Curtis, Unifrac and MultVAE across 4 mouse datasets [53, 54, 55, 56]. (b) Sequencing depth
benchmarks with Bray-Curtis, Unifrac and MultVAEs. (c) Classification benchmarks on the Gevers
et al dataset [57]. (d) Regression benchmarks to predict body mass index (BMI) in the Goodrich et al
dataset [58] and age in the Yatseneko et al dataset [59]

Since all of the above methods are unsupervised, K nearest neighbors classifiers were trained
to distinguish mouse phenotypes and human phenotypes on the held out samples. Across all of
the classification tasks, the Multinomial VAEs obtains competitive classification accuracy, with a
significant improvement on two longitudinal datasets [53, 54] and in age prediction [59] (Figure 2).
Similar conclusions were drawn with compositional PCA [60] and compositional tensor factorization
[61], where robust composition metrics were able to distinguish longitudinal samples more easily
than non-compositional metrics. As hinted by the simulation results, we suspect that this performance
difference can be explained by the lower sparsity in these longitudinal datasets. On the other hand,
we see the Multinomial VAE sometimes underperforms Bray-Curtis and Unifrac when distinguishing
IBD phenotypes.

We also saw that LDVAE under-performs all of the methods benchmarked here. While it is plausible
that the standard softmax could be contributing to its under-performance, we suspect that there are
other design choices that further degrades performance. LDVAE uses the encoder to estimate both
feature-specific overdispersion parameters and sample-specific variances, both of which induces an
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Benchmark Method Covariate F-statistic R2 Pr(>F)

Combat Sample Name 72.173 0.491 0.001
Batch 0.580 0.002 0.887

MBQC Combat-seq Sample Name 8.777 0.100 0.001
Batch 9.976 0.049 0.001

MultVAE Sample Name 60.890 0.421 0.001
Batch 20.972 0.062 0.001

Combat Sample Name 10.947 0.952 0.001
Batch 3.927 0.003 0.001

Storage Combat-seq Sample Name 13.282 0.961 0.001
Batch 2.095 0.001 0.008

MultVAE Sample Name 11.890 0.956 0.001
Batch 3.122 0.002 0.021

Table 1: Batch effects benchmark in the MBQC [65] and the Mayo storage studies [66, 67]. Multi-
nomial VAEs, Combat and Combat-seq evaluated to differentiate the biological samples and the
technical effect of processing lab and storage conditions with Permanova [68] .

identifiability issue between the encoder and the decoder leading degraded representation quality
[24]. Furthermore, the zero-inflated negative binomial may not an appropriate distribution for sparse
microbiome datasets, since it will lead to abundance overestimation [62].

To understand the Multinomial VAE performance, we investigated how the classification accuracy
improves as the sequencing depth is increased. The question of normalization has been a controversial
topic in the microbiome literature [63]. One of the commonly used normalization techniques is
rarefaction, where sequencing counts across samples are subsampled to the same sequencing depth.
This approach is problematic since it is stochastic and increases uncertainty, often throwing out
more than 90% of reads, but has been shown to reduce the confounding variation due to sequencing
depth variation [64]. As hinted by our benchmarks, Bray-Curtis and Unifrac classification accuracy
does not improve as more sequencing reads are added, whereas the Multinomial VAE classification
accuracy strictly improves with higher sequencing depth. We attribute this difference due to the
Multinomial distribution’s ability to compute sequencing depth uncertainty. Only the Multinomial
VAE incorporates counting uncertainty into the model, which is highly desirable for handling samples
with varying sequencing depths.

Aside from normalization, one of the issues when performing meta-analysis on multiple datasets is
the presence of batch effects, where unobserved confounders complicates the comparison of multiple
datasets. Technical variation due to sampling and processing protocols is one of the sources of batch
effects. Whereas the studies in the mouse dataset used consistent protocols, there were some differing
sample storage protocols in the human dataset. To justify training the Multinomial VAE on the mouse
and the human datasets, we benchmarked the pretrained Multinomial VAE on technical replicates
across multiple protocols (Table 1) and compared it against Combat [69] and Combat-seq [70]. While
the Multinomial VAE itself is not a batch correction method, we found that it performed comparably
to Combat and Combat-seq. Although the Multinomial VAE displayed noticeable batch effects in the
MBQC dataset, the effect is significantly outweighed by the differences across biological samples.
Furthermore, the Multinomial VAE was able to distinguish the different biological samples in the
MBQC dataset comparable to Combat and even better than Combat-seq. Previous literature showed
noticeable batch effects due to sample collection method [71], but we found that if we focus on
samples that were either immediately refrigerated or flash frozen or stored with RNAlater, the storage
effects were significantly smaller than the biological variation across batch correction methods across
all three methods.

3.3 Multinomial VAEs recover ecologically meaningful relationships

To further motivate the architecture underlying Multinomial VAEs, we argue that there is a connection
between Multinomial VAEs and compositional PCA [26]. Because the logits η characterizing the
multinomial parameters are embedded in ILR space, by design the decoder weightsW are expected
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to hold similar interpretation to the loadings estimated in compositional PCA. Namely, we expect∥∥∥∥(ΨW )i − (ΨW )j

∥∥∥∥2
2

∝ Var
(
log

xi
xj

)
(5)

where x refers to the observed proportions and i and j refer to the two features being compared.
The variance log ratio (VLR) [72, 73] holds a simple interpretation: if the VLR is close to zero, that
means the two microbes are tightly co-occurring. Furthermore, large VLR values indicate microbes
that aren’t often observed together in the same biological samples. For highly abundant microbes,
we see there is a proportional relationship between VLR and the VAE decoder distances (Figure 3),
suggesting that Multinomial VAEs do indeed estimate microbial co-occurrences. Empirically, we do
observe that there isn’t an exact agreement between the VAE decoder distances and the VLR. This
could be explained by the differences between the two methodologies; Multinomial PPCA accounts
for count uncertainty and zeros whereas compositional PCA cannot handle zeros.

Figure 3: Microbial co-occurrences extracted from mouse and human datasets. (a, d) Euclidean
distances extracted from VAE decoder is proportional to the variance log ratio metric across the
top 100 most abundant microbes. (b, e) Venn diagrams looking at top K microbial pairs according
to pathway similarity, phylogenetic similarity and co-occurrence probability. K is determined by
the number of pairs of taxa that have identical KEGG profiles. (c, f) UMAP [74] plot of all of the
microbes embedded using cosine distance with co-cultured microbes highlighted. Cosine distance
was used instead of Euclidean distance due to ease of interpretation [75]; a cosine distance of 0
indicates highly co-occurring microbes, 1 indicates neutral interactions and 2 indicates highly anti-
co-occurring microbes. The UMAP embeddings for the human gut microbiome interactions are
overlapped with Faecalibacterium prausnitzii and Roseburia inulinivorans putative interactions that
was experimentally validated in Das et al [3].

To identify potential driving patterns underlying these interactions, we extracted pathway information
via Picrust2 [76] in addition to computing phylogenetic distances between microbes. We found
pairs of microbes that have complete overlap in KEGGs only account for a fourth of those microbes
were amongst the top phylogenetically similar microbes. We suspect that this hints at the annotation
incompleteness of KEGG [77], where pathways from under-studied organisms are under-represented.
Interestingly we found that microbes that had similar pathways and microbes that are phylogenetically
similar are not amongst the top co-occurring microbes. This observation is consistent with Darwin’s
phylogenetically limiting hypothesis [78]; microbes that are phylogenetic similar tend to have similar
enzyme profiles, putting them in direct competition since they consume similar resources.

This pattern is also observed in both Faecalibacterium prausnitzii and Roseburia inulinivorans. These
two microbes have been observed to exhibit a cross-feeding relationship in co-culture experiments
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[3], and also exhibits wide reaching strain diversity. Faecalibacterium prausnitzii in particular has
dozens of strains detected and these strains are also spread across the k-nearest neighbors graph.
This provides further evidence that phylogenetically similar microbes tend not to co-occur. In fact,
our analysis suggests that almost no microbes were detected to be tightly co-occurring; none of
the microbial pairs had a cosine distance outside of [0.8, 1.2] (Figure S2). The reasons underlying
this observation are currently not clear to us; it is plausible that because most of the studies are
cross-sectional, mostly neutral interactions are observed [79] where the gut ecosystems act largely
independent of each other. It is important to note that the spatial-temporal nature of these interactions
are not measured in this analysis, and as a result the conclusions that can be drawn from these
estimated microbe-microbe correlations are limited. Obtaining spatial resolution on the colon [80] or
dense time series sampling could help with improving microbial correlation estimates. We anticipate
that the Multinomial VAEs presented here can serve as a scaffold for such future efforts.

4 Discussion

Most inquiries about the statistical properties surrounding microbiome data have been limited to
small sample sizes. Due to the high dimensionality of these datasets, feasible inference required
assumptions such as sparsity or imputation that are not easily verifiable. By assembling a large
collection of datasets, this is the first study of its kind to bring these types of assumptions to question.
Our estimated decoder weights did not follow a sparse distribution (Figure S2), bringing into question
the merits of sparsity inducing distributions like the Laplace distribution for microbial co-occurrence
inference. Future studies investigating sparse network constraints will need to explore the geometric
implications of prior on the simplex.

This large-scale effort identified both the strengths and the limitations of the MLN applied to
microbiome data. Based on classification benchmarks, we found that the MLN distribution is useful
for analyzing longitudinal datasets, suggesting that these distributions could serve as a scaffold for
longitudinal analysis. However, we also found that the MLN distribution performs on par with
Bray-Curtis and Unifrac on cross-sectional studies. Based on our simulations, we suspect that this
is due to the excessive amount of sparsity in the data, since we saw the MLN covariance begin to
deteriorate at 40% sparsity, whereas the microbiome datasets benchmarked here have above 90%
sparsity, even after removing features that are present in at least 30 samples. Furthermore, our training
strategy is limited to the microbes that have been detected in the training dataset and future efforts
will need to investigate how to account for novel microbes during prediction. We anticipate that
in future extensions of this work, incorporating phylogenetic information and accounting for more
confounding variables such as age and geography may help boost performance.

While we have provided some biological intuition behind the estimated co-occurrences, the biological
validation of these co-occurrences is currently limited by the complexity of conducting anaerobic
co-culturing experiments. Amongst the multiple co-culture studies that were investigated, few of
them them had strain level taxonomies that could be detected in the full human amplicon dataset.
Amplicon experiments cannot obtain strain-level resolution for most microbial taxa, but our findings
suggest that strain-level resolution is critical for obtaining coherent microbe-microbe interactions.
These taxonomic limitations may be resolved with strain-level shotgun metagenomics.

Finally, the many of the studies that are present in Qiita are cross-sectional studies, which will not
provide a longitudinal perspective surrounding these microbial interactions. Previous studies have
argued that microbe-microbe interactions can only be inferred from longitudinal data [81], citing
ecological models such as Lotka-Volterra. Furthermore, previous studies have also argued that
absolute abundances are necessary to infer the underlying dynamics of these microbial communities
[82, 83]. We anticipate that extensions of our proposed model can integrate these sampling strategies
to boost the accuracy of inferring microbe-microbe interactions.

5 Conclusion

Our major contribution here was providing a way to accelerate the estimation of the Multinomial
Logistic Normal distribution to enable scalable infererence on large microbiome datasets. We have
provided theoretical and empirical evidence to elucidate the connection between Multinomial PPCA
and Multinomial VAEs. Furthermore, we have shown that this approach is competitive across multiple
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classification tasks, with highlighted benefits for longitudinal datasets. We anticipate that extensions
of these methods will play a key role to building flexible time series models for longitudinal studies
and providing accurate microbe-microbe interaction estimates for co-culture validation. We have
shown-cased the merits of the proposed VAE architecture and anticipate these insights will benefit
machine learning efforts across the biological sciences.
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A Appendix

A.1 The ILR transform

As outlined in Equation 1, any orthogonal basis Ψ can be used to perform the ILR transform. Some
of these bases can be represented as binary trees with O(d log d) elements, where the lth column
vector of Ψ is given as follows:

Ψ.l = (0, . . . 0︸ ︷︷ ︸
k

, a, . . . a︸ ︷︷ ︸
r

, b, . . . , b︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
t

) a =

√
|s|√

|r|(|r|+ |s|)
b =

−
√
|r|√

|s|(|r|+ |s|)
(6)

where l indexes an internal node in the tree with left children r, right children s, nodes to the left k
and nodes to the right t [84] (Figure S1).

One can see that Ψ is a contrast matrix and can be forced to be orthonormal such that ΨTΨ = Id−1,
as highlighted in Equation 6. Furthermore, this construction can be scaled to large binary trees as
shown in Figure S1. Here, ηl represents the log-ratios at the internal node l, given by

ηl =

√
|r||s|
|r|+ |s|

log
g(xr)

g(xs)
(7)

For an extended discussion how to construct contrast matrices Ψ see Egozcue et al [84].

Since the tree itself forms a full rank orthonormal basis and no regularization onW is used, it doesn’t
matter which tree is used to parameterize the ILR basis. However, the choice of tree will influence the
runtime of the ILR transform. If a balanced binary tree is used, the memory requirements representing
Ψ can be brought down from O(d2) to O(d log d) and can reduce the matrix vector multplication
runtime from O(d2) to O(d log d). This can speed up the matrix-vector multiplication operations by
an order of magnitude for datasets with more than ten thousand dimensions.

The naive runtime of the ILR transform of a single sample x ∈ Rd is O(d2) due to the running
time of dense matrix-vector multiplication. As shown in Equation 1, the ILR transform can also
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Figure S1: An illustration of how the ILR basis can be constructed on large trees. The quantities
g(xr) and g(xs) yield the geometric means within a vector of proportion x for subsets xr and xs.
Here, r and s refer to the sets of features in the left and right subtrees for the internal node l. The
log-ratios η can be obtained from either Equation 6 or Equation 7

be represented by log-linear transformation with a contrast matrix. The binary tree can be used to
represent a contrast matrix, as discussed in [84].

If the binary tree is balanced, each row of Ψ will have O(log d) non-zero elements, since the tree has
a height of O(log d). Given that there are d rows, the matrix-vector multiplication behind the inverse
ILR transform φ(η) can be done in O(d log d). For the same reason, the ILR transform has a runtime
of O(d log d).

A.2 Challenges in deriving an analytical Multinomial VAE ELBO

Consider the generative model for Multinomial PPCA
p(x|z) = Mult(x|φ(Wz+ µ+ ε)) p(z) = N (z|0, Ik) ε ∼ N (0,Λ) (8)

With this in mind, we wish to estimate the variational distributions q(z|x) to approximate the
posterior p(z|x). This variational distribution can also be chosen to be normal distribution as follows:

q(z|x) = N (V (l̃og(x)− µ),D)

Noting that z ∼ N (V (l̃og(x)− µ),D), the reconstructed distribution of logits η = Wz+ µ is

η ∼ N
(
WV (l̃og(x)− µ) + µ,WDW T + Λ

)
To fine-tune these variational distributions to approximate the posterior distribution, we can maximize
the evidence lower bound (ELBO) given by

L = Eq(z|x)[log p(x|z)]︸ ︷︷ ︸
(i)

+Eq(z|x)
[
log

p(z)

q(z|x)

]
︸ ︷︷ ︸

(ii)

Since log (Mult(x|p)) ∝
d∑
i=1

xi log pi, the first term (i) is given by

Eq(z|x)
[
log p(x|z)

]
∝ Eq(z|x)

[ d∑
i=1

xi log φ(Wz + µ)i

]

∝
∫
z

N
(
z|WV (l̃og(x)− µ) + µ,WDW T + Λ

) d∑
i=1

xi log φ(Wz + µ)i dz

Computing the above integral is equivalent to computing the expectation of a logistic normal distri-
bution, which does not have an analytical solution [39]. As a result, the ELBO for the Multinomial
VAE is analytically intractable.
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A.3 Global Log-Concavity of the MLN Distribution

Since the MLN distribution is difficult to directly evaluate, it is challenging to make statements
regarding the Multinomial VAE ELBO. However, we can make concrete statements about the
posterior factors p(x|η) and p(η|z). Letting η = Wz + µ, the log probability density of the
multinomial distribution p(x|η) can be written as

log p(x|η) ∝
d∑
i=1

xi log φ(η)i

=
d∑
i=1

xi(η)i −m log

( d∑
j=1

exp(η)i

)
= g(η) · T (x)−A(η)

where m =
∑d
i=1 xi is the total number of counts and the functions g(η)i = φ(η)i, T (x)i = xi,

and A(η) = log

(∑d
j=1 φ(η)i

)
are the natural parameters of the exponential family distribution.

The Hessian of log p(x|η) is given by

d2 log p(x|η)
dηidηj

=
−d2A(η)
dηidηj

Since A(η) is strictly convex, log p(x|η) is strictly concave.

Similarly, the log probability density of the multivariate Gaussian distribution p(η|z) = N (µ,Σ) is
also strictly concave with respect to µ and Σ. Recall that the MLN probability density is given as

p(x|z) =
∫
η

p(x|η)p(η|z)dη

Since both p(x|η) and p(η|z) are strictly log-concave, their product is also strictly log-concave.
Furthermore, since log concavity is also preserved under marginalization, thus the MLN probability
density must also be strictly log-concave. Therefore, there must be a unique optimal estimate for µ
and Σ.

A.4 The log-concave nature of the Multinomial Linear VAE ELBO

Even though there isn’t an analyical solution to the Multinomial Linear VAE ELBO, we can still
explore the properties of the ELBO. Revisiting the MLN expectation

Eq(z|x)
[
log p(x|z)

]
∝
∫
z

N
(
z | V (l̃og(x)− µ),D

) d∑
i=1

xi log φ(Wz + µ)i dz

∝
∫
η

N
(
η |WV (l̃og(x)− µ) + µ,WDW T + Λ

) d∑
i=1

xi log φ(η)i dη

we can see that the normal distribution N
(
η | WV (l̃og(x) − µ) + µ,WDW T + Λ

)
is log-

concave with respect to its mean and covariance. As shown earlier,
d∑
i=1

xi log φ(η)i is also log-

concave with respect to η =Wz + µ. Since log-concavity is preserved through marginalization,
Eq(z|x)

[
log p(x|z)

]
must also be log-concave with respect to the meanWV (l̃og(x)− µ) + µ and

covarianceWDW T + Λ.

The KL divergence due to the prior

Eq(z|x)
[
log

p(z)

q(z|x)

]
=

1

2
+

1

2
1Td

(
log diag(D)−WV (l̃og(x)− µ)− diag(D)

)
is also log-concave with respect to the mean and covariance of q(z|x). Since the sum of two log
concave functions is also concave the ELBO is also a log concave function with respect to the mean
and covariance of q(z|x).
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Even though the Multinomial VAE ELBO itself does not offer a closed-form solution, we know that
it is log-concave. This provides theoretical justification that a global optimum can be reached with
reparameterization gradients. Following the intuition highlighted in [85, 24], once can see that the
VAE parameters can be identified up to rotation and scale.

Rotation identifiability:

W ′V ′ =WV where W ′ ←WR V ′ ← RTV for RRT = Ik

whereR is any rotation matrix.

Scale identifiability:

W ′D′W ′ =WDW where W ′ ←WA1/2 D′ ←DA−1

whereD is a diagonal matrix with strictly positive entries.

In our VAE implementation, the eigenvalue scale identifiability issue was resolved by projecting
W into a Grassmaniann manifold and fixingW TW = Ik [86]. The rotation identifiability is still
outstanding, and we suspect that this could explain the slow convergence rate of the Linear VAEs
[49].

B Experimental details

B.1 Training details

All microbiome data was retrieved from Qiita using Redbiom [87]. For the mouse dataset, 39 studies
were considered. Samples were excluded from the training dataset if they contained less than 1000
reads. Microbes were excluded from the entire dataset if they weren’t observed in at least 10 samples.
For the human dataset, 55 studies were considered. Studies were excluded if they stored their samples
at room temperature for more than 24 hours. Protocol benchmarks on DNA extraction, sample storage
and the MBQC were all excluded from training. Samples were excluded from the training dataset if
they contained less than 1000 reads. Microbes were excluded from the entire dataset if they weren’t
observed in at least 30 samples. All samples were processed with Deblur [88] and trimmed to 100bp.

The VAEs that were trained on both the mouse and the human used very similar architectures with
a 5 layer encoder with softplus activations and a dense decoder whose weighted are embedded in
a Grassmannian space [86]. The latent dimensionality for both VAEs was 128 units. The only
difference between the two models is the mouse VAE was trained with Λ = I , whereas the human
VAE was trained with a diagonal covariance Λ in order to better handle technical variation due to
sample collection protocols. Both of these models were trained for 10k epochs, with the mouse VAE
taking 6 hours and the human VAE taking 24 hours on a single Nvidia V100 GPU. Due to the long
runtime, both LDVAE and LDA was only trained for 1k epochs on the mouse dataset using the default
parameters in scVI and scikit-learn respectively.

The Multinomial VAEs were all trained on 80% of the full dataset. The LDVAE and LDA were also
trained on the same training split for the mouse dataset.
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B.2 Co-occurrence analysis

Figure S2: Distributions of the VAE decoder: (a) Distribution of the decoder weights in ILR space. (b)
Distribution of the decoder weights after projection with Ψ. (c) Distribution of Euclidean distances
on ΨW . (d) Distribution cosine distances from VAE decoder embedding ΨW .
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