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Abstract

For precision medicine to reach its full potential for treatment of cancer and other diseases,
protein variant effect prediction tools are needed that characterize variants of unknown
significance (VUS) in a patient’s genome with respect to their likelihood to influence treatment
response and outcomes. However, the performance of most variant prediction tools is limited by
the difficulty of acquiring sufficient training and validation data. To overcome these limitations,
we applied an iterative active learning approach starting from available biochemical,
evolutionary, and functional annotations. The potential of active learning to improve variant
interpretation was first demonstrated by applying it to synthetic and deep mutational scanning
(DMS) datasets for four cancer-relevant proteins. We then probed its utility to guide
interpretation and functional validation of tumor VUS in a potential biomarker for cancer therapy
sensitivity, the nucleotide excision repair (NER) protein Xeroderma Pigmentosum
Complementation Group A (XPA). A quantitative high-throughput cell-based NER activity assay,
fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR), was used to
validate XPA VUS selected by the active learning strategy. In all cases, selecting VUS for
validation by active learning yielded an improvement in performance over traditional learning.
These analyses suggest that active learning is well-suited to significantly improve interpretation
of VUS and cancer patient genomes.
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64  Introduction
65
66  Sequence-based genetic variant interpretation is a fundamental component of the study of
67 human disease, diagnosis of genetic disorders, selection of treatments, and prediction of patient
68 outcomes (1). In particular, precision medicine approaches to interpret variants of unknown
69 significance (VUS) in tumors and guide clinical decision-making represent significant interests of
70  the National Cancer Institute (NCI) (2). However, the performance of sequence-based predictive
71 tools is limited by difficulty in acquiring sufficient benchmarking data from diverse populations
72 and environments and a resulting lack of functional validation (3). These tools often also fail to
73  provide specific hypotheses for mechanisms of dysfunction, which can inform predictive power
74  and treatment selection in precision medicine.
75 An increasing number of rare, nonrecurrent VUS are being identified throughout tumor
76  genomes. Interpretation of these VUS poses a significant challenge compared to recurrent
77  hotspot variants. Rare, nonrecurrent VUS are unlikely to be the main drivers of tumor formation,
78  but they have potential to influence progression and response to therapy. Hence, taking such
79  VUS into account when designing a therapy can be critical to clinical outcome. Existing
80 approaches to analyze VUS such as genome-wide association studies (GWAS) and large-scale
81 pooled functional screens are infeasible for all genes and novel variants of interest. GWAS
82  studies in particular have limited power for rare VUS, fail to predict the effects of single VUS of
83 interest, cannot identify causality for single VUS, and require significant experimental follow-up
84  (4). This represents a significant challenge for identifying reproducible, reliable biomarkers with
85 clinical utility (5). The National Human Genome Research Institute, the American College of
86  Medical Genetics and Genomics, and the Association for Molecular Pathology have
87  emphasized the need for strategies that prioritize VUS for in-depth study using benchmarked,
88  well-controlled, physiologically relevant validation assays (3,6).
89 The variant interpretation challenge posed by rare tumor VUS is illustrated by the
90 reported correlation between nucleotide excision repair (NER) activity and tumor sensitivity to
91  cisplatin treatment (7,8). NER is the primary repair mechanism for bulky DNA adducts such as
92 those introduced by ultraviolet (UV) light and platinum (Pt)-based chemotherapeutics like
93 cisplatin (9). Defective NER resulting from nonrecurrent VUS in Excision Repair Cross
94  Complementation Group 2 (ERCC2) or from loss of ERCC1 sensitizes tumor cells to cisplatin
95 and leads to improved patient outcomes (10-13). In addition, recent study of The Cancer
96 Genome Atlas (TCGA) Pan-Cancer Atlas has revealed that most genetic lesions in NER genes
97  are nonrecurrent nonsynonymous single nucleotide variants (SNVs) with unknown impact on
98 therapy sensitivity and cancer patient outcomes (14). Based on the studies of ERCC2 tumor
99 VUS (11,12), a subset of the tumor VUS in other NER genes is expected to impact tumor cell
100 response to cisplatin and other Pt-based chemotherapeutics. However, because NER genes
101  are not known tumor drivers and there are few if any recurrent hotspot tumor mutations, NER
102  variant interpretation is challenging.
103 In this report we implement an active machine learning approach to predict the NER
104  capacity of VUS in Xeroderma Pigmentosum Complementation Group A (XPA), an essential
105  scaffolding protein in NER (9,15-17). Germline mutations in XPA result in loss of NER and lead
106  to severe phenotypes in patients with inherited Xeroderma Pigmentosum (XP) disorder
107 including increased sensitivity to sunlight, predisposition to skin cancer, and neurological
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108  impairment (18-20). Well over 100 unique XPA VUS have been reported in tumor databases to
109 date. These XPA tumor VUS represent an unstudied pool of variants hypothesized to

110  measurably impact NER activity and response to Pt-based chemotherapeutics.

111 Machine learning paired with iterative functional validation is a promising strategy to

112  overcome variant interpretation limitations and rapidly provide accurate annotations for VUS
113  from tumor genomes without exhausting limited time and resources (1,21). Specifically, in an
114  active learning strategy, VUS that are most challenging to classify by an initial machine learning
115  model, i.e. VUS closest to the decision boundary, are functionally tested and reincorporated with
116  new phenotypic labels in subsequent iterations of algorithm training (22,23). The approach was
117  first benchmarked with simulations on synthetic data and available deep mutational scanning
118  (DMS) data for four cancer-relevant proteins, using a logistic regression model trained to predict
119  VUS effect using available biochemical, evolutionary, and functional annotations during training.
120  We then applied this overall approach to predict the NER capacity of tumor VUS in XPA, using a
121 limited number of labeled NER-deficient and -proficient XPA variants and unlabeled XPA VUS
122  from tumor genomic databases. The performance of active learning was compared to traditional
123  learning using the XPA dataset by incorporating new variant labels after measuring NER activity
124  using a fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR) assay. In
125  agreement with the synthetic and DMS simulations, active learning using new NER-proficient or
126  -deficient labels derived from FM-HCR improved algorithm performance more than traditional
127  learning. These results establish active learning as a promising framework for overcoming

128 limited or biased VUS training data and maximizing the utility of VUS selected for experimental
129  evaluation.
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130 Materials and Methods
131
132  Simulating active learning with synthetic and deep mutational scanning data
133  Synthetic data were generated from two Gaussian distributions centered at [-1, 0, 0] and [1, O,
134 0] with a covariance matrix of [[1, 0, 0], [0, 1, 0], [0, O, 1]]. Scenarios were simulated where the
135 class distribution was balanced with a 1:1 ratio or skewed with a class ratio of 1:5. In each case,
136  the total number of instances was 600. Deep mutational scanning (DMS) data were acquired for
137  four proteins relevant to cancer (PTEN, TPMT, NUDT15, CYP2C9) for which variant effect on
138  protein cellular abundance was assayed using variant abundance by massively parallel
139  sequencing (VAMP-seq) (Supplementary Table S1) (24-26). Features to classify variants in
140 the DMS proteins were compiled from the existing Database of Human Nonsynonymous SNPs
141 and their Functional Predictions (dbNSFP) (27); 19 scores were considered encompassing
142  physical and biochemical properties of amino acid sidechains, sequence homology, evolutionary
143  sequence conservation, computational pathogenicity metrics based on protein stability, protein
144  secondary structure elements, and disease-association, as well as ensemble predictors.
145 In each simulation experiment, training was initiated with ten labeled synthetic instances
146  or DMS variants, either with balanced or skewed class ratios to reflect real-world scenarios.
147  Held-out test sets were created using 10% of each dataset and maintaining the same class ratio
148  as the overall class ratio for each to evaluate the performance of the models during each
149  training iteration. A logistic regression model was trained on this initial dataset and the model
150  was used to make predictions on instances in the unlabeled pool.
151 In the active learning approach, the five most uncertain predictions (with predicted class
152  probabilities closest to 0.5) were selected, labeled, and added to the pool of labeled instances
153  orvariants. In the traditional learning approach, five instances or DMS variants were selected
154  randomly, labeled, and added to the labeled pool. The logistic regression model was retrained
155  using the updated labeled pool. This procedure was iterated 20 times to monitor the evolution of
156  model performance as more labeled instances were added following the two different active and
157  traditional learning strategies. Model performance was measured by the F1 score on the held-
158  out test sets:

precision X recall

159 F,=2x —
precision + recall

160  where
161 isi TP

6 precision = T FP
162 and
’ TP

63 recall = TP T FN

164  and TP: number of true positives (low-abundance variants); FP: number of false positives (wild-
165  type like variants predicted to be low-abundance); FN: number of false negatives (low-

166  abundance variants predicted to be wild-type like). The F1 score was selected because this
167  score accounts for both precision and recall and maintains a balance between them. Because
168  both precision and recall must be high for the final Fy score to be high, this metric is well-suited
169  for variant datasets that usually exhibit an imbalance between the number of samples in each
170  class.


https://doi.org/10.1101/2021.11.08.467747
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.08.467747; this version posted November 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

171

172  Training a logistic regression model to predict NER activity of XPA VUS

173  XPA variants were curated from published literature and tumor genomics databases: The NCI
174  Genomic Data Commons Pan-Cancer Atlas, cBioPortal for Cancer Genomics, the Catalogue of
175  Somatic Mutations in Cancer (COSMIC) v90, the Cancer Cell Line Encyclopedia (CCLE), AACR
176  Project GENIE v7.0, and the International Cancer Genome Consortium (ICGC) data release 28.
177  The final set of 73 tumor VUS curated from available genomics databases included only somatic
178  single nucleotide variants (SNVs) from unique tumor samples. An additional 16 VUS were

179  curated from the literature and were either reported without cell survival or cell-based repair

180  activity data or had conflicting reports between studies. All 19 variants labeled as NER-proficient
181 or NER-deficient were labeled based on reported cell survival after UV treatment or cell-based
182  NER activity data.

183 Each variant was encoded with a set of 19 features that consisted of evolutionary

184  metrics and variant scores generated by pre-existing variant pathogenicity predictors. As for the
185  DMS simulations, these features were accessed from the Database of Human Nonsynonymous
186  SNPs and their Functional Predictions (dbNSFP) v4.0a (27). All variants analyzed in this study
187  and the associated references and reported data are provided in Supplementary Tables S2
188 and S3. XPA is listed under UniProt ID: P23025; RefSeq (RRID:SCR_003496) accession

189  number: NM_000380.3.

190 As several features are highly correlated (Supplementary Figure S1), a principal

191  component analysis (PCA) of the feature matrix was performed (Supplementary Figure S2).
192  The first three principal components were used as input features of the logistic regression model
193  considering that the initial training set is usually very small. The model was developed using the
194  implementation in the scikit-learn machine-learning framework (RRID:SCR_002577) (28).

195 The use of a semi-supervised learning algorithm was also explored to predict the NER
196  activity of XPA VUS. A popular approach to semi-supervised learning is to create a graph that
197  connects training instances based on their pairwise distances in the input space. Known labels
198  are then propagated through the edges of the graph to predict the labels of unlabeled instances
199  (29). This approach has the advantage of simultaneously using both labeled and unlabeled

200 instances during training, compared to supervised learning algorithms. A semi-supervised label
201  spreading model (30) was trained with the same XPA variant feature matrix used to train the
202 logistic regression model, implemented in the scikit-learn machine-learning framework (28). The
203  KNN kernel was used with 7 neighbors.

204

205 Logistic regression XPA variant effect predictor with active learning and statistical

206 analyses to compare against traditional learning

207  The initial logistic regression model was trained for XPA variant effect classification with the 19
208 variants noted above, labeled according to NER activity reported in the literature. To apply the
209 active learning strategy to XPA, this initial model was first used to predict the class probabilities
210  of the remaining VUS in the dataset. For the top ten VUS with the least certain predictions, i.e.,
211  probabilities closest to 0.5, (L138R, R207G, H242L, D70H, E111A, R227W, M98I, D154A,

212  T125A, E106G, ordered from least to more certain), NER activity was measured by FM-HCR for
213  seven VUS (L138R, H242L, D70H, E111A, D154A, T125A, E106G). In the FM-HCR analysis,
214  VUS with NER activity significantly lower than that of wild-type XPA, with p < 0.05 by unpaired t
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215 tests, were labeled NER-deficient. Labeling of these assayed variants was blinded from their
216  class probabilities predicted by the logistic regression model. To test the hypothesis that active
217  learning improves the performance of XPA variant effect prediction more than traditional

218 learning, a logistic regression model was retrained using a training set consisting of the initial 19
219 labeled variants plus the seven VUS the initial model was least certain about, labeled according
220  to their NER activity. This was termed the “active model”.

221 In parallel, the NER activity was measured by FM-HCR for an additional set of 20 VUS
222  consisting of (i) variants well separated in the PCA scatter plots and (ii) variants located in the
223  region where the two classes are believed to overlap (Supplementary Figure S2). A logistic
224  regression model was then trained using a training set consisting of the initial 19 labeled

225  variants plus seven variants randomly selected from the pool of seven original and 20 new FM-
226  HCR assayed variants. This was termed the “traditional model”. Next, the active and traditional
227  model performances as measured by F1 scores were compared for the remaining FM-HCR

228  assayed variants that weren’t selected for training. Due to the stochasticity in selecting variants
229 to train the traditional model, the procedure was repeated 100 times. To enable a fair

230  comparison, the performances of the active and traditional models were computed based on the
231  same evaluation set in each iteration. A Mann Whitney U test was performed to compare the
232  differences between the active and learning model performances.

233

234  Full-length XPA model

235  XPA is a modular protein with two unordered regions at the N- and C-termini, which precludes
236  an accurate representation of the 3D structure of the full-length protein in a single image. To
237  display VUS predictions in the context of the XPA protein structure, a structural model of full-
238 length XPA was generated based on reported XPA structures and integrative models (31-35).
239  Starting with the coordinates of the globular XPA DNA binding domain (residues 98-239,

240 PDBDEV00000039) (32), Rosetta FloppyTail (36) was used to model the flexible regions of XPA
241 spanning residues 1-97 and 240-273. Default settings were used except that the perturbation
242  cycles and models sampled parameters were increased to 1000 and 10 for each floppy talil,
243  respectively. Graphical representations and images were generated using PyMOL Molecular
244 Graphics System, version 2.0.7, Schrédinger, LLC (RRID:SCR_000305).

245

246  Cell lines and cell culture

247  XP20S cells (RRID:CVCL_3242) were kindly provided by Dr. Orlando Schéarer (Center for

248  Genomic Integrity, Institute for Basic Science, Ulsan National Institute of Science and

249  Technology, Korea). Cells were maintained in DMEM (Thermo Fisher Scientific #11995073)
250  supplemented with 10% FBS (Thermo Fisher Scientific #A3160502) and 1% Penicillin-

251  Streptomycin (Thermo Fisher Scientific #15140122). No mycoplasma contamination was

252  detected in this cell line throughout the experiments (SouthernBiotech #13100-01). XPA

253  expression plasmids contain full-length human XPA (NM_000380) with the indicated mutations
254  in the pcDNAS.1(+) backbone (GenScript custom order).

255

256 FM-HCR assay

257  Reporter plasmids were prepared as a cocktail containing pMax_GFP plasmid damaged with
258 800 J/cm? UVC radiation (herein referred to as pMax_GFP_UV) and an undamaged pMax_BFP
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259  control. An undamaged cocktail containing pMax_GFP and pMax_BFP was also utilized as a
260  positive control. XP20S cells (RRID:CVCL_3242) were harvested by trypsinization and pelleted
261  via centrifugation. Cell pellets were washed with DPBS (Thermo Fisher Scientific #14190-144)
262  and resuspended in DMEM (Thermo Fisher Scientific #11995073) supplemented with 10% FBS
263  (Thermo Fisher Scientific #A3160502) to a final density of 2 x 108 cells/mL. XP20S cells were
264  transfected with 200 ng of plasmid containing the XPA VUS of interest or wild-type XPA as well
265 asthe FM-HCR reporter plasmids using the Gene Pulser MXCell Plate Electroporation System
266  (Bio-Rad Laboratories #165-2670). Plate electroporation was performed at 260 V, 950 pF.

267 FM-HCR analyses were performed as previously described (37,38). Briefly, fluorescence
268  was measured via an Attune NxT Flow Cytometer (Thermo Fisher Scientific). Percent reporter
269  expression values representing the NER capacity of cells transiently transfected with plasmids
270  encoding each XPA variant were determined as previously described (37,38) and normalized to
271  the NER capacity of wild-type XPA. Unpaired t-tests were performed for each wild-type and

272  XPA variant pair (n = 3 biological replicates) using GraphPad Prism 9 (RRID:SCR_002798).
273

274  Data Availability

275  The data generated in this study are available within the article and its supplementary files. All
276  code files are available as Jupyter Notebooks in the supplement with accompanying source
277  data.
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278 Results

279

280  Active learning improves variant effect predictions for proteins with diverse functions
281  Active learning is a machine learning approach that incorporates iterative rounds of label

282  determination (e.g., assigning a property from a functional assay) and training during which the
283  algorithm chooses the data from which it learns in subsequent training rounds. Here, after

284  functional validation of the VUS with the most uncertain initial predictions, the resulting data
285 (e.g., variant effect on protein activity) are then used to newly label the tested variants, and the
286  algorithm is retrained (Figure 1). Accurate predictions may thus be achieved using fewer rounds
287  of training and labeling than for other strategies for validating variants (39).

288 To test the efficacy of this proposed active learning approach before using it to guide
289 interpretation and experimental analysis of XPA VUS, a series of simulations was performed
290 comparing active and traditional learning on two types of data: (i) synthetic data generated from
291  Gaussian distributions containing two binary classes of instances and (ii) real variant effect data
292  from pre-existing DMS analyses, which quantify the effects of every possible amino acid

293  substitution within a protein in cells and provide deleterious or neutral molecular phenotype

294  labels for each variant. For these simulations, synthetic instances or DMS variants were present
295 intwo classes, and the identity of each synthetic instance or the phenotype associated with

296 each DMS variant was either included as a label or excluded, resulting in unlabeled datapoints.
297  Within the DMS analyses, we focused on four proteins with known roles in tumor suppression,
298  progression, or therapeutic response: phosphatase and tensin homolog (PTEN) (24), thiopurine
299  S-methyltransferase (TPMT) (24), Nudix hydrolase 15 (NUDT15) (26), and cytochrome P450
300 family 2 subfamily C member 9 (CYP2C9) (25). In addition to the phenotypic labels, we

301  compiled 19 features for each DMS variant from the Database of Human Nonsynonymous

302 SNPs and their Functional Predictions (dbNSFP) to be used as input features for training and
303 classification (27), These features encompassed physical and biochemical properties of amino
304 acid sidechains, sequence homology, evolutionary sequence conservation, computational

305 pathogenicity metrics based on protein stability, protein secondary structure elements, and

306 disease-association.

307 For each type of data, an uncertainty sampling query strategy (active learning) was

308 compared to a random sampling strategy (traditional learning) (Figure 2A). A logistic regression
309 model was trained for these analyses (23); we note that other algorithms could be used within
310 the active learning framework. In a real-word scenario, the set of labeled data available for

311  training the initial iteration of the algorithm will often come from variants previously tested and
312  reported in the literature. Thus, the distribution of initial training data between the two possible
313  binary classifications for each variant may not reflect the overall ratio for all possible variants in
314  the protein. This was true for the DMS data, where each protein of interest exhibited varying
315  ratios between the number of variants with wild-type or protein-deficient phenotypes

316  (Supplementary Table S1). To reflect this reality in our simulations, differing class ratios of
317  labeled variants were tested in the initial labeled training sets and changes in algorithm

318  performance were measured over 20 iterations of active and traditional learning. During active
319 learning, synthetic instances or DMS variants with the most uncertain predictions were identified
320 and labeled based on the binary class to which they belonged.
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321 Active learning achieved stronger performance than traditional learning in nearly all

322  scenarios (Figure 2 and Supplementary Figure S3). For example, in one DMS simulation,

323  active learning outperformed traditional learning by a mean F1 score of 0.052 across the 20

324  iterations (p = 3.44 x 1071*, two-sided paired t-test) (Figure 2E). Similar improvement of active
325 learning over traditional learning was achieved in all other simulations except in two exceptional
326  scenarios. In the first, the class ratios of the initial pool of synthetic instances (5:1 or 7:3) were
327  heavily skewed opposite to the overall class ratio of the dataset as a whole (1:5 or 1:1.9)

328 (Supplementary Figures S3D and S3H). In the second, for CYP2C9 (Supplementary Figures
329  S3L-N), active learning provided notable benefits in the early training iterations with the most
330 limited proportions of labeled data, although this benefit decreased in later iterations as larger
331 proportions of training data were labeled. Nevertheless, using active learning to train a variant
332 effect predictor enabled flexible integration of pre-existing phenotypic data and reduced the time
333  and resources needed to improve predictions. Given these primarily positive results, we next
334  applied a similar active learning approach to XPA tumor VUS.

335

336  Prediction of XPA VUS effects on NER

337  As an essential NER scaffolding protein, XPA performs two key functions during repair: (i) DNA
338 binding at the junction between single strand and double strand DNA that is formed upon

339  opening of the ‘repair bubble’ (15-17), and (ii) interaction with multiple proteins that constitute
340 the NER machinery (9,32,40-43) (Figure 3A). Previous functional study of specific XPA

341  variants, such as those variants known to cause the germline inherited disorder XP, were used
342  to classify and assign labels to an initial training dataset with 19 labeled variants (8 NER-

343  proficient and 11 NER-deficient). An additional 89 unlabeled VUS were curated primarily from
344  publicly available tumor genomic databases to comprise the rest of the dataset (Figure 3B,;

345  Supplementary Tables 2 and 3).

346 Following the approach used for the DMS analysis, 19 features for each XPA variant
347  were compiled from dbNSFP including: amino acid properties, sequence homology,

348  evolutionary sequence conservation, computational variant pathogenicity, and ensemble scores.
349  The features exhibited substantial variability across variants (Figure 4A; Supplementary

350 Figure S1) and inspection of the ability of these scores to distinguish known NER-deficient and
351  -proficient XPA variants revealed clear room for improvement (Supplementary Table 4). These
352 data further emphasize the need for an approach that incorporates functional data specific to
353 the protein and phenotype of interest.

354 Given the limited amount of training data for XPA, the dimensionality of the initial feature
355  set was reduced using principal component analysis (PCA) before training a logistic regression
356  algorithm (Supplementary Figure S2). Mapping the initial predictions as the probability of being
357 classified NER-deficient onto the PCA of the variant features revealed clusters of high-

358 confidence predicted NER-proficient and -deficient variants, with a population of lower

359  confidence predictions at the boundaries between clusters (Figure 4B). We also observed

360 similar patterns when making predictions using a semi-supervised label spreading algorithm
361  (30,44,45) to analyze the XPA dataset (Supplementary Figure S4; Supplementary Tables
362 S5, S6).

363 The NER-deficient class probability for each variant was mapped onto a structural model
364  of XPA, further supporting the algorithm predictions. For example, coordination of a zinc atom
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365 by cysteine residues 105, 108, 126, and 129 is required for the structural and functional integrity
366  of XPA (46). Hence, tumor VUS such as C126W and VUS in adjacent residues were predicted
367 to be NER-deficient (Figure 4C). In contrast, mutagenesis studies have demonstrated that

368  single mutation of residues along the large DNA binding surface of the XPA DBD are sometimes
369 insufficient to abrogate DNA binding and NER activity (47,48), and fewer VUS on this surface
370  were predicted to be NER-deficient (Figure 4C). Similarly, H244R, C261S, and C264S in the
371  flexible C-terminus have been shown to be NER-deficient, and the nearby tumor VUS H242L
372  was predicted to also be NER-deficient (Figure 4C). These results demonstrate the potential of
373 variant effect prediction for XPA VUS.

374

375  Active learning using functional validation improves variant effect predictions for XPA
376  To determine the effect of incorporating functional validation into our approach, 27 VUS were
377  selected for functional validation by FM-HCR, a high-throughput host cell reactivation assay to
378 quantify NER capacity (37) (Figure 5A). These VUS spanned the spectrum of prediction

379 confidence, enabling evaluation of algorithm performance and comparison of active learning
380  with traditional learning. This set included seven of the ten VUS with least certain class

381  probabilities from the initial logistic regression model and an additional 20 VUS for evaluation of
382  model performance.

383 The XPA VUS selected for FM-HCR were transiently overexpressed in XPA-deficient
384  XP20S cells (49), together with a UV-damaged green fluorescent protein (GFP)-expressing
385  reporter. Successful NER of the UV-damaged reporter in NER-proficient cells can be detected
386 and quantified by flow cytometry (Figure 5A). As anticipated, XPA-deficient XP20S cells had
387  very little GFP reporter expression relative to XP20S cells rescued with wild-type (WT) XPA
388 (Figure 5B). Several variants rescued NER activity to a similar degree, but not significantly

389  beyond that of WT XPA, providing assurance that cells transiently complemented with different
390 expression constructs can achieve similar levels of NER capacity as WT (Figure 5B). The FM-
391 HCR results also revealed a gradient of NER deficiency resulting from a subset of variants. As
392 predicted, profound NER defects were observed upon substitution of residues that coordinate
393 the zinc ion, such as C126 (Figure 5B). Notably, many variants predicted to be deleterious by
394  pre-existing predictors were not associated with significant NER-deficiency and vice versa

395 (Supplementary Table S7). Comparison of our initial algorithm predictions with these functional
396 data provided the basis for an iterative active learning approach (Supplementary Table S8).
397 To further evaluate the active learning approach, the logistic regression model was

398 retrained using 26 labeled training variants. The original 19 training set variants were used with
399 labels assigned based on previous characterization in the literature. In addition, seven VUS
400 from the group least confidently predicted by the initial model were added using the newly

401  assigned NER-proficient or -deficient labels from the FM-HCR analysis. The active learning
402 model was compared to F1 scores from 100 traditional learning models trained using the original
403 19 labeled variants plus seven variants randomly selected from the remaining 20 variants

404 assayed by FM-HCR. To enable a fair comparison, the active learning model was evaluated on
405 the same held-out variants as each of the 100 traditional learning models, and thus, we also
406 obtained 100 F4 scores for the active learning approach. Consistent with our hypothesis, the
407  active learning model performed significantly better than the traditional learning model (mean F
408  score 0.752 vs. 0.650 for 100 trials, p = 3.8 x 10~1°, Mann Whitney U test) (Figure 6). This
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409 improvement in performance illustrates that active learning is practical and beneficial in real-life
410  situations where the amount of initial training data is small and obtaining additional labels is
411 costly and laborious.
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412  Discussion

413

414 Our analyses of synthetic, DMS, and real-world XPA variant datasets demonstrate that active
415 learning and targeted functional validation focused on variants that are refractory to algorithmic
416  classification can address current variant interpretation challenges. Functional validation is

417  increasingly recognized as a centerpiece of variant interpretation (3,6,50), and active learning
418  provides an efficient framework to guide the selection and incorporation of validation data for
419  maximal impact. Screening out variants unlikely to be informative and prioritizing others for

420 follow-up avoids wasted experimental effort and has the potential to more rapidly identify

421  variants with functional effects. Our analyses provide the basis for future work to predict, screen,
422  and conduct in-depth studies of XPA VUS that reduce NER activity and sensitize cells to

423  cisplatin.

424 The analyses of synthetic and DMS data identified a few discrete examples where active
425 learning failed to significantly improve performance compared to traditional learning. Notably,
426  this occurred in scenarios with class ratios for the overall dataset that were heavily skewed

427  opposite to the subset of labeled training instances (Supplementary Figures S3D and S3H).
428  This finding reveals a limitation in how sparse or biased the initial training dataset can be while
429  still generating accurate predictions. It also suggests that active learning cannot fully overcome
430 severe under-representation of variant classes in the training set that are more prevalent in the
431 overall data. However, given that the sources of labels used for training are known, it should be
432 possible to foresee when there is likely to be a substantial ascertainment bias that could

433 decrease the utility of active learning. The results for the CYP2C9 DMS data also hint that the
434  success of active learning may be context dependent. While active learning showed

435 improvement over traditional learning for CYP2C9 during the early iterations with the most

436 limited proportion of labeled training data, which likely reflects most real-world scenarios,

437  improvement was small in later rounds (Supplementary Figures S3L-N). More thorough

438 exploration of DMS and other data will be necessary to clearly define the scenarios in which
439  active learning is most beneficial.

440 We have demonstrated that active learning can be successfully applied using inputs

441  derived from either functional data or computational predictions of functional significance to

442  improve variant effect predictions. This is a central strength, particularly because active learning
443 can also be easily extended to include additional phenotypic data of interest such as protein
444  structural data and other functional assays, which would both be expected to improve predictive
445  performance. Using phenotypic data such as drug sensitivity to validate variant labels during
446 training represents one future area of exploration that may allow for the generalization of this
447  approach to other proteins or protein complexes.

448 Improved performance of XPA variant interpretation is anticipated with higher quality and
449  consistency of labels in the training set. The initial XPA variant training labels used here were
450 derived from published results of different cell-based assays from various research groups and
451  the specific variants were selected subjectively. Starting with standardized, quantifiable FM-
452  HCR analyses to derive accurate labels for the entire initial training set is expected to greatly
453 improve predictive performance. Future studies will include updating the active learning model
454 by retraining with XPA variants labeled solely by high quality FM-HCR analysis and conducting
455  several additional iterations of active learning. Incorporating deeper insights into the structure
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456  and mechanisms of the NER machinery into training is also anticipated increase the

457  performance of VUS interpretation. This information will also enable the development of

458 hypotheses about mechanisms of NER dysfunction, which in turn can be tested and refined
459  using cell-based, biochemical, biophysical, and structural analysis.

460 Our analyses underscore that single XPA tumor VUS have the potential to abrogate

461 NER activity in cells, irrespective of other genetic events. However, there are many VUS in NER
462  proteins within the same tumor samples that could influence NER activity; tumor cells are

463 complex and variant interpretation should consider all potentially relevant variants in an

464 individual (14). Nonetheless, even with these limitations, the active learning strategy paired with
465 FM-HCR validation shows significant promise for XPA variant interpretation. One goal on the
466  horizon is to better understand and predict tumor cell drug sensitivity using higher performing
467  models to identify XPA variants as biomarkers for cisplatin response. This would involve directly
468 testing repair of cisplatin-induced lesions in cells expressing tumor VUS. Ultimately, this

469  machine learning approach and future improved versions are anticipated to enable prediction of
470 the cisplatin response in cells expressing a broad range of NER VUS.

471 Active learning can overcome small training datasets, enable the selection of a feasible
472  number of VUS for validation, and maximize the performance gains provided by cell-based

473  functional validation. By providing actionable insights into VUS, this approach contributes to the
474  successful implementation of cancer precision medicine.
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636 Figures and Legends
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639 Figure 1. Schematic of the active learning approach to variant interpretation.

640  First, a machine learning algorithm is trained on a set of labeled variants. Next, a subset of VUS
641  with the lowest confidence predictions are selected and functionally validated. These newly

642 labeled variants are then incorporated in the subsequent iteration of algorithm training. The

643  algorithm can be retrained until predictive performance plateaus or increases only incrementally.
644 In the diagram, NER-deficient variants are labeled with D, NER-proficient variants with P, and
645 unlabeled VUS with a ‘“?’. The color spectrum indicates the confidence of the prediction for each
646  variant.
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648  Figure 2. Active learning results in more accurate models compared to traditional

649 learning on synthetic and deep mutational scanning data.
650 A, Schematic representation of the simulation protocol to compare active learning with
651  traditional learning. The mean F1 score was used to compare active and traditional learning for:
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652  synthetic datasets with balanced class ratios (1:1) in both the overall data and the initial labeled
653  training setin B, or skewed class ratio (1:5) in both the overall data and initial labeled training
654 setin C; and a DMS PTEN dataset with a balanced class ratio (1:1) in the initial labeled training
655 setin D, or a skewed class ratio (2:3) in the initial labeled training set in E. Error bars indicate
656  95% confidence intervals around the mean F1 score. All initial labeled pools had ten instances
657  orvariants to start except for the skewed synthetic dataset in B, which had 12 instances to

658 maintain the 1:5 ratio with sufficient starting numbers of instances in both classes. See

659  Supplementary Table S1 for additional details regarding the composition of the PTEN dataset.
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Figure 3. XPA contains many VUS and few functionally characterized variants.

A, Schematic representation of the XPA protein with variants and partner protein interaction
regions (horizontal lines) mapped across the sequence. The locations of NER-deficient or -
proficient variants as well as VUS are indicated with triangles. B, Diagram outlining the sources
of variants and labels used for training the initial variant effect prediction algorithm.
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666
667  Figure 4. Logistic regression model to predict NER-deficient variants.

668 A, Heatmap of pairwise Spearman’s rank correlations of five representative features for each
669  XPA variant. Features shown include one predictor from each of the following classes: amino
670 acid properties (Grantham), sequence homology (SIFT), evolutionary sequence conservation
671 (ConSurf), pathogenicity (MutationTaster), and ensemble scores (MetaSVM). B, Effects of XPA
672  VUS on NER activity predicted by the logistic regression model. Input features are the first three
673  principal components from a principal component analysis (PCA) of the original set of 19

674  features from doNSFP. VUS selected for functional validation outlined in black: D5Y, G6R,

675 A18S, R30W, A60T, D70H, G72E, G73E, P94L, E106G, K110E, E111A, F112C, M113I, D114Y,
676 T125A, C126W, C126Y, R130I, L138R, Y148D, D154A, F164C, V234M, H242L, R258C, and
677 K272N. C, Model of full-length XPA with variants of interest depicted as spheres and colored
678  according to the scheme in B (top). The precise fold and orientation of the flexible N- and C-
679  termini regions are not known and are shown only for representative purposes. The bottom

680 panel shows a schematic diagram of XPA and the location of the XPA DNA binding domain.
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681
682  Figure 5. FM-HCR to test NER capacity of selected XPA VUS.

683 A, Diagram of FM-HCR assay in XPA-deficient XP20S cells. Cells transfected with UV-

684  damaged fluorescent reporters as well as either WT XPA or XPA VUS are analyzed by flow
685  cytometry to detect fluorescent reporter expression. Successful NER results in fluorescent
686  reporter repair and expression (top), which is not observed in control cells lacking XPA (bottom).
687 B, Bar graph showing relative reporter expression in cells expressing empty vector (EV), WT
688  XPA, or the 27 VUS selected for validation. Seven of the top ten VUS with the least certain
689 class probabilities (light grey) were tested, as well as 20 other VUS for further evaluation (dark
690 grey). Damaged reporter expression was normalized to an undamaged control reporter to

691  account for transfection efficiency. The percent reporter expression for each variant was

692 normalized to that determined for WT to generate the final relative reporter expression (n = 3
693  biological replicates). Error bars indicate standard deviation from the mean. Seven of the VUS
694  analyzed maintained significantly decreased repair capacity when compared to WT. * signifies
695 p < 0.05, unpaired t test.
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696
697  Figure 6. Active learning improves predictions of XPA variant NER capacity.

698  Plot of F1 scores comparing the performance of active versus traditional learning with the XPA
699  dataset. Both the active and traditional learning strategies were repeated 100 times. Error bars
700 indicate standard deviation. p = 3.8 x 1071% Mann Whitney U test.
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