

1 **An active learning framework improves tumor variant interpretation.**

2
3 Alexandra M. Blee^{1*}, Bian Li^{2*}, Turner Pecen³, Jens Meiler^{4,5}, Zachary D. Nagel³, John A.
4 Capra⁶, Walter J. Chazin^{1,4}

5
6 ¹Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville,
7 TN 37240, USA

8 ²Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA

9 ³John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T.
10 H. Chan School of Public Health, Boston, MA 02115, USA

11 ⁴Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN
12 37240, USA

13 ⁵Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany

14 ⁶Bakar Computational Health Sciences Institute and Department of Epidemiology and
15 Biostatistics, University of California, San Francisco, CA 94107, USA

16 *Co-first authors, listed alphabetically.

17 •Co-corresponding authors.

18
19 **Running Title:** Active learning improves variant interpretation

20
21 **Keywords:** precision medicine, prognostic biomarkers, machine learning, nucleotide excision
22 repair, variant interpretation, XPA

23
24 **Financial Support**

25 NIH grants R01 CA218315 (WJC), P01 CA092584 (WJC and ZDN), R01 LM013434 (JAC), F32
26 CA250258 (AMB), and R01 LM013434, U01HG007674, and U01HG010215-03S1 (JM).
27 American Heart Association 20POST35220002 (BL). Humboldt Professorship of the Alexander
28 von Humboldt Foundation (JM). Access to the Vanderbilt Advanced Computing Center for
29 Research and Education was supported in part by S10 RR031634.

30
31 **Co-corresponding author contact information**

32 John A. Capra
33 Bakar Computational Health Sciences Institute
34 490 Illinois St., Floor 2
35 San Francisco, CA 94143
36 Tel: (415) 514-0528; Email: tony@capralab.org

37
38 Walter J. Chazin
39 465 21st Avenue S., Suite 5140
40 Nashville, TN 37232
41 Tel: (615) 936-2210; Fax: (615) 936-2211; Email: walter.j.chazin@vanderbilt.edu

42
43 **The authors declare no potential conflicts of interest.**

44 **The manuscript contains 4,956 words with six main text figures.**

45 **Abstract**

46
47 For precision medicine to reach its full potential for treatment of cancer and other diseases,
48 protein variant effect prediction tools are needed that characterize variants of unknown
49 significance (VUS) in a patient's genome with respect to their likelihood to influence treatment
50 response and outcomes. However, the performance of most variant prediction tools is limited by
51 the difficulty of acquiring sufficient training and validation data. To overcome these limitations,
52 we applied an iterative active learning approach starting from available biochemical,
53 evolutionary, and functional annotations. The potential of active learning to improve variant
54 interpretation was first demonstrated by applying it to synthetic and deep mutational scanning
55 (DMS) datasets for four cancer-relevant proteins. We then probed its utility to guide
56 interpretation and functional validation of tumor VUS in a potential biomarker for cancer therapy
57 sensitivity, the nucleotide excision repair (NER) protein Xeroderma Pigmentosum
58 Complementation Group A (XPA). A quantitative high-throughput cell-based NER activity assay,
59 fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR), was used to
60 validate XPA VUS selected by the active learning strategy. In all cases, selecting VUS for
61 validation by active learning yielded an improvement in performance over traditional learning.
62 These analyses suggest that active learning is well-suited to significantly improve interpretation
63 of VUS and cancer patient genomes.

64 **Introduction**

65
66 Sequence-based genetic variant interpretation is a fundamental component of the study of
67 human disease, diagnosis of genetic disorders, selection of treatments, and prediction of patient
68 outcomes (1). In particular, precision medicine approaches to interpret variants of unknown
69 significance (VUS) in tumors and guide clinical decision-making represent significant interests of
70 the National Cancer Institute (NCI) (2). However, the performance of sequence-based predictive
71 tools is limited by difficulty in acquiring sufficient benchmarking data from diverse populations
72 and environments and a resulting lack of functional validation (3). These tools often also fail to
73 provide specific hypotheses for mechanisms of dysfunction, which can inform predictive power
74 and treatment selection in precision medicine.

75 An increasing number of rare, nonrecurrent VUS are being identified throughout tumor
76 genomes. Interpretation of these VUS poses a significant challenge compared to recurrent
77 hotspot variants. Rare, nonrecurrent VUS are unlikely to be the main drivers of tumor formation,
78 but they have potential to influence progression and response to therapy. Hence, taking such
79 VUS into account when designing a therapy can be critical to clinical outcome. Existing
80 approaches to analyze VUS such as genome-wide association studies (GWAS) and large-scale
81 pooled functional screens are infeasible for all genes and novel variants of interest. GWAS
82 studies in particular have limited power for rare VUS, fail to predict the effects of single VUS of
83 interest, cannot identify causality for single VUS, and require significant experimental follow-up
84 (4). This represents a significant challenge for identifying reproducible, reliable biomarkers with
85 clinical utility (5). The National Human Genome Research Institute, the American College of
86 Medical Genetics and Genomics, and the Association for Molecular Pathology have
87 emphasized the need for strategies that prioritize VUS for in-depth study using benchmarked,
88 well-controlled, physiologically relevant validation assays (3,6).

89 The variant interpretation challenge posed by rare tumor VUS is illustrated by the
90 reported correlation between nucleotide excision repair (NER) activity and tumor sensitivity to
91 cisplatin treatment (7,8). NER is the primary repair mechanism for bulky DNA adducts such as
92 those introduced by ultraviolet (UV) light and platinum (Pt)-based chemotherapeutics like
93 cisplatin (9). Defective NER resulting from nonrecurrent VUS in Excision Repair Cross
94 Complementation Group 2 (*ERCC2*) or from loss of *ERCC1* sensitizes tumor cells to cisplatin
95 and leads to improved patient outcomes (10-13). In addition, recent study of The Cancer
96 Genome Atlas (TCGA) Pan-Cancer Atlas has revealed that most genetic lesions in NER genes
97 are nonrecurrent nonsynonymous single nucleotide variants (SNVs) with unknown impact on
98 therapy sensitivity and cancer patient outcomes (14). Based on the studies of *ERCC2* tumor
99 VUS (11,12), a subset of the tumor VUS in other NER genes is expected to impact tumor cell
100 response to cisplatin and other Pt-based chemotherapeutics. However, because NER genes
101 are not known tumor drivers and there are few if any recurrent hotspot tumor mutations, NER
102 variant interpretation is challenging.

103 In this report we implement an active machine learning approach to predict the NER
104 capacity of VUS in Xeroderma Pigmentosum Complementation Group A (XPA), an essential
105 scaffolding protein in NER (9,15-17). Germline mutations in *XPA* result in loss of NER and lead
106 to severe phenotypes in patients with inherited Xeroderma Pigmentosum (XP) disorder
107 including increased sensitivity to sunlight, predisposition to skin cancer, and neurological

108 impairment (18-20). Well over 100 unique XPA VUS have been reported in tumor databases to
109 date. These XPA tumor VUS represent an unstudied pool of variants hypothesized to
110 measurably impact NER activity and response to Pt-based chemotherapeutics.

111 Machine learning paired with iterative functional validation is a promising strategy to
112 overcome variant interpretation limitations and rapidly provide accurate annotations for VUS
113 from tumor genomes without exhausting limited time and resources (1,21). Specifically, in an
114 active learning strategy, VUS that are most challenging to classify by an initial machine learning
115 model, i.e. VUS closest to the decision boundary, are functionally tested and reincorporated with
116 new phenotypic labels in subsequent iterations of algorithm training (22,23). The approach was
117 first benchmarked with simulations on synthetic data and available deep mutational scanning
118 (DMS) data for four cancer-relevant proteins, using a logistic regression model trained to predict
119 VUS effect using available biochemical, evolutionary, and functional annotations during training.
120 We then applied this overall approach to predict the NER capacity of tumor VUS in XPA, using a
121 limited number of labeled NER-deficient and -proficient XPA variants and unlabeled XPA VUS
122 from tumor genomic databases. The performance of active learning was compared to traditional
123 learning using the XPA dataset by incorporating new variant labels after measuring NER activity
124 using a fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR) assay. In
125 agreement with the synthetic and DMS simulations, active learning using new NER-proficient or
126 -deficient labels derived from FM-HCR improved algorithm performance more than traditional
127 learning. These results establish active learning as a promising framework for overcoming
128 limited or biased VUS training data and maximizing the utility of VUS selected for experimental
129 evaluation.

130 **Materials and Methods**

131

132 **Simulating active learning with synthetic and deep mutational scanning data**

133 Synthetic data were generated from two Gaussian distributions centered at [-1, 0, 0] and [1, 0,
134 0] with a covariance matrix of [[1, 0, 0], [0, 1, 0], [0, 0, 1]]. Scenarios were simulated where the
135 class distribution was balanced with a 1:1 ratio or skewed with a class ratio of 1:5. In each case,
136 the total number of instances was 600. Deep mutational scanning (DMS) data were acquired for
137 four proteins relevant to cancer (PTEN, TPMT, NUDT15, CYP2C9) for which variant effect on
138 protein cellular abundance was assayed using variant abundance by massively parallel
139 sequencing (VAMP-seq) (**Supplementary Table S1**) (24-26). Features to classify variants in
140 the DMS proteins were compiled from the existing Database of Human Nonsynonymous SNPs
141 and their Functional Predictions (dbNSFP) (27); 19 scores were considered encompassing
142 physical and biochemical properties of amino acid sidechains, sequence homology, evolutionary
143 sequence conservation, computational pathogenicity metrics based on protein stability, protein
144 secondary structure elements, and disease-association, as well as ensemble predictors.

145 In each simulation experiment, training was initiated with ten labeled synthetic instances
146 or DMS variants, either with balanced or skewed class ratios to reflect real-world scenarios.
147 Held-out test sets were created using 10% of each dataset and maintaining the same class ratio
148 as the overall class ratio for each to evaluate the performance of the models during each
149 training iteration. A logistic regression model was trained on this initial dataset and the model
150 was used to make predictions on instances in the unlabeled pool.

151 In the active learning approach, the five most uncertain predictions (with predicted class
152 probabilities closest to 0.5) were selected, labeled, and added to the pool of labeled instances
153 or variants. In the traditional learning approach, five instances or DMS variants were selected
154 randomly, labeled, and added to the labeled pool. The logistic regression model was retrained
155 using the updated labeled pool. This procedure was iterated 20 times to monitor the evolution of
156 model performance as more labeled instances were added following the two different active and
157 traditional learning strategies. Model performance was measured by the F_1 score on the held-
158 out test sets:

$$159 F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

160 where

$$161 precision = \frac{TP}{TP + FP}$$

162 and

$$163 recall = \frac{TP}{TP + FN}$$

164 and TP: number of true positives (low-abundance variants); FP: number of false positives (wild-
165 type like variants predicted to be low-abundance); FN: number of false negatives (low-
166 abundance variants predicted to be wild-type like). The F_1 score was selected because this
167 score accounts for both precision and recall and maintains a balance between them. Because
168 both precision and recall must be high for the final F_1 score to be high, this metric is well-suited
169 for variant datasets that usually exhibit an imbalance between the number of samples in each
170 class.

171

172 **Training a logistic regression model to predict NER activity of XPA VUS**

173 XPA variants were curated from published literature and tumor genomics databases: The NCI
174 Genomic Data Commons Pan-Cancer Atlas, cBioPortal for Cancer Genomics, the Catalogue of
175 Somatic Mutations in Cancer (COSMIC) v90, the Cancer Cell Line Encyclopedia (CCLE), AACR
176 Project GENIE v7.0, and the International Cancer Genome Consortium (ICGC) data release 28.
177 The final set of 73 tumor VUS curated from available genomics databases included only somatic
178 single nucleotide variants (SNVs) from unique tumor samples. An additional 16 VUS were
179 curated from the literature and were either reported without cell survival or cell-based repair
180 activity data or had conflicting reports between studies. All 19 variants labeled as NER-proficient
181 or NER-deficient were labeled based on reported cell survival after UV treatment or cell-based
182 NER activity data.

183 Each variant was encoded with a set of 19 features that consisted of evolutionary
184 metrics and variant scores generated by pre-existing variant pathogenicity predictors. As for the
185 DMS simulations, these features were accessed from the Database of Human Nonsynonymous
186 SNPs and their Functional Predictions (dbNSFP) v4.0a (27). All variants analyzed in this study
187 and the associated references and reported data are provided in **Supplementary Tables S2**
188 and **S3**. XPA is listed under UniProt ID: P23025; RefSeq (RRID:SCR_003496) accession
189 number: NM_000380.3.

190 As several features are highly correlated (**Supplementary Figure S1**), a principal
191 component analysis (PCA) of the feature matrix was performed (**Supplementary Figure S2**).
192 The first three principal components were used as input features of the logistic regression model
193 considering that the initial training set is usually very small. The model was developed using the
194 implementation in the scikit-learn machine-learning framework (RRID:SCR_002577) (28).

195 The use of a semi-supervised learning algorithm was also explored to predict the NER
196 activity of XPA VUS. A popular approach to semi-supervised learning is to create a graph that
197 connects training instances based on their pairwise distances in the input space. Known labels
198 are then propagated through the edges of the graph to predict the labels of unlabeled instances
199 (29). This approach has the advantage of simultaneously using both labeled and unlabeled
200 instances during training, compared to supervised learning algorithms. A semi-supervised label
201 spreading model (30) was trained with the same XPA variant feature matrix used to train the
202 logistic regression model, implemented in the scikit-learn machine-learning framework (28). The
203 KNN kernel was used with 7 neighbors.

204

205 **Logistic regression XPA variant effect predictor with active learning and statistical 206 analyses to compare against traditional learning**

207 The initial logistic regression model was trained for XPA variant effect classification with the 19
208 variants noted above, labeled according to NER activity reported in the literature. To apply the
209 active learning strategy to XPA, this initial model was first used to predict the class probabilities
210 of the remaining VUS in the dataset. For the top ten VUS with the least certain predictions, i.e.,
211 probabilities closest to 0.5, (L138R, R207G, H242L, D70H, E111A, R227W, M98I, D154A,
212 T125A, E106G, ordered from least to more certain), NER activity was measured by FM-HCR for
213 seven VUS (L138R, H242L, D70H, E111A, D154A, T125A, E106G). In the FM-HCR analysis,
214 VUS with NER activity significantly lower than that of wild-type XPA, with $p < 0.05$ by unpaired t

215 tests, were labeled NER-deficient. Labeling of these assayed variants was blinded from their
216 class probabilities predicted by the logistic regression model. To test the hypothesis that active
217 learning improves the performance of XPA variant effect prediction more than traditional
218 learning, a logistic regression model was retrained using a training set consisting of the initial 19
219 labeled variants plus the seven VUS the initial model was least certain about, labeled according
220 to their NER activity. This was termed the “active model”.

221 In parallel, the NER activity was measured by FM-HCR for an additional set of 20 VUS
222 consisting of (i) variants well separated in the PCA scatter plots and (ii) variants located in the
223 region where the two classes are believed to overlap (**Supplementary Figure S2**). A logistic
224 regression model was then trained using a training set consisting of the initial 19 labeled
225 variants plus seven variants randomly selected from the pool of seven original and 20 new FM-
226 HCR assayed variants. This was termed the “traditional model”. Next, the active and traditional
227 model performances as measured by F_1 scores were compared for the remaining FM-HCR
228 assayed variants that weren’t selected for training. Due to the stochasticity in selecting variants
229 to train the traditional model, the procedure was repeated 100 times. To enable a fair
230 comparison, the performances of the active and traditional models were computed based on the
231 same evaluation set in each iteration. A Mann Whitney U test was performed to compare the
232 differences between the active and learning model performances.

233

234 **Full-length XPA model**

235 XPA is a modular protein with two unordered regions at the N- and C-termini, which precludes
236 an accurate representation of the 3D structure of the full-length protein in a single image. To
237 display VUS predictions in the context of the XPA protein structure, a structural model of full-
238 length XPA was generated based on reported XPA structures and integrative models (31-35).
239 Starting with the coordinates of the globular XPA DNA binding domain (residues 98-239,
240 PDBDEV00000039) (32), Rosetta FloppyTail (36) was used to model the flexible regions of XPA
241 spanning residues 1-97 and 240-273. Default settings were used except that the perturbation
242 cycles and models sampled parameters were increased to 1000 and 10 for each floppy tail,
243 respectively. Graphical representations and images were generated using PyMOL Molecular
244 Graphics System, version 2.0.7, Schrödinger, LLC (RRID:SCR_000305).

245

246 **Cell lines and cell culture**

247 XP2OS cells (RRID:CVCL_3242) were kindly provided by Dr. Orlando Schärer (Center for
248 Genomic Integrity, Institute for Basic Science, Ulsan National Institute of Science and
249 Technology, Korea). Cells were maintained in DMEM (Thermo Fisher Scientific #11995073)
250 supplemented with 10% FBS (Thermo Fisher Scientific #A3160502) and 1% Penicillin-
251 Streptomycin (Thermo Fisher Scientific #15140122). No mycoplasma contamination was
252 detected in this cell line throughout the experiments (SouthernBiotech #13100-01). XPA
253 expression plasmids contain full-length human XPA (NM_000380) with the indicated mutations
254 in the pcDNA3.1(+) backbone (GenScript custom order).

255

256 **FM-HCR assay**

257 Reporter plasmids were prepared as a cocktail containing pMax_GFP plasmid damaged with
258 800 J/cm² UVC radiation (herein referred to as pMax_GFP_UV) and an undamaged pMax_BFP

259 control. An undamaged cocktail containing pMax_GFP and pMax_BFP was also utilized as a
260 positive control. XP2OS cells (RRID:CVCL_3242) were harvested by trypsinization and pelleted
261 via centrifugation. Cell pellets were washed with DPBS (Thermo Fisher Scientific #14190-144)
262 and resuspended in DMEM (Thermo Fisher Scientific #11995073) supplemented with 10% FBS
263 (Thermo Fisher Scientific #A3160502) to a final density of 2×10^6 cells/mL. XP2OS cells were
264 transfected with 200 ng of plasmid containing the XPA VUS of interest or wild-type XPA as well
265 as the FM-HCR reporter plasmids using the Gene Pulser MXCell Plate Electroporation System
266 (Bio-Rad Laboratories #165-2670). Plate electroporation was performed at 260 V, 950 μ F.

267 FM-HCR analyses were performed as previously described (37,38). Briefly, fluorescence
268 was measured via an Attune NxT Flow Cytometer (Thermo Fisher Scientific). Percent reporter
269 expression values representing the NER capacity of cells transiently transfected with plasmids
270 encoding each XPA variant were determined as previously described (37,38) and normalized to
271 the NER capacity of wild-type XPA. Unpaired t-tests were performed for each wild-type and
272 XPA variant pair ($n = 3$ biological replicates) using GraphPad Prism 9 (RRID:SCR_002798).

273

274 **Data Availability**

275 The data generated in this study are available within the article and its supplementary files. All
276 code files are available as Jupyter Notebooks in the supplement with accompanying source
277 data.

278 **Results**

279

280 **Active learning improves variant effect predictions for proteins with diverse functions**

281 Active learning is a machine learning approach that incorporates iterative rounds of label
282 determination (e.g., assigning a property from a functional assay) and training during which the
283 algorithm chooses the data from which it learns in subsequent training rounds. Here, after
284 functional validation of the VUS with the most uncertain initial predictions, the resulting data
285 (e.g., variant effect on protein activity) are then used to newly label the tested variants, and the
286 algorithm is retrained (**Figure 1**). Accurate predictions may thus be achieved using fewer rounds
287 of training and labeling than for other strategies for validating variants (39).

288 To test the efficacy of this proposed active learning approach before using it to guide
289 interpretation and experimental analysis of XPA VUS, a series of simulations was performed
290 comparing active and traditional learning on two types of data: (i) synthetic data generated from
291 Gaussian distributions containing two binary classes of instances and (ii) real variant effect data
292 from pre-existing DMS analyses, which quantify the effects of every possible amino acid
293 substitution within a protein in cells and provide deleterious or neutral molecular phenotype
294 labels for each variant. For these simulations, synthetic instances or DMS variants were present
295 in two classes, and the identity of each synthetic instance or the phenotype associated with
296 each DMS variant was either included as a label or excluded, resulting in unlabeled datapoints.
297 Within the DMS analyses, we focused on four proteins with known roles in tumor suppression,
298 progression, or therapeutic response: phosphatase and tensin homolog (PTEN) (24), thiopurine
299 S-methyltransferase (TPMT) (24), Nudix hydrolase 15 (NUDT15) (26), and cytochrome P450
300 family 2 subfamily C member 9 (CYP2C9) (25). In addition to the phenotypic labels, we
301 compiled 19 features for each DMS variant from the Database of Human Nonsynonymous
302 SNPs and their Functional Predictions (dbNSFP) to be used as input features for training and
303 classification (27). These features encompassed physical and biochemical properties of amino
304 acid sidechains, sequence homology, evolutionary sequence conservation, computational
305 pathogenicity metrics based on protein stability, protein secondary structure elements, and
306 disease-association.

307 For each type of data, an uncertainty sampling query strategy (active learning) was
308 compared to a random sampling strategy (traditional learning) (**Figure 2A**). A logistic regression
309 model was trained for these analyses (23); we note that other algorithms could be used within
310 the active learning framework. In a real-word scenario, the set of labeled data available for
311 training the initial iteration of the algorithm will often come from variants previously tested and
312 reported in the literature. Thus, the distribution of initial training data between the two possible
313 binary classifications for each variant may not reflect the overall ratio for all possible variants in
314 the protein. This was true for the DMS data, where each protein of interest exhibited varying
315 ratios between the number of variants with wild-type or protein-deficient phenotypes
316 (**Supplementary Table S1**). To reflect this reality in our simulations, differing class ratios of
317 labeled variants were tested in the initial labeled training sets and changes in algorithm
318 performance were measured over 20 iterations of active and traditional learning. During active
319 learning, synthetic instances or DMS variants with the most uncertain predictions were identified
320 and labeled based on the binary class to which they belonged.

321 Active learning achieved stronger performance than traditional learning in nearly all
322 scenarios (**Figure 2** and **Supplementary Figure S3**). For example, in one DMS simulation,
323 active learning outperformed traditional learning by a mean F_1 score of 0.052 across the 20
324 iterations ($p = 3.44 \times 10^{-14}$, two-sided paired t-test) (**Figure 2E**). Similar improvement of active
325 learning over traditional learning was achieved in all other simulations except in two exceptional
326 scenarios. In the first, the class ratios of the initial pool of synthetic instances (5:1 or 7:3) were
327 heavily skewed opposite to the overall class ratio of the dataset as a whole (1:5 or 1:1.9)
328 (**Supplementary Figures S3D** and **S3H**). In the second, for CYP2C9 (**Supplementary Figures**
329 **S3L-N**), active learning provided notable benefits in the early training iterations with the most
330 limited proportions of labeled data, although this benefit decreased in later iterations as larger
331 proportions of training data were labeled. Nevertheless, using active learning to train a variant
332 effect predictor enabled flexible integration of pre-existing phenotypic data and reduced the time
333 and resources needed to improve predictions. Given these primarily positive results, we next
334 applied a similar active learning approach to XPA tumor VUS.
335

336 ***Prediction of XPA VUS effects on NER***

337 As an essential NER scaffolding protein, XPA performs two key functions during repair: (i) DNA
338 binding at the junction between single strand and double strand DNA that is formed upon
339 opening of the 'repair bubble' (15-17), and (ii) interaction with multiple proteins that constitute
340 the NER machinery (9,32,40-43) (**Figure 3A**). Previous functional study of specific XPA
341 variants, such as those variants known to cause the germline inherited disorder XP, were used
342 to classify and assign labels to an initial training dataset with 19 labeled variants (8 NER-
343 proficient and 11 NER-deficient). An additional 89 unlabeled VUS were curated primarily from
344 publicly available tumor genomic databases to comprise the rest of the dataset (**Figure 3B**;
345 **Supplementary Tables 2** and **3**).

346 Following the approach used for the DMS analysis, 19 features for each XPA variant
347 were compiled from dbNSFP including: amino acid properties, sequence homology,
348 evolutionary sequence conservation, computational variant pathogenicity, and ensemble scores.
349 The features exhibited substantial variability across variants (**Figure 4A**; **Supplementary**
350 **Figure S1**) and inspection of the ability of these scores to distinguish known NER-deficient and
351 -proficient XPA variants revealed clear room for improvement (**Supplementary Table 4**). These
352 data further emphasize the need for an approach that incorporates functional data specific to
353 the protein and phenotype of interest.

354 Given the limited amount of training data for XPA, the dimensionality of the initial feature
355 set was reduced using principal component analysis (PCA) before training a logistic regression
356 algorithm (**Supplementary Figure S2**). Mapping the initial predictions as the probability of being
357 classified NER-deficient onto the PCA of the variant features revealed clusters of high-
358 confidence predicted NER-proficient and -deficient variants, with a population of lower
359 confidence predictions at the boundaries between clusters (**Figure 4B**). We also observed
360 similar patterns when making predictions using a semi-supervised label spreading algorithm
361 (30,44,45) to analyze the XPA dataset (**Supplementary Figure S4**; **Supplementary Tables**
362 **S5, S6**).

363 The NER-deficient class probability for each variant was mapped onto a structural model
364 of XPA, further supporting the algorithm predictions. For example, coordination of a zinc atom

365 by cysteine residues 105, 108, 126, and 129 is required for the structural and functional integrity
366 of XPA (46). Hence, tumor VUS such as C126W and VUS in adjacent residues were predicted
367 to be NER-deficient (**Figure 4C**). In contrast, mutagenesis studies have demonstrated that
368 single mutation of residues along the large DNA binding surface of the XPA DBD are sometimes
369 insufficient to abrogate DNA binding and NER activity (47,48), and fewer VUS on this surface
370 were predicted to be NER-deficient (**Figure 4C**). Similarly, H244R, C261S, and C264S in the
371 flexible C-terminus have been shown to be NER-deficient, and the nearby tumor VUS H242L
372 was predicted to also be NER-deficient (**Figure 4C**). These results demonstrate the potential of
373 variant effect prediction for XPA VUS.

374

375 **Active learning using functional validation improves variant effect predictions for XPA**

376 To determine the effect of incorporating functional validation into our approach, 27 VUS were
377 selected for functional validation by FM-HCR, a high-throughput host cell reactivation assay to
378 quantify NER capacity (37) (**Figure 5A**). These VUS spanned the spectrum of prediction
379 confidence, enabling evaluation of algorithm performance and comparison of active learning
380 with traditional learning. This set included seven of the ten VUS with least certain class
381 probabilities from the initial logistic regression model and an additional 20 VUS for evaluation of
382 model performance.

383 The XPA VUS selected for FM-HCR were transiently overexpressed in XPA-deficient
384 XP2OS cells (49), together with a UV-damaged green fluorescent protein (GFP)-expressing
385 reporter. Successful NER of the UV-damaged reporter in NER-proficient cells can be detected
386 and quantified by flow cytometry (**Figure 5A**). As anticipated, XPA-deficient XP2OS cells had
387 very little GFP reporter expression relative to XP2OS cells rescued with wild-type (WT) XPA
388 (**Figure 5B**). Several variants rescued NER activity to a similar degree, but not significantly
389 beyond that of WT XPA, providing assurance that cells transiently complemented with different
390 expression constructs can achieve similar levels of NER capacity as WT (**Figure 5B**). The FM-
391 HCR results also revealed a gradient of NER deficiency resulting from a subset of variants. As
392 predicted, profound NER defects were observed upon substitution of residues that coordinate
393 the zinc ion, such as C126 (**Figure 5B**). Notably, many variants predicted to be deleterious by
394 pre-existing predictors were not associated with significant NER-deficiency and vice versa
395 (**Supplementary Table S7**). Comparison of our initial algorithm predictions with these functional
396 data provided the basis for an iterative active learning approach (**Supplementary Table S8**).

397 To further evaluate the active learning approach, the logistic regression model was
398 retrained using 26 labeled training variants. The original 19 training set variants were used with
399 labels assigned based on previous characterization in the literature. In addition, seven VUS
400 from the group least confidently predicted by the initial model were added using the newly
401 assigned NER-proficient or -deficient labels from the FM-HCR analysis. The active learning
402 model was compared to F_1 scores from 100 traditional learning models trained using the original
403 19 labeled variants plus seven variants randomly selected from the remaining 20 variants
404 assayed by FM-HCR. To enable a fair comparison, the active learning model was evaluated on
405 the same held-out variants as each of the 100 traditional learning models, and thus, we also
406 obtained 100 F_1 scores for the active learning approach. Consistent with our hypothesis, the
407 active learning model performed significantly better than the traditional learning model (mean F_1
408 score 0.752 vs. 0.650 for 100 trials, $p = 3.8 \times 10^{-10}$, Mann Whitney U test) (**Figure 6**). This

409 improvement in performance illustrates that active learning is practical and beneficial in real-life
410 situations where the amount of initial training data is small and obtaining additional labels is
411 costly and laborious.

412 **Discussion**

413

414 Our analyses of synthetic, DMS, and real-world XPA variant datasets demonstrate that active
415 learning and targeted functional validation focused on variants that are refractory to algorithmic
416 classification can address current variant interpretation challenges. Functional validation is
417 increasingly recognized as a centerpiece of variant interpretation (3,6,50), and active learning
418 provides an efficient framework to guide the selection and incorporation of validation data for
419 maximal impact. Screening out variants unlikely to be informative and prioritizing others for
420 follow-up avoids wasted experimental effort and has the potential to more rapidly identify
421 variants with functional effects. Our analyses provide the basis for future work to predict, screen,
422 and conduct in-depth studies of XPA VUS that reduce NER activity and sensitize cells to
423 cisplatin.

424 The analyses of synthetic and DMS data identified a few discrete examples where active
425 learning failed to significantly improve performance compared to traditional learning. Notably,
426 this occurred in scenarios with class ratios for the overall dataset that were heavily skewed
427 opposite to the subset of labeled training instances (**Supplementary Figures S3D and S3H**).
428 This finding reveals a limitation in how sparse or biased the initial training dataset can be while
429 still generating accurate predictions. It also suggests that active learning cannot fully overcome
430 severe under-representation of variant classes in the training set that are more prevalent in the
431 overall data. However, given that the sources of labels used for training are known, it should be
432 possible to foresee when there is likely to be a substantial ascertainment bias that could
433 decrease the utility of active learning. The results for the CYP2C9 DMS data also hint that the
434 success of active learning may be context dependent. While active learning showed
435 improvement over traditional learning for CYP2C9 during the early iterations with the most
436 limited proportion of labeled training data, which likely reflects most real-world scenarios,
437 improvement was small in later rounds (**Supplementary Figures S3L-N**). More thorough
438 exploration of DMS and other data will be necessary to clearly define the scenarios in which
439 active learning is most beneficial.

440 We have demonstrated that active learning can be successfully applied using inputs
441 derived from either functional data or computational predictions of functional significance to
442 improve variant effect predictions. This is a central strength, particularly because active learning
443 can also be easily extended to include additional phenotypic data of interest such as protein
444 structural data and other functional assays, which would both be expected to improve predictive
445 performance. Using phenotypic data such as drug sensitivity to validate variant labels during
446 training represents one future area of exploration that may allow for the generalization of this
447 approach to other proteins or protein complexes.

448 Improved performance of XPA variant interpretation is anticipated with higher quality and
449 consistency of labels in the training set. The initial XPA variant training labels used here were
450 derived from published results of different cell-based assays from various research groups and
451 the specific variants were selected subjectively. Starting with standardized, quantifiable FM-
452 HCR analyses to derive accurate labels for the entire initial training set is expected to greatly
453 improve predictive performance. Future studies will include updating the active learning model
454 by retraining with XPA variants labeled solely by high quality FM-HCR analysis and conducting
455 several additional iterations of active learning. Incorporating deeper insights into the structure

456 and mechanisms of the NER machinery into training is also anticipated increase the
457 performance of VUS interpretation. This information will also enable the development of
458 hypotheses about mechanisms of NER dysfunction, which in turn can be tested and refined
459 using cell-based, biochemical, biophysical, and structural analysis.

460 Our analyses underscore that single XPA tumor VUS have the potential to abrogate
461 NER activity in cells, irrespective of other genetic events. However, there are many VUS in NER
462 proteins within the same tumor samples that could influence NER activity; tumor cells are
463 complex and variant interpretation should consider all potentially relevant variants in an
464 individual (14). Nonetheless, even with these limitations, the active learning strategy paired with
465 FM-HCR validation shows significant promise for XPA variant interpretation. One goal on the
466 horizon is to better understand and predict tumor cell drug sensitivity using higher performing
467 models to identify XPA variants as biomarkers for cisplatin response. This would involve directly
468 testing repair of cisplatin-induced lesions in cells expressing tumor VUS. Ultimately, this
469 machine learning approach and future improved versions are anticipated to enable prediction of
470 the cisplatin response in cells expressing a broad range of NER VUS.

471 Active learning can overcome small training datasets, enable the selection of a feasible
472 number of VUS for validation, and maximize the performance gains provided by cell-based
473 functional validation. By providing actionable insights into VUS, this approach contributes to the
474 successful implementation of cancer precision medicine.

475 **Acknowledgements**

476

477 We acknowledge Dr. Orlando Schärer for his generous gift of XP2OS cells, and Dr. Jonathan
478 Sheehan and Dr. Chris Moth in the Vanderbilt Program in Personalized Structural Biology for
479 valuable training and variant interpretation insights. Some diagrams were created with a
480 licensed version of BioRender.com.

481

482 **Author Contributions**

483

484 Conceptualization: WJC, JAC, AMB, BL

485 Methodology: JAC, BL, AMB, JM, ZDN, TP

486 Software: BL

487 Validation: BL, AMB, ZDN, TP

488 Formal Analysis: BL, AMB, JAC, ZDN, TP

489 Investigation: BL, AMB, TP

490 Data Curation: AMB, BL

491 Writing – Original Draft: AMB, BL, JAC, WJC

492 Writing – Review and Editing: JAC, WJC, AMB, BL, JM, ZDN, TP

493 Visualization: AMB, BL, TP

494 Supervision: WJC, JAC, ZDN

495 Funding Acquisition: WJC, JAC, ZDN, AMB

496 **References**

497

498 1. McInnes G, Sharo AG, Koleske ML, Brown JEH, Norstad M, Adhikari AN, *et al.*
499 Opportunities and challenges for the computational interpretation of rare variation in
500 clinically important genes. *Am J Hum Genet* **2021**;108:535-48

501 2. Do K, O'Sullivan Coyne G, Chen AP. An overview of the NCI precision medicine trials-
502 NCI MATCH and MPACT. *Chin Clin Oncol* **2015**;4:31

503 3. Green ED, Gunter C, Biesecker LG, Di Francesco V, Easter CL, Feingold EA, *et al.*
504 Strategic vision for improving human health at The Forefront of Genomics. *Nature*
505 **2020**;586:683-92

506 4. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of
507 genome-wide association studies. *Nat Rev Genet* **2019**;20:467-84

508 5. Horgan D, Jansen M, Leyens L, Lal JA, Sudbrak R, Hackenitz E, *et al.* An index of
509 barriers for the implementation of personalised medicine and pharmacogenomics in
510 Europe. *Public Health Genomics* **2014**;17:287-98

511 6. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, *et al.*
512 Recommendations for application of the functional evidence PS3/BS3 criterion using the
513 ACMG/AMP sequence variant interpretation framework. *Genome Med* **2019**;12:3

514 7. Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC. Enhanced cisplatin
515 cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell
516 lines. *Cancer research* **2003**;63:1311-6

517 8. Bowden NA. Nucleotide excision repair: why is it not used to predict response to
518 platinum-based chemotherapy? *Cancer Lett* **2014**;346:163-71

519 9. Scherer OD. Nucleotide excision repair in eukaryotes. *Cold Spring Harb Perspect Biol*
520 **2013**;5:a012609

521 10. Arora S, Kothandapani A, Tillison K, Kalman-Maltese V, Patrick SM. Downregulation of
522 XPF-ERCC1 enhances cisplatin efficacy in cancer cells. *DNA Repair (Amst)* **2010**;9:745-
523 53

524 11. Li Q, Damish AW, Frazier Z, Liu D, Reznichenko E, Kamburov A, *et al.* ERCC2 Helicase
525 Domain Mutations Confer Nucleotide Excision Repair Deficiency and Drive Cisplatin
526 Sensitivity in Muscle-Invasive Bladder Cancer. *Clinical cancer research : an official*
527 *journal of the American Association for Cancer Research* **2019**;25:977-88

528 12. Liu D, Plimack ER, Hoffman-Censits J, Garraway LA, Bellmunt J, Van Allen E, *et al.*
529 Clinical Validation of Chemotherapy Response Biomarker ERCC2 in Muscle-Invasive
530 Urothelial Bladder Carcinoma. *JAMA Oncol* **2016**;2:1094-6

531 13. Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, *et al.* Somatic ERCC2
532 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma.
533 *Cancer Discov* **2014**;4:1140-53

534 14. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, *et al.*
535 Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The
536 Cancer Genome Atlas. *Cell Rep* **2018**;23:239-54 e6

537 15. Sugitani N, Shell SM, Soss SE, Chazin WJ. Redefining the DNA-binding domain of
538 human XPA. *J Am Chem Soc* **2014**;136:10830-3

539 16. Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human
540 nucleotide excision repair. *DNA Repair (Amst)* **2016**;44:123-35

541 17. Sugitani N, Voehler MW, Roh MS, Topolska-Wos AM, Chazin WJ. Analysis of DNA
542 binding by human factor xeroderma pigmentosum complementation group A (XPA)
543 provides insight into its interactions with nucleotide excision repair substrates. *The*
544 *Journal of biological chemistry* **2017**;292:16847-57

545 18. Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and
546 molecular basis of heterogeneity. *Nat Rev Genet* **2009**;10:756-68

547 19. Hengge UR, Emmert S. Clinical features of xeroderma pigmentosum. *Adv Exp Med Biol*
548 **2008**;637:10-8

549 20. Lehmann J, Seebode C, Martens MC, Emmert S. Xeroderma Pigmentosum - Facts and
550 Perspectives. *Anticancer Res* **2018**;38:1159-64

551 21. Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, *et al.* Translating cancer
552 genomics into precision medicine with artificial intelligence: applications, challenges and
553 future perspectives. *Hum Genet* **2019**;138:109-24

554 22. Cohn DA, Ghahramani Z, Jordan MI. Active learning with statistical models. *J Artif Intell
555 Res* **1996**;4:129-45

556 23. Géron AI. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow :
557 concepts, tools, and techniques to build intelligent systems. Sebastopol, CA: O'Reilly
558 Media, Inc.; 2019. xxv, 819 pages p.

559 24. Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, *et al.* Multiplex
560 assessment of protein variant abundance by massively parallel sequencing. *Nature
561 genetics* **2018**;50:874-82

562 25. Amorosi CJ, Chiasson MA, McDonald MG, Wong LH, Sitko KA, Boyle G, *et al.* Massively
563 parallel characterization of CYP2C9 variant enzyme activity and abundance. *Am J Hum
564 Genet* **2021**;108:1735-51

565 26. Suiter CC, Moriyama T, Matreyek KA, Yang W, Scaletti ER, Nishii R, *et al.* Massively
566 parallel variant characterization identifies NUDT15 alleles associated with thiopurine
567 toxicity. *Proceedings of the National Academy of Sciences of the United States of
568 America* **2020**;117:5394-401

569 27. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-
570 specific functional predictions and annotations for human nonsynonymous and splice-
571 site SNVs. *Genome Med* **2020**;12:103

572 28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, *et al.* Scikit-learn:
573 Machine Learning in Python. *J Mach Learn Res* **2011**;12:2825-30

574 29. Chapelle O, Zien A, Sch?olkopf B. Semi-supervised learning. 1 online resource (528 p.)
575 p.

576 30. Zhou DY, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global
577 consistency. *Adv Neur In* **2004**;16:321-8

578 31. Kokic G, Chernev A, Tegunov D, Dienemann C, Urlaub H, Cramer P. Structural basis of
579 TFIIH activation for nucleotide excision repair. *Nat Commun* **2019**;10:2885

580 32. Topolska-Wos AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, *et al.* A
581 key interaction with RPA orients XPA in NER complexes. *Nucleic acids research*
582 **2020**;48:2173-88

583 33. Lian FM, Yang X, Jiang YL, Yang F, Li C, Yang W, *et al.* New structural insights into the
584 recognition of undamaged splayed-arm DNA with a single pair of non-complementary
585 nucleotides by human nucleotide excision repair protein XPA. *Int J Biol Macromol*
586 **2020**;148:466-74

587 34. Lian FM, Yang X, Yang W, Jiang YL, Qian C. Structural characterization of the redefined
588 DNA-binding domain of human XPA. *Biochem Biophys Res Commun* **2019**

589 35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, *et al.* Highly
590 accurate protein structure prediction with AlphaFold. *Nature* **2021**

591 36. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. Rapid E2-E3 assembly and
592 disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates.
593 *Cell* **2009**;139:957-68

594 37. Nagel ZD, Margulies CM, Chaim IA, McRee SK, Mazzucato P, Ahmad A, *et al.*
595 Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription

596 inhibition and transcriptional mutagenesis. *Proceedings of the National Academy of*
597 *Sciences of the United States of America* **2014**;111:E1823-32

598 38. Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence
599 multiplex host cell reactivation (FM-HCR) reporters. *Nat Protoc* **2021**;16:4265-98

600 39. Settles B. Active learning. *Synthesis lectures on artificial intelligence and machine*
601 *learning*,. San Rafael, Calif.: Morgan & Claypool,; 2012. p 1 online resource (xiii, 100
602 pages).

603 40. Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, *et al*. Structural
604 basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by
605 XPA. *EMBO J* **2007**;26:4768-76

606 41. Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, *et al*. Structural
607 basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication
608 factor RPA. *Cell* **2000**;103:449-56

609 42. Park CH, Mu D, Reardon JT, Sancar A. The general transcription-repair factor TFIH is
610 recruited to the excision repair complex by the XPA protein independent of the TFIIE
611 transcription factor. *The Journal of biological chemistry* **1995**;270:4896-902

612 43. Wakasugi M, Kasashima H, Fukase Y, Imura M, Imai R, Yamada S, *et al*. Physical and
613 functional interaction between DDB and XPA in nucleotide excision repair. *Nucleic acids*
614 *research* **2009**;37:516-25

615 44. Bagherzadeh J, Asil H. A review of various semi-supervised learning models with a deep
616 learning and memory approach. *Iran Journal of Computer Science* **2019**;2:65-80

617 45. van Engelen JE, Hoos HH. A survey on semi-supervised learning. *Mach Learn*
618 **2020**;109:373-440

619 46. Satokata I, Tanaka K, Okada Y. Molecular basis of group A xeroderma pigmentosum: a
620 missense mutation and two deletions located in a zinc finger consensus sequence of the
621 XPAC gene. *Hum Genet* **1992**;88:603-7

622 47. Camenisch U, Dip R, Schumacher SB, Schuler B, Naegeli H. Recognition of helical
623 kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. *Nat*
624 *Struct Mol Biol* **2006**;13:278-84

625 48. Miyamoto I, Miura N, Niwa H, Miyazaki J, Tanaka K. Mutational analysis of the structure
626 and function of the xeroderma pigmentosum group A complementing protein.
627 Identification of essential domains for nuclear localization and DNA excision repair. *The*
628 *Journal of biological chemistry* **1992**;267:12182-7

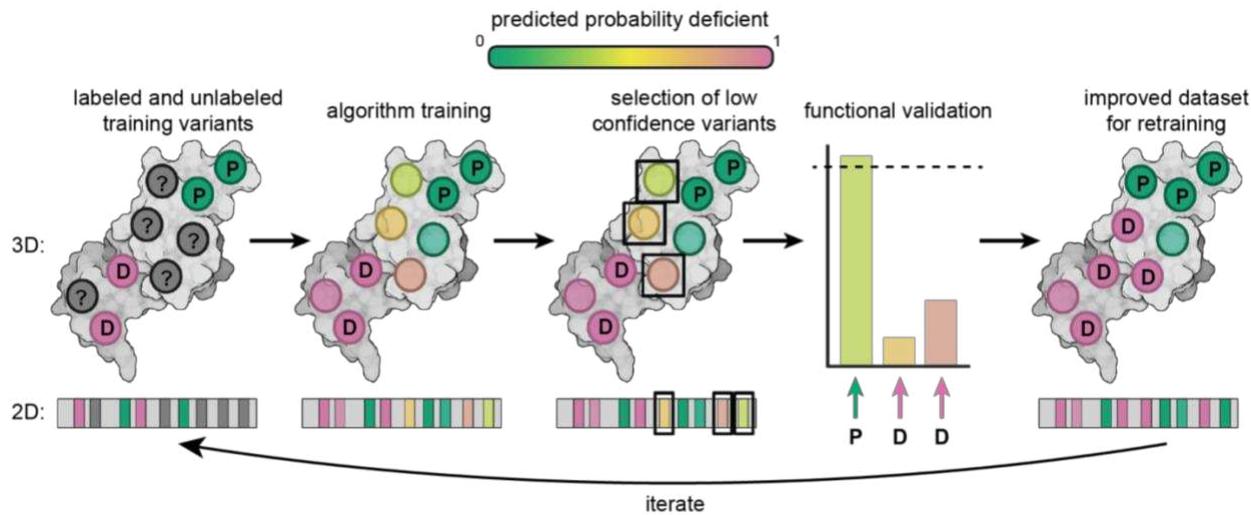
629 49. Yagi T, Tatsumi-Miyajima J, Sato M, Kraemer KH, Takebe H. Analysis of point mutations
630 in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese
631 xeroderma pigmentosum patients in complementation groups A and F. *Cancer research*
632 **1991**;51:3177-82

633 50. Lappalainen T, MacArthur DG. From variant to function in human disease genetics.
634 *Science* **2021**;373:1464-8

635

636 **Figures and Legends**

637

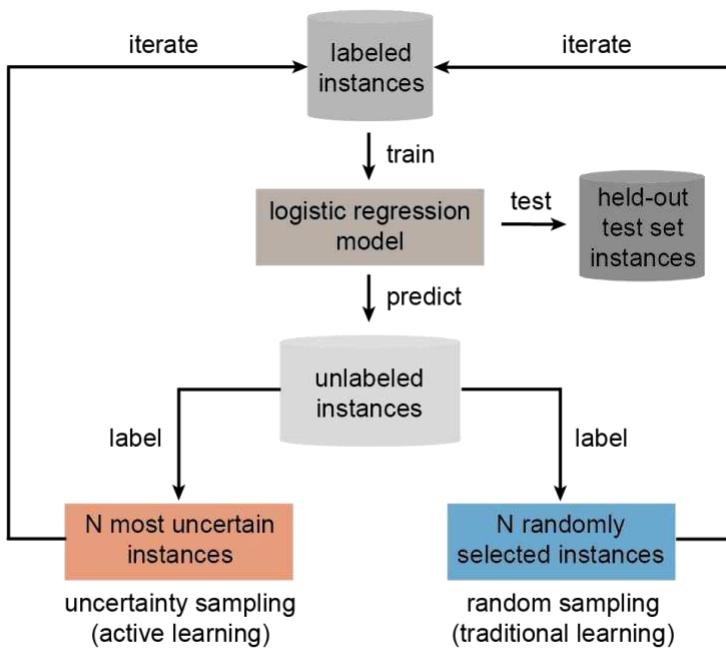


638

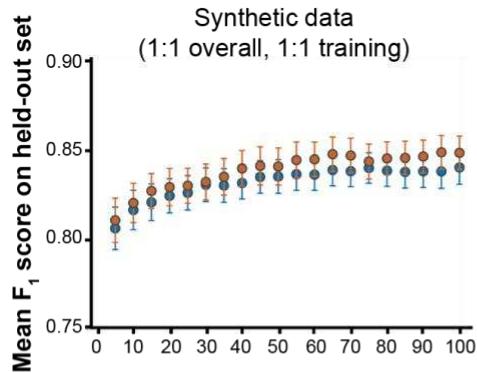
639 **Figure 1. Schematic of the active learning approach to variant interpretation.**

640 First, a machine learning algorithm is trained on a set of labeled variants. Next, a subset of VUS
641 with the lowest confidence predictions are selected and functionally validated. These newly
642 labeled variants are then incorporated in the subsequent iteration of algorithm training. The
643 algorithm can be retrained until predictive performance plateaus or increases only incrementally.
644 In the diagram, NER-deficient variants are labeled with D, NER-proficient variants with P, and
645 unlabeled VUS with a '?'. The color spectrum indicates the confidence of the prediction for each
646 variant.

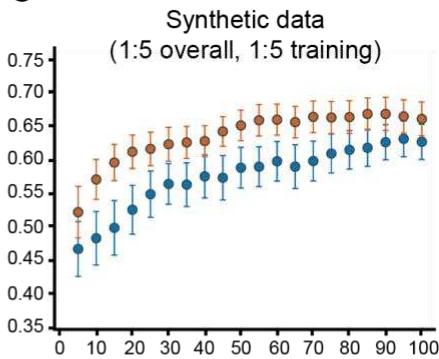
A



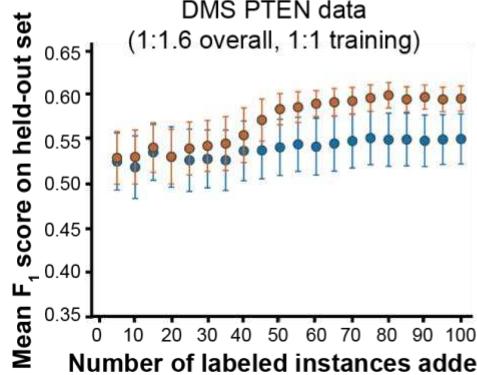
B



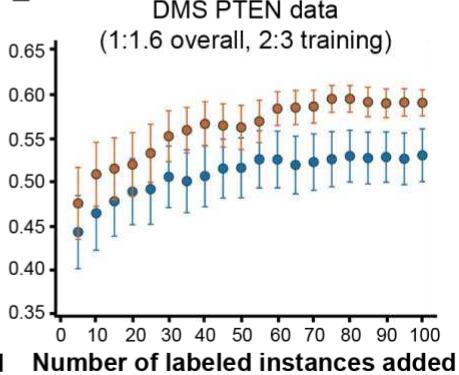
C



D



E

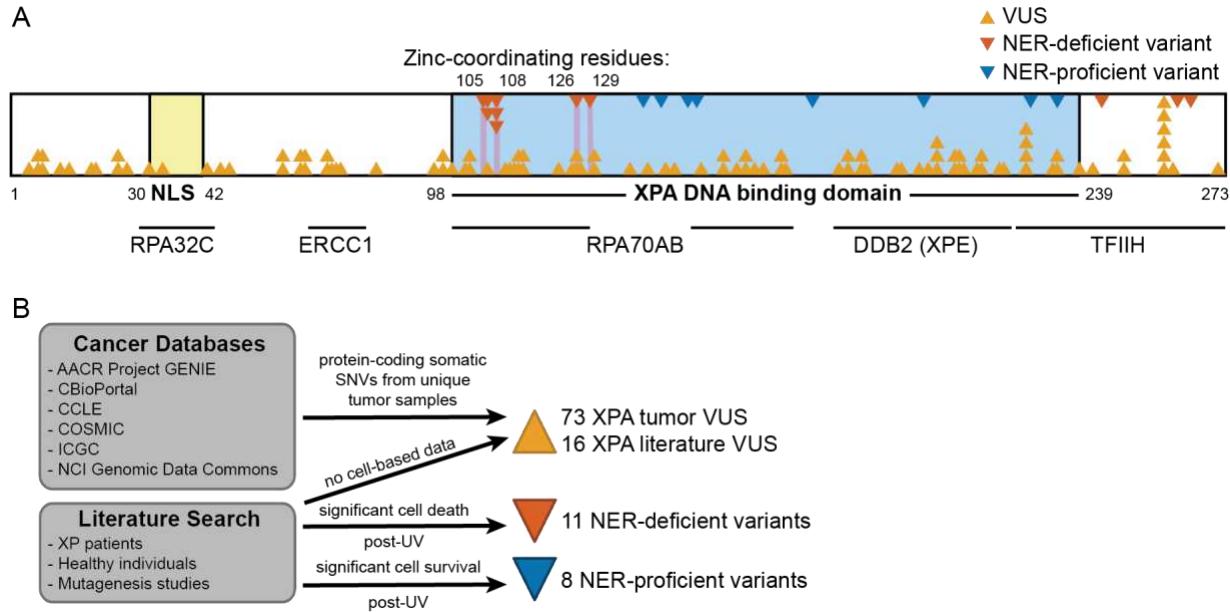


647

648 **Figure 2. Active learning results in more accurate models compared to traditional**
 649 **learning on synthetic and deep mutational scanning data.**

650 A, Schematic representation of the simulation protocol to compare active learning with
 651 traditional learning. The mean F₁ score was used to compare active and traditional learning for:

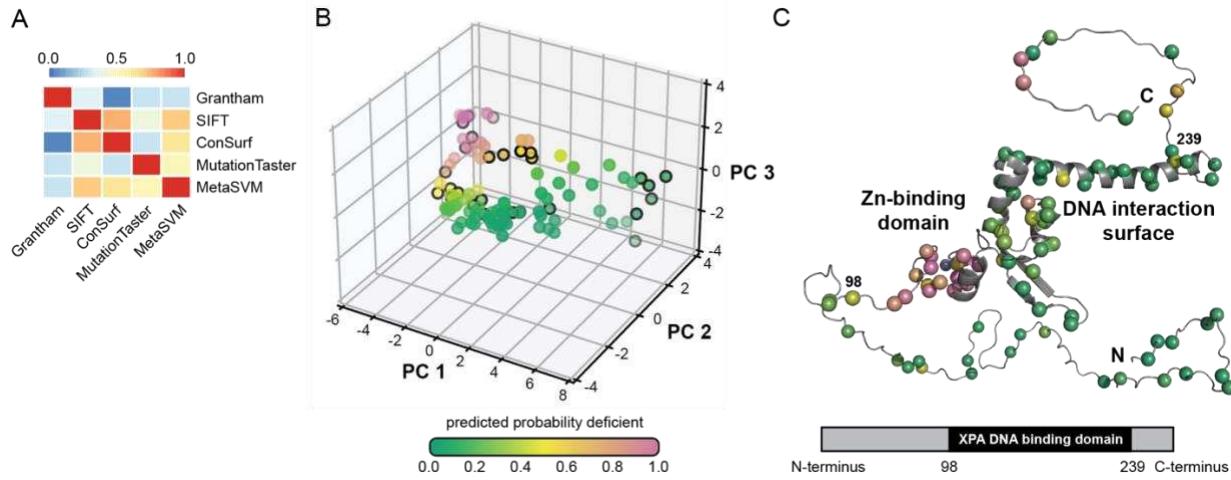
652 synthetic datasets with balanced class ratios (1:1) in both the overall data and the initial labeled
653 training set in *B*, or skewed class ratio (1:5) in both the overall data and initial labeled training
654 set in *C*; and a DMS PTEN dataset with a balanced class ratio (1:1) in the initial labeled training
655 set in *D*, or a skewed class ratio (2:3) in the initial labeled training set in *E*. Error bars indicate
656 95% confidence intervals around the mean F_1 score. All initial labeled pools had ten instances
657 or variants to start except for the skewed synthetic dataset in *B*, which had 12 instances to
658 maintain the 1:5 ratio with sufficient starting numbers of instances in both classes. See
659 **Supplementary Table S1** for additional details regarding the composition of the PTEN dataset.



660
661
662
663
664
665

Figure 3. XPA contains many VUS and few functionally characterized variants.

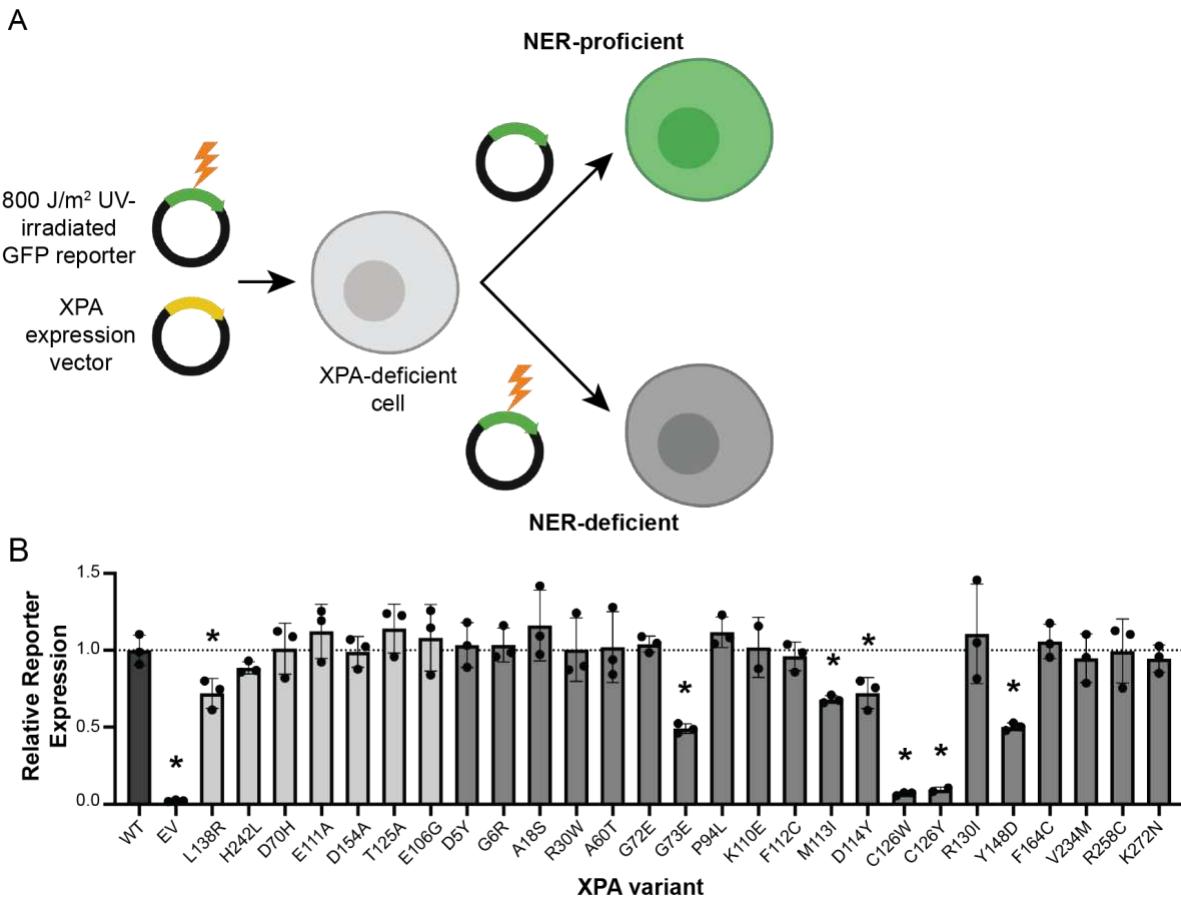
A, Schematic representation of the XPA protein with variants and partner protein interaction regions (horizontal lines) mapped across the sequence. The locations of NER-deficient or - proficient variants as well as VUS are indicated with triangles. B, Diagram outlining the sources of variants and labels used for training the initial variant effect prediction algorithm.



666

667 **Figure 4. Logistic regression model to predict NER-deficient variants.**

668 A, Heatmap of pairwise Spearman's rank correlations of five representative features for each
669 XPA variant. Features shown include one predictor from each of the following classes: amino
670 acid properties (Grantham), sequence homology (SIFT), evolutionary sequence conservation
671 (ConSurf), pathogenicity (MutationTaster), and ensemble scores (MetaSVM). B, Effects of XPA
672 VUS on NER activity predicted by the logistic regression model. Input features are the first three
673 principal components from a principal component analysis (PCA) of the original set of 19
674 features from dbNSFP. VUS selected for functional validation outlined in black: D5Y, G6R,
675 A18S, R30W, A60T, D70H, G72E, G73E, P94L, E106G, K110E, E111A, F112C, M113I, D114Y,
676 T125A, C126W, C126Y, R130I, L138R, Y148D, D154A, F164C, V234M, H242L, R258C, and
677 K272N. C, Model of full-length XPA with variants of interest depicted as spheres and colored
678 according to the scheme in B (top). The precise fold and orientation of the flexible N- and C-
679 termini regions are not known and are shown only for representative purposes. The bottom
680 panel shows a schematic diagram of XPA and the location of the XPA DNA binding domain.

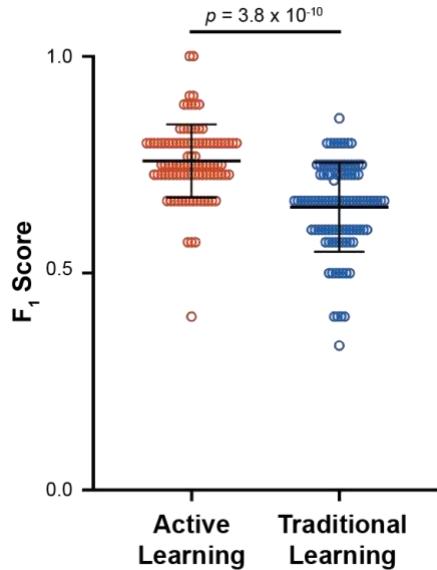


681

682

Figure 5. FM-HCR to test NER capacity of selected XPA VUS.

683 A, Diagram of FM-HCR assay in XPA-deficient XP2OS cells. Cells transfected with UV-
684 damaged fluorescent reporters as well as either WT XPA or XPA VUS are analyzed by flow
685 cytometry to detect fluorescent reporter expression. Successful NER results in fluorescent
686 reporter repair and expression (top), which is not observed in control cells lacking XPA (bottom).
687 B, Bar graph showing relative reporter expression in cells expressing empty vector (EV), WT
688 XPA, or the 27 VUS selected for validation. Seven of the top ten VUS with the least certain
689 class probabilities (light grey) were tested, as well as 20 other VUS for further evaluation (dark
690 grey). Damaged reporter expression was normalized to an undamaged control reporter to
691 account for transfection efficiency. The percent reporter expression for each variant was
692 normalized to that determined for WT to generate the final relative reporter expression (n = 3
693 biological replicates). Error bars indicate standard deviation from the mean. Seven of the VUS
694 analyzed maintained significantly decreased repair capacity when compared to WT. * signifies
695 $p < 0.05$, unpaired t test.



696
697
698
699
700

Figure 6. Active learning improves predictions of XPA variant NER capacity.

Plot of F_1 scores comparing the performance of active versus traditional learning with the XPA dataset. Both the active and traditional learning strategies were repeated 100 times. Error bars indicate standard deviation. $p = 3.8 \times 10^{-10}$, Mann Whitney U test.