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 2 

Abstract 45 

 46 

For precision medicine to reach its full potential for treatment of cancer and other diseases, 47 

protein variant effect prediction tools are needed that characterize variants of unknown 48 

significance (VUS) in a patient9s genome with respect to their likelihood to influence treatment 49 

response and outcomes. However, the performance of most variant prediction tools is limited by 50 

the difficulty of acquiring sufficient training and validation data. To overcome these limitations, 51 

we applied an iterative active learning approach starting from available biochemical, 52 

evolutionary, and functional annotations. The potential of active learning to improve variant 53 

interpretation was first demonstrated by applying it to synthetic and deep mutational scanning 54 

(DMS) datasets for four cancer-relevant proteins. We then probed its utility to guide 55 

interpretation and functional validation of tumor VUS in a potential biomarker for cancer therapy 56 

sensitivity, the nucleotide excision repair (NER) protein Xeroderma Pigmentosum 57 

Complementation Group A (XPA). A quantitative high-throughput cell-based NER activity assay, 58 

fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR), was used to 59 

validate XPA VUS selected by the active learning strategy. In all cases, selecting VUS for 60 

validation by active learning yielded an improvement in performance over traditional learning. 61 

These analyses suggest that active learning is well-suited to significantly improve interpretation 62 

of VUS and cancer patient genomes.  63 
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 3 

Introduction 64 

 65 

Sequence-based genetic variant interpretation is a fundamental component of the study of 66 

human disease, diagnosis of genetic disorders, selection of treatments, and prediction of patient 67 

outcomes (1). In particular, precision medicine approaches to interpret variants of unknown 68 

significance (VUS) in tumors and guide clinical decision-making represent significant interests of 69 

the National Cancer Institute (NCI) (2). However, the performance of sequence-based predictive 70 

tools is limited by difficulty in acquiring sufficient benchmarking data from diverse populations 71 

and environments and a resulting lack of functional validation (3). These tools often also fail to 72 

provide specific hypotheses for mechanisms of dysfunction, which can inform predictive power 73 

and treatment selection in precision medicine. 74 

An increasing number of rare, nonrecurrent VUS are being identified throughout tumor 75 

genomes. Interpretation of these VUS poses a significant challenge compared to recurrent 76 

hotspot variants. Rare, nonrecurrent VUS are unlikely to be the main drivers of tumor formation, 77 

but they have potential to influence progression and response to therapy. Hence, taking such 78 

VUS into account when designing a therapy can be critical to clinical outcome. Existing 79 

approaches to analyze VUS such as genome-wide association studies (GWAS) and large-scale 80 

pooled functional screens are infeasible for all genes and novel variants of interest. GWAS 81 

studies in particular have limited power for rare VUS, fail to predict the effects of single VUS of 82 

interest, cannot identify causality for single VUS, and require significant experimental follow-up 83 

(4). This represents a significant challenge for identifying reproducible, reliable biomarkers with 84 

clinical utility (5). The National Human Genome Research Institute, the American College of 85 

Medical Genetics and Genomics, and the Association for Molecular Pathology have 86 

emphasized the need for strategies that prioritize VUS for in-depth study using benchmarked, 87 

well-controlled, physiologically relevant validation assays (3,6). 88 

The variant interpretation challenge posed by rare tumor VUS is illustrated by the 89 

reported correlation between nucleotide excision repair (NER) activity and tumor sensitivity to 90 

cisplatin treatment (7,8). NER is the primary repair mechanism for bulky DNA adducts such as 91 

those introduced by ultraviolet (UV) light and platinum (Pt)-based chemotherapeutics like 92 

cisplatin (9). Defective NER resulting from nonrecurrent VUS in Excision Repair Cross 93 

Complementation Group 2 (ERCC2) or from loss of ERCC1 sensitizes tumor cells to cisplatin 94 

and leads to improved patient outcomes (10-13). In addition, recent study of The Cancer 95 

Genome Atlas (TCGA) Pan-Cancer Atlas has revealed that most genetic lesions in NER genes 96 

are nonrecurrent nonsynonymous single nucleotide variants (SNVs) with unknown impact on 97 

therapy sensitivity and cancer patient outcomes (14). Based on the studies of ERCC2 tumor 98 

VUS (11,12), a subset of the tumor VUS in other NER genes is expected to impact tumor cell 99 

response to cisplatin and other Pt-based chemotherapeutics. However, because NER genes 100 

are not known tumor drivers and there are few if any recurrent hotspot tumor mutations, NER 101 

variant interpretation is challenging. 102 

In this report we implement an active machine learning approach to predict the NER 103 

capacity of VUS in Xeroderma Pigmentosum Complementation Group A (XPA), an essential 104 

scaffolding protein in NER (9,15-17). Germline mutations in XPA result in loss of NER and lead 105 

to severe phenotypes in patients with inherited Xeroderma Pigmentosum (XP) disorder 106 

including increased sensitivity to sunlight, predisposition to skin cancer, and neurological 107 
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impairment (18-20). Well over 100 unique XPA VUS have been reported in tumor databases to 108 

date. These XPA tumor VUS represent an unstudied pool of variants hypothesized to 109 

measurably impact NER activity and response to Pt-based chemotherapeutics. 110 

Machine learning paired with iterative functional validation is a promising strategy to 111 

overcome variant interpretation limitations and rapidly provide accurate annotations for VUS 112 

from tumor genomes without exhausting limited time and resources (1,21). Specifically, in an 113 

active learning strategy, VUS that are most challenging to classify by an initial machine learning 114 

model, i.e. VUS closest to the decision boundary, are functionally tested and reincorporated with 115 

new phenotypic labels in subsequent iterations of algorithm training (22,23). The approach was 116 

first benchmarked with simulations on synthetic data and available deep mutational scanning 117 

(DMS) data for four cancer-relevant proteins, using a logistic regression model trained to predict 118 

VUS effect using available biochemical, evolutionary, and functional annotations during training. 119 

We then applied this overall approach to predict the NER capacity of tumor VUS in XPA, using a 120 

limited number of labeled NER-deficient and -proficient XPA variants and unlabeled XPA VUS 121 

from tumor genomic databases. The performance of active learning was compared to traditional 122 

learning using the XPA dataset by incorporating new variant labels after measuring NER activity 123 

using a fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR) assay. In 124 

agreement with the synthetic and DMS simulations, active learning using new NER-proficient or 125 

-deficient labels derived from FM-HCR improved algorithm performance more than traditional 126 

learning. These results establish active learning as a promising framework for overcoming 127 

limited or biased VUS training data and maximizing the utility of VUS selected for experimental 128 

evaluation.  129 
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 5 

Materials and Methods 130 

 131 

Simulating active learning with synthetic and deep mutational scanning data 132 

Synthetic data were generated from two Gaussian distributions centered at [-1, 0, 0] and [1, 0, 133 

0] with a covariance matrix of [[1, 0, 0], [0, 1, 0], [0, 0, 1]]. Scenarios were simulated where the 134 

class distribution was balanced with a 1:1 ratio or skewed with a class ratio of 1:5. In each case, 135 

the total number of instances was 600. Deep mutational scanning (DMS) data were acquired for 136 

four proteins relevant to cancer (PTEN, TPMT, NUDT15, CYP2C9) for which variant effect on 137 

protein cellular abundance was assayed using variant abundance by massively parallel 138 

sequencing (VAMP-seq) (Supplementary Table S1) (24-26). Features to classify variants in 139 

the DMS proteins were compiled from the existing Database of Human Nonsynonymous SNPs 140 

and their Functional Predictions (dbNSFP) (27); 19 scores were considered encompassing 141 

physical and biochemical properties of amino acid sidechains, sequence homology, evolutionary 142 

sequence conservation, computational pathogenicity metrics based on protein stability, protein 143 

secondary structure elements, and disease-association, as well as ensemble predictors. 144 

In each simulation experiment, training was initiated with ten labeled synthetic instances 145 

or DMS variants, either with balanced or skewed class ratios to reflect real-world scenarios. 146 

Held-out test sets were created using 10% of each dataset and maintaining the same class ratio 147 

as the overall class ratio for each to evaluate the performance of the models during each 148 

training iteration. A logistic regression model was trained on this initial dataset and the model 149 

was used to make predictions on instances in the unlabeled pool. 150 

In the active learning approach, the five most uncertain predictions (with predicted class 151 

probabilities closest to 0.5) were selected, labeled, and added to the pool of labeled instances 152 

or variants. In the traditional learning approach, five instances or DMS variants were selected 153 

randomly, labeled, and added to the labeled pool. The logistic regression model was retrained 154 

using the updated labeled pool. This procedure was iterated 20 times to monitor the evolution of 155 

model performance as more labeled instances were added following the two different active and 156 

traditional learning strategies. Model performance was measured by the F1 score on the held-157 

out test sets: 158 �1 = 2 × āÿ���Ā�Āÿ × ÿ�����āÿ���Ā�Āÿ + ÿ����� 159 

where 160 āÿ���Ā�Āÿ = ���� + �� 161 

and 162 ÿ����� =  ���� + �� 163 

and TP: number of true positives (low-abundance variants); FP: number of false positives (wild-164 

type like variants predicted to be low-abundance); FN: number of false negatives (low-165 

abundance variants predicted to be wild-type like). The F1 score was selected because this 166 

score accounts for both precision and recall and maintains a balance between them. Because 167 

both precision and recall must be high for the final F1 score to be high, this metric is well-suited 168 

for variant datasets that usually exhibit an imbalance between the number of samples in each 169 

class. 170 
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 171 

Training a logistic regression model to predict NER activity of XPA VUS 172 

XPA variants were curated from published literature and tumor genomics databases: The NCI 173 

Genomic Data Commons Pan-Cancer Atlas, cBioPortal for Cancer Genomics, the Catalogue of 174 

Somatic Mutations in Cancer (COSMIC) v90, the Cancer Cell Line Encyclopedia (CCLE), AACR 175 

Project GENIE v7.0, and the International Cancer Genome Consortium (ICGC) data release 28. 176 

The final set of 73 tumor VUS curated from available genomics databases included only somatic 177 

single nucleotide variants (SNVs) from unique tumor samples. An additional 16 VUS were 178 

curated from the literature and were either reported without cell survival or cell-based repair 179 

activity data or had conflicting reports between studies. All 19 variants labeled as NER-proficient 180 

or NER-deficient were labeled based on reported cell survival after UV treatment or cell-based 181 

NER activity data. 182 

Each variant was encoded with a set of 19 features that consisted of evolutionary 183 

metrics and variant scores generated by pre-existing variant pathogenicity predictors. As for the 184 

DMS simulations, these features were accessed from the Database of Human Nonsynonymous 185 

SNPs and their Functional Predictions (dbNSFP) v4.0a (27). All variants analyzed in this study 186 

and the associated references and reported data are provided in Supplementary Tables S2 187 

and S3. XPA is listed under UniProt ID: P23025; RefSeq (RRID:SCR_003496) accession 188 

number: NM_000380.3. 189 

As several features are highly correlated (Supplementary Figure S1), a principal 190 

component analysis (PCA) of the feature matrix was performed (Supplementary Figure S2). 191 

The first three principal components were used as input features of the logistic regression model 192 

considering that the initial training set is usually very small. The model was developed using the 193 

implementation in the scikit-learn machine-learning framework (RRID:SCR_002577) (28). 194 

The use of a semi-supervised learning algorithm was also explored to predict the NER 195 

activity of XPA VUS. A popular approach to semi-supervised learning is to create a graph that 196 

connects training instances based on their pairwise distances in the input space. Known labels 197 

are then propagated through the edges of the graph to predict the labels of unlabeled instances 198 

(29). This approach has the advantage of simultaneously using both labeled and unlabeled 199 

instances during training, compared to supervised learning algorithms. A semi-supervised label 200 

spreading model (30) was trained with the same XPA variant feature matrix used to train the 201 

logistic regression model, implemented in the scikit-learn machine-learning framework (28). The 202 

KNN kernel was used with 7 neighbors. 203 

 204 

Logistic regression XPA variant effect predictor with active learning and statistical 205 

analyses to compare against traditional learning 206 

The initial logistic regression model was trained for XPA variant effect classification with the 19 207 

variants noted above, labeled according to NER activity reported in the literature. To apply the 208 

active learning strategy to XPA, this initial model was first used to predict the class probabilities 209 

of the remaining VUS in the dataset. For the top ten VUS with the least certain predictions, i.e., 210 

probabilities closest to 0.5, (L138R, R207G, H242L, D70H, E111A, R227W, M98I, D154A, 211 

T125A, E106G, ordered from least to more certain), NER activity was measured by FM-HCR for 212 

seven VUS (L138R, H242L, D70H, E111A, D154A, T125A, E106G). In the FM-HCR analysis, 213 

VUS with NER activity significantly lower than that of wild-type XPA, with ā < 0.05 by unpaired t 214 
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 7 

tests, were labeled NER-deficient. Labeling of these assayed variants was blinded from their 215 

class probabilities predicted by the logistic regression model. To test the hypothesis that active 216 

learning improves the performance of XPA variant effect prediction more than traditional 217 

learning, a logistic regression model was retrained using a training set consisting of the initial 19 218 

labeled variants plus the seven VUS the initial model was least certain about, labeled according 219 

to their NER activity. This was termed the <active model=. 220 

In parallel, the NER activity was measured by FM-HCR for an additional set of 20 VUS 221 

consisting of (i) variants well separated in the PCA scatter plots and (ii) variants located in the 222 

region where the two classes are believed to overlap (Supplementary Figure S2). A logistic 223 

regression model was then trained using a training set consisting of the initial 19 labeled 224 

variants plus seven variants randomly selected from the pool of seven original and 20 new FM-225 

HCR assayed variants. This was termed the <traditional model=. Next, the active and traditional 226 

model performances as measured by F1 scores were compared for the remaining FM-HCR 227 

assayed variants that weren9t selected for training. Due to the stochasticity in selecting variants 228 

to train the traditional model, the procedure was repeated 100 times. To enable a fair 229 

comparison, the performances of the active and traditional models were computed based on the 230 

same evaluation set in each iteration. A Mann Whitney U test was performed to compare the 231 

differences between the active and learning model performances. 232 

 233 

Full-length XPA model 234 

XPA is a modular protein with two unordered regions at the N- and C-termini, which precludes 235 

an accurate representation of the 3D structure of the full-length protein in a single image. To 236 

display VUS predictions in the context of the XPA protein structure, a structural model of full-237 

length XPA was generated based on reported XPA structures and integrative models (31-35). 238 

Starting with the coordinates of the globular XPA DNA binding domain (residues 98-239, 239 

PDBDEV00000039) (32), Rosetta FloppyTail (36) was used to model the flexible regions of XPA 240 

spanning residues 1-97 and 240-273. Default settings were used except that the perturbation 241 

cycles and models sampled parameters were increased to 1000 and 10 for each floppy tail, 242 

respectively. Graphical representations and images were generated using PyMOL Molecular 243 

Graphics System, version 2.0.7, Schrödinger, LLC (RRID:SCR_000305). 244 

 245 

Cell lines and cell culture 246 

XP2OS cells (RRID:CVCL_3242) were kindly provided by Dr. Orlando Schärer (Center for 247 

Genomic Integrity, Institute for Basic Science, Ulsan National Institute of Science and 248 

Technology, Korea). Cells were maintained in DMEM (Thermo Fisher Scientific #11995073) 249 

supplemented with 10% FBS (Thermo Fisher Scientific #A3160502) and 1% Penicillin-250 

Streptomycin (Thermo Fisher Scientific #15140122). No mycoplasma contamination was 251 

detected in this cell line throughout the experiments (SouthernBiotech #13100-01). XPA 252 

expression plasmids contain full-length human XPA (NM_000380) with the indicated mutations 253 

in the pcDNA3.1(+) backbone (GenScript custom order). 254 

 255 

FM-HCR assay 256 

Reporter plasmids were prepared as a cocktail containing pMax_GFP plasmid damaged with 257 

800 J/cm2 UVC radiation (herein referred to as pMax_GFP_UV) and an undamaged pMax_BFP 258 
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control. An undamaged cocktail containing pMax_GFP and pMax_BFP was also utilized as a 259 

positive control. XP2OS cells (RRID:CVCL_3242) were harvested by trypsinization and pelleted 260 

via centrifugation. Cell pellets were washed with DPBS (Thermo Fisher Scientific #14190-144) 261 

and resuspended in DMEM (Thermo Fisher Scientific #11995073) supplemented with 10% FBS 262 

(Thermo Fisher Scientific #A3160502) to a final density of 2 x 106 cells/mL. XP2OS cells were 263 

transfected with 200 ng of plasmid containing the XPA VUS of interest or wild-type XPA as well 264 

as the FM-HCR reporter plasmids using the Gene Pulser MXCell Plate Electroporation System 265 

(Bio-Rad Laboratories #165-2670). Plate electroporation was performed at 260 V, 950 μF. 266 

FM-HCR analyses were performed as previously described (37,38). Briefly, fluorescence 267 

was measured via an Attune NxT Flow Cytometer (Thermo Fisher Scientific). Percent reporter 268 

expression values representing the NER capacity of cells transiently transfected with plasmids 269 

encoding each XPA variant were determined as previously described (37,38) and normalized to 270 

the NER capacity of wild-type XPA. Unpaired t-tests were performed for each wild-type and 271 

XPA variant pair (n = 3 biological replicates) using GraphPad Prism 9 (RRID:SCR_002798). 272 

 273 

Data Availability 274 

The data generated in this study are available within the article and its supplementary files. All 275 

code files are available as Jupyter Notebooks in the supplement with accompanying source 276 

data.  277 
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 9 

Results 278 

 279 

Active learning improves variant effect predictions for proteins with diverse functions 280 

Active learning is a machine learning approach that incorporates iterative rounds of label 281 

determination (e.g., assigning a property from a functional assay) and training during which the 282 

algorithm chooses the data from which it learns in subsequent training rounds. Here, after 283 

functional validation of the VUS with the most uncertain initial predictions, the resulting data 284 

(e.g., variant effect on protein activity) are then used to newly label the tested variants, and the 285 

algorithm is retrained (Figure 1). Accurate predictions may thus be achieved using fewer rounds 286 

of training and labeling than for other strategies for validating variants (39).  287 

To test the efficacy of this proposed active learning approach before using it to guide 288 

interpretation and experimental analysis of XPA VUS, a series of simulations was performed 289 

comparing active and traditional learning on two types of data: (i) synthetic data generated from 290 

Gaussian distributions containing two binary classes of instances and (ii) real variant effect data 291 

from pre-existing DMS analyses, which quantify the effects of every possible amino acid 292 

substitution within a protein in cells and provide deleterious or neutral molecular phenotype 293 

labels for each variant. For these simulations, synthetic instances or DMS variants were present 294 

in two classes, and the identity of each synthetic instance or the phenotype associated with 295 

each DMS variant was either included as a label or excluded, resulting in unlabeled datapoints. 296 

Within the DMS analyses, we focused on four proteins with known roles in tumor suppression, 297 

progression, or therapeutic response: phosphatase and tensin homolog (PTEN) (24), thiopurine 298 

S-methyltransferase (TPMT) (24), Nudix hydrolase 15 (NUDT15) (26), and cytochrome P450 299 

family 2 subfamily C member 9 (CYP2C9) (25). In addition to the phenotypic labels, we 300 

compiled 19 features for each DMS variant from the Database of Human Nonsynonymous 301 

SNPs and their Functional Predictions (dbNSFP) to be used as input features for training and 302 

classification (27), These features encompassed physical and biochemical properties of amino 303 

acid sidechains, sequence homology, evolutionary sequence conservation, computational 304 

pathogenicity metrics based on protein stability, protein secondary structure elements, and 305 

disease-association. 306 

For each type of data, an uncertainty sampling query strategy (active learning) was 307 

compared to a random sampling strategy (traditional learning) (Figure 2A). A logistic regression 308 

model was trained for these analyses (23); we note that other algorithms could be used within 309 

the active learning framework. In a real-word scenario, the set of labeled data available for 310 

training the initial iteration of the algorithm will often come from variants previously tested and 311 

reported in the literature. Thus, the distribution of initial training data between the two possible 312 

binary classifications for each variant may not reflect the overall ratio for all possible variants in 313 

the protein. This was true for the DMS data, where each protein of interest exhibited varying 314 

ratios between the number of variants with wild-type or protein-deficient phenotypes 315 

(Supplementary Table S1). To reflect this reality in our simulations, differing class ratios of 316 

labeled variants were tested in the initial labeled training sets and changes in algorithm 317 

performance were measured over 20 iterations of active and traditional learning. During active 318 

learning, synthetic instances or DMS variants with the most uncertain predictions were identified 319 

and labeled based on the binary class to which they belonged. 320 
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 10 

Active learning achieved stronger performance than traditional learning in nearly all 321 

scenarios (Figure 2 and Supplementary Figure S3). For example, in one DMS simulation, 322 

active learning outperformed traditional learning by a mean F1 score of 0.052 across the 20 323 

iterations (ā = 3.44 × 10−14, two-sided paired t-test) (Figure 2E). Similar improvement of active 324 

learning over traditional learning was achieved in all other simulations except in two exceptional 325 

scenarios. In the first, the class ratios of the initial pool of synthetic instances (5:1 or 7:3) were 326 

heavily skewed opposite to the overall class ratio of the dataset as a whole (1:5 or 1:1.9) 327 

(Supplementary Figures S3D and S3H). In the second, for CYP2C9 (Supplementary Figures 328 

S3L-N), active learning provided notable benefits in the early training iterations with the most 329 

limited proportions of labeled data, although this benefit decreased in later iterations as larger 330 

proportions of training data were labeled. Nevertheless, using active learning to train a variant 331 

effect predictor enabled flexible integration of pre-existing phenotypic data and reduced the time 332 

and resources needed to improve predictions. Given these primarily positive results, we next 333 

applied a similar active learning approach to XPA tumor VUS. 334 

 335 

Prediction of XPA VUS effects on NER 336 

As an essential NER scaffolding protein, XPA performs two key functions during repair: (i) DNA 337 

binding at the junction between single strand and double strand DNA that is formed upon 338 

opening of the 8repair bubble9 (15-17), and (ii) interaction with multiple proteins that constitute 339 

the NER machinery (9,32,40-43) (Figure 3A). Previous functional study of specific XPA 340 

variants, such as those variants known to cause the germline inherited disorder XP, were used 341 

to classify and assign labels to an initial training dataset with 19 labeled variants (8 NER-342 

proficient and 11 NER-deficient). An additional 89 unlabeled VUS were curated primarily from 343 

publicly available tumor genomic databases to comprise the rest of the dataset (Figure 3B; 344 

Supplementary Tables 2 and 3). 345 

Following the approach used for the DMS analysis, 19 features for each XPA variant 346 

were compiled from dbNSFP including: amino acid properties, sequence homology, 347 

evolutionary sequence conservation, computational variant pathogenicity, and ensemble scores. 348 

The features exhibited substantial variability across variants (Figure 4A; Supplementary 349 

Figure S1) and inspection of the ability of these scores to distinguish known NER-deficient and 350 

-proficient XPA variants revealed clear room for improvement (Supplementary Table 4). These 351 

data further emphasize the need for an approach that incorporates functional data specific to 352 

the protein and phenotype of interest. 353 

Given the limited amount of training data for XPA, the dimensionality of the initial feature 354 

set was reduced using principal component analysis (PCA) before training a logistic regression 355 

algorithm (Supplementary Figure S2). Mapping the initial predictions as the probability of being 356 

classified NER-deficient onto the PCA of the variant features revealed clusters of high-357 

confidence predicted NER-proficient and -deficient variants, with a population of lower 358 

confidence predictions at the boundaries between clusters (Figure 4B). We also observed 359 

similar patterns when making predictions using a semi-supervised label spreading algorithm 360 

(30,44,45) to analyze the XPA dataset (Supplementary Figure S4; Supplementary Tables 361 

S5, S6). 362 

The NER-deficient class probability for each variant was mapped onto a structural model 363 

of XPA, further supporting the algorithm predictions. For example, coordination of a zinc atom 364 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.11.08.467747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

by cysteine residues 105, 108, 126, and 129 is required for the structural and functional integrity 365 

of XPA (46). Hence, tumor VUS such as C126W and VUS in adjacent residues were predicted 366 

to be NER-deficient (Figure 4C). In contrast, mutagenesis studies have demonstrated that 367 

single mutation of residues along the large DNA binding surface of the XPA DBD are sometimes 368 

insufficient to abrogate DNA binding and NER activity (47,48), and fewer VUS on this surface 369 

were predicted to be NER-deficient (Figure 4C). Similarly, H244R, C261S, and C264S in the 370 

flexible C-terminus have been shown to be NER-deficient, and the nearby tumor VUS H242L 371 

was predicted to also be NER-deficient (Figure 4C). These results demonstrate the potential of 372 

variant effect prediction for XPA VUS. 373 

 374 

Active learning using functional validation improves variant effect predictions for XPA 375 

To determine the effect of incorporating functional validation into our approach, 27 VUS were 376 

selected for functional validation by FM-HCR, a high-throughput host cell reactivation assay to 377 

quantify NER capacity (37) (Figure 5A). These VUS spanned the spectrum of prediction 378 

confidence, enabling evaluation of algorithm performance and comparison of active learning 379 

with traditional learning. This set included seven of the ten VUS with least certain class 380 

probabilities from the initial logistic regression model and an additional 20 VUS for evaluation of 381 

model performance. 382 

The XPA VUS selected for FM-HCR were transiently overexpressed in XPA-deficient 383 

XP2OS cells (49), together with a UV-damaged green fluorescent protein (GFP)-expressing 384 

reporter. Successful NER of the UV-damaged reporter in NER-proficient cells can be detected 385 

and quantified by flow cytometry (Figure 5A). As anticipated, XPA-deficient XP2OS cells had 386 

very little GFP reporter expression relative to XP2OS cells rescued with wild-type (WT) XPA 387 

(Figure 5B). Several variants rescued NER activity to a similar degree, but not significantly 388 

beyond that of WT XPA, providing assurance that cells transiently complemented with different 389 

expression constructs can achieve similar levels of NER capacity as WT (Figure 5B). The FM-390 

HCR results also revealed a gradient of NER deficiency resulting from a subset of variants. As 391 

predicted, profound NER defects were observed upon substitution of residues that coordinate 392 

the zinc ion, such as C126 (Figure 5B). Notably, many variants predicted to be deleterious by 393 

pre-existing predictors were not associated with significant NER-deficiency and vice versa 394 

(Supplementary Table S7). Comparison of our initial algorithm predictions with these functional 395 

data provided the basis for an iterative active learning approach (Supplementary Table S8). 396 

To further evaluate the active learning approach, the logistic regression model was 397 

retrained using 26 labeled training variants. The original 19 training set variants were used with 398 

labels assigned based on previous characterization in the literature. In addition, seven VUS 399 

from the group least confidently predicted by the initial model were added using the newly 400 

assigned NER-proficient or -deficient labels from the FM-HCR analysis. The active learning 401 

model was compared to F1 scores from 100 traditional learning models trained using the original 402 

19 labeled variants plus seven variants randomly selected from the remaining 20 variants 403 

assayed by FM-HCR. To enable a fair comparison, the active learning model was evaluated on 404 

the same held-out variants as each of the 100 traditional learning models, and thus, we also 405 

obtained 100 F1 scores for the active learning approach. Consistent with our hypothesis, the 406 

active learning model performed significantly better than the traditional learning model (mean F1 407 

score 0.752 vs. 0.650 for 100 trials, ā = 3.8 × 10−10, Mann Whitney U test) (Figure 6). This 408 
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improvement in performance illustrates that active learning is practical and beneficial in real-life 409 

situations where the amount of initial training data is small and obtaining additional labels is 410 

costly and laborious.   411 
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Discussion 412 

 413 

Our analyses of synthetic, DMS, and real-world XPA variant datasets demonstrate that active 414 

learning and targeted functional validation focused on variants that are refractory to algorithmic 415 

classification can address current variant interpretation challenges. Functional validation is 416 

increasingly recognized as a centerpiece of variant interpretation (3,6,50), and active learning 417 

provides an efficient framework to guide the selection and incorporation of validation data for 418 

maximal impact. Screening out variants unlikely to be informative and prioritizing others for 419 

follow-up avoids wasted experimental effort and has the potential to more rapidly identify 420 

variants with functional effects. Our analyses provide the basis for future work to predict, screen, 421 

and conduct in-depth studies of XPA VUS that reduce NER activity and sensitize cells to 422 

cisplatin. 423 

The analyses of synthetic and DMS data identified a few discrete examples where active 424 

learning failed to significantly improve performance compared to traditional learning. Notably, 425 

this occurred in scenarios with class ratios for the overall dataset that were heavily skewed 426 

opposite to the subset of labeled training instances (Supplementary Figures S3D and S3H). 427 

This finding reveals a limitation in how sparse or biased the initial training dataset can be while 428 

still generating accurate predictions. It also suggests that active learning cannot fully overcome 429 

severe under-representation of variant classes in the training set that are more prevalent in the 430 

overall data. However, given that the sources of labels used for training are known, it should be 431 

possible to foresee when there is likely to be a substantial ascertainment bias that could 432 

decrease the utility of active learning. The results for the CYP2C9 DMS data also hint that the 433 

success of active learning may be context dependent. While active learning showed 434 

improvement over traditional learning for CYP2C9 during the early iterations with the most 435 

limited proportion of labeled training data, which likely reflects most real-world scenarios, 436 

improvement was small in later rounds (Supplementary Figures S3L-N). More thorough 437 

exploration of DMS and other data will be necessary to clearly define the scenarios in which 438 

active learning is most beneficial. 439 

We have demonstrated that active learning can be successfully applied using inputs 440 

derived from either functional data or computational predictions of functional significance to 441 

improve variant effect predictions. This is a central strength, particularly because active learning 442 

can also be easily extended to include additional phenotypic data of interest such as protein 443 

structural data and other functional assays, which would both be expected to improve predictive 444 

performance. Using phenotypic data such as drug sensitivity to validate variant labels during 445 

training represents one future area of exploration that may allow for the generalization of this 446 

approach to other proteins or protein complexes.  447 

Improved performance of XPA variant interpretation is anticipated with higher quality and 448 

consistency of labels in the training set. The initial XPA variant training labels used here were 449 

derived from published results of different cell-based assays from various research groups and 450 

the specific variants were selected subjectively. Starting with standardized, quantifiable FM-451 

HCR analyses to derive accurate labels for the entire initial training set is expected to greatly 452 

improve predictive performance. Future studies will include updating the active learning model 453 

by retraining with XPA variants labeled solely by high quality FM-HCR analysis and conducting 454 

several additional iterations of active learning. Incorporating deeper insights into the structure 455 
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and mechanisms of the NER machinery into training is also anticipated increase the 456 

performance of VUS interpretation. This information will also enable the development of 457 

hypotheses about mechanisms of NER dysfunction, which in turn can be tested and refined 458 

using cell-based, biochemical, biophysical, and structural analysis. 459 

Our analyses underscore that single XPA tumor VUS have the potential to abrogate 460 

NER activity in cells, irrespective of other genetic events. However, there are many VUS in NER 461 

proteins within the same tumor samples that could influence NER activity; tumor cells are 462 

complex and variant interpretation should consider all potentially relevant variants in an 463 

individual (14). Nonetheless, even with these limitations, the active learning strategy paired with 464 

FM-HCR validation shows significant promise for XPA variant interpretation. One goal on the 465 

horizon is to better understand and predict tumor cell drug sensitivity using higher performing 466 

models to identify XPA variants as biomarkers for cisplatin response. This would involve directly 467 

testing repair of cisplatin-induced lesions in cells expressing tumor VUS. Ultimately, this 468 

machine learning approach and future improved versions are anticipated to enable prediction of 469 

the cisplatin response in cells expressing a broad range of NER VUS. 470 

Active learning can overcome small training datasets, enable the selection of a feasible 471 

number of VUS for validation, and maximize the performance gains provided by cell-based 472 

functional validation. By providing actionable insights into VUS, this approach contributes to the 473 

successful implementation of cancer precision medicine.  474 
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Figures and Legends 636 

 637 

 638 
Figure 1. Schematic of the active learning approach to variant interpretation. 639 

First, a machine learning algorithm is trained on a set of labeled variants. Next, a subset of VUS 640 

with the lowest confidence predictions are selected and functionally validated. These newly 641 

labeled variants are then incorporated in the subsequent iteration of algorithm training. The 642 

algorithm can be retrained until predictive performance plateaus or increases only incrementally. 643 

In the diagram, NER-deficient variants are labeled with D, NER-proficient variants with P, and 644 

unlabeled VUS with a 8?9. The color spectrum indicates the confidence of the prediction for each 645 

variant.  646 
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 647 
Figure 2. Active learning results in more accurate models compared to traditional 648 

learning on synthetic and deep mutational scanning data.  649 

A, Schematic representation of the simulation protocol to compare active learning with 650 

traditional learning. The mean F1 score was used to compare active and traditional learning for: 651 
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synthetic datasets with balanced class ratios (1:1) in both the overall data and the initial labeled 652 

training set in B, or skewed class ratio (1:5) in both the overall data and initial labeled training 653 

set in C; and a DMS PTEN dataset with a balanced class ratio (1:1) in the initial labeled training 654 

set in D, or a skewed class ratio (2:3) in the initial labeled training set in E. Error bars indicate 655 

95% confidence intervals around the mean F1 score. All initial labeled pools had ten instances 656 

or variants to start except for the skewed synthetic dataset in B, which had 12 instances to 657 

maintain the 1:5 ratio with sufficient starting numbers of instances in both classes. See 658 

Supplementary Table S1 for additional details regarding the composition of the PTEN dataset. 659 
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 660 
Figure 3. XPA contains many VUS and few functionally characterized variants. 661 

A, Schematic representation of the XPA protein with variants and partner protein interaction 662 

regions (horizontal lines) mapped across the sequence. The locations of NER-deficient or -663 

proficient variants as well as VUS are indicated with triangles.  B, Diagram outlining the sources 664 

of variants and labels used for training the initial variant effect prediction algorithm. 665 
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 666 
Figure 4. Logistic regression model to predict NER-deficient variants. 667 

A, Heatmap of pairwise Spearman9s rank correlations of five representative features for each 668 

XPA variant. Features shown include one predictor from each of the following classes: amino 669 

acid properties (Grantham), sequence homology (SIFT), evolutionary sequence conservation 670 

(ConSurf), pathogenicity (MutationTaster), and ensemble scores (MetaSVM). B, Effects of XPA 671 

VUS on NER activity predicted by the logistic regression model. Input features are the first three 672 

principal components from a principal component analysis (PCA) of the original set of 19 673 

features from dbNSFP. VUS selected for functional validation outlined in black: D5Y, G6R, 674 

A18S, R30W, A60T, D70H, G72E, G73E, P94L, E106G, K110E, E111A, F112C, M113I, D114Y, 675 

T125A, C126W, C126Y, R130I, L138R, Y148D, D154A, F164C, V234M, H242L, R258C, and 676 

K272N. C, Model of full-length XPA with variants of interest depicted as spheres and colored 677 

according to the scheme in B (top). The precise fold and orientation of the flexible N- and C-678 

termini regions are not known and are shown only for representative purposes. The bottom 679 

panel shows a schematic diagram of XPA and the location of the XPA DNA binding domain. 680 
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 681 
Figure 5. FM-HCR to test NER capacity of selected XPA VUS. 682 

A, Diagram of FM-HCR assay in XPA-deficient XP2OS cells. Cells transfected with UV-683 

damaged fluorescent reporters as well as either WT XPA or XPA VUS are analyzed by flow 684 

cytometry to detect fluorescent reporter expression. Successful NER results in fluorescent 685 

reporter repair and expression (top), which is not observed in control cells lacking XPA (bottom). 686 

B, Bar graph showing relative reporter expression in cells expressing empty vector (EV), WT 687 

XPA, or the 27 VUS selected for validation. Seven of the top ten VUS with the least certain 688 

class probabilities (light grey) were tested, as well as 20 other VUS for further evaluation (dark 689 

grey). Damaged reporter expression was normalized to an undamaged control reporter to 690 

account for transfection efficiency. The percent reporter expression for each variant was 691 

normalized to that determined for WT to generate the final relative reporter expression (n = 3 692 

biological replicates). Error bars indicate standard deviation from the mean. Seven of the VUS 693 

analyzed maintained significantly decreased repair capacity when compared to WT. * signifies 694 ā < 0.05, unpaired t test.  695 
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 696 
Figure 6. Active learning improves predictions of XPA variant NER capacity. 697 

Plot of F1 scores comparing the performance of active versus traditional learning with the XPA 698 

dataset. Both the active and traditional learning strategies were repeated 100 times. Error bars 699 

indicate standard deviation. ā = 3.8 × 10−10, Mann Whitney U test. 700 
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