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Abstract

Summary: Many methods allow us to extract biological activities from omics data
using information from prior knowledge resources, reducing the dimensionality
for increased statistical power and better interpretability. Here, we present
decoupleR, a Bioconductor package containing computational methods to extract
these activities within a unified framework. decoupleR allows us to flexibly run any
method with a given resource, including methods that leverage mode of regulation
and weights of interactions. Using decoupleR, we evaluated the performance of
methods on transcriptomic and phospho-proteomic perturbation experiments.
Our findings suggest that simple linear models and the consensus score across
methods perform better than other methods at predicting perturbed regulators.
Availability and Implementation: decoupleR is open source available in
Bioconductor

(https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html). The

code to reproduce the results is in Github
(https:/github.com/saezlab/decoupleR _manuscript) and the data in Zenodo
(https:/zenodo.org/record/5645208).

Contact: Julio Saez-Rodriguez at pub.saez@uni-heidelberg.de.
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1. Introduction

Omics datasets, such as transcriptomics or phospho-proteomics, provide
unbiased high-dimensional molecular profiles. However, their big dimensionality,
combined with the highly connected nature of the molecules that are measured,
make it difficult to interpret them in a mechanistically relevant manner. Leveraging
prior knowledge we can use computational methods to infer which biological
activities are relevant. For example, the activity of transcription factors and kinases
can be inferred robustly from downstream transcripts and phosphosite targets,
respectively (Dugourd and Saez-Rodriguez, 2019). Over the past decade a plethora
of methods that infer biological activity have emerged, each with its own
assumptions and biases.

Although comparisons and collections of these methods exist (Maciejewski,
2014; Mathur et al., 2018; Varemo et al., 2013; Alhamdoosh et al., 2017; Geistlinger et
al., 2020; Yilmaz et al., 2021), they do not incorporate recent methodological
developments, such as modeling activities based on weighted mode of regulation.
Here we present decoupleR, an R package containing a collection of methods

adapted for biological activity estimation in bulk, single cell and spatial omics data.

2. Implementation

Currently decoupleR contains 11 different methods (Fig. 1), these include
popular methods such as AUCell (Aibar et al., 2017), fast GSEA (Sergushichev, 2016),
GSVA (Hanzelmann et al., 2013), over representation analysis (ORA) (Fisher, 1922),
univariate linear model (ULM) (Teschendorff and Wang, 2020), VIPER (Alvarez et
al., 2016) and others (Supplementary Table 1). The inputs of decoupleR are: (1) a
matrix containing molecular feature values like gene expression counts per sample
and (2) a prior knowledge resource such as a collection of gene sets. The user can
then choose any method alone or many simultaneously. Decoupler also provides a
consensus score obtained by aggregating the different ranked scores (Kolde et al,
2012).
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Figure 1. decoupleR’s workflow. decoupleR contains a collection of computational methods

that coupled with prior knowledge resources estimate biological activities from omics data.

3. Benchmark design

We used decoupleR to evaluate the performance of individual methods by
recovering perturbed regulators - transcription factors (TFs) and kinases - from
two independent collections of transcriptomics (Holland et al., 2020) and
phospho-proteomics (Hernandez-Armenta et al., 2017) datasets (Supplementary
Note), respectively, upon single-gene perturbation experiments. As resources we
used the gene regulatory network DoRothEA (Garcia-Alonso et al., 2019), and a
kinase substrate network (Hernandez-Armenta et al., 2017), respectively.

We built a benchmarking pipeline with decoupleR (Supplementary Note),
which evaluates the performance of regulator activity scores from different
methods, mainly focused on the sensitivity of methods. Furthermore, to evaluate
the robustness of the methods to noise, we added or deleted a percentage of edges

from the prior knowledge resources.


https://sciwheel.com/work/citation?ids=8222181&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3332194&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7251122&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3332194&pre=&suf=&sa=0
https://doi.org/10.1101/2021.11.04.467271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467271; this version posted November 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4. Results

Methods return different distributions of activities (Supplementary Fig. S1)
but display general similarities (Supplementary Fig. S2), with a median Spearman
correlation of activities between methods of 0.52, and 0.66 for transcriptomics and
phospho-proteomics, respectively. There was also a moderate agreement between
methods in the top 5% ranked regulators (median Jaccard indexes of 0.23 and 0.24,
respectively; Supplementary Fig. S2).

Despite these similarities, methods showed different performances at
predicting perturbed regulators (Supplementary Fig. S3). Some of them performed
consistently better than the others (Supplementary Tab. S2), the top three being:
consensus, multivariate linear model (MLM) and ULM. Moreover, methods that
leverage weights perform better when those are taken into account
(p-value<2.2e-16; W=2.32e+10; N=2.20e+05; one-sided Wilcoxon signed-rank test)
(Supplementary Fig. S4).

Deleting edges in the resource had a greater effect than adding them across
methods (Supplementary Fig. S5); with a median Spearman correlation of activities
to the original ones of 0.84 and 0.77 for the addition and deletion, respectively
(p-value<2.2e-16; W=1.11e+05; N=5.10e+02; one-sided Wilcoxon signed-rank test).
Additionally, adding or deleting edges decreased predictability, and deleting edges
had a worse effect than adding (adjusted p-values<2.2e-16 for normal-addition,
<2.2e-16 for normal-deletion and 7.1e-06 for deletion-addition; F=130.68; Tukey’s
HSD post-hoc test) (Supplementary Fig. S6).

Finally, we evaluated decoupleR’s speed and found that top performer
methods run relatively fast (9.95e-04 seconds per sample and regulator with an
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz) (Supplementary Fig. S7), enabling

their use with larger datasets such as single-cell or spatial omics.

5. Conclusion

In summary, decoupleR combines a variety of methods to infer biological

activities into one efficient, robust, and user-friendly tool. With a common syntax
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for different methods, types of omics datasets, and knowledge sources, it facilitates
the exploration of different approaches and can be integrated in many workflows.
We observed that the majority of methods return adequate estimates of
regulator activities, but that their aggregation into a consensus score and linear
models perform better than other methods. We welcome the addition of further

methods by the community.
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Supplementary Information:

Methods overview

AUCell

AUCell (Aibar et al., 2017) uses the Area Under the Curve (AUC) to calculate whether
a set of targets is enriched within the molecular readouts of each sample. To do so,
AUCell first ranks the molecular features of each sample from highest to lowest
value, resolving ties randomly. Then, an AUC can be calculated using by default the
top 5% molecular features in the ranking. Therefore, this metric represents the
proportion of abundant molecular features in the target set, and their relative
abundance value compared to the other features within the sample.

Univariate Decision Tree

Univariate Decision Tree (UDT) (Therneau and Atkinson, 2019) fits a single
decision tree for each regulator and sample. As a unique covariable, UDT uses the
associated weights of a given regulator to estimate the molecular readouts of all
molecular features in a sample. Target features with no associated weight are set to
zero. The obtained feature importance from the fitted model is the activity of the
regulator.

Multivariate Decision Trees

Multivariate Decision Trees (MDT) (Wright and Ziegler, 2017) fits an ensemble of
decision trees, known as random forest, to infer regulator activities. MDT, contrary
to UDT, uses all regulators of a given network to estimate the molecular readouts
of all molecular features in a sample. Same as UDT, target features with no
associated weight are set to zero. The feature importances extracted from the fitted
model are the regulator activities.

Fast Gene Set Enrichment Analysis

Fast Gene Set Enrichment Analysis (FGSEA) (Sergushichev, 2016) estimates
regulator activities using a GSEA implementation based on an adaptive multi-level
split Monte Carlo scheme. In GSEA, molecular features are first ranked per sample.
Then, an enrichment score (ES) is calculated by walking down the list of features,
increasing a running-sum statistic when a feature in the target feature set is
encountered and decreasing it when it is not. The magnitude of the increment
depends on the correlation of the molecular feature with the regulator being
evaluated. The final ES is the maximum deviation from zero encountered in the
random walk. Finally, a normalized ES (NES), called norm_fgsea in decoupleR, can
be calculated using permutations.
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Gene Set Variation Analysis

Gene Set Variation Analysis (GSVA) (Hinzelmann et al, 2013) starts by
transforming the input molecular readouts matrix to a readout-level statistic using
Gaussian kernel estimation of the cumulative density function. Then, readout-level
statistics are ranked per sample and normalized to up-weight the two tails of the
rank distribution. Afterwards, an enrichment score (ES) is calculated as in GSEA,
using the running sum statistic. Finally, the ES can be normalized by subtracting
the largest negative ES from the largest positive ES.

Weighted Sum

Weighted Sum (WSUM) infers regulator activities by first multiplying each target
feature by its associated weight which then are summed to a final enrichment score
(ES). It can be defined as:

n

ES = ¥ slX.
i=1

Where n is the number of targets for a given regulator, s, is the associated mode of

regulation (either positive of negative), [ is the likelihood of that event happening

and X is a molecular feature statistics like gene expression. In case s, or [ are not

present, these are set to one.

Furthermore, permutations of random target features can be performed to obtain
a normalized score (NES), called norm_wsum in decoupleR, with R being the
obtained random null distribution:

_  _ES—mean(R)
NES = Sd(R)

A corrected enrichment score (CES), called corr_ wsum, is also obtained:
CES = —logl0(p) * ES
Where p is the empirical p-value defined as:

p =%
ifp =0,p=
ifp =1L p=—F"

Here, r is the number of times R was bigger than the absolute value of ES and N is
the number of random permutations. NES and CES are alike, but CES can handle

better zero inflated distributions since NES requires a high N value to avoid having
a sd(R) equal to zero.

T z|~
AN

Weighted Mean

Weighted Mean (WMEAN) is similar to WSUM but it divides the obtained ES by
the sum of the absolute value of weights. It can be defined as:


https://sciwheel.com/work/citation?ids=1510196&pre=&suf=&sa=0
https://doi.org/10.1101/2021.11.04.467271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467271; this version posted November 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

%s,l_X .
ES = —2——
Elabs(sili)
Like in WSUM, a NES (norm_wmean) and a CES (corr_mean) can be calculated if
random permutations of target features are performed. It is worth mentioning that
norm_wmean and norm_wsum converge into the same scores since their null
distributions are the same.

Over Representation Analysis

Over Representation Analysis (ORA) (Fisher, 1922) measures the overlap between
the target feature set and a list of most altered molecular features in the input
matrix. The most altered molecular features can be selected from the top and/or
bottom of the molecular readout distribution. ORA first builds a contingency table
and then runs a one-tailed Fisher’s exact test to determine if a regulator’s set of
features are enriched in the selected features from the data. The resulting score is:

ES = - loglo(p)
Where p is the obtained p-value from the test.

Univariate Linear Model

Univariate Linear Model (ULM) (Teschendorff and Wang, 2020), like UDT, uses as a
unique covariable the weighted mode of regulation of a single regulator to estimate
the molecular readouts of all molecular features in a sample. Target features with
no associated weight are set to zero. The obtained t-value from the fitted model is
the activity of the regulator.

Multivariate Linear Model

Multivariate Linear Model (MLM), contrary to ULM and similar to MDT, uses all
regulators of a given network to estimate the molecular readouts of all molecular
features in a sample. Same as ULM, target features with no associated weight are
set to zero and the obtained t-values from the fitted model are the activities of the
regulators.

VIPER

Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER)
(Alvarez et al., 2016) estimates biological activities by performing a three-tailed
enrichment score calculation. First, a ranking is performed for the absolute value
of the molecular statistics in the input matrix per sample. The closer value to zero
in the matrix is given a ranking of one and the most extreme positive value is given
a ranking of N. Then, these rankings are quantile transformed. The one-tailed
enrichment score is computed as:
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‘" (1—abs(si))lil(i
ES =+
1 n

Here, n is the number of targets for a given regulator, s, is the associated mode of

regulation, [ is the likelihood of that interaction and K, is the quantile-transformed

ranking of molecular statistics. Next, molecular targets inside each regulator are
ranked again, now based on the mode of regulation, either positive or negative:
Q =rank(S * X)
S is a vector indicating the mode of regulation for each target feature and X is a
vector containing the molecular statistics from a given sample. Ranks are also
quantile transformed and the two-tailed ES is calculated as:
E“SiliQi
_ =1
ES , =

n

Q, is the two-tailed quantile-transformed ranking of molecular statistics. Then, the

three-tail score is defined as:
ES = ([ES,| + ES) X s

Where s is the sign of ES.. Finally a normalized enrichment score is estimated by:

n
NES = ES *q/zlf
i=1

Which is an analytical approximation to random permutations.

Consensus

A consensus score is generated when more than one method is run with
decoupleR. The score is generated using Robust Rank Aggregation (Kolde et al.,
2012), using a probabilistic model for aggregation that is robust to noise and
facilitates the calculation of significance probabilities for all the elements in the
final ranking. The resulting score is:

ES = —log ()
Where p is the obtained p-value from the model.

Benchmark design

We used decoupleR to evaluate the performance of individual methods by
recovering perturbed transcription factors (TFs) from a curation of single-gene
perturbation experiments (Holland ez al., 2020). As a resource we used DoRothEA,
a gene regulatory network linking TFs to target genes by their mode of regulation
(Garcia-Alonso et al., 2019). Perturbation experiments where the targeted regulator

was not in DoRothEA were removed. After filtering, this dataset is composed of

10
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gene expression data from 92 knockdown and overexpression experiments of 40
unique TFs in human cells. Additionally, we tested the performance of decoupleR
on phospho-proteomic data. For this, we filtered in a similar fashion a curated set
of knockdown and overexpression single-kinase perturbation experiments,
obtaining 63 experiments including 14 unique kinases, and applied a weighted
resource from the same publication that links kinases to their target phosphosites
(Hernandez-Armenta et al., 2017). For the transcriptomic dataset, differential
expression analysis was performed with limma (Ritchie et al, 2015) and the
resulting t-values were used as input. For the phospho-proteomics, the
quantile-normalized log2-fold changes from different studies were used to make
them comparable. The unprocessed data can be accessed through Zenodo:
https:/zenodo.org/record/5645208.

We built a benchmarking package using decoupleR, called decoupleRBench
(https:/github.com/saezlab/decoupleRBench) which evaluates the performance of
TF and kinase activity scores from different methods. Regulator activities were
inferred from perturbation experiment data for both omics datasets using every
method with default parameters. Since we only have one perturbed regulator for
each experiment, we decided to concatenate all experiments into a single vector to
have more than one True Positive case. Afterwards, we transformed the obtained
scores to their absolute value. Since there are overexpression and knockout
perturbation experiments, we assumed that perturbed regulators can have either
highly positive or highly negative scores. Moreover, given that the true positive
classes are limited by the TFs or kinases covered in the perturbation experiments,
we added a downsampling strategy, where for each permutation an equal number
of negative classes was randomly sampled. Finally, the area under the Receiver
operating characteristic (AUROC) and Precision Recall curve metrics (AUPRC) were
computed for each downsampling permutation. For the phospho-proteomics
dataset, we ran two versions of the prior knowledge resource, one without weights
and one with weights coming from kinase binding potentials, to assess whether the

addition of weights gave any additional value to the prediction precision.

The obtained activities were further compared by computing the Spearman
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correlation between the concatenated scores of all samples from one method to
another. We also checked the overlap of regulators with high absolute value score
between methods by computing the Jaccard index of each pair of experiments.

The final Jaccard index comes from calculating the median across experiments.

Furthermore, to evaluate the robustness of the methods to noise, we added or
deleted a percentage of edges (25%, 50% and 75%) to every regulator in the prior
knowledge networks. When random edges were added, their mode of regulation
and weight were set to 1. For every mode (addition or deletion) and percentage, we
generated five different networks, which we ran through the benchmarking
pipeline of decoupleRBench. With the inferred regulator scores, for every
percentage and mode we measured robustness as the correlation of scores with the
normal ones and the difference of performance in AUROC and AUPRC to the

normal networks.
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Supplementary tables

Supplementary Table 1. List of methods currently available in decoupleR.
Methods are classified by whether they model the mode of regulation (Sign) or the
likelihood of the source-target link (Weight), whether they are based on
permutations, whether they generate a p-value associated with the inferred score
and by their range of values.

Name Citation Sign Weight Permutation p-value Range
AUCell (Aibar et al., 2017) No No No No 0,1
UDT (Therneau and Yes Yes No No 0, Inf
Atkinson, 2019)
MDT (Wright and Ziegler, Yes Yes Yes No 0, Inf
2017)
FGSEA (Sergushichev, 2016) No No Yes Yes -1, +1
GSVA (Hanzelmann et al., No No No No -1, +1
2013)

WSUM - Yes Yes Yes Yes -Inf, +Inf
WMEAN - Yes Yes Yes Yes -Inf, +Inf
ORA (Fisher, 1922) No No No Yes 0, Inf

ULM (Teschendorff and Yes Yes No Yes -Inf, +Inf
Wang, 2020)
MLM - Yes Yes No Yes -Inf, +Inf
VIPER (Alvarez et al., 2016) Yes Yes Yes Yes -Inf, +Inf
Consensus (Kolde et al., 2012) No No No Yes 0, Inf
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Supplementary Table 2. List of methods ranked by their performance in the
benchmarking pipeline. Methods are ranked by the median area under the curve
(AUC) of the joint distribution of all downsampling permutations in both AUROCs
and AUPRCs for both datasets. Methods with significant p-values have a greater
distribution of AUCs than the rest, computed using the one-sided Mann-Whitney
U test (N=6.40e+05).

Method p-value w Median AUC
consensus <2.2e-16 1.70e+10 0.68
mlm <2.2e-16 1.69e+10 0.67
ulm <2.2e-16 1.52e+10 0.66
norm_wmean/norm_ws <2.2e-16 1.43e+10 0.65

um

ora <2.2e-16 1.42e+10 0.64
corr_wsum <2.2e-16 1.28e+10 0.64
udt <2.2e-16 1.26e+10 0.64
mdt 5.76e-5 1.21e+10 0.63
wsum 0.144 1.21e+10 0.64
viper 1 1.16e+10 0.62
aucell 1 1.13e+10 0.62
corr_wmean 1 1.09e+10 0.62
wmean 1 9.51e+09 0.60
fgsea 1 9.01e+09 0.59
norm_fgsea 1 6.86e+09 0.58
gsva 1 5.62e+09 0.56
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Supplementary Figure 1. Method scores distributions for the transcriptomic
dataset (A) and phospho-proteomics dataset (B).
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Supplementary Figure 2. Spearman correlations between methods using the
transcriptomics (A) and phospho-proteomics (C) datasets. Median Jaccard index
between methods of the top 5% TFs (B) or kinases (D) ranked by the absolute value
of enrichment score.
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Supplementary Figure 3. Distributions of AUROCs (A), AUPRCs (B) and the
median for both (C) for each method in the transcriptomics dataset. Distributions
of AUROCs (D), AUPRCs (E) and the median for both (F) for each method in the
phospho-proteomics dataset.
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Supplementary Figure 4. Distributions of AUROCs (A), AUPRCs (B) and the
median for both (C) for each method in the phospho-proteomics dataset. Color
indicates if the weights of the prior knowledge resource were used.
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Supplementary Figure 5. Correlations between original enrichment scores and
scores obtained after adding or deleting a percentage of edges to the prior
knowledge resource used for the transcriptomic (A,B) and phospho-proteomic
(C,D) datasets.
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Supplementary Figure 6. Distributions of AUROCs and AUPRCs for both datasets

obtained after adding or deleting edges in the prior knowledge resource.
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Supplementary Figure 7. Runtime for each method in the transcriptomics (271 TFs
and 92 samples) (A) and phospho-proteomics (59 kinases and 63 samples) (B)
datasets. decoupleR was run 31 times in the network robustness experiment (5
permutations, 3 percentages, 2 modes and a normal run) for each dataset in a
laptop with an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz.
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