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35 2. Abstract
36  Several bioinformatics genotyping algorithms are now commonly used to
37 characterise antimicrobial resistance (AMR) gene profiles in whole genome
38 sequencing (WGS) data, with a view to understanding AMR epidemiology and
39 developing resistance prediction workflows using WGS in clinical settings. Accurately
40 evaluating AMR in Enterobacterales, particularly Escherichia coli, is of major
41  importance, because this is a common pathogen. However, robust comparisons of
42  different genotyping approaches on relevant simulated and large real-life WGS
43 datasets are lacking. Here, we used both simulated datasets and a large set of real
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E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods
in greater detail.

Simulated constructs and real sequences were processed using four different
bioinformatic programs (ABRicate, ARIBA, KmerResistance, and SRST2, run with
the ResFinder database) and their outputs compared. For simulations tests where
3,092 AMR gene variants were inserted into random sequence constructs,
KmerResistance was correct for all 3,092 simulations, ABRicate for 3,082 (99.7%),
ARIBA for 2,927 (94.7%) and SRST2 for 2,120 (68.6%). For simulations tests where
two closely related gene variants were inserted into random sequence constructs,
ABRIicate identified the correct alleles in 11,382/46,279 (25%) of simulations, ARIBA
in 2494/46,279 (5%), SRST in 2539/46,279 (5%) and KmerResistance in
38,826/46,279 (84%). In real data, across all methods, 1392/1818 (76%) isolates
had discrepant allele calls for at least one gene.

Our evaluations revealed poor performance in scenarios that would be expected to
be challenging (e.g. identification of AMR genes at <10x coverage, discriminating
between closely related AMR gene sequences), but also identified systematic
sequence classification (i.e. naming) errors even in straightforward circumstances,
which contributed to 1081/3092 (35%) errors in our most simple simulations and at
least 2530/4321 (59%) discrepancies in real data. Further, many of the remaining
discrepancies were likely “artefactual” with reporting cut-off differences accounting
for at least 1430/4321 (33%) discrepants. Comparing outputs generated by running
multiple algorithms on the same dataset can help identify and resolve these
artefacts, but ideally new and more robust genotyping algorithms are needed.

3. Impact statement

Whole-genome sequencing is widely used for studying the epidemiology of
antimicrobial resistance (AMR) genes in bacteria; however, there is some concern
that outputs are highly dependent on the bioinformatics methods used. This work
evaluates these concerns in detail by comparing four different, commonly used AMR
gene typing methods using large simulated and real datasets. The results highlight
performance issues for most methods in at least one of several simulated and real-
life scenarios. However most discrepancies between methods were due to
differential labelling of the same sequences related to the assumptions made
regarding the underlying structure of the reference resistance gene database (i.e.
that resistance genes can be easily classified in well-defined groups). This study
represents a major advance in quantifying and evaluating the nature of
discrepancies between outputs of different AMR typing algorithms, with relevance for
historic and future work using these algorithms. Some of the discrepancies can be
resolved by choosing methods with fewer assumptions about the reference AMR
gene database and manually resolving outputs generated using multiple programs.
However, ideally new and better methods are needed.
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4. Introduction

Whole genome sequencing (WGS) has become a major tool for characterising the
epidemiology of bacterial antimicrobial resistance (AMR) genes, representing a
potentially highly discriminatory, non-targeted approach with significant advantages
over other more targeted molecular techniques(1). In addition, WGS-based antibiotic
susceptibility prediction has been successfully implemented as part of diagnostic and
treatment workflows for Mycobacterium tuberculosis(2). Accurate WGS-based
profiling of complete AMR gene content and prediction of susceptibility phenotypes
would represent an attractive option for other commonly encountered clinical
bacterial pathogens, such as Enterobacterales, including Escherichia coli.

Several key components are required for WGS-based AMR genotyping and
predictions of susceptibility phenotype, including a robust AMR gene reference
catalogue linking each genetic mechanism/sequence with a given phenotype, and
accurate AMR gene identification and classification algorithms. Several catalogues
and bioinformatics algorithms are now available(3-9), but only limited comparative
evaluation of their outputs has been undertaken. The genetic mechanisms
underpinning AMR in Enterobacterales and some other bacteria (e.g. Pseudomonas
aeruginosa) are much more complex than those in M. tuberculosis, and whilst some
studies suggest that WGS-based genotyping holds promise for AMR gene
characterisation and the prediction of antimicrobial susceptibility for several different
Enterobacterales species(10-12), the limited reproducibility and reliability of such
methods in a blinded, head-to-head analysis across nine bioinformatics teams has
been recently highlighted(13). However, this study was small (n=10 sequencing
datasets, n=7 isolates), encountered a limited set of typing discrepancies, and used
highly selected samples, meaning the impact of these issues on larger, real-world
datasets remains unclear.

We therefore used simulations and three large, independent and diverse E. coli
sequencing datasets to investigate the robustness and reproducibility of four widely-
used WGS-based AMR genotyping methods (ABRicate, ARIBA, KmerResistance,
and SRST2) at scale, investigating any encountered discrepancies.

5. Methods

AMR gene identification methods

We evaluated the impact of different bioinformatics tools using the same AMR gene
catalogue, namely the ResFinder database (v.29/10/2019). At the time the study was
designed (March 2018), to be included bioinformatics tools had to: (i) have publicly
available code, (ii) run on local computing architecture without major modification,
(iii) accept different AMR gene databases to ensure broad and long-term typing
usability, and (iv) have a command line interface that could enable batch processing
of large numbers of samples (Table S$1).

We identified four publicly available bioinformatic tools that met these criteria and
used distinct AMR gene identification approaches: ABRicate(14) (which searches for
AMR genes in assemblies using BLASTn), SRST2(7) (which maps reads directly
onto the formatted AMR gene database using Bowtie 2), ARIBA(6) (which combines
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these two approaches, first mapping reads to the AMR gene database using
minimap, and then creating local assemblies of the mapped reads using Fermi-lite)
and KmerResistance(8) (which analyses shared k-mers between the query
sequences and reference sequences in the AMR gene database) (Fig.S1). To mimic
broad usability, each program was run using default parameters. For ABRicate,
assemblies were first produced using SPAdes(15) run with default parameters.

Simulated data: single and multiple allele identification, and low coverage scenarios
Prior to evaluating real data, we considered the accuracy of each method in
identifying known AMR gene alleles “inserted” into simulated flanking sequence
constructs. For this, each AMR gene variant in the ResFinder database (n=3,092)
was flanked by 1kb of random sequence (using Numpy v1.16.4(16) and combined
using BioPython(17) v1.74) and reads simulated at 40x coverage using ART (details
and rationale in Supplementary Methods, Fig.1, S2). Other ART parameters were:
error profile=“HISEQ2500”, mean DNA fragment length (standard deviation)=480bp
(150bp), and read length=151bp. Each bioinformatic method was then tested to see
if it could correctly identify the AMR gene variant, using default parameters.

We also considered two a priori scenarios that are thought to affect AMR
genotyping(18), namely a multiple allele scenario in which multiple closely
genetically related alleles (see below) of a given AMR gene were present, and a low
quality scenario reflected by low sequencing coverage. For the multiple allele
scenario we excluded target AMR gene variants that were incorrectly identified
individually by any method (see Results), and then calculated pairwise nucleotide
similarity between all remaining AMR gene variants. To do this, each remaining AMR
gene variant was split into 31-mers, which were then compared with 31-mer sets
from every other non-excluded AMR gene variant using pairwise Jaccard’s similarity
indices. AMR gene variant pairs were defined as similar if they shared any 31-mer,
resulting in a total of 46,279 possible similar AMR gene variant pairs (Fig.S3-S5).

For the low coverage scenario, reads were simulated from 176 blarem gene-
containing constructs at coverage depths ranging from 1x to 50x using ART
(n=176*50=8,800 simulations), reflecting total blarenm diversity present in the
ResFinder database at the time of simulation. Each construct contained a random
perfect reference blatem variant flanked by 1kb of random sequence on each side
produced using Numpy/BioPython as above. Simulated reads were then processed
by each genotyping method using default settings and the identified variants were
compared with the known blatem variants present in each construct. The measure of
performance for this scenario was the proportion of blarem variants correctly
identified by each method at each coverage level.

Real data: Isolate selection

To evaluate performance on real data, we then studied a total of 1,818 E. coli
isolates comprising three different WGS datasets in order to reflect different strain-
level and AMR gene diversity: (i) 984 sequentially collected bloodstream infection
isolates at Oxford University Hospitals (OUH) NHS Foundation Trust(19) (“Oxford
dataset”); (ii) 497 animal commensal E. coli isolates donated by the UK Animal and
Plant Health Agency (APHA)(20) (“APHA dataset”), and (iii) 337 E. coli isolates
collected by UK Health Security Agency’s (UKHSA) Antimicrobial Resistance and
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185 Healthcare Associated Infections (AMRHAI) Reference Unit, which investigates

186 isolates enriched for rare or important resistance genotypes encountered in the UK
187  (sequenced for this study, “UKHSA dataset”).

188

189 Isolates were re-cultured from frozen stocks stored in nutrient broth plus 10%

190 glycerol at -80°C. DNA was extracted using the QuickGene DNA Tissue Kit S

191  (Kurabo Industries, Japan) as per manufacturer’s instructions, with an additional
192  mechanical lysis step (FastPrep, MP Biomedicals, USA) immediately following

193 chemical lysis. A combination of standard lllumina and in-house protocols were used
194  to produce multiplexed paired-end libraries, which were sequenced on an lllumina
195 HiSeq 2500, generating 151bp paired-end reads. High quality sequences were de-
196 novo assembled using Velvet(21) as previously described(22). In silico Achtman(23)
197  multi-locus sequence types (MLST) types were defined using ARIBA(6).

198

199  While this work does not attempt to predict resistance from WGS data, each isolate
200 had linked AST (summarized in Table S2, Fig.S6), which we have included as the
201  complexity of resistance genotype identification is associated with the phenotype.
202 Isolates had complete AST data available for; ampicillin, ceftazidime and one other
203  3rd generation cephalosporin (cefotaxime for the animal commensal isolates,

204  ceftriaxone for all others), gentamicin, ciprofloxacin, and co-trimoxazole.

205

206 We compared AMR genotypes reported for each isolate by each method, stratified
207 by antibiotic class to which resistance was conferred as specified in the ResFinder
208 database, namely: beta-lactams, aminoglycosides, quinolones, trimethoprim, and
209 sulphonamides. Discrepancies were classified according to which of the four

210 bioinformatics methods agreed (Fig.S7). The cause of discrepancy was investigated
211 for all beta-lactam resistance genotypes, because these antibiotics are most

212 commonly used for clinical E. coli infections, and then for discrepancy patterns

213  occurring in >1.5% (n=27) of isolates for the other classes.

214 6. Results

215  Simulated scenarios

216  Accurate identification of single AMR gene variants in simulated sequence

217  constructs

218 For the 3,092 AMR gene variants in the ResFinder database, all four genotyping
219  methods correctly identified those inserted into random sequence contexts in 2,011
220 (63.5%) cases. KmerResistance was correct for all 3,092 simulations, ABRicate for
221 3,082 (99.7%), ARIBA for 2,927 (94.7%) and SRST2 for 2,120 (68.6%) (Fig.2). For
222 SRST2, most errors were due to its approach of pre-clustering reference sequences
223 into sub-families by sequence identity prior to genotyping, thereby essentially

224  excluding a priori the possibility of identifying alleles that were not selected as the
225  representative for these sub-family clusters. This error is explained in more detail
226 below as it also affected genotyping in real isolate sequences.

227

228 Impact of the presence of multiple closely related alleles on genotyping calls

229 The multiple allele simulation caused significant problems for assembly-based

230 algorithms, with ABRicate reporting fragmented/incomplete alleles for 32,194/46,279
231 (70%) simulations and ARIBA reporting no alleles meeting its assembly quality

232  requirements for 32,987/46,279 (71%) simulations. SRST2, as expected, found only
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a single allele in most (33077/46,279 (71%)) cases (Table 1), as dictated by its
clustering parameters. ABRicate managed to identify both alleles correctly in the
absence of incorrect calls in 11,382/46,279 (25%) of simulations, whereas ARIBA
and SRST2 only managed to correctly reconstruct both members of the pair in the
absence of correct calls in 2,494/46,279 (5%) and 2,539/46,279 (5%) cases
respectively (Table 1). Of the four programs, KmerResistance performed the best,
identifying both alleles correctly without additional erroneous calls in 38,826/46,279
(84%). of cases. Unsurprisingly all four programs were most likely to make
erroneous genotyping calls as the simulated pairs of alleles became more closely
related (Fig.S8).

Impact of sequencing depth on genotyping calls

KmerResistance was able to identify blatem alleles at lower coverage than any of the
other methods (Fig.1). Above 15x depth of coverage for the gene, all methods
correctly identified blatem alleles in simulated constructs in > 95% of cases (Fig.1).
All methods were able to identify all of the blatem alleles correctly at least once, but
examples existed for all methods where the allele was correctly identified at low
coverage, but then mis-classified at higher coverage. In general, ABRicate and
SRST2, while requiring greater sequencing depth to correctly identify blatem alleles
initially were more accurate at higher coverage depths, making erroneous calls for
only 1/176 (0.6%) and 0/176 (0%) of blatem alleles at depths >20x. In contrast, for
>20x coverage ARIBA and KmerResistance made erroneous allele calls for 23/176
(13%) and 6/176 (3%) blatem variants respectively. Above 40x coverage ABRicate
was incorrect for one (0.6%), ARIBA for four (2%), KmerResistance for one (0.6%),
and SRST2 for zero (0%) simulated blatewm alleles.

Real data

E. coli isolate diversity, antimicrobial susceptibility phenotypes and antimicrobial
resistance genotypes

The 1,818 isolates were diverse, representing >260 multi-locus sequence types
(STs), which were differentially distributed among the datasets. For example,
although ST131 was the most common (207/1818 (11%) isolates), this was largely
due to the fact it was by far the most common in the UKHSA dataset (74/337 (22%)
isolates). In the Oxford dataset, it was only the second most common ST (123/984
(13%) isolates) after ST73 (161/984 (16%)) isolates) and it was rare in the APHA
isolates (10/497 isolates (2%)).

Correspondingly, the set also contained a broad range of resistance genes, but the
exact number was dependant on the method of search. For legibility, we have
included results as reported by ABRicate as this is the most conceptually simple and
interrogatable approach.. The commonest AMR-associated sequence identified was
mdfA. This is known to be universal in E. coli, and correspondingly was identified in
all 1,818 isolates in the dataset. There were no other ubiquitous AMR genes;
however, several were common across datasets, with blatem , @aadA, sul, tet, and dfr
genes occurring in >40% of the isolates. As expected, more UKHSA isolates
contained extended-spectrum beta-lactamase (54/337 vs 94/1481) and
carbapenemase (18/337 vs 1/1481) genes (p=<0.001). Aside from blarem, other
beta-lactamases were rare among the APHA dataset. Outside of beta-lactam-
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281 associated AMR genes, the Oxford dataset had the lowest proportion of other AMR
282  genes for all the different gene families encountered in this study.

283

284  Genotyping discrepancies

285 10,487 different genes (N=15,588 different alleles) were identified in the 1818

286 isolates by the four methods. 1,392/1,818 (76%) isolates had discrepancies across
287  the four bioinformatics methods for at least one gene. At the gene-level, aside from
288 for tet, aadA and cat genes, the performance of the bioinformatic tools was similar
289 (Fig.3, panel a), with tools reporting each gene in the approximately same

290 proportion of isolates (within +/-2%). With regards to the three outliers, ABRicate
291 reported tet and aadA genes in 19% and 10% more isolates respectively than the
292  other three tools, and ABRicate and KmerResistance reported cat genes in 5% more
293 isolates than ARIBA and SRST2. By contrast, the alleles reported by each tool were
294  often discrepant, with alleles of some genes (e.g. blaSHV, blaCMY) consistently
295 being differentially reported (Fig.3, panel b). Consequently, pairwise agreement
296 between any two different tools was less than 59% (N=1,065 isolates, Fig.3, panel
297  c¢). While unsupported genotype reports (i.e. where the output of one tool was not
298 supported by any other) were common for all tools (Fig.4), KmerResistance reported
299 fewer unsupported genotypes than the other three tools (p<0.001).

300

301  Causes of genotyping discrepancy

302 Atleast 2,530/4,321 (59%) of allele-level discrepancies were due to programs

303 naming the same underlying sequence differently (annotation differences). We

304 identified three major causes of differences through investigation of discrepantly
305 reported genes: (i) difficulty distinguishing between optimal matches among alleles
306 with nested sequences (N=1,737 genes); (ii) spurious identification of additional
307 alleles due to reads being multiply mapped to distant variants of the same allelic
308 family (N=547 genes); and (iii) tools choosing different optimal matches based on
309 DNA sequence alignment when the database only contains one sequence per

310 protein (N=197) (Fig.5). These issues occurred alone in 1,944/2,530 (77%)

311  discrepantly reported genes, and or in combination in 586/2,530 (23%) cases. In
312  isolation these errors typically caused only a single method to be discordant, but
313  when combined resulted in more complex patterns of discrepancy and could make
314  all four methods disagree with one another. In addition to annotation, ABRicate’s
315  more relaxed requirement for complete gene coverage (which aims to mitigate

316  assembly errors) caused at least 1,430/4,321 (33%) allele-level discrepancies.

317 Discrepancies less easily classified as (but likely related to) annotation/cut-offs did
318 occur, but only affected 381/10487 (4%) of reported genotypes.

319

320 Annotation-related discrepancies

321  The most common type of annotation error (N=1,737 genes) was the result of tools
322  struggling to choose optimal matches where the database contained nested

323 sequences. One such example of this (N=24) was caused by the sequences for two
324  different dfrA7 alleles in the October 2019 Resfinder database, dfrA7_1_AB161450
325 and dfrA7_5 AJ419170. The shorter of the two (dfrA7_1_AB161450, 474 base pairs
326 long) aligns almost perfectly (percentage identity = 99%, 1 single nucleotide gap)
327  with the first 473 bases of dfrA7_5 AJ419170. ARIBA, KmerResistance and SRST2,
328 which look for the best identity sequence matches, all report the sample contains a
329 perfect match for dfrA7_1_AB161450. By contrast ABRicate, which uses BLAST to
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identify optimal sequences, reports the sample contains a near perfect match to
dfrA7_5_AJ419170, as with this being a longer match it is more statistically
significant. Similar errors occurred for several other genes, including sul, tet, aph(6),
and aac(3).

The second most common annotation discrepancy (N=547 genes) represented tools
reporting multiple alleles due to reads mapping to two or more distant variants of the
same allelic family. An example observed was ARIBA and SRST2 reporting multiple
blasnyalleles. In this instance, ARIBA and SRST2 identified a primary perfect allele
and a second allele with a lower quality match. These multiple matches however
were likely spurious, with <10 reads mapping individually to each allele, no clear
heterozygosity observed in read pileups, and no fragmentation in assembly graphs.
This is the result of a biproduct of how mapping methods identify optimal matches.
Both ARIBA and SRST2 map reads to each sequence in the database, and then
compare “closely related” sequences to decide which mapping is optimal. Defining
“closely related” however is not straightforward (Fig.89). Reads mapping to more
than one set of “closely related” sequences can result in tools finding multiple gene
variants when the isolate only had one gene original

The final common annotation discrepancy (N=197 genes) was due to allele reporting
based on which sequence in the database had the optimal DNA alignment with the
target resistance gene. Although resistance gene nomenclature is largely based on
protein sequence, but resistance gene databases mostly only catalogue one
nucleotide sequence linked to an associated protein sequence. Variant alleles with
synonymous mutations fail to perfectly match any element, and may have an
alternate optimal DNA match. We observed this on 9 occasions where ABRicate,
KmerResistance and SRST2 identified imperfect nucleotide-level matches to
aph(3")-Ib_2_AF024602 and ARIBA identified an imperfect match to aph(3")-
Ib_4_AF313472. However, the sequence they were matching to in the SPAdes and
ARIBA assembly was a 100% identity and coverage protein match to aph(3")-

Ib_5 AF321551.

Non-annotation related discrepancies

In addition to annotation discrepancies that were caused by bioinformatics
algorithms, genotyping calls were also affected by partial/low coverage of AMR gene
targets and assembly fragmentation, consistent with the results from simulations. For
some of these, such as the 1,430 cut-off related discrepancies occurring for fet, mfs,
aadA, and cat genes, each program identified the same section of sequence, making
it clear that the different programs had different thresholds for reporting, other
situations were less clear. To investigate this in detail, we examined beta-lactamase
matches which were either partial/low coverage or occurred across fragmented
assemblies.

Partial/low coverage beta-lactamase genes were discrepantly found in 39 isolates
(Fig.S10), particularly affecting blarem-like gene calls (29/39 cases). KmerResistance
reported the presence of a beta-lactamase gene in all 39 of these discrepant cases,
with calls supported to a varying degree by the other algorithms. However, in all but
four cases, KmerResistance reported that the depth of the gene was less than 5x.
For the four cases where the gene was present at greater than 5x depth as called by
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KmerResistance, three (present at depth >100x) were omitted from ARIBA reports
as ARIBA assemblies contained mis-sense mutations and the final one (present at
depth 17x) also failed to assemble for ABRicate.

Assembly fragmentation affected ABRicate and ARIBA beta-lactam resistance gene
calls in 24 cases, with 16 of these likely to be due to the presence of multiple closely
related beta-lactamase alleles affecting assembly integrity. The possibility of
heterozygous alleles was indicated by the ARIBA flag
“variants_suggest_collapsed_repeat”, and the SRST2 “minor allele frequency value”
was high (>20%). KmerResistance reported two related alleles in 12/16 cases, one
with high depth, percentage identity and coverage, and one much less accurately.
This likely reflects KmerResistance’s winner-takes-all strategy, where matching
unique k-mers to reference alleles are counted, and the reference allele with the
most matches is then also assigned all reads with non-unique kmer-matches. This
then leaves only reads with unique k-mers matching any closely related secondary
allele, resulting in poor depth and coverage metrics.

7. Discussion

We evaluated the impact of bioinformatics approaches to AMR genotyping in E. coli
for four commonly used methods and a widely used AMR gene database
(ResFinder). Using >50,000 simulations and comparing >1,800 sequences sampled
across human and animal reservoirs, thereby capturing common and rare AMR
genotypes, we highlight that whilst currently available, widely-used genotyping
methods are useful, their outputs should be carefully considered in light of our
findings. Commonly postulated causes of discrepancy, such as low quality
sequencing data, appeared to play little role. Instead, discrepancies were primarily
artefactual, occurring because of different approaches in representing the complexity
of the reference AMR gene database. Inconsistent labelling of gene variants will also
affect the reliability of any catalogue-based methods for phenotypic prediction from
WGS-based AMR genotypes. Specifically, predicting phenotype based on the
presence of specific allelic variants will be problematic without a reliable method of
identification.

Our work agrees with previous findings by Doyle et al. on a small and selected
dataset(13); however, we utilised large simulated and real-life datasets to identify
these significant genotyping discrepancies between methods, and also characterized
the underlying reasons for these discrepancies. We found most discrepancies were
largely due to annotation differences, i.e. each method identified the same
consensus sequence but then named them differently. Further, many of these
discrepancies are caused by implicit and frequently incorrect assumptions about
database structure and AMR gene diversity, namely: that AMR genes can be
classified in well-defined families using genetic identity, that different approaches to
deciding best-matching alleles are equivalent, and that isolates will usually not
harbour highly genetically related variants of the same AMR gene. However,
nomenclature and family structure amongst AMR genes relevant to Enterobacterales
is complicated, with highly diverse genotypes (and sometimes phenotypes) being
assigned similar family names (e.g. blactx-m, blaoxa) and single SNPs in some cases
leading to different resistance phenotypes (e.g. blatem-1 (Genbank: AY458016.1) -
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beta-lactamase inhibitor susceptible i.e. susceptible to amoxicllin-clavulanate, blargy.-
30 (Genbank: AJ437107.1) - beta-lactamase inhibitor resistant i.e. resistant to
amoxicillin-clavulanate). Given this, it is not surprising that we found methods that
make fewer assumptions (e.g. KmerResistance) to be more robust. Based on our
findings accurate resistance genotyping may require the use of multiple different
methods to cross-check results, and a clear understanding of the specific
assumptions underlying the methods used, before conclusions about allele presence
are drawn. The alternative is the development of new algorithms that cope better
with underlying AMR gene diversity in these organisms.

One of the key strengths of this analysis was its combined use of both simulations
and real world data. By using simulations, we were able to benchmark methods
against a known truth, which is impossible to do with real-world data. Previous
studies using only real-world data have attempted to overcome the absence of
complete knowledge of the underlying genotype by using phenotypic data as a
reference standard; however genotype-phenotype correlations remain poorly
defined(10, 19). By subsequently using a large sequencing dataset of isolates
obtained across niches, we were then able to assess the extent of discrepancies in
real-life, replicating the problems observed in simulated data.

A limitation of this work is that we chose not to evaluate the impact of database
choice, and this will represent future work. Currently, as has been highlighted
previously(24), there are discrepancies between the AMR databases in common
use, with each having a slightly different scope and in some cases differential names
for different AMR gene variants (e.g.strA vs aph(6)-la or aphD, and strB versus
aph(6)-1d). Comparing databases would have therefore added significant further
complexity whilst limiting the generalisability of findings. A further limitation stemming
from our fixed choice of database is that we have not analysed any methods where
the bioinformatic method and database are intertwined (e.g. ResFinder/PointFinder
or RGI). As the interaction between tool and database was the cause of many
issues, it is possible that methods that are database-specific will perform better.
However, the drawbacks of these combined resources are their inflexibility, again
limiting generalisability. A further limitation was that these genotyping algorithms
were compared using an older version of the ResFinder database — the most up to
date when this work was originally planned. Since this time, 70 sequences have
been added, 2 sequences modified and 2 sequences deleted (See supplementary
data). We opted not to re-perform the analysis due to its manual nature and that as
most of the discrepancies relate to underlying principles behind the algorithms rather
than the specific implementation. Finally, we have focused our evaluation on E. coli,
but it is likely that these issues will also more widely affect AMR genotyping,
particularly of similar species with complex genotypes.

While WGS-based approaches are attractive for both characterizing AMR gene
epidemiology and representing a subsequent tool for resistance prediction, this work
highlights the need for caution when interpreting resistance genotypes reported by
even widely used bioinformatics methods. Before WGS-based approaches can be
considered reliable for use in E. coli (and likely other Enterobacterales), particularly
for clinical decision making or replacing phenotypic data to determine
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475 epidemiological trends, database standardisation, the development of novel
476 genotyping approaches, and improved validation and evaluation will be required.
477
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589 10. Figures and tables

590 Figure 1. Proportion of correct genotype calls for single AMR gene variants in
591 simulated constructs by coverage depth and bioinformatics method.
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593 Figure 2. Identification of known single AMR gene variants in simulated

594  contexts by bioinformatic method. Note only cases where one or more methods
595  were incorrect are shown (n=1,081). “+” denotes the case where total SRST2-only
596 errors=906, but are truncated to 200 to make other errors visible. blue = method
597  correct for these simulations, orange = method incorrect.
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602 Figure 3. Gene identification concordance vs allele identification concordance.
603 a) The number of isolates containing at least one allele of the name gene families (x-
604 axis) stratified by method. b) The proportion of times a given gene was identified
605 concordantly by all four methods. c) Pairwise agreement between the different

606 methods across all isolates.
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Figure 5. Genotyping agreement across all four bioinformatics algorithms, stratified by gene.

Colours on the left indicate which methods agreed with one another, with circles with the same colour indicating agreement.
Colours in the main panel of the figure were used to identify the cause of the discrepancy, as denoted in the figure key. Cells (in the
figure) were coloured if > 90% of isolates were caused by a given discrepancy. Cells with <10 isolates were not investigated.
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624 Table 1. Performance of genotyping methods in evaluating simulated

625 constructs with two related allelic variants. Percentage reported out of a total of
626 46,279 simulations performed for each method.

627

Number of calls (%)

Genotyping ABRicate ARIBA KmerResistance | SRST2
call
No correct 17,145 (37%) | 36,150 (78%) | 489 (1%) 9,898 (21%)
calls
One correct 2,419 (5%) 2 (0%) 1,452 (3%) 152 (0%)
call but
additional
incorrect calls
One correct 15,333 (33%) | 7,634 (17%) | 2,203 (5%) 33,077 (71%)
call, no
incorrect calls
Two correct 0 (0%) 1 (0%) 3,309 (7%) 613 (1%)
calls, but
additional
incorrect calls
Two correct 11,382 (25%) | 2494 (5%) 33826 (84%) 2539 (5%)
calls, no
incorrect calls
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