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Abstract

We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory
of biological evolution, including the origin of life, as multilevel learning. We formulate seven
fundamental principles of evolution that appear to be necessary and sufficient to render a universe
observable and show that they entail the major features of biological evolution, including replication and
natural selection. These principles also follow naturally from the theory of learning. We formulate the
theory of evolution using the mathematical framework of neural networks, which provides for detailed
analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical
framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the
flow of information during learning (back-propagation) and predicting (forward-propagation) the
environment by evolving organisms. The more complex evolutionary phenomena, such as major
trangitions in evolution, in particular, the origin of life, have to be analyzed in the thermodynamic limit,
which is described in detail in the accompanying paper.

Significance statement

Modern evolutionary theory gives a detailed quantitative description of microevolutionary processes that
occur within evolving populations of organisms, but evolutionary transitions and emergence of multiple
levels of complexity remain poorly understood. Here we establish correspondence between the key
features of evolution, renormalizability of physical theories and learning dynamics, to outline a theory of
evolution that strives to incorporate al evolutionary processes within a unified mathematical framework
of the theory of learning. Under this theory, for example, natural selection readily arises from the
learning dynamics, and in sufficiently complex systems, the same learning phenomena occur on multiple
levels or on different scales, similar to the case of renormalizable physical theories.
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1. Introduction

What is life? If this question is asked in the scientific rather than in the philosophical context , a
satisfactory answer should assume the form of atheoretical model of the origin and evolution of complex
systems that are identified with life, from inanimate matter. NASA has operationally defined life as
follows. “Life is a self-sustaining chemical system capable of Darwinian evolution” (1, 2). Apart from
the insstence on chemistry, long-term evolution that involves (random) mutation, diversification and
adaptation is, indeed, an intrinsc, essential feature of life that is not apparent in any other natural
phenomena. The problem with this definition, however, is that natural (Darwinian) selection itself
appears to be a complex rather than an elementary phenomenon (3). In all evolving organisms we are
aware of, for natural selection to kick off and to sustain long-term evolution, an essential condition isthe
replication of a complex digital information carrier (a DNA or RNA molecule). The fidelity of
replication must be sufficiently high to provide for the differential replication of emerging mutants and
survival of the fittest ones (this replication fidelity level is often referred to as Eigen threshold) (4). In
modern organisms, accurate replication is ensured by highly complex molecular machineries that include
not only replication and repair enzymes, but also the entire metabolic network of the cell that provides
energy and building blocks for replication. Thus, the origin of lifeis atypical chicken-and-egg problem
(or a Catch-22): sufficiently accurate replication is essential for evolution but the mechanisms underlying
such a replication process are themselves products of complex evolutionary processes (5, 6).

Because the replication capacity of living organisms is itself a product of evolution, a solution to the
problem of the origin of life is to be sought outside the traditional framework of evolutionary biology.
Modern evolutionary theory, steeped in population genetics, takes a detailed and, arguably, largely
satisfactory account of microevolutionary processes, that is, evolution of alele frequencies in a
population of organisms under selection and random genetic drift (7, 8). However, the population genetic
theory has little to say about the actual historical development of life, especially, about macroevolution
that involves emergence of new levels of biological complexity, and nothing at all about the origin of
life.

The crucial feature of biological complexity is its hierarchical organization. Indeed, multilevel
hierarchies permeate biology. From small molecules to macromolecules;, from macromolecules to
functional complexes, subcellular compartments, and cells; from unicellular organisms to communities,
consortia and multicellularity; from simple multicellular organisms to highly complex forms with
differentiated tissues;, from organisms to communities and eventually to eusociality and to complex
biocenoses involved in biogeochemical processes on the planetary scale. All these digtinct levels jointly
constitute the hierarchical organization of the biosphere. Understanding the origin and evolution of this
hierarchical complexity can be considered one of the principal goals of biology.

In large part, evolution of the multilevel organization of biological systems appears to be driven by
solving optimization problems, which entails conflicts, or trade-offs between the optimization criteria at
different levels or scales, leading to frustrated states, in the language of physics (9-11). Two notable
cases in point are the parasite-host arm race that permeates biological evolution and makes magjor
contributions to the diversity and complexity of life forms (12-15), and multicellular organization of
complex organisms, where the tendency of individual cells to reproduce at the highest possible rate is
countered by the control of cell division imposed at the level of a multicellular organism (16, 17).
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Two tightly linked but distinct, fundamental concepts that lie effectively outside the canonical narrative
of evolutionary biology address evolution of biological complexity: major transitionsin evolution (MTE)
(18-20) and multilevel selection (MLYS) (21-26). Each MTE involves the emergence of a new level of
organization, often described as an evolutionary transition in individuality. A clear-cut example is the
evolution of multicdlularity, whereby a new level of selection emerges, namely, selection among
ensembles of cells rather than among individual cells. Importantly, multicellular life forms (even
counting only complex organisms with multiple cell types) evolved on many independent occasions
during the evolution of life (27, 28), strongly suggesting that emergence of new levels of complexity isa
major evolutionary trend rather than arare event occurring by chance.

The MLS is often percelved as a controversial concept, presumably, because of the link to the long-
debated subject of group selection (26, 29). However, as a defining component of MTE, multilevel
selection appears to be indispensable. A proposed general mechanism behind the MTE, formulated by
analogy with the physical theory of the origin of patterns, for example, in glass-like systems, involves
competing interactions at different levels and the frustrated states such interactions cause (11). In the
physical theory of spin glasses, frustrations result in non-ergodicity and enable formation and persistence
of long-term memory, that is, history (30, 31). By contrast, ergodic systems have no true history because
they reach all possible states during their evolution (at least in the large time limit), and thus, the only
content of quasi-history of such systems is the transition from less probable to more probable states for
purely combinatorial reasons, that is, entropy increase (32). As emphasized by Schrodinger in his
seminal book (33), even if only in general terms because no adequate theory existed at the time, lifeis
based on “negentropic” processes, and frustrations at different levels are necessary for these processes to
set off and persist (11). Conflicting interactions and frustrated states in biological systems are intimately
linked to solving optimization problems, which involves multiple temporal and spatial scales. Again, the
most obvious case in point seems to be the origin of multicellularity, where different selective factors
operate at different levels or scales: selection for the rate of proliferation at the level of individual cellsvs
selection for cell division control at the level of multicellular ensembles. Similarly, at a higher plane of
organization, selection affecting individuals clashes with the selection at the level of groups,
communities, or societies, for example, in social insects. At a lower level, the frustrations emerge
between the selection affecting “selfish” individual genes and genetic elements, such as transposons, and
the selection for the entire genome as a structured collection of genes (23). In each MTE, by definition,
selection at the higher level supersedes selection at the lower level (19), but the complexity enabled by
this hierarchy of selective factors comes at the cost of elaborate and error-prone mechanisms that keep in
check the lower-level units of selection.

The origin of the first cells, which can and probably should be equated with the origin of life, was the
first and most momentous transition at the onset of biological evolution, and as such, is outsde the
purview of evolutionary biology sensu stricto. Arguably, theoretical investigation of the origin of life can
be feasible only within the framework of an envelope theory that would incorporate biological evolution
as a special case (34, 35). It is natural to envisage such a theory as encompassing the non-ergodic
processes occurring throughout the history of the universe, with the origin and evolution of life being a
special case emerging under conditions that remain to be investigated and defined.

Here, in pursuit of a maximally general theory of evolution, we adopt the formalism that was originally
developed in the theory of machine learning (36). It has to be emphasized that learning here is perceived
in the maximally general sense, as an objective process that might occur in all evolving systems,
including but not limited to biological ones (37). As such, the analogy between learning and selection
appears obvious: both types of processes involve trial-and-error and acceptance or rejection of the results
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based on some formal criteria; in other words, both are optimization processes (21, 38, 39). Here we
assess how far this analogy extends, by establishing the correspondence between the key features of
biological evolution and concepts as well as the mathematical formalism of learning theory. In particular,
we make the case that loss function that is central to the learning theory can be usefully and generally
employed as the equivalent of the fitness function in the context of evolution. We exploit the
mathematical framework of the theory of learning (36) to sketch a theory of evolution. Our original
motivation was to explain major features of biological evolution from more general principles of physics.
However, after formulating such principles and embedding them within the mathematical framework of
learning, we find that the theory can potentially apply to the entire history of the evolving universe (37)
including physical processes that have been taking place since the Big Bang and chemical processes that
directly antedated and set the stage for the origin of life. In particular, we show that learning in a
complex environment leads to separation of scales, with trainable variables splitting into at least two
classes, faster and slower changing ones. Such separation of scales underlies all processes that involve
the formation of complex structure in the universe, from the scale of an atom to that of clusters of
galaxies. Scale separation occurs during (pre)biologica evolution, and we argue that for the emergence
of life, at least three temporal scales, which respectively correspond to environmental, phenotypic, and
genotypic variables, are essential. In evolving deep learning systems, the slowest-changing variables are
digitized and acquire the ability to replicate, resulting in differential reproduction depending on the loss
(fitness) function value, which is necessary and sufficient for the onset of evolution by natural selection.
The subsequent evolution of life involves emergence of many additional scales, which correspond to
MTE. The key biological features of life, namely, MLS, persistence of genetic parasites and programmed
death as well as the key physical features of the universe, namely, hierarchy of scale, frequency gaps and
renormalizability (40, 41) are among the central propositions of the theory of evolution presented here.

Hereafter we use the term “evolution” to describe the process of temporal changes of living, life-like and
prebiotic systems (a.k.a organisms). The more general term “dynamics’ refers to temporal processes in
other, in particular, physical systems.

At least since the publication of Schrédinger’s book, the possibility has been discussed that, although life
forms certainly obey the laws of physics, a different class of physical laws uniquely associated with life
could exist. Often, this putative physics of lifeis associated with emergence (42-44), but the nature of the
involved emergent phenomena, to our knowledge, has not been clarified until very recently (37) Here we
outline a general approach to modeling and studying evolution, in the form of a multilevel learning
process, supporting the claim that a distinct type of physical theory, namely, a theory of learning (36,
37), is necessary to investigate the evolution of complex objects in the universe, of which evolution of
life is a specific, even if highly remarkable form. A corollary of this approach seems to be that the
emergence of the level of complexity characteristic of life is a general trend in the evolution of learning
systems.

2. Fundamental principlesof evolution

In this section, we attempt to formulate the minimal, universal principles that define an observable
universe, in which evolution is possible and, perhaps, inevitable. Our analysis began with the
consideration of the major features of biological evolution discussed in the next section and proceeded
towards the general principles. In this presentation, however, we start from the latter, for the sake of
transparency and generality.
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So, what are the requirements for a universe to be observable? The possibility to make meaningful
observations implies a degree of order and complexity in the observed universe provided by some
evolutionary processes, and such evolvability itself seems to be predicated on several fundamental
principles. Before formulating these propositions explicitly, we have to emphasize that “observation” as
well as “learning” here by no means imply “mind” or “consciousness’, but a far more basic requirement.
To learn and survive in an environment, a system (or observer) must predict, with some minimal but
sufficient degree of accuracy, the response of that environment to various actions and to be able to
choose such actions that are compatible with the observer’s further existence in that environment. In this
sense, any life form is an observer, and even inanimate entities endowed with the ability of feedback
reaction qualify as observers. In this, most general sense, observation is a pre-requisite of evolution. We
first formulate the basic principles underlying observability and evolvability, and then, give the pertinent
comments and explanations.

P1. Loss function. In any evolving system, there exists a loss function of time-dependent
variables that is minimized during evolution.

P2. Hierarchy of scales. Evolving systems encompass multiple dynamical variables that change
on different temporal scales (with different characteristic frequencies).

P3. Frequency gaps. Dynamica variables are split among distinct levels of organization
separated by sufficiently wide frequency gaps.

P4. Renor malizability. Across the entire range of organization of evolving systems, a statistical
description of faster-changing (higher frequency) variables is feasible through the slower-
changing (lower frequency) variables.

P5. Extension. Evolving systems have the capacity to recruit additional variables that can be
utilized to sustain the system and the ability to exclude variables that could destabilize the
system.

P6. Replication. In evolving systems, replication and elimination of the corresponding
information processing units can take place on every level of organization.

P7. Infor mation flow. In evolving systems, slower-changing levels absorb information from
faster-changing levels during learning and pass information down to the faster levels for
prediction of the state of the environment and the system itself.

Thefirst principle P1 is of special importance as the starting point for a formal description of evolution
as a learning phenomenon. Indeed, the very existence of a loss function implies that the dynamical
system of the universe, or simpler, the universe itself is a learning (evolving) system (36). Effectively,
here we assume that stability or survival of any subsystem of the universe is equivalent to solving an
optimization or learning problem in the mathematical sense and that there is always something to learn.
Furthermore, the description of evolution as an optimization or learning problem immediately defines the
type of mathematical apparatus that is best suited for its analysis (36). Arnold formulated the main
message of Newtonian mechanics in one simple proposition: “It is useful to solve (ordinary) differential
equations in physics’ (45). Similarly, our first principle, in effect, ssimply states: It is useful to formulate
and solve learning (optimization) problems in the theory of evolution. In aform so general, this principle
might appear aimost trivial, but as discussed below, it has numerous major implications and corollaries.
Arguably, the single most important of such corollaries is that, for solving complex optimization
problems dependent on many variables, the best and in fact the only efficient method is selection

6


https://doi.org/10.1101/2021.11.03.466494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.466494; this version posted November 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

implemented in various stochastic algorithms (Markov Chain Monte Carlo, stochastic gradient descent,
genetic algorithms and more). All evolution can be perceived as an implementation of a stochastic
learning algorithm as well.

The remaining principles P2 to P7 provide sufficient conditions for the observers of our type (that is,
complex life forms) to evolve within a learning system. In particular, P2, P3 and P4 comprise the
necessary conditions for observability of a universe by any observer, whereas P5, P6 and P7 represent
the defining conditions for the origin of life of our type (hereafter we omit the qualification for brevity).
More precisely, P2 and P3 provide for the possibility of at least a simple form of learning of the
environment (fast-changing variables) by an observer (slow-changing variables), and hence the
emergence of complex organization of the slow-changing variables. P4 corresponds to the physical
concept of renormalizability, or renormalization group (40, 41), whereby the same macroscopic
equations, albeit with different parameters, govern processes at different levels or scales, thus limiting
the number of relevant variables, constraining the complexity, and allowing for a coarse-grained
description. This principle ensures a renormalizable universe capable of evolution and amenable to
observation. Together, P2 to P4 define a universe, in which partial or approximate knowledge of the
environment, in other words, coarse graining, is both attainable and useful for the survival of evolving
systems (observers). Indeed, to use water or food to support our life, there is no need to take into account
that it consists of molecules, molecules of atoms, atoms of eectrons and nuclei, and so forth. To make
the decision to drink or not to drink, it is sufficient to assess a few macroscopic characteristics of the
liquid in question, such as color and smell, which can be learned by trial and error. To survive in the
macroscopic world, there is no need to study its structure and properties down to the Planck scale (43,
44). In a universe where P4 does not apply, that is, one with non-renormalizable physical laws, what
happens at the macroscopic level, will essentially depend on the details of the processes at the
microlevel. In a universe where P2 and P3 do not apply, the separation of the micro and macro levels
itself would not be apparent. In such a universe, it would be literally impossible to survive without first
discovering fundamental physical laws, whereas living organisms on our planet have evolved for billions
of years before starting to study quantum physics.

Principles P5, P6 and P7 endow evolving systems with the access to more advanced algorithms for
learning and predicting the environment, paving the way for the evolution of complex systems including,
eventualy, life. These principles jointly underlie the emergence of the crucial phenomenon of selection
(46, 47). In its ssimplest form, selection is for stability and persistence of evolving, learning systems (34,
48). Learning and survival are tightly linked because survival is predicated on the ability of the system
to learn the environment, whereas the latter ability depends on the stability of the system on time scales
required for learning. Roughly, a system cannot survive in a world where the properties of the
environment change faster than the evolving system can learn them. According to PS5, evolving systems
consume resources (such as food), which themselves could be produced by other evolving systems, to be
utilized as building blocks and energy that are required for learning. This principle actualizes
Schrodinger’s vision (often misunderstood) that “organisms feed on negentropy” (33). Under PG,
replication of the carriers of slowly changing variables becomes the basis of long-term persistence and
memory in the evolving systems. This principle can be viewed as a learning algorithm built on P3,
whereby the time scales characteristic of an individual organism and of consecutive generations are
separated. This principle excludes from consideration certain imaginary forms of life, for example,
Stanislav Lem’'s famous Solaris (49). Finally, P7 describes how information flows between different
levels in the multilevel learning which gives rise to the concept of a generalized Central Dogma of
molecular biology, which isdiscussed in Sec. 7.
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3. Fundamental evolutionary phenomena

In this section, we link the fundamental principles of evolution P1-P7 formulated above to the basic
phenomenological features of life E1-E10, and seek equivalencies in the theory of learning. The list
below is organized by first formulating a biological feature, and then, tracing the connections to the
fundamental principles (a), and adding more general comments (b).

El. Information-processing units. Existence of discrete information-processing units (IPUs), that is,
self vs non-self differentiation and discrimination, at different levels in organization. All biological
entities at all levels of organization, such as genes, cells, organisms, populations, and so on, up to the
level of the entire biosphere, possess some degree of self-coherence that separates them, first and
foremost, from the environment at large and from other similar-level 1PUs.

a. The existence of IPUs is predicated on the fundamental principles P1-P4 discussed above. The
wide range of the temporal scales (P2) in dynamical systems and gaps between the scales (P3)
naturally allow for the separation of slower- and faster-changing components. In particular,
renormalizability (P4) applies to the hierarchy of IPUs. The statistical predictability of the higher
frequencies allows the IPUs to decrease the loss function of the lower frequencies despite the
much slower reaction times.

b. Separation of (relatively) slow-changing pre-biological 1PUs from the (typically) fast-changing
environment kicked off the most primitive form of pre-biological selection, selection for stability
and persistence (survivor bias). More stable, slower-changing IPUs win in the competition and
accumulate with time, increasing the separation along the temporal axis as the boundary between
the IPUs and the environment grows sharper. Additional key phenomena, such as utilization of
available environmental resources (P5) and stimulus-response mode of information exchange
(P7), stem from the flow of matter and information across this boundary and the ensuing
separation of internal and external physico-chemical processes. Increasing self vs non-sef
differentiation, combined with replication of the carriers of slow-changing variables (P6), setsthe
stage for competition between evolving entities and for the onset of the ultimate evolutionary
phenomenon, natural selection (E6). It has to be emphasized once again that selection is the only
efficient method for solving complex optimization problems, to which category the problems
faced by evolving IPUs certainly belong.

E2. Frustration. All complex, dynamical systems face multi-dimensional and multi-scale optimization
problems which generically leads to frustration resulting from conflicting objectives at different scales.
This is a key, intrinsic feature of all such systems and a major force driving the advent of increasing,
multilevel complexity (11). Frustration is an extremely general physical phenomenon that is by no
account limited to biology but rather occurs aready in much simpler physical systems, such as spin and
structural glasses, the behavior of which is determined by competing interactions, so that a degree of
complexity is attained (30, 31).

a. The multi-scale organization of the universe (P2) provides the physical foundation for the
pervasiveness of frustrated states that typically arise whenever there is a conflict (trade-off)
between short- and long-range optimization problems. Frustrated interactions yield multi-well
potential landscapes, in which no single state is substantially fitter than numerous other local
optima. Multi-parameter and multi-scale optimization of the loss function on such a landscape
involves non-ergodic (history-dependent) dynamics, which is characteristic of complex
dynamical systems.

b. IPUs face conflicting interactions starting from the most primitive pre-biological state (11).
Indeed, the separation of any type of entities from the environment immediately results in the
conflict of permeability: a stronger separation enhances the self vs non-self differentiation, and
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thus increases the stability of the system, but compromises information and matter exchange with
the environment, limiting the potential for growth. In biology, virtually all aspects of the
organism architecture and operation are subject to such frustrations, or trade-offs. the conflict
between the fidelity and rate of information transmission at al levels, between specialization and
generalism; between the individual and population-level benefits, and more. The ubiquity of
frustrations and the fundamental impossibility of their resolution in a universally optimal manner
are perpetual drivers of the evolution and give rise to evolutionary transitions, attaining levels of
complexity that otherwise would be out of reach.

There are two distinct types of frustrations that can be described as spatial and temporal. Spatial
frustration is similar to the frustration that is commonly analyzed in condensed matter systems,
such as spin glasses (30, 31). In this case, the spatially local and non-local interacting terms have
opposite signs so that the equilibrium state is determined by the balance between the terms. In the
context of neural networks, a neuron (like a single spin) might have a local objective (such as
binary classification of incoming signals) but is aso a part of a neural network (like a spin
network), which has its own global objective (such as predicting its boundary conditions). For a
particular neuron, optimization of the local objective can be in conflict with the global objective,
which is the main cause of spatial frustration. Temporal frustration emerges because, in the
context of multilevel learning, the same neuron also becomes a part of higher-level 1PUs that
operate at different temporal scales (frequencies). Then, the optimal state of the neuron with
respect to a given IPU operating at a given time scale can differ from the optimal state of the
same neuron with respect to another IPU operating at a different time scale (37). Similar to the
gpatial frustrations, temporal frustrations cannot be completely resolved, but an optimal balance
between different spatial and temporal scales is achievable and represents a local equilibrium of
the learning system.

E3. Multi-level hierarchy. The hierarchy of multiple levels of organization is an intrinsic, essential
feature of evolving biological systems that involves both the structure of these systems (genes, genomes,
cells, organisms, kin groups, populations, species, communities and more) and the substrate the
evolutionary forces act upon.

a. Renormalizability of the Universe (P4) implies that there is no inherently preferred level of
organization, for which everything above and below would behave as a homogenous ensemble.
Even if some levels of organization come into existence before others (for example, organisms
before genes or unicellular organisms before multicellular ones), the other levels will necessarily
emerge and consolidate subsequently.

b. The hierarchy of the structural organization of biological systems was apparent to scholars from
the earliest days of science. However, multilevel selection was and remains a controversial
subject in evolutionary biology (22, 25, 26). Intuitively and as follows from the Price equation
(50), multilevel selection should emergein al evolving systems as long as the agency of selection
possesses a sufficient degree of self vs non-self differentiation. For example, if all organisms of a
particular kind (species) exist as populations that are perfectly homogeneous within and are
isolated from other, potentially competing biological entities), population-level selection is
impossible. If, on the contrary, populations are sufficiently distinct genetically, but interact
competitively, population-level selection will inevitably ensue. Clearly, the first case is
unrealistic. Evolution of biological systemsis driven by conflicting interactions (E2) that tend to
lead to ever-increasing complexity (11). This trend further feeds the capability and propensity of
these systems to form new levels of organization and is associated with evolutionary transitions
that involve the advent of new units of selection at multiple levels of complexity.
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E4. Near-optimality. Stochastic optimization, or the use of stochastic methods for solving optimization
problems, is the only feasible approach to complex optimization, but it guarantees neither finding the
globally optimal solution nor retention of the optimal configuration when and if it is found. Rather,
stochastic optimization tends to rapidly find local optima and keeps the system in their vicinity,
sustaining the value of the loss function at a near-optimal level.

a. According to P1, the dynamics of alearning, that is, self-optimizing system, is defined by a loss
function (36, 37). When there is a steep gradient in the loss function, a system undergoing
stochastic optimization can rapidly descend in the right direction. However, because of
frustrations that inevitably arise from the interactions in a complex system, actual local peaks on
the landscape are rarely reached, and the global peak is effectively unreachable. Learning systems
tend to get stalled near local saddle points where changes along most of the dimensions either
lead “up” or are “flat” in terms of the loss function, with only a small minority of the available
moves decreasing the loss function (51).

b. The extant biological systems (cells, multicellular organisms as well as higher level entities, such
as populations and communities) are the result of about 4 billion years of the evolution of life on
Earth, and as such, are highly, albeit not completely, optimized. As a consequence, the typical
digribution of the effects of heritable changes in biological evolution comprises numerous
deleterious changes, comparatively rare beneficial changes and common neutral changes, those
with fitness effects below the noise level (52). The preponderance of neutral and dlightly
deleterious changes provides for evolution by neutral genetic drift whereby a population moves
on the same level or even dlightly downward on the fitness landscape, potentially reaching
another region of the landscape where beneficial mutations are available (53, 54).

ES. Diversity of near-optimal solutions. Solutions on the loss function landscapes that arise in complex
optimization problems, span numerous local peaks of comparable heights.

a The existence of multiple peaks of comparable heights in the loss function landscapes is a
fundamental physical property of frustrated systems (E2), whereas the pervasiveness of
frustration itself is a consequence of the multi-scale and multi-level organization of the universe
(P2). Frustrated dynamical systems behave in a non-ergodic manner which, from the biological
perspective, means that, once separated, evolutionary trajectories diverge, rather than converge.
Because most of these trajectories traverse parts of the genotype space with comparable fitness
values, competition rarely results in complete dominance of one lineage over the others, but
rather generatesrich diversity.

b. In terms of evolutionary biology, fitness landscapes are rugged, with multiple adaptive peaks of
comparable fitness (55, 56), and a salient trend during evolution is the spread of life forms across
multiple peaks as opposed to concentrating on one or few. Evolution pushes evolving organisms
to explore and occupy all available niches and try all possible strategies. In the context of
machine learning, identical neural networks can start from the same initial state but, for example,
under the stochastic gradient descent algorithm, would generically evolve towards different local
minima. Thus, the diversity of solutions is a generic property of learning systems. On a more
technical leve, the diversification is due to the entropy production in the dynamics of the neutral
trainable variables (see next section).

E6. Separation of phenotype from genotype. This quintessential feature of life embodies the
emergence of two distinct (albeit insgparable in known organisms) symmetry-breaking phenomena: i)
separation between a dedicated digital information storage media (stable, rarely updatable, tending to
distributions with discrete values) and the mostly analog processing devices, and ii) asymmetry of the
information flow within the IPUs, whereby genotype provides “instructions’ for the phenotype, whereas
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the phenotype largely loses the ability to update the genotype directly. As such, somewhat paradoxically,
the separation between the information storage and processing subsystems is a prerequisite feature that
probably emerged early on the path from prebiotic entities to the emergence of life rather than a late-
evolved property of living organisms.

a. The separation between phenotype and genotype extends the scale separation on the intra-IPU
level, as follows from the fundamental principles P1-P4. Intermediate-frequency components of
an IPU (phenotype) buffer the slowest components from direct interaction with the environment
(the highest frequency variables), further increasing the stability of the slowest components and
making them suitable for long-term information storage. As the temporal scales separate further,
the interactions between them change their character. Asymmetric information flow (P7)
stabilizes the system, enabling long-term preservation of information (genotype), while retaining
the reactive flexibility of the faster-changing components (phenotype).

b. The emergence of the separation between phenotype and genotype is a crucial event in pre-bictic
evolution. This separation is prominent in all known as well as hypothetical life forms. Even
when the phenotype and genotype roles are fulfilled by molecules that are chemically identical, as
in the RNA world scenario of primordial evolution (57, 58), their roles as effectors and
information storage devices are sharply distinct. In biological terms, the split is between
replicators, that is, the digital information carriers (genomes) (59), and reproducers (44, 45), the
analog devices (cells, organisms) that host the replicators, supply them with building blocks (P5)
and themselves reproduce (P6) under the replicators instruction (P7). Although the
genotype/phenotype separation is a major staple of life, it is not in itself sufficient to qualify an
IPU as a life form (computers and record players, in which the separation between information
storage and operational partsis prominent and essential, clearly are not life, even though invented
by advanced organisms). The asymmetry of information flow between genotype and phenotype
(P7) is the most general form of the phenomenon known as the Central Dogma of molecular
biology, the unidirectional flow of information from nucleic acids to proteins as originaly
formulated by Crick (60). This asymmetry is also prominent in other information processing
systems, in particular computers. Indeed, von Neumann architecture computers have inherently
distinct memory and processing units, with the instruction flow from the former to the latter (61,
62). It appears that any advanced information processing system will be endowed with this

property.

E7. Replication. Genome replication and sharing of long-term memory. Emergence of long-term digital
storage devices (genomes consisting of RNA or DNA; E6) provides for long-term information
preservation, facilitates adaptive reactions to changes in the environment, and promotes the stability of
IPUs to the point where (at least in chemical systems) it is limited by the energy of the chemical bonds
rather than the energy of thermal fluctuations. Obviously, however, as long as this information is
confined to a single IPU, it will disappear with the eventually inevitable destruction of that IPU. Should
this be the case, other IPUs of similar architecture would need to accumulate a comparable amount of
information from scratch to reach the same level of stability. Thus, copying and sharing information is
essential for long-term (effectively, indefinite) persistence of IPUs.

a. The fundamental principle P6 postulates the existence of mechanisms for information copying
and elimination. If the genomic information can be replicated, even most primitive sharing
mechanisms (such as physical splitting of an IPU under forces of surface tension) would result
(even if not reliably) in the emergence of distinct 1PUs pre-loaded with information that was
amassed by their progenitor(s). This process short circuits learning and allows the information to
accumulate at time scales far exceeding the characteristic lifetimes of individual IPUs.
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Information copying and sharing is beneficial only if its fidelity exceeds a certain threshold,
sometimes called Eigen limit in evolutionary biology (4-6). Nevertheless, in primitive pre-biotic
systems, the required fidelity level could have been quite low (63). For instance, even a biased
chemical composition of a hydrophobic droplet could enhance the stability of the descendant
droplets and thus endow them with an advantage in the selection for persistence. However, once
relatively sophisticated mechanisms of information copying and sharing are in place, more
precisely, when replicators become information storage devices, the overall stability of the
system can increase by many orders of magnitude. To wit, and astonishingly, the only biosphere
known to us represents an unbroken chain of genetic information transmission that spans about 4
billion of years, commensurate with the stellar evolution scale.

E8. Natural selection. Evolution by natural selection (ak.a. Darwinian evolution) arises from the
combination of all the principles and phenomena described above. The necessary and sufficient
conditions for Darwinian evolution to operate are: i) existence of IPUs that are distinct from the
environment and from each other (E1); ii) dependence of the stability of an IPU on the information it
contains, that is, the phenotype-genotype feedback (E6); iii) ability of IPUs to make copies of embedded
information and share it with other IPUs (E7). When these three conditions are met, the relative
frequencies of the more stable IPUs will increase with time, via the attrition of the less stable ones
(survival of the fittest) and transfer of information among IPUs, both vertically (to progeny) and
horizontally. This process engenders the key feature of Darwinian evolution, differential reproduction of
genotypes, based on the feedback from the environment, transmitted through the phenotype.

a. All 7 fundamental principles of the life-compatible universe (P1-P7) are involved in enabling

evolution by natural selection. The very existence of units, on which selection can operate, hinges
on the above-described phenomena, namely, self vs non-self discrimination of prebiotic IPUs
(E1) and the emergence of shareable information storage (E6, E7). The crucia step to biology is
the emergence of the link between the loss function, the existence of which is postulated by P1,
on the one hand, and existence of the IPUs (P2, P3, P4, E1), on the other hand. Consumption of
(limited) external resources (P5) entails competition between IPUs that share the same
environment and turns mere shifts of the relative frequency into true “survival of the fittest”. The
ability of the IPUs to replicate (P6) and to expand their memory storage (genotype) (P7, E6, E7)
provides them with access to hitherto unavailable degrees of freedom, making evolution an open-
ended process rather than a quick, limited search for alocal optimum.

Evolution by natural selection is the central tenet of evolutionary biology and a key part of the
NASA definition of life. An important note on definitions is due. We already referred to selection
when discussing prebiotic evolution (E1); however, the term “natural (Darwinian) selection” is
here reserved for the efficient form of selection that emerges with the replication of dedicated
information storage devices (P6, E6). Differential reproduction, whereby the environment
provides feedback on the success of genotypes, while acting on phenotypes, turns into Darwinian
“survival of the fittest” in the presence of competition. When IPUs depend on environmental
resources, such competition inevitably arises, except in the unrealistic case of unlimited supply
(46). With the onset of Darwinian evolution, the system can be considered to cross the threshold
from pre-life to life, so that al that follows belongs in the realm of biology (64, 65). The
evolutionary process is naturally represented by movement of an evolving IPU in a genotype
space, where proximity is defined by similarity between the distinct genotypes and transitions
correspond to elementary evolutionary events, that is, mutations, in the most general sense (66).
For any given environment, fitness - that is, a measure of the ability of a genotype to produce
viable offspring - can be defined for each point in the genotype space, forming a
multidimensional fitness landscape (55, 56). Selection creates a bias for preferential fixation of
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mutations that increase fitness, even if the mutations themselves occur in an entirely random
manner. The existence of variation (mutations, genotypic changes, some of which have
phenotypic effects) is traditionally listed as a component of the key triad (heredity, variability,
selection), which comprise the conceptual foundation of evolutionary biology (47). Mutations are
rare on the human timescale, so that realizing their importance was a major intellectual feat of the
19th century, primarily, attributable to Darwin (46). From the 21st century perspective, variability
can be largely taken for granted because perfect information copying is theoretically impossible
at non-zero temperatures and without access to unlimited resources (4).

E9. Parasitism. Parasites and host-parasite coevolution are ubiquitous across biological systems at
multiple levels of organization and are both intrinsic to and indispensable for the evolution of life.

a. Theflexibility of life-compatible systems (P5, P6) and the symmetry breaking in the information
flow (P7), combined with the inherent tendency of life to diversify (E5), lead to a situation where
parts of the system settle on a parasitic state, that is, scavenging information and matter from the
host, without making a positive contribution to its fitness.

b. From the biological perspective, parasites evolve to minimize their direct interface with the
environment, and conversely maximize their interaction with the host; in other words, the host
replaces most of the environment for the parasite. Parasites inevitably emerge and persist in
biological systems because of two reasons. i) the parasitic state is reachable via an entropy-
increasing step, and therefore, is highly probable (15, 67) and ii) highly efficient anti-parasite
immunity is costly (68). The cost of immunity reflects another universal trade-off analogous to
the trade-off between information transfer fidelity and energy expenditure: in both cases, infinite
amount of energy is required to reach a zero error rate or a parasite-free state. From a
complementary standpoint, parasites inevitably evolve as cheaters in the game of life that
scavenge resources from the host (or in other words, exploit the host as a resource) without
expending energy on resource production. Short-term, parasites reduce the host fitness by both
direct drain on its resources and by a plethora of indirect effects including the cost of defense.
However, in a longer-term perspective, parasites comprise a reservoir for recruitment of new
functions (especially, but far from exclusively, for defense) by the hosts (13, 14). The host-
parasite relationship can evolve towards transition to a mutually beneficial, symbiotic lifestyle
that can further progress to mutualism and, in some cases, complete integration as exemplified by
the origin of essential endosymbiotic organelles in eukaryotes, mitochondria and chloroplasts
(69-71). Parasites emerge at similar levels of biological organization (organisms parasitizing on
other organisms) or across levels (genetic elements parasitizing on organismal genomes or cell
clones parasitizing on multicellular organisms).

E10. Programmed death. Programmed (to a various degree) death is an intrinsic feature of life.

a. Replication and éimination of information processing units (P6) and utilization of additional
degrees of freedom (P5) form the foundation for the phenomenon of programmed death. At some
levels of organization (for example, intra-genomic), the ability to add and eliminate units (such as
genes) for the benefit of the higher-level systems (such as organisms) provides an obvious path of
optimization. The elimination of units could be, in principle, completely random, but selection
(E8) generates a sufficiently strong feedback to facilitate and structure the loss process (for
example, purging low-fitness genes via homologous recombination or altruistic suicide of
infected or otherwise impaired cells). The same forces operate at all levels of organization and
selection (P4). In particular, if population-level or kin-level selection is sufficiently strong,
mechanisms for altruistic death of individual organisms can be fixed in evolution (72, 73).
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b. Programmed death is a prominent case of minimization of the higher-level loss function (such as
fitness of the whole organism) at the cost of increasing the lower-level loss function (such as
survival of individual cells). Although (tightly controlled) programmed cell death was originally
discovered in multicellular organisms and has been thought to be limited to these complex life
forms, altruistic suicide now appears to be a universal biological phenomenon (73-75). Moreover,
many ecological and evolutionary phenomena, such as the choice between the K- and r-strategies
of selection, are strongly lifespan-dependent (76, 77). Therefore, evolutionary tuning of the
genetically determined lifespan (a “weak” form of programmed death) could also play an
important role in organismal evolution.

To conclude this section, which we titled “Fundamental evolutionary phenomena’, deliberately omitting
“biological”, it seems important to note that phenomena E1-E7 are generic, applying to al learning
systems, including purely physical and prebiotic ones. However, the onset of natural selection (ES8)
marksthe origin of life, so that the phenomena E8-E10 belong in the realm of biology.

4. Optimization and scale separation in evolving systems

In the previous sections, we formulated the 7 fundamental principles of evolution P1-P7 and then argued
that most, if not al key evolutionary phenomena E1-E10 can be interpreted and analyzed in the context
of these principles, and apparently, derived from the latter. The next step is to formulate a mathematical
framework that would be consistent with the fundamental principles and thus would alow us to model
evolutionary phenomena either analytically or numerically. For concreteness, the proposed framework is
based on a mathematical model of artificial neural networks (78, 79), but we first start by formulating a
genera optimization approach in aform suitable for modeling biological evolution.

We are interested in a the broadest class of optimization problems, where the loss (or cost) function
4 (xs CI), Isminimized with respect to some trainable variables,

a=(a,4%,a") 4,
for agiven training set of non-trainable variables,
x = (x,x9) 47

Near aloca minimum, the first derivatives of the average loss function with respect to trainable variables
q are small, and the depth of the minimum usually depends on the second derivatives. In particular, the

second derivative can be either Iar?e, for the effectively constant degrees of freedom, q“”, or smal, for
adaptable degrees of freedom, qn), or near zero, for symmetries or neutral directionsq("). The

separation of the neutral directions q(“) into a special class of variables ssmply means that some of the
trainable variables can be changed without affecting the learning outcome, that is, the value of the loss

function. Put another way, neutral changes are always possible. The neutral directions q"" are the
fastest-changing among the trainable variables because fluctuations resulting in their change are, in
general, fully stochastic. On the other end of the spectrum of variables, even minor changes to the

effectively constant variables q(c) compromise the entire learning (evolution) process, that is, result in
subgtantial increase of the loss function value; these variables correspond to deep minima of the loss
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function. When the basin of attraction of a minimum is deep and narrow, the system stays in its bottom
for along time, and then, to describe such a state, it is sufficient to use discrete information (that is, to
indicate that the system stays in a given minimum) rather than to list all specific values of the coordinates
in a multidimensional space.

In a generic optimization problem, the dynamics of both trainable and non-trainable variables involves a
broad distribution of characteristic time scales ¥, and switching between scales is equivalent to switching
between different frequencies or, in the context of biological evolution, between different levels of
organization. For any fixed , all variables can be partitioned into three classes depending on how fast
they change with respect to the specificed time scale:

- fast-changing non-trainable variables that characterize an organism (x(")) and its environment (
x{#)), and change on time scales <& 7.

- intermediate-changing adaptable variables q“" or neutral directions q‘“’ that change on time
scales~ T

- dow-changing variables, which are the degrees of freedom q(‘"" that have already been well
trained and are effectively constant (at or near equilibrium), only changing on time scales>®» 7.

As it will become evident shortly, the separation of these three classes of variables and interactions
between them are central to the evolution and selection on all levels of organization, resulting in
pervasive multilevel learning and selection.

Depending on the considered time-scale 7 (or as a result of environmental changes), the same dynamical

degree of freedom can be assigned to different classes of variables, that is, x®, x{¢), q(c) , q(“) or q(“),
For example, on the shortest time scale, which corresponds to the lifetime of an individual organism (one
generation), the adaptable variables are the phenotypic traits that quickly respond to environmental
changes, whereas the slowest, near constant variables are the genomic sequences (genotype) that change
minimally if at all. On longer time scales, corresponding to thousands or millions of generations, fast
evolving portions of the genome become adaptable variables, whereas the conserved core of the genome
remains in the near constant class (52). Analogoudly, the neutral directions correspond either to non-
consequential phenotypic changes or to neutral genomic mutations, depending on the time scale. Indeed,
in evolutionary biology, it is well known that the overwhelming majority of the mutations are either
deleterious and are therefore eliminated by purifying selection, or (nearly) neutral and thus can be either
lost or fixed via drift (80, 81). However, when the environment changes, or under the influence of other
mutations, some of the neutral mutations can become beneficial (a genetic phenomenon known as
epistasis, which is pervasive in evolution (82, 83)), and in their entirety, neutral mutations form the
essential reservoir of variation available for adaptive evolution (84). Furthermore, even which variables
are classified as non-trainable (x), depends on the time scale 7. For exam le, |f a learning system was

trained for a sufficiently long time, some of the trainable variables q orq mlght have already
equilibrated, and become non-trainable.

5. Theneural network framewor k

Now that we described an optimization problem that is suitable for modeling evolution of organisms (or
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populations of organisms), we can construct a mathematical framework to solve such optimization
problems. For this purpose, we employ a mathematical theory of artificial neural networks (78, 79),
which is smple enough to perform calculations, while being consistent with all of the fundamental
principles (P1-P7), and thus can be used for modeling evolutionary phenomena (E1-E10). We first recall
ageneral framework of the theory of neural networks.

Consider a learning system represented as a neural network, with the state vector described by trainable
variables 9 (which is a collective notation for weight matrix 2z and bias vector b) and non-trainable
variables x (which describe the current state vector of individual neurons). In the biological context, x
collectively represent the current state of the organism x{ and of its environment x®), and 4 determine
how x changes with time, in particular, how the organism reacts to environmental challenges. The non-
trainable variables are modeled as changing in discrete time-steps

zi(t+1) = f; (Z w5 (t) + b,-)

(5.1)

where Ji(¥)'s are some non-linear activation functions (for example, hyperbolic tangent or rectifier
activation functions). The trainable variables are modeled as changing according to the gradient descent
(or stochastic gradient descent) algorithm

O0H (x(t), q(t))
Og; (5.2)

a(t+1)=q(t) —v

where ¥ is the learning rate parameter and H(x,q)isa suitably defined loss function (see Egs. (5.3)
and (5.4) below). In other words, 4 are “gross’, or “main” variables, which determine the rules of
dynamics, and the dynamics of all other variablesx is governed by these rules, per equation (5.1). In the
biological context, equation (5.1) represents fast, often stochastic environmental changes, and the
corresponding fast reaction of organisms at the level of the phenotype, whereas (5.2) reflects slower
learning dynamics of evolutionary adaptation, via changes in the intermediate, adaptable variables, that
is, the variable portion of the genome. The main learning objective is to adjust the trainable variables
such that the average loss function is minimized subject to boundary conditions (also known as the
training dataset), which in our case is modeled as a time sequence of the environmental variables.

For example, on a single generation time scale, the fast-changing variables represent the environment
x{€Jand non-trainable variables associated with organisms x{, the intermediate-changing variables

represent adaptive q(a) and neutral q(") phenotype changes, and the slow-changing variables q(°]
represent the genotype (Figure 1).
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enviroment enviroment enviroment enviroment enviroment enviroment enviroment

Figure 1. Neural network with threelayers.

Non-trainable environmental variables (blue nodes), non-trainable organism variables (red and green nodes); trainable, intermediate-
changing, adaptive phenotypic variables (dark green nodes and links); trainable, slow-changing (near constant), genotype variables (red
nodes/links); and neutral variables (light green node).

The temporal scale separation in biology is readily apparent in all organisms. Indeed, consequential
changes in the environment x!®) often occur on the scale of milliseconds to seconds, tri ggering physical
changes within organisms x(©) at matching timescales. In response, individual organisms respond with

phenotypic changes, both adaptive q“" and neutral q‘"’ on the scale of minutes to hours, exploiting their
genetically encoded phenotypic plasticity. A paradigmatic example is induction of bacterial operons in
response to a change in the chemical composition of the environment, such as the switch from glucose to

galactose as the primary nutrient (85, 86). In contrast, changes in the genome q(c)take much longer.
Mutations typically occur at rates of about 1 to 10 per genome replication cycle (87), which for
unicellular organisms, is the same as a generation comprising from about an hour to hundreds or even
thousands of hours. However, fixation of mutations, which represents an evolutionarily stable change at
the genome levdl, typically takes many generations and thus always occurs orders of magnitude slower
than phenotype changes. Accordingly, on this time scale, any changes in the genome represent the third
layer in the network, the slowly changing variables.

To specify a microscopic loss function that would be appropriate for describing evolution, and thus, give
a specific form to the fundamental principle P1, we first note that adaptation to the environment is more
efficient, that is, the loss function value is smaller, for a learning system, such as an organism, that can
predict the state of its environment with a smaller error. Then, the relevant quantity is the so-called
“boundary” loss function defined as the sum of squared errors,

H.(x,q) = %Z (_-1;'(&) —f; (x(ol,q))ﬂ

icE (53)

where the summation is taken only over the boundary (or environmental) non-trainable variables. It is
helpful to think of the boundary loss function as the mismatch between the actual state of the
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environment and the state that would be predicted by the neural network if the environmental dynamics
was switched off. In neuroscience, boundary loss is closely related to the surprise (or prediction error)
associated with predictions of sensations, which depend on an internal model of the environment (88). In
machine learning, boundary loss functions are most often used in the context of supervised learning
(36), and in biological evolution, the “supervision” comes from the environment, which the evolving
system, such as an organism or a population, is learning to predict.

Another possibility for alearning system is to search for the minimum of the “bulk” loss function, which
isdefined as the sum of squared errors over all neurons

B =33 - A 60a)

The bulk loss function assumes extra cost incurred by changing the states of organismal neurons, x@,
that is, rewarding stationary states. In the limit of a very large number of environmental neurons, the
two loss functions are indistinguishable, H(x,q) = He(X,q). but bulk loss is easier to handle
mathematically (the details of boundary and bulk loss functions are addressed in Ref. (36)).

More generally, in addition to the “kinetic” term (5.4), theloss function can include a“potential” term

V(x,q)

H(x: q) = %E (3?,‘ - fi (x(a), q))2 + V(x: q)' (5 5)

The kinetic term in (5.5) reflects the ability of organisms x!? to predict the changes in the state of the
given environment x{®over time, whereas the potential term reflects their compatibility with a given
environment and hence the capacity to choose among different environments.

In the context of biological evolution, Malthusian fitness ¥ is defined as the expected reproductive
success of a given genotype, that is, the rate of change of the prevalence of the given genotype in an
evolving population (89). However, in the context of the theory of learning, the loss function must be
identified with the additive fitness, that is,

H(x,q) = —Tlogp(x,q). (5.6)

At the level of a microscopic description of learning, the proportionality constant is unimportant, but as
we argue in detail in the accompanying paper (90), in the description of the evolutionary process from
the point of view of thermodynamics, T° plays the role of “biological temperature”.

Given a concrete mathematical model of neural networks, one might wonder if all fundamenta
principles of evolution (P1-P7) can be derived from this model. Such derivation would comprise
additional evidence supporting the claim that the entire universe can be adequately described as a neural
network (37). Clearly, the existence of aloss function (P1) follows automatically because learning of any
neural network is always described relative to a specified loss function (see Egs. (5.4) or (5.5)). The other
6 principles also seem to naturally emerge from the learning dynamics of neural networks. In particular,
the hierarchy of scales (P2) and frequency gaps (P3) are generic consequences of the learning dynamics,
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whereby a system that involves a wide range of variables changing at different rates is attracted towards
a self-organized critical state of slow-changing trainable variables (91). Additional gaps between levels
of organization are also expected to appear through phase transitions as becomes apparent in the
thermodynamic description of evolution we develop in the accompanying paper (90). Renormalizability
(P4) is adirect consequence of the second law of learning (36), according to which entropy of a system
(and consequently, complexity of neural network or rank of its weight matrix) decreases with learning.
This phenomenon was observed in neural network simulations (36) and is the exact type of dynamics
that can make the system renormalizable even if it started off as a highly entangled (large rank of weight
matrix), non-renormalizable neural network. The extension (P5) and replication (P6) principles simply
indicate that additional variables can lead to either increase or decrease in the value of the loss function
(36). It is aso important to note that in neural networks, an additional computational advantage
(“gquantum advantage’) can be achieved if the number of information processing units can vary (92).
Therefore, to achieve such an advantage, a system must learn how to replicate and eliminate its IPUs
(P6). Finally, in Section 7, we illustrate how Fourier transform (or more generally, wavelet transform) of
the environmental degrees of freedom can be used for learning the environment and how the inverse
transform can be used for predicting it. Thus, to be able to predict the environment (and hence to be
competitive), any evolving system must learn the mechanism behind such asymmetric information flow
P7.

6. Multilevel learning

In the previous sections, we argued that the learning process naturally divides all the dynamical variables
into three distinct classes, fast-changing, x® and x®, intermediate-changing, @ anda™@™ being
faster than q{")), and slow-changing ones, q(c) (Fig. 1). Evidently, this separation of variables depends on
the time-scale 1, during which the system is observed, and variables migrate between classes when 1 is
increased or decreased (Fig. 2). The longer the time 7, the more variables reach equilibrium and therefore
can be modeled as non-trainable and fast-changing, x{€) and the fewer variables remain slowly-varying

and can be modeled as effectively constant q“”. In other words, many variables that are nearly constant
at short time scales migrate to the intermediate class at longer time-scales, whereas variables from the
intermediate class migrate to the fast class.

(a)

‘!, s t\‘“‘é’d‘ "y
}l" J;: =3
1: J;» >‘=
'Jn—'J ,«.'ﬁf
S7e2 2 .'1"

Jn‘*s‘

’ " X "‘ 1 1
'3.‘5}' *«t 5‘%‘\

Figure 2. Separation of variablesin alearning system depending on thetime scale.

Three states of a learning system are shown, with fast-changing environmental variables (blue nodes and links), intermediate-
changing trainable variables (green nodes and links) and slow-changing trainable variables (red nodes and links) observed on
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three different time-scales, from the shortest to longest: (a) — (b) —+ (C).

In biological terms, if we consider learning dynamics on the time-scale of a lifetime of an organism,

then, ic) and (ia) or q(n)), represent the genotype and phenotype variables, respectively, but on much
longer time-scales of multiple generations, the learning dynamics of populations (or communities) of
organisms becomes relevant. On such time scales, the genotype variables acquire dynamics, with
purifying and positive selection getting into play, whereas the phenotype variables progressively
equilibrate. There is a clear connection between the learning dynamics, including that in biological
systems, and renormalizability of physical theories (P4). Indeed, from the point of view of an efficient
learning algorithm, the parameters controlling the learning dynamics, such as effective learning (or
information processing) rate ¥, can vary from one time-scale to another (for example, from individual
organisms to populations or communities of organisms), but the general principles as well as specific
dependencies captured in the equations above that govern the learning dynamics on different time-scales
remain the same. We refer to this universality of the learning process on different time scales and
partitioning of the variables into temporal classes as multilevel learning.

More precisely, multilevel learning is a property of learning systems, which allows for the basic
equations of learning, such as (5.4), to remain the same on all levels of organization, but for the
parameters, which describe the dynamics, such as’Y(T), to depend on the level, or on the time-scale 7.
For example, if the effective learning (or information processing) rate Y (7) decreases with time-scale T,
then the local processing time, which depends on ’Y(TS), runs differently for different trainable variables:
dower for slow-changing variables (or larger 1), and faster for fast-changing ones (or smaller 7). For
such a system, the concept of global time (that is, the same time for all variables) becomes irrelevant and
should be replaced by the proper, or local time, which is defined for each scale T separately,

tr o< (7) L. (6.2)

This effect closely resembles the time dilation phenomena in physics, except that in special and general
relativity, time dilation is linked with the possibility of movement between slow and fast clocks (or
variables) (93). To illustrate the biological analog of time dilation and to understand the role it playsin
biology, consider only two types of variables: slow-changing and fast-changing. Then, the slow variables
should be able to “outsource” certain computational tasks to faster variables. Because the local clock for
the fast-changing variables runs faster, the slow-changing variables can take advantage of the fast-
changing ones to accelerate computation, which would be rewarded by evolution. The flow of
information between slow-changing and fast-changing variables in the opposite direction is also
beneficial because the fast-changing variables can use the slow-changing variables to store useful
information for future retrieval, that is, the sow variables function as long-term memory. In the next
section, we show that such cooperation between slow- and fast-changing variables, which is a concrete
manifestation of the principle P7, corresponds to a crucial biological phenomenon known as the Central
Dogma of molecular biology (60).

7. Generalized Central Dogma of Molecular Biology

In terms of learning theory, the two directions of the asymmetric information flow (P7) represent,
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respectively, learning the state of the environment and predicting the state of the environment, based on
the results of learning. For learning, information is passed from faster variables to slower variables, and
for predicting, information flows in the opposite direction, from slower variables to the faster ones. A
more formal analysis of the asymmetric information flows (or what could be called the generalized
Central Dogma) can be carried out by forward-propagation (from slow variables to fast variables) and
back-propagation (from fast variables to dow variables) of information within the framework of the
mathematical model of neural networks developed in the previous sections (Fig. 3).

[nformation flow

Information flow during learning

during predicting

Figure 3. Asymmetrical information flow involved in learning and predicting the environment by evolving systems.

Consider non-trainable environmenta variables that change continuously with time x(e)(f), while the
learning objective of an organism isto predict x(®) (t) at timet > 7, given that it was observed for time

0 < & < 7. Thus, the organism has to extrapolate the function x(©) (t) for ¢ > T and to do so, it should
be able to store and retrieve the values of the Fourier coefficients
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, 1 ,
o == f' dt x\&(t)e 25t
T Jo

(7.1)
or, more generally, wavelet coefficients
, 1 /" g
= _ dt il — i x(e) t e_ﬂ".flt
o =1 [ @Wlr—nxo@Qe=

for suitably defined window functions Wi. Then, a prediction could be made by extrapolating x(e)(t)
using the inverse transformation

imaz
x(r +6) ~ 2 Z Re (qieimrf,-é')
i=imin (73)

for some & > 0, which is not too large compared to 7. However, in general, the total number of (Fourier

or wavelet) coefficients qQ"s would be countably infinite. Therefore, any finite size organism has to
“decide’, which frequencies to observe (and remember) and which ones to filter out (and “forget”).

Let us assume that the organism “decided” to only observe/remember discrete frequencies
.fm.in = -fim.in'! == f‘inun: = fm (74)

and forget everything else. Then, to predict the state of the environment (7.3) and, as a result, minimize
the loss function (5.5), the organism should be able to store, retrieve and adjust information about

coefficients€” s in some adaptable trainable variabl&sq(").

Given this ssmple model, we can study the flow of information between different non-trainable variables
of the organism x©. To thisend, it is convenient to organize the variables as

X= (x(o), x(e)) = (x‘l'mjn'r -1 X2 x(e)) (7.5)
where

x;(7+0) =2 Z Re (qkeﬂ“f*‘s)
k=imin (7.6)

and assume that the relevant information about qi’ sis stored in the adaptable trainable variables

q9 = (g, ...q™=) (7

In the estimate of X:i(T + &8)in Eq. (7.6), dl the higher frequency modes are assumed to average to zero

~1
as is often the case if we are only interested in the time scale fi . A somewhat better estimate can be
obtained using, once again, the ideas of the renormalization group flow, following the fundamental
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principle P4. To make learning (and thus survival) efficient, truncation of the set of variables relevant for
learning is crucial. The main point is that the higher frequency modes can still contribute statistically, and

then, an improved estimate of %;(7 + 8) would be obtained by appropriately modifying the values of the

coefficients 9" s. Either way, in order to make an actual prediction, the organism should first calculate

Xi(T + 8) for small fi and then pass the result to the next level to calculate Xi+1{T + 8) for larger fir1,
and so on. Such computations can be described by a simple mapping

xi1 (7 +8) = x:(7 + 8) + 2 Re (g *Fim1f) o o

which can be interpreted as passage of data from one layer to another in a deep, multilayer neural
network (Fig. 2). Eq. (7.8) implies that, during the predicting phase, relevant information only flows from
variables encoding low frequencies to variables encoding high frequencies, but not in the reverse
direction. In other words, in the process of predicting the environment, information propagates from
slower variablesto faster variables, that is, from genotype to phenotype, or from nucleic acids to proteins,
hence the Central Dogma. Because only the fast variables change in this process, the prediction of the
state of the environment is rapid, asit isindeed required to be for the organism survival. Conversdly, in
the process of learning the environment, information is back-propagated in the opposite direction, that is,
from faster to slower variables. However, this back-propagation is not a microscopic reversal of the
forward-propagation, but a distinct, much slower process (given that changes in slow variables are
required) that involves mutation and selection.

Thus, the meaning of the generalized Central Dogma from the point of view of the learning theory — and
our theory of evolution - is that Slow dynamics (that is, evolution on a long time-scale) should be mostly
independent of the fast variables. In less formal terms, slow variables determine the rules of the game,
and changing these rules depending on the results of some particular games would be detrimental for the
organism. Optimization within the space of opportunities constrained by temporally stable rules is
advantageous compared to optimization without such constraints. The trade-off between global and local
optimization is a genera, intrinsic property of frustrated systems (E2). For the system to function
efficiently, the impact of local optimization on the global optimization should be restricted. The
separation of the long-term and short-term forms of memory through different elemental bases (nucleic
acids vs proteins) serves this objective.

8. Discussion

In thiswork, we outline a theory of evolution on the basis of the theory of learning. The parallel between
learning and the process of biological evolution is becoming obvious as soon as the mapping between the
loss function and the fitness function is identified (Eg. (5.6)). Indeed, both processes represent movement
of an evolving (learning) system on a fitness (loss function) landscape, where adaptive (learning),
upward moves are most consequentia although neutral moves are most common, and downward moves
also occur occasonally. However, we go beyond the obvious analogy and trace a detailed
correspondence between the essential features of the evolutionary and learning processes. Arguably, the
most important, fundamental commonality between evolution and learning is the stratification of the
trainable variables (degrees of freedom) into multiple classes that differ by the rate of change. At least, in
complex environments, all learning is multilevel learning, and all selection relevant for the evolutionary
processisintringcally multilevel. Thisis a substantial deviation from the current mainstream narrative of
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evolutionary biology, in which multilevel selection remains a controversial subject, and in any case, is
not generally considered to be the central evolutionary trend. However, the framework of evolution as
learning developed here implies that evolution of biological complexity would be impossible without
multilevel selection permeating the entire history of life. Under this perspective, the emergence of new
levels of organization, in learning and in evolution, and in particular, MTE represent genuine phase
trangitions as previously suggested (42). Such transitions can be analyzed consistently only in the
thermodynamic limit, which is addressed in detail in the accompanying paper (90).

The detailed correspondence between the key features of the processes of learning and evolution implies
that this is not a smple analogy but rather a reflection of the degp unity of evolutionary processes
occurring in the universe. Indeed, the separation of the relevant degrees of freedom into multiple
temporal classes is ubiquitous in the universe, from composite subatomic particles, such as protons, to
atoms, molecules, life forms, planetary systems and galaxy clusters. If we take the seemingly radical but
actually straightforward and consistent view that the entire universe is a neural network (37), then, all
these systems would be considered emerging from the learning dynamics. Furthermore, scale separation
and renormalizability appear to be essential conditions for a universe to be observable. According to the
evolution theory outlined here, any observable universe consists of entities that undergo learning, or
synonymously, adaptive evolution, and actually, the universe itself is such an entity, in development of
the concept of the world as a neural network (37). The famous dictum of Dobzhansky (94), thus, can and
arguably should be rephrased as “Nothing in the world is comprehensible except in the light of learning.”

Within the framework of this theory of evolution, the difference between life and non-living matter is
one in degree of optimization rather than in kind. Crucially, any complex optimization problem can be
addressed only with a stochastic learning algorithm, hence the ubiquity of selection. Origin of life can
then be conceptualized within the framework of multilevel learning as we explicitly show in the
accompanying paper (90). The point when life begins can be naturally associated with the emergence of
adistinct class of slowly changing variables that are digitized and thus can be accurately replicated; these
digital variables store and supply information for forward-propagation to predict the state of the
environment. In biological terms, thisfocal point corresponds to the advent of replicators (genomes) that
carry information on the operation of reproducers, within which they resided (95). This is also the point
when natural (Darwinian) selection takes off (64). Our theory of evolution implies that this pivotal stage
was preceded by evolution of “prelife’, which comprised reproducers that lacked genomes but
nevertheless were learning systems that were subject to selection for persistence; self-reproducing
catalytic micelles appear to be plausible models of such primordial reproducers (96). The first replicators
(RNA molecules) would evolve within these reproducers, perhaps, initialy, as molecular parasites (E9),
but subsequently, under selection for the ability to store, express and share information essential for the
entire system. This crucial step greatly increased the efficiency of evolution/learning and provided for
long term memory that persisted throughout the history of life, providing for the onset of natura
selection and the unprecedented diversification of life forms. For learning to be efficient, the capacity of
the system to add new adaptable variables is essential. In biological terms, this implies expandability of
the genome, that is, ability to add new genes, which necessitated the transition from RNA to DNA as the
genome substrate, given the apparent inherent size constraints on replicating RNA molecules. Another
essential condition for efficient learning is information sharing, which in the biological context
corresponds to horizontal gene transfer. The essentiality of horizontal gene transfer at the earliest stages
of life evolution is perceived as the cause of the universality of the trandation machinery and genetic
codein all known life forms (97).
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The scenario of the origin of life within the encompassing framework of the presented theory of
evolution, even if formulated in most general terms, implies that emergence of complexity commensurate
with life is a general trend in the evolution of complex systems. At face value, this concluson might
seem to be at odds with the magnitude of complexification involved in the origin of life (suffice it to
consider the complexity of the translation system (6)) and the uniqueness of this even, in the least, in the
history of earth, and probably, on a much greater cosmic scale. Arguably, however, the origin of life can
be conceptualized as an expected outcome of learning subject to the relevant constraints, such as the
presence of the required chemicals in sufficient concentrations and more. Such constraints would make
life a rare phenomenon but likely far from unique, on the scale of the universe. The universe is
sometimes claimed to be fine-tuned for the existence of life (98, 99). What we posit here, is that the
universeis self-tuned for life emergence.

Evidently, the analysis presented here and in the accompanying paper (90) is only an outline of atheory

of evolution as learning. The details and implications including directly testable ones remain to be
worked out.
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