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Abstract 

We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory 
of biological evolution, including the origin of life, as multilevel learning. We formulate seven 
fundamental principles of evolution that appear to be necessary and sufficient to render a universe 
observable and show that they entail the major features of biological evolution, including replication and 
natural selection. These principles also follow naturally from the theory of learning. We formulate the 
theory of evolution using the mathematical framework of neural networks, which provides for detailed 
analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical 
framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the 
flow of information during learning (back-propagation) and predicting (forward-propagation) the 
environment by evolving organisms. The more complex evolutionary phenomena, such as major 
transitions in evolution, in particular, the origin of life, have to be analyzed in the thermodynamic limit, 
which is described in detail in the accompanying paper. 

Significance statement 

Modern evolutionary theory gives a detailed quantitative description of microevolutionary processes that 
occur within evolving populations of organisms, but evolutionary transitions and emergence of multiple 
levels of complexity remain poorly understood. Here we establish correspondence between the key 
features of evolution, renormalizability of physical theories and learning dynamics, to outline a theory of 
evolution that strives to incorporate all evolutionary processes within a unified mathematical framework 
of the theory of learning. Under this theory, for example, natural selection readily arises from the 
learning dynamics, and in sufficiently complex systems, the same learning phenomena occur on multiple 
levels or on different scales, similar to the case of renormalizable physical theories.  
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1. Introduction 

What is life? If this question is asked in the scientific rather than in the philosophical context , a 
satisfactory answer should assume the form of a theoretical model of the origin and evolution of complex 
systems that are identified with life, from inanimate matter. NASA has operationally defined life as 
follows: “Life is a self-sustaining chemical system capable of Darwinian evolution” (1, 2).  Apart from 
the insistence on chemistry, long-term evolution that involves (random) mutation, diversification and 
adaptation is, indeed, an intrinsic, essential feature of life that is not apparent in any other natural 
phenomena. The problem with this definition, however, is that natural (Darwinian) selection itself 
appears to be a complex rather than an elementary phenomenon (3). In all evolving organisms we are 
aware of, for natural selection to kick off and to sustain long-term evolution, an essential condition is the 
replication of a complex digital information carrier (a DNA or RNA molecule). The fidelity of 
replication must be sufficiently high to provide for the differential replication of emerging mutants and 
survival of the fittest ones (this replication fidelity level is often referred to as Eigen threshold) (4). In 
modern organisms, accurate replication is ensured by highly complex molecular machineries that include 
not only replication and repair enzymes, but also the entire metabolic network of the cell that provides 
energy and building blocks for replication. Thus, the origin of life is a typical chicken-and-egg problem 
(or a Catch-22): sufficiently accurate replication is essential for evolution but the mechanisms underlying 
such a replication process are themselves products of complex evolutionary processes (5, 6). 

Because the replication capacity of living organisms is itself a product of evolution, a solution to the 
problem of the origin of life is to be sought outside the traditional framework of evolutionary biology. 
Modern evolutionary theory, steeped in population genetics, takes a detailed and, arguably, largely 
satisfactory account of microevolutionary processes, that is, evolution of allele frequencies in a 
population of organisms under selection and random genetic drift (7, 8). However, the population genetic 
theory has little to say about the actual historical development of life, especially, about macroevolution 
that involves emergence of new levels of biological complexity, and nothing at all about the origin of 
life. 

The crucial feature of biological complexity is its hierarchical organization. Indeed, multilevel 
hierarchies permeate biology. From small molecules to macromolecules; from macromolecules to 
functional complexes, subcellular compartments, and cells; from unicellular organisms to communities, 
consortia and multicellularity; from simple multicellular organisms to highly complex forms with 
differentiated tissues; from organisms to communities and eventually to eusociality and to complex 
biocenoses involved in biogeochemical processes on the planetary scale. All these distinct levels jointly 
constitute the hierarchical organization of the biosphere. Understanding the origin and evolution of this 
hierarchical complexity can be considered one of the principal goals of biology. 

In large part, evolution of the multilevel organization of biological systems appears to be driven by 
solving optimization problems, which entails conflicts, or trade-offs between the optimization criteria at 
different levels or scales, leading to frustrated states, in the language of physics (9-11). Two notable 
cases in point are the parasite-host arm race that permeates biological evolution and makes major 
contributions to the diversity and complexity of life forms (12-15), and multicellular organization of 
complex organisms, where the tendency of individual cells to reproduce at the highest possible rate is 
countered by the control of cell division imposed at the level of a multicellular organism (16, 17).  
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Two tightly linked but distinct, fundamental concepts that lie effectively outside the canonical narrative 
of evolutionary biology address evolution of biological complexity: major transitions in evolution (MTE) 
(18-20) and multilevel selection (MLS) (21-26). Each MTE involves the emergence of a new level of 
organization, often described as an evolutionary transition in individuality. A clear-cut example is the 
evolution of multicellularity, whereby a new level of selection emerges, namely, selection among 
ensembles of cells rather than among individual cells. Importantly, multicellular life forms (even 
counting only complex organisms with multiple cell types) evolved on many independent occasions 
during the evolution of life (27, 28), strongly suggesting that emergence of new levels of complexity is a 
major evolutionary trend rather than a rare event occurring by chance. 

The MLS is often perceived as a controversial concept, presumably, because of the link to the long-
debated subject of group selection (26, 29). However, as a defining component of MTE, multilevel 
selection appears to be indispensable. A proposed general mechanism behind the MTE, formulated by 
analogy with the physical theory of the origin of patterns, for example, in glass-like systems, involves 
competing interactions at different levels and the frustrated states such interactions cause (11). In the 
physical theory of spin glasses, frustrations result in non-ergodicity and enable formation and persistence 
of long-term memory, that is, history (30, 31). By contrast, ergodic systems have no true history because 
they reach all possible states during their evolution (at least in the large time limit), and thus, the only 
content of quasi-history of such systems is the transition from less probable to more probable states for 
purely combinatorial reasons, that is, entropy increase (32). As emphasized by Schrödinger in his 
seminal book (33), even if only in general terms because no adequate theory existed at the time, life is 
based on “negentropic” processes, and frustrations at different levels are necessary for these processes to 
set off and persist (11). Conflicting interactions and frustrated states in biological systems are intimately 
linked to solving optimization problems, which involves multiple temporal and spatial scales. Again, the 
most obvious case in point seems to be the origin of multicellularity, where different selective factors 
operate at different levels or scales: selection for the rate of proliferation at the level of individual cells vs 
selection for cell division control at the level of multicellular ensembles. Similarly, at a higher plane of 
organization, selection affecting individuals clashes with the selection at the level of groups, 
communities, or societies, for example, in social insects. At a lower level, the frustrations emerge 
between the selection affecting “selfish” individual genes and genetic elements, such as transposons, and 
the selection for the entire genome as a structured collection of genes (23). In each MTE, by definition, 
selection at the higher level supersedes selection at the lower level (19), but the complexity enabled by 
this hierarchy of selective factors comes at the cost of elaborate and error-prone mechanisms that keep in 
check the lower-level units of selection. 

The origin of the first cells, which can and probably should be equated with the origin of life, was the 
first and most momentous transition at the onset of biological evolution, and as such, is outside the 
purview of evolutionary biology sensu stricto. Arguably, theoretical investigation of the origin of life can 
be feasible only within the framework of an envelope theory that would incorporate biological evolution 
as a special case (34, 35). It is natural to envisage such a theory as encompassing the non-ergodic 
processes occurring throughout the history of the universe, with the origin and evolution of life being a 
special case emerging under conditions that remain to be investigated and defined.  

Here, in pursuit of a maximally general theory of evolution, we adopt the formalism that was originally 
developed in the theory of machine learning (36). It has to be emphasized that learning here is perceived 
in the maximally general sense, as an objective process that might occur in all evolving systems, 
including but not limited to biological ones (37). As such, the analogy between learning and selection 
appears obvious: both types of processes involve trial-and-error and acceptance or rejection of the results 
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based on some formal criteria; in other words, both are optimization processes (21, 38, 39). Here we 
assess how far this analogy extends, by establishing the correspondence between the key features of 
biological evolution and concepts as well as the mathematical formalism of learning theory. In particular, 
we make the case that loss function that is central to the learning theory can be usefully and generally 
employed as the equivalent of the fitness function in the context of evolution. We exploit the 
mathematical framework of the theory of learning (36) to sketch a theory of evolution. Our original 
motivation was to explain major features of biological evolution from more general principles of physics. 
However, after formulating such principles and embedding them within the mathematical framework of 
learning, we find that the theory can potentially apply to the entire history of the evolving universe (37) 
including physical processes that have been taking place since the Big Bang and chemical processes that 
directly antedated and set the stage for the origin of life. In particular, we show that learning in a 
complex environment leads to separation of scales, with trainable variables splitting into at least two 
classes, faster and slower changing ones. Such separation of scales underlies all processes that involve 
the formation of complex structure in the universe, from the scale of an atom to that of clusters of 
galaxies. Scale separation occurs during (pre)biological evolution, and we argue that for the emergence 
of life, at least three temporal scales, which respectively correspond to environmental, phenotypic, and 
genotypic variables, are essential. In evolving deep learning systems, the slowest-changing variables are 
digitized and acquire the ability to replicate, resulting in differential reproduction depending on the loss 
(fitness) function value, which is necessary and sufficient for the onset of evolution by natural selection. 
The subsequent evolution of life involves emergence of many additional scales, which correspond to 
MTE. The key biological features of life, namely, MLS, persistence of genetic parasites and programmed 
death as well as the key physical features of the universe, namely, hierarchy of scale, frequency gaps and 
renormalizability (40, 41) are among the central propositions of the theory of evolution presented here.  

Hereafter we use the term “evolution” to describe the process of temporal changes of living, life-like and 
prebiotic systems (a.k.a organisms).  The more general term “dynamics” refers to temporal processes in 
other, in particular, physical systems.  

At least since the publication of Schrödinger’s book, the possibility has been discussed that, although life 
forms certainly obey the laws of physics, a different class of physical laws uniquely associated with life 
could exist. Often, this putative physics of life is associated with emergence (42-44), but the nature of the 
involved emergent phenomena, to our knowledge, has not been clarified until very recently (37) Here we 
outline a general approach to modeling and studying evolution, in the form of a multilevel learning 
process, supporting the claim that a distinct type of physical theory, namely, a theory of learning (36, 
37), is necessary to investigate the evolution of complex objects in the universe, of which evolution of 
life is a specific, even if highly remarkable form. A corollary of this approach seems to be that the 
emergence of the level of complexity characteristic of life is a general trend in the evolution of learning 
systems. 

 

2. Fundamental principles of evolution 

In this section, we attempt to formulate the minimal, universal principles that define an observable 
universe, in which evolution is possible and, perhaps, inevitable. Our analysis began with the 
consideration of the major features of biological evolution discussed in the next section and proceeded 
towards the general principles. In this presentation, however, we start from the latter, for the sake of 
transparency and generality.  
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So, what are the requirements for a universe to be observable? The possibility to make meaningful 
observations implies a degree of order and complexity in the observed universe provided by some 
evolutionary processes, and such evolvability itself seems to be predicated on several fundamental 
principles. Before formulating these propositions explicitly, we have to emphasize that “observation” as 
well as “learning” here by no means imply “mind” or “consciousness”, but a far more basic requirement. 
To learn and survive in an environment, a system (or observer) must predict, with some minimal but 
sufficient degree of accuracy, the response of that environment to various actions and to be able to 
choose such actions that are compatible with the observer’s further existence in that environment. In this 
sense, any life form is an observer, and even inanimate entities endowed with the ability of feedback 
reaction qualify as observers. In this, most general sense, observation is a pre-requisite of evolution. We 
first formulate the basic principles underlying observability and evolvability, and then, give the pertinent 
comments and explanations.  

 

P1. Loss function. In any evolving system, there exists a loss function of time-dependent 
variables that is minimized during evolution.  

P2. Hierarchy of scales. Evolving systems encompass multiple dynamical variables that change 
on different temporal scales (with different characteristic frequencies).  

P3. Frequency gaps. Dynamical variables are split among distinct levels of organization 
separated by sufficiently wide frequency gaps.  

P4. Renormalizability. Across the entire range of organization of evolving systems, a statistical 
description of faster-changing (higher frequency) variables is feasible through the slower-
changing (lower frequency) variables.  

P5. Extension. Evolving systems have the capacity to recruit additional variables that can be 
utilized to sustain the system and the ability to exclude variables that could destabilize the 
system. 

P6. Replication. In evolving systems, replication and elimination of the corresponding 
information processing units can take place on every level of organization.  

P7. Information flow. In evolving systems, slower-changing levels absorb information from 
faster-changing levels during learning and pass information down to the faster levels for 
prediction of the state of the environment and the system itself. 

The first principle P1 is of special  importance as the starting point for a formal description of evolution 
as a learning phenomenon. Indeed, the very existence of a loss function implies that the dynamical 
system of the universe, or simpler, the universe itself is a learning (evolving) system (36). Effectively, 
here we assume that stability or survival of any subsystem of the universe is equivalent to solving an 
optimization or learning problem in the mathematical sense and that there is always something to learn. 
Furthermore, the description of evolution as an optimization or learning problem immediately defines the 
type of mathematical apparatus that is best suited for its analysis (36). Arnold formulated the main 
message of Newtonian mechanics in one simple proposition: “It is useful to solve (ordinary) differential 
equations in physics” (45). Similarly, our first principle, in effect, simply states: It is useful to formulate 
and solve learning (optimization) problems in the theory of evolution. In a form so general, this principle 
might appear almost trivial, but as discussed below, it has numerous major implications and corollaries. 
Arguably, the single most important of such corollaries is that, for solving complex optimization 
problems dependent on many variables, the best and in fact the only efficient method is selection 
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implemented in various stochastic algorithms (Markov Chain Monte Carlo, stochastic gradient descent, 
genetic algorithms and more). All evolution can be perceived as an implementation of a stochastic 
learning algorithm as well. 

The remaining principles P2 to P7 provide sufficient conditions for the observers of our type (that is, 
complex life forms) to evolve within a learning system. In particular, P2, P3 and P4 comprise the 
necessary conditions for observability of a universe by any observer, whereas P5, P6 and P7 represent 
the defining conditions for the origin of life of our type (hereafter we omit the qualification for brevity). 
More precisely, P2 and P3 provide for the possibility of at least a simple form of learning of the 
environment (fast-changing variables) by an observer (slow-changing variables), and hence the 
emergence of complex organization of the slow-changing variables. P4 corresponds to the physical 
concept of renormalizability, or renormalization group (40, 41), whereby the same macroscopic 
equations, albeit with different parameters, govern processes at different levels or scales, thus limiting 
the number of relevant variables, constraining the complexity, and allowing for a coarse-grained 
description. This principle ensures a renormalizable universe capable of evolution and amenable to 
observation. Together, P2 to P4 define a universe, in which partial or approximate knowledge of the 
environment, in other words, coarse graining, is both attainable and useful for the survival of evolving 
systems (observers). Indeed, to use water or food to support our life, there is no need to take into account 
that it consists of molecules, molecules of atoms, atoms of electrons and nuclei, and so forth. To make 
the decision to drink or not to drink, it is sufficient to assess a few macroscopic characteristics of the 
liquid in question, such as color and smell, which can be learned by trial and error. To survive in the 
macroscopic world, there is no need to study its structure and properties down to the Planck scale (43, 
44). In a universe where P4 does not apply, that is, one with non-renormalizable physical laws, what 
happens at the macroscopic level, will essentially depend on the details of the processes at the 
microlevel. In a universe where P2 and P3 do not apply, the separation of the micro and macro levels 
itself would not be apparent. In such a universe, it would be literally impossible to survive without first 
discovering fundamental physical laws, whereas living organisms on our planet have evolved for billions 
of years before starting to study quantum physics.   

Principles P5, P6 and P7 endow evolving systems with the access to more advanced algorithms for 
learning and predicting the environment, paving the way for the evolution of complex systems including, 
eventually, life. These principles jointly underlie the emergence of the crucial phenomenon of selection 
(46, 47). In its simplest form, selection is for stability and persistence of evolving, learning systems (34, 
48).  Learning and survival are tightly linked because survival is predicated on the ability of the system 
to learn the environment, whereas the latter ability depends on the stability of the system on time scales 
required for learning. Roughly, a system cannot survive in a world where the properties of the 
environment change faster than the evolving system can learn them. According to P5, evolving systems 
consume resources (such as food), which themselves could be produced by other evolving systems, to be 
utilized as building blocks and energy that are required for learning. This principle actualizes 
Schrodinger’s vision (often misunderstood) that “organisms feed on negentropy” (33).  Under P6, 
replication of the carriers of slowly changing variables becomes the basis of long-term persistence and 
memory in the evolving systems. This principle can be viewed as a learning algorithm built on P3, 
whereby the time scales characteristic of an individual organism and of consecutive generations are 
separated. This principle excludes from consideration certain imaginary forms of life, for example, 
Stanislav Lem’s famous Solaris (49). Finally, P7 describes how information flows between different 
levels in the multilevel learning which gives rise to the concept of a generalized Central Dogma of 
molecular biology, which is discussed in Sec. 7.  
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3. Fundamental evolutionary phenomena 

In this section, we link the fundamental principles of evolution P1-P7 formulated above to the basic 
phenomenological features of life E1-E10, and seek equivalencies in the theory of learning. The list 
below is organized by first formulating a biological feature, and then, tracing the connections to the 
fundamental principles (a), and adding more general comments (b).  

E1. Information-processing units.  Existence of discrete information-processing units (IPUs), that is, 
self vs non-self differentiation and discrimination, at different levels in organization. All biological 
entities at all levels of organization, such as genes, cells, organisms, populations, and so on, up to the 
level of the entire biosphere, possess some degree of self-coherence that separates them, first and 
foremost, from the environment at large and from other similar-level IPUs.  

a. The existence of IPUs is predicated on the fundamental principles P1-P4 discussed above. The 
wide range of the temporal scales (P2) in dynamical systems and gaps between the scales (P3) 
naturally allow for the separation of slower- and faster-changing components. In particular, 
renormalizability (P4) applies to the hierarchy of IPUs. The statistical predictability of the higher 
frequencies allows the IPUs to decrease the loss function of the lower frequencies despite the 
much slower reaction times.  

b. Separation of (relatively) slow-changing pre-biological IPUs from the (typically) fast-changing 
environment kicked off the most primitive form of pre-biological selection, selection for stability 
and persistence (survivor bias). More stable, slower-changing IPUs win in the competition and 
accumulate with time, increasing the separation along the temporal axis as the boundary between 
the IPUs and the environment grows sharper. Additional key phenomena, such as utilization of 
available environmental resources (P5) and stimulus-response mode of information exchange 
(P7), stem from the flow of matter and information across this boundary and the ensuing 
separation of internal and external physico-chemical processes. Increasing self vs non-self 
differentiation, combined with replication of the carriers of slow-changing variables (P6), sets the 
stage for competition between evolving entities and for the onset of the ultimate evolutionary 
phenomenon, natural selection  (E6). It has to be emphasized once again that selection is the only 
efficient method for solving complex optimization problems, to which category the problems 
faced by evolving IPUs certainly belong.  

E2. Frustration. All complex, dynamical systems face multi-dimensional and multi-scale optimization 
problems which generically leads to frustration resulting from conflicting objectives at different scales. 
This is a key, intrinsic feature of all such systems and a major force driving the advent of increasing,  
multilevel complexity (11). Frustration is an extremely general physical phenomenon that is by no 
account limited to biology but rather occurs already in much simpler physical systems, such as spin and 
structural glasses, the behavior of which is determined by competing interactions, so that a degree of 
complexity is attained (30, 31).  

a. The multi-scale organization of the universe (P2) provides the physical foundation for the 
pervasiveness of frustrated states that typically arise whenever there is a conflict (trade-off) 
between short- and long-range optimization problems. Frustrated interactions yield multi-well 
potential landscapes, in which no single state is substantially fitter than numerous other local 
optima. Multi-parameter and multi-scale optimization of the loss function on such a landscape 
involves non-ergodic (history-dependent) dynamics, which is characteristic of complex 
dynamical systems.  

b. IPUs face conflicting interactions starting from the most primitive pre-biological state (11). 
Indeed, the separation of any type of entities from the environment immediately results in the 
conflict of permeability: a stronger separation enhances the self vs non-self differentiation, and 
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thus increases the stability of the system, but compromises information and matter exchange with 
the environment, limiting the potential for growth. In biology, virtually all aspects of the 
organism architecture and operation are subject to such frustrations, or trade-offs: the conflict 
between the fidelity and rate of information transmission at all levels; between specialization and 
generalism; between the individual and population-level benefits; and more. The ubiquity of 
frustrations and the fundamental impossibility of their resolution in a universally optimal manner 
are perpetual drivers of the evolution and give rise to evolutionary transitions, attaining levels of 
complexity that otherwise would be out of reach.  

There are two distinct types of frustrations that can be described as spatial and temporal. Spatial 
frustration is similar to the frustration that is commonly analyzed in condensed matter systems, 
such as spin glasses (30, 31). In this case, the spatially local and non-local interacting terms have 
opposite signs so that the equilibrium state is determined by the balance between the terms. In the 
context of neural networks, a neuron (like a single spin) might have a local objective (such as 
binary classification of incoming signals) but is also a part of a neural network (like a spin 
network), which has its own global objective (such as predicting its boundary conditions). For a 
particular neuron, optimization of the local objective can be in conflict with the global objective, 
which is the main cause of spatial frustration. Temporal frustration emerges because, in the 
context of multilevel learning, the same neuron also becomes a part of higher-level IPUs that 
operate at different temporal scales (frequencies). Then, the optimal state of the neuron with 
respect to a given IPU operating at a given time scale can differ from the optimal state of the 
same neuron with respect to another IPU operating at a different time scale (37). Similar to the 
spatial frustrations, temporal frustrations cannot be completely resolved, but an optimal balance 
between different spatial and temporal scales is achievable and represents a local equilibrium of 
the learning system.  

E3. Multi-level hierarchy. The hierarchy of multiple levels of organization is an intrinsic, essential 
feature of evolving biological systems that involves both the structure of these systems (genes, genomes, 
cells, organisms, kin groups, populations, species, communities and more) and the substrate the 
evolutionary forces act upon. 

a. Renormalizability of the Universe (P4) implies that there is no inherently preferred level of 
organization, for which everything above and below would behave as a homogenous ensemble. 
Even if some levels of organization come into existence before others (for example, organisms 
before genes or unicellular organisms before multicellular ones), the other levels will necessarily 
emerge and consolidate subsequently. 

b. The hierarchy of the structural organization of biological systems was apparent to scholars from 
the earliest days of science. However, multilevel selection was and remains a controversial 
subject in evolutionary biology (22, 25, 26). Intuitively and as follows from the Price equation 
(50), multilevel selection should emerge in all evolving systems as long as the agency of selection 
possesses a sufficient degree of self vs non-self differentiation. For example, if all organisms of a 
particular kind (species) exist as populations that are perfectly homogeneous within and are 
isolated from other, potentially competing biological entities), population-level selection is 
impossible. If, on the contrary, populations are sufficiently distinct genetically, but interact 
competitively, population-level selection will inevitably ensue. Clearly, the first case is 
unrealistic. Evolution of biological systems is driven by conflicting interactions (E2) that tend to 
lead to ever-increasing complexity (11). This trend further feeds the capability and propensity of 
these systems to form new levels of organization and is associated with evolutionary transitions 
that involve the advent of new units of selection at multiple levels of complexity. 
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E4. Near-optimality. Stochastic optimization, or the use of stochastic methods for solving optimization 
problems, is the only feasible approach to complex optimization, but it guarantees neither finding the 
globally optimal solution nor retention of the optimal configuration when and if it is found. Rather, 
stochastic optimization tends to rapidly find local optima and keeps the system in their vicinity, 
sustaining the value of the loss function at a near-optimal level.  

a. According to P1, the dynamics of a learning, that is, self-optimizing system, is defined by a loss 
function (36, 37). When there is a steep gradient in the loss function, a system undergoing 
stochastic optimization can rapidly descend in the right direction. However, because of 
frustrations that inevitably arise from the interactions in a complex system, actual local peaks on 
the landscape are rarely reached, and the global peak is effectively unreachable. Learning systems 
tend to get stalled near local saddle points where changes along most of the dimensions either 
lead “up” or are “flat” in terms of the loss function, with only a small minority of the available 
moves decreasing the loss function (51). 

b. The extant biological systems (cells, multicellular organisms as well as higher level entities, such 
as populations and communities) are the result of about 4 billion years of the evolution of life on 
Earth, and as such, are highly, albeit not completely, optimized. As a consequence, the typical 
distribution of the effects of heritable changes in biological evolution comprises numerous 
deleterious changes, comparatively rare beneficial changes and common neutral changes, those 
with fitness effects below the noise level (52). The preponderance of neutral and slightly 
deleterious changes provides for evolution by neutral genetic drift whereby a population moves 
on the same level or even slightly downward on the fitness landscape, potentially reaching 
another region of the landscape where beneficial mutations are available (53, 54). 

E5. Diversity of near-optimal solutions. Solutions on the loss function landscapes that arise in complex 
optimization problems, span numerous local peaks of comparable heights. 

a. The existence of multiple peaks of comparable heights in the loss function landscapes is a 
fundamental physical property of frustrated systems (E2), whereas the pervasiveness of 
frustration itself is a consequence of the multi-scale and multi-level organization of the universe 
(P2). Frustrated dynamical systems behave in a non-ergodic manner which, from the biological 
perspective, means that, once separated, evolutionary trajectories diverge, rather than converge. 
Because most of these trajectories traverse parts of the genotype space with comparable fitness 
values, competition rarely results in complete dominance of one lineage over the others, but 
rather generates rich diversity.  

b. In terms of evolutionary biology, fitness landscapes are rugged, with multiple adaptive peaks of 
comparable fitness (55, 56), and a salient trend during evolution is the spread of life forms across 
multiple peaks as opposed to concentrating on one or few. Evolution pushes evolving organisms 
to explore and occupy all available niches and try all possible strategies. In the context of 
machine learning, identical neural networks can start from the same initial state but, for example, 
under the stochastic gradient descent algorithm, would generically evolve towards different local 
minima. Thus, the diversity of solutions is a generic property of learning systems. On a more 
technical level, the diversification is due to the entropy production in the dynamics of the neutral 
trainable variables (see next section).  

E6. Separation of phenotype from genotype. This quintessential feature of life embodies the 
emergence of two distinct (albeit inseparable in known organisms) symmetry-breaking phenomena: i) 
separation between a dedicated digital information storage media (stable, rarely updatable, tending to 
distributions with discrete values) and the mostly analog processing devices, and ii) asymmetry of the 
information flow within the IPUs, whereby genotype provides “instructions” for the phenotype, whereas 
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the phenotype largely loses the ability to update the genotype directly. As such, somewhat paradoxically, 
the separation between the information storage and processing subsystems is a prerequisite feature that 
probably emerged early on the path from prebiotic entities to the emergence of life rather than a late-
evolved property of living organisms. 

a. The separation between phenotype and genotype extends the scale separation on the intra-IPU 
level, as follows from the fundamental principles P1-P4. Intermediate-frequency components of 
an IPU (phenotype) buffer the slowest components from direct interaction with the environment 
(the highest frequency variables), further increasing the stability of the slowest components and 
making them suitable for long-term information storage. As the temporal scales separate further, 
the interactions between them change their character. Asymmetric information flow (P7) 
stabilizes the system, enabling long-term preservation of information (genotype), while retaining 
the reactive flexibility of the faster-changing components (phenotype). 

b. The emergence of the separation between phenotype and genotype is a crucial event in pre-biotic 
evolution. This separation is prominent in all known as well as hypothetical life forms. Even 
when the phenotype and genotype roles are fulfilled by molecules that are chemically identical, as 
in the RNA world scenario of primordial evolution (57, 58), their roles as effectors and 
information storage devices are sharply distinct. In biological terms, the split is between 
replicators, that is, the digital information carriers (genomes) (59), and reproducers (44, 45), the 
analog devices (cells, organisms) that host the replicators, supply them with building blocks (P5) 
and themselves reproduce (P6) under the replicators’ instruction (P7). Although the 
genotype/phenotype separation is a major staple of life, it is not in itself sufficient to qualify an 
IPU as a life form (computers and record players, in which the separation between information 
storage and operational parts is prominent and essential, clearly are not life, even though invented 
by advanced organisms). The asymmetry of information flow between genotype and phenotype 
(P7) is the most general form of the phenomenon known as the Central Dogma of molecular 
biology, the unidirectional flow of information from nucleic acids to proteins as originally 
formulated by Crick (60). This asymmetry is also prominent in other information processing 
systems, in particular computers. Indeed, von Neumann architecture computers have inherently 
distinct memory and processing units, with the instruction flow from the former to the latter (61, 
62). It appears that any advanced information processing system will be endowed with this 
property. 

E7. Replication. Genome replication and sharing of long-term memory. Emergence of long-term digital 
storage devices (genomes consisting of RNA or DNA; E6) provides for long-term information 
preservation, facilitates adaptive reactions to changes in the environment, and promotes the stability of 
IPUs to the point where (at least in chemical systems) it is limited by the energy of the chemical bonds 
rather than the energy of thermal fluctuations. Obviously, however, as long as this information is 
confined to a single IPU, it will disappear with the eventually inevitable destruction of that IPU. Should 
this be the case, other IPUs of similar architecture would need to accumulate a comparable amount of 
information from scratch to reach the same level of stability. Thus, copying and sharing information is 
essential for long-term (effectively, indefinite) persistence of IPUs.  

a. The fundamental principle P6 postulates the existence of mechanisms for information copying 
and elimination. If the genomic information can be replicated, even most primitive sharing 
mechanisms (such as physical splitting of an IPU under forces of surface tension) would result 
(even if not reliably) in the emergence of distinct IPUs pre-loaded with information that was 
amassed by their progenitor(s). This process short circuits learning and allows the information to 
accumulate at time scales far exceeding the characteristic lifetimes of individual IPUs. 
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b. Information copying and sharing is beneficial only if its fidelity exceeds a certain threshold, 
sometimes called Eigen limit in evolutionary biology (4-6). Nevertheless, in primitive pre-biotic 
systems, the required fidelity level could have been quite low (63). For instance, even a biased 
chemical composition of a hydrophobic droplet could enhance the stability of the descendant 
droplets and thus endow them with an advantage in the selection for persistence. However, once 
relatively sophisticated mechanisms of information copying and sharing are in place, more 
precisely, when replicators become information storage devices, the overall stability of the 
system can increase by many orders of magnitude. To wit, and astonishingly, the only biosphere 
known to us represents an unbroken chain of genetic information transmission that spans about 4 
billion of years, commensurate with the stellar evolution scale. 

E8. Natural selection. Evolution by natural selection (a.k.a. Darwinian evolution) arises from the 
combination of all the principles and phenomena described above. The necessary and sufficient 
conditions for Darwinian evolution to operate are: i) existence of IPUs that are distinct from the 
environment and from each other (E1); ii) dependence of the stability of an IPU on the information it 
contains, that is, the phenotype-genotype feedback (E6); iii) ability of IPUs to make copies of embedded 
information and share it with other IPUs (E7). When these three conditions are met, the relative 
frequencies of the more stable IPUs will increase with time, via the attrition of the less stable ones 
(survival of the fittest) and transfer of information among IPUs, both vertically (to progeny) and 
horizontally. This process engenders the key feature of Darwinian evolution, differential reproduction of 
genotypes, based on the feedback from the environment, transmitted through the phenotype. 

a. All 7 fundamental principles of the life-compatible universe (P1-P7) are involved in enabling 
evolution by natural selection. The very existence of units, on which selection can operate, hinges 
on the above-described phenomena, namely, self vs non-self discrimination of prebiotic IPUs 
(E1) and the emergence of shareable information storage (E6, E7). The crucial step to biology is 
the emergence of the link between the loss function, the existence of which is postulated by P1, 
on the one hand, and existence of the IPUs (P2, P3, P4, E1), on the other hand. Consumption of 
(limited) external resources (P5) entails competition between IPUs that share the same 
environment and turns mere shifts of the relative frequency into true “survival of the fittest”. The 
ability of the IPUs to replicate (P6) and to expand their memory storage (genotype) (P7, E6, E7) 
provides them with access to hitherto unavailable degrees of freedom, making evolution an open-
ended process rather than a quick, limited search for a local optimum. 

b. Evolution by natural selection is the central tenet of evolutionary biology and a key part of the 
NASA definition of life. An important note on definitions is due. We already referred to selection 
when discussing prebiotic evolution (E1); however, the term “natural (Darwinian) selection” is 
here reserved for the efficient form of selection that emerges with the replication of dedicated 
information storage devices (P6, E6). Differential reproduction, whereby the environment 
provides feedback on the success of genotypes, while acting on phenotypes, turns into Darwinian 
“survival of the fittest” in the presence of competition. When IPUs depend on environmental 
resources, such competition inevitably arises, except in the unrealistic case of unlimited supply 
(46). With the onset of Darwinian evolution, the system can be considered to cross the threshold 
from pre-life to life, so that all that follows belongs in the realm of biology (64, 65). The 
evolutionary process is naturally represented by movement of an evolving IPU in a genotype 
space, where proximity is defined by similarity between the distinct genotypes and transitions 
correspond to elementary evolutionary events, that is, mutations, in the most general sense (66). 
For any given environment, fitness - that is, a measure of the ability of a genotype to produce 
viable offspring - can be defined for each point in the genotype space, forming a 
multidimensional fitness landscape (55, 56). Selection creates a bias for preferential fixation of 
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mutations that increase fitness, even if the mutations themselves occur in an entirely random 
manner. The existence of variation (mutations, genotypic changes, some of which have 
phenotypic effects) is traditionally listed as a component of the key triad (heredity, variability, 
selection), which comprise the conceptual foundation of evolutionary biology (47). Mutations are 
rare on the human timescale, so that realizing their importance was a major intellectual feat of the 
19th century, primarily, attributable to Darwin (46). From the 21st century perspective, variability 
can be largely taken for granted because perfect information copying is theoretically impossible 
at non-zero temperatures and without access to unlimited resources (4). 

E9. Parasitism. Parasites and host-parasite coevolution are ubiquitous across biological systems at 
multiple levels of organization and are both intrinsic to and indispensable for the evolution of life. 

a. The flexibility of life-compatible systems (P5, P6) and the symmetry breaking in the information 
flow (P7), combined with the inherent tendency of life to diversify (E5), lead to a situation where 
parts of the system settle on a parasitic state, that is, scavenging information and matter from the 
host, without making a positive contribution to its fitness.  

b. From the biological perspective, parasites evolve to minimize their direct interface with the 
environment, and conversely maximize their interaction with the host; in other words, the host 
replaces most of the environment for the parasite. Parasites inevitably emerge and persist in 
biological systems because of two reasons: i) the parasitic state is reachable via an entropy-
increasing step, and therefore, is highly probable (15, 67) and ii) highly efficient anti-parasite 
immunity is costly (68). The cost of immunity reflects another universal trade-off analogous to 
the trade-off between information transfer fidelity and energy expenditure: in both cases, infinite 
amount of energy is required to reach a zero error rate or a parasite-free state. From a 
complementary standpoint, parasites inevitably evolve as cheaters in the game of life that 
scavenge resources from the host (or in other words, exploit the host as a resource) without 
expending energy on resource production. Short-term, parasites reduce the host fitness by both 
direct drain on its resources and by a plethora of indirect effects including the cost of defense. 
However, in a longer-term perspective, parasites comprise a reservoir for recruitment of new 
functions (especially, but far from exclusively, for defense) by the hosts (13, 14). The host-
parasite relationship can evolve towards transition to a mutually beneficial, symbiotic lifestyle 
that can further progress to mutualism and, in some cases, complete integration as exemplified by 
the origin of essential endosymbiotic organelles in eukaryotes, mitochondria and chloroplasts 
(69-71). Parasites emerge at similar levels of biological organization (organisms parasitizing on 
other organisms) or across levels (genetic elements parasitizing on organismal genomes or cell 
clones parasitizing on multicellular organisms). 

 

E10. Programmed death. Programmed (to a various degree) death is an intrinsic feature of life. 

a. Replication and elimination of information processing units (P6) and utilization of additional 
degrees of freedom (P5) form the foundation for the phenomenon of programmed death. At some 
levels of organization (for example, intra-genomic), the ability to add and eliminate units (such as 
genes) for the benefit of the higher-level systems (such as organisms) provides an obvious path of 
optimization. The elimination of units could be, in principle, completely random, but selection 
(E8) generates a sufficiently strong feedback to facilitate and structure the loss process (for 
example, purging low-fitness genes via homologous recombination or altruistic suicide of 
infected or otherwise impaired cells). The same forces operate at all levels of organization and 
selection (P4). In particular, if population-level or kin-level selection is sufficiently strong, 
mechanisms for altruistic death of individual organisms can be fixed in evolution (72, 73). 
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b. Programmed death is a prominent case of minimization of the higher-level loss function (suc
fitness of the whole organism) at the cost of increasing the lower-level loss function (suc
survival of individual cells). Although (tightly controlled) programmed cell death was origin
discovered in multicellular organisms and has been thought to be limited to these complex
forms, altruistic suicide now appears to be a universal biological phenomenon (73-75). More
many ecological and evolutionary phenomena, such as the choice between the K- and r-strat
of selection, are strongly lifespan-dependent (76, 77). Therefore, evolutionary tuning of
genetically determined lifespan (a “weak” form of programmed death) could also play
important role in organismal evolution. 

To conclude this section, which we titled “Fundamental evolutionary phenomena”, deliberately omi
“biological”, it seems important to note that phenomena E1-E7 are generic, applying to all lear
systems, including purely physical and prebiotic ones. However, the onset of natural selection 
marks the origin of life, so that the phenomena E8-E10 belong in the realm of biology.  

 

4. Optimization and scale separation in evolving systems 

 
In the previous sections, we formulated the 7 fundamental principles of evolution P1-P7 and then ar
that most, if not all key evolutionary phenomena E1-E10 can be interpreted and analyzed in the co
of these principles, and apparently, derived from the latter. The next step is to formulate a mathema
framework that would be consistent with the fundamental principles and thus would allow us to m
evolutionary phenomena either analytically or numerically. For concreteness, the proposed framewo
based on a mathematical model of artificial neural networks (78, 79), but we first start by formulat
general optimization approach in a form suitable for modeling biological evolution.  

We are interested in a the broadest class of optimization problems, where the loss (or cost) fun
, is minimized with respect to some trainable variables, 

, (4.1)  

for a given training set of non-trainable variables, 

. (4.2)  

Near a local minimum, the first derivatives of the average loss function with respect to trainable vari
 are small, and the depth of the minimum usually depends on the second derivatives. In particular

second derivative can be either large, for the effectively constant degrees of freedom, , or smal

adaptable degrees of freedom, , or near zero, for symmetries or neutral directions .  

separation of the neutral directions   into a special class of variables simply means that some o
trainable variables can be changed without affecting the learning outcome, that is, the value of the

function. Put another way, neutral changes are always possible. The neutral directions   ar
fastest-changing among the trainable variables because fluctuations resulting in their change ar
general, fully stochastic. On the other end of the spectrum of variables, even minor changes to

effectively constant variables   compromise the entire learning (evolution) process, that is, resu
substantial increase of the loss function value; these variables correspond to deep minima of the
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function. When the basin of attraction of a minimum is deep and narrow, the system stays in its bo
for a long time, and then, to describe such a state, it is sufficient to use discrete information (that i
indicate that the system stays in a given minimum) rather than to list all specific values of the coordi
in a multidimensional space. 

In a generic optimization problem, the dynamics of both trainable and non-trainable variables involv
broad distribution of characteristic time scales , and switching between scales is equivalent to switc
between different frequencies or, in the context of biological evolution, between different leve
organization. For any fixed , all variables can be partitioned into three classes depending on how
they change with respect to the specificed time scale: 

- fast-changing non-trainable variables that characterize an organism ( ) and its environm
), and change on time scales . 

- intermediate-changing adaptable variables    or neutral directions   that change on 
scales  

- slow-changing variables, which are the degrees of freedom  that have already been 
trained and are effectively constant (at or near equilibrium), only changing on time scales 

As it will become evident shortly, the separation of these three classes of variables and interac
between them are central to the evolution and selection on all levels of organization, resultin
pervasive multilevel learning and selection.  

 

Depending on the considered time-scale  (or as a result of environmental changes), the same dynam

degree of freedom can be assigned to different classes of variables, that is, , , ,  or
For example, on the shortest time scale, which corresponds to the lifetime of an individual organism
generation), the adaptable variables are the phenotypic traits that quickly respond to environm
changes, whereas the slowest, near constant variables are the genomic sequences (genotype) that ch
minimally if at all. On longer time scales, corresponding to thousands or millions of generations
evolving portions of the genome become adaptable variables, whereas the conserved core of the gen
remains in the near constant class (52). Analogously, the neutral directions correspond either to 
consequential phenotypic changes or to neutral genomic mutations, depending on the time scale. Ind
in evolutionary biology, it is well known that the overwhelming majority of the mutations are e
deleterious and are therefore eliminated by purifying selection, or (nearly) neutral and thus can be e
lost or fixed via drift (80, 81). However, when the environment changes, or under the influence of o
mutations, some of the neutral mutations can become beneficial (a genetic phenomenon know
epistasis, which is pervasive in evolution (82, 83)), and in their entirety, neutral mutations form
essential reservoir of variation available for adaptive evolution (84). Furthermore, even which vari
are classified as non-trainable ( ), depends on the time scale . For example, if a learning system

trained for a sufficiently long time, some of the trainable variables  or  might have alr
equilibrated, and become non-trainable. 

 

5. The neural network framework  

Now that we described an optimization problem that is suitable for modeling evolution of organism
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populations of organisms), we can construct a mathematical framework to solve such optimiza
problems. For this purpose, we employ a mathematical theory of artificial neural networks (78, 
which is simple enough to perform calculations, while being consistent with all of the fundam
principles (P1-P7), and thus can be used for modeling evolutionary phenomena (E1-E10). We first r
a general framework of the theory of neural networks. 

Consider a learning system represented as a neural network, with the state vector described by train
variables  (which is a collective notation for weight matrix  and bias vector ) and non-train
variables  (which describe the current state vector of individual neurons). In the biological contex
collectively represent the current state of the organism   and of its environment , and  deter
how  changes with time, in particular, how the organism reacts to environmental challenges. The 
trainable variables are modeled as changing in discrete time-steps  

(5.1) 

where ’s are some non-linear activation functions (for example, hyperbolic tangent or rect
activation functions). The trainable variables are modeled as changing according to the gradient des
(or stochastic gradient descent) algorithm 

  (5.2) 

where   is the learning rate parameter and  is a suitably defined loss function  (see Eqs. (
and (5.4) below). In other words,  are “gross”, or “main” variables, which determine the rule
dynamics, and the dynamics of all other variables  is governed by these rules, per equation (5.1). In
biological context, equation (5.1) represents fast, often stochastic environmental changes, and
corresponding fast reaction of organisms at the level of the phenotype, whereas (5.2) reflects slo
learning dynamics of evolutionary adaptation, via changes in the intermediate, adaptable variables,
is, the variable portion of the genome. The main learning objective is to adjust the trainable varia
such that the average loss function is minimized subject to boundary conditions (also known as
training dataset), which in our case is modeled as a time sequence of the environmental variables.  

 

For example, on a single generation time scale, the fast-changing variables represent the environm
and non-trainable variables associated with organisms  , the intermediate-changing varia

represent adaptive  and neutral  phenotype changes, and the slow-changing variables 
represent the genotype (Figure 1).   
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Figure 1. Neural network with three layers. 

Non-trainable environmental variables (blue nodes), non-trainable organism variables (red and green nodes); trainable, interme
changing, adaptive phenotypic variables (dark green nodes and links); trainable, slow-changing (near constant), genotype variable
nodes/links); and neutral variables (light green node).  

 

The temporal scale separation in biology is readily apparent in all organisms. Indeed, conseque
changes in the environment  often occur on the scale of milliseconds to seconds, triggering phy
changes within organisms  at matching timescales. In response, individual organisms respond 

phenotypic changes, both adaptive  and neutral  on the scale of minutes to hours, exploiting
genetically encoded phenotypic plasticity. A paradigmatic example is induction of bacterial opero
response to a change in the chemical composition of the environment, such as the switch from gluco

galactose as the primary nutrient (85, 86). In contrast, changes in the genome take much lo
Mutations typically occur at rates of about 1 to 10 per genome replication cycle (87), which
unicellular organisms, is the same as a generation comprising from about an hour to hundreds or 
thousands of hours. However, fixation of mutations, which represents an evolutionarily stable chan
the genome level, typically takes many generations and thus always occurs orders of magnitude sl
than phenotype changes. Accordingly, on this time scale, any changes in the genome represent the 
layer in the network, the slowly changing variables.  

To specify a microscopic loss function that would be appropriate for describing evolution, and thus, g
a specific form to the fundamental principle P1, we first note that adaptation to the environment is m
efficient, that is, the loss function value is smaller, for a learning system, such as an organism, that
predict the state of its environment with a smaller error. Then, the relevant quantity is the so-ca
“boundary” loss function defined as the sum of squared errors, 
 

 (5.3)
 
where the summation is taken only over the boundary (or environmental) non-trainable variables. 
helpful to think of the boundary loss function as the mismatch between the actual state of
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environment and the state that would be predicted by the neural network if the environmental dynam
was switched off. In neuroscience, boundary loss is closely related to the surprise (or prediction er
associated with predictions of sensations, which depend on an internal model of the environment (88
machine learning, boundary loss functions are most often used in the context of supervised lear
(36), and in biological evolution, the “supervision” comes from the environment, which the evol
system, such as an organism or a population, is learning to predict.  
 
Another possibility for a learning system is to search for the minimum of the “bulk” loss function, w
is defined as the sum of squared errors over all neurons 
 

 (5.4)
 

The bulk loss function assumes extra cost incurred by changing the states of organismal neurons, 
that is, rewarding stationary states. In the limit of a very large number of  environmental neurons,
two  loss functions are indistinguishable,  , but bulk loss is easier to ha
mathematically (the details of boundary and bulk loss functions are addressed in Ref. (36)). 
 
More generally,  in addition to the “kinetic” term (5.4),  the loss function  can include a “potential” 

  

 (5.5)

The kinetic term in (5.5) reflects the ability of organisms  to predict the changes in the state of
given environment over time, whereas the potential term reflects their compatibility with a g
environment and hence the capacity to choose among different environments.  

 

In the context of biological evolution, Malthusian fitness  is defined as the expected reproduc
success of a given genotype, that is, the rate of change of the prevalence of the given genotype i
evolving population (89). However, in the context of the theory of learning, the loss function mus
identified with the additive fitness, that is,  

 

. (5.6) 
 
At the level of a microscopic description of learning, the proportionality constant is unimportant, bu
we argue in detail in the accompanying paper (90), in the description of the evolutionary process f
the point of view of thermodynamics,  plays the role of  “biological temperatu

 
Given a concrete mathematical model of neural networks, one might wonder if all  fundam
principles of evolution (P1-P7) can be derived from this model. Such derivation would com
additional evidence supporting the claim that the entire universe can be adequately described as a ne
network (37). Clearly, the existence of a loss function (P1) follows automatically because learning o
neural network is always described relative to a specified loss function (see Eqs. (5.4) or (5.5)). The 
6 principles also seem to naturally emerge from the learning dynamics of neural networks. In partic
the hierarchy of scales (P2) and frequency gaps (P3) are generic consequences of the learning dynam
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whereby a system that involves a wide range of variables changing at different rates is attracted tow
a self-organized critical state  of slow-changing trainable variables (91). Additional gaps between l
of organization are also expected to appear through phase transitions as becomes apparent in
thermodynamic description of evolution we develop in the accompanying paper (90). Renormaliza
(P4) is a direct consequence of the second law of learning (36), according to which entropy of a sy
(and consequently, complexity of neural network or rank of its weight matrix) decreases with lear
This phenomenon was observed in neural network simulations (36) and is the exact type of dyna
that can make the system renormalizable even if it started off as a highly entangled (large rank of w
matrix), non-renormalizable neural network. The extension (P5) and replication (P6) principles si
indicate that additional variables can lead to either increase or decrease in the value of the loss func
(36). It is also important to note that in neural networks, an additional computational advan
(“quantum advantage”) can be achieved if the number of information processing units can vary 
Therefore, to achieve such an advantage, a system must learn how to replicate and eliminate its 
(P6). Finally, in Section 7, we illustrate how Fourier transform (or more generally, wavelet transform
the environmental degrees of freedom can be used for learning the environment and how the inv
transform can be used for predicting it. Thus, to be able to predict the environment (and hence t
competitive), any evolving system must learn the mechanism behind such asymmetric information 
P7.  

 

6. Multilevel learning 

In the previous sections, we argued that the learning process naturally divides all the dynamical vari

into three distinct classes, fast-changing,  and , intermediate-changing,  and (  

faster than ), and slow-changing ones,  (Fig. 1). Evidently, this  separation of variables depen
the time-scale , during which the system is observed, and variables migrate between classes when
increased or decreased (Fig. 2). The longer the time , the more variables reach equilibrium and ther
can be modeled as non-trainable and fast-changing, , and the fewer variables remain slowly-va

and can be modeled as effectively constant . In other words, many variables that are  nearly con
at short time scales migrate to the intermediate class at longer time-scales, whereas variables from
intermediate class migrate to the fast class.  
 
 

Figure 2. Separation of variables in a learning system depending on the time scale.  

Three states of a learning system are shown, with fast-changing environmental variables (blue nodes and links), interme
changing trainable variables (green nodes and links) and slow-changing trainable variables (red nodes and links) observ
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three different time-scales, from the  shortest to longest: (a)   (b)  (c). 
 
 
In biological terms, if we consider learning dynamics on the time-scale of a lifetime of an organ

then,   and (  or ),  represent the genotype and phenotype variables, respectively, but on m
longer time-scales of multiple generations, the learning dynamics of populations (or communitie
organisms becomes relevant. On such time scales, the genotype variables acquire dynamics, 
purifying and positive selection getting into play, whereas the phenotype variables progress
equilibrate. There is a clear connection between the learning dynamics, including that in biolog
systems, and renormalizability of physical theories (P4). Indeed, from the point of view of an effi
learning algorithm, the parameters controlling the learning dynamics, such as effective learning
information processing) rate , can vary from one time-scale to another (for example, from indivi
organisms to populations or communities of organisms), but the general principles as well as spe
dependencies captured in the equations above that govern the learning dynamics on different time-sc
remain the same. We refer to this universality of the learning process on different time scales
partitioning of the variables into temporal classes as multilevel learning.  
 
More precisely, multilevel learning is a property of learning systems, which allows for the b
equations of learning, such as (5.4), to remain the same on all levels of organization, but for
parameters, which describe the dynamics, such as , to depend on the level, or on the time-sca
For example, if the effective learning (or information processing) rate  decreases with time-sca
then the local processing time, which depends on  , runs differently for different trainable varia
slower for slow-changing variables (or larger ), and faster for fast-changing ones (or smaller ).
such a system, the concept of global time (that is, the same time for all variables) becomes irrelevant
should be replaced by the proper, or local time, which is defined for each scale  separately, 
 

 (6.1) 
 
This effect closely resembles the time dilation phenomena in physics, except that in special and gen
relativity, time dilation is linked with the possibility of movement between slow and fast clocks
variables) (93). To illustrate the biological analog of time dilation and to understand the role it play
biology, consider only two types of variables: slow-changing and fast-changing. Then, the slow vari
should be able to “outsource” certain computational tasks to faster variables. Because the local cloc
the fast-changing variables runs faster, the slow-changing variables can take advantage of the 
changing ones to accelerate computation, which would be rewarded by evolution. The flow
information between slow-changing and fast-changing variables in the opposite direction is 
beneficial because the fast-changing variables can use the slow-changing variables to store u
information for future retrieval, that is, the slow variables function as long-term memory. In the 
section, we show that such cooperation between slow- and fast-changing variables, which is a con
manifestation of the  principle P7, corresponds to a crucial biological phenomenon known as the Ce
Dogma of molecular biology (60).  
 
 

7. Generalized Central Dogma of Molecular Biology 
 

In terms of learning theory, the two directions of the asymmetric information flow (P7) repre
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respectively, learning the state of the environment and predicting the state of the environment, base
the results of learning. For learning, information is passed from faster variables to slower variables,
for predicting, information flows in the opposite direction, from slower variables to the faster one
more formal analysis of the asymmetric information flows (or what could be called the genera
Central Dogma) can be carried out by forward-propagation (from slow variables to fast variables)
back-propagation (from fast variables to slow variables) of information within the framework of
mathematical model of neural networks developed in the previous sections (Fig. 3).  

 

 

Figure 3. Asymmetrical information flow involved in learning and predicting the environment by evolving systems
 

 

Consider non-trainable environmental variables that change continuously with time , whil

learning objective of an organism is to predict   at time , given that it was observed for 

. Thus, the organism has to extrapolate the function   for  and to do so, it sh
be able to store and retrieve the values of the Fourier coefficients  
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 (7.1) 
or, more generally, wavelet coefficients  
 

 (7.2) 
 

for suitably defined window functions . Then, a prediction could be made by extrapolating  
using the inverse transformation 

 (7.3) 
 
for some , which is not too large compared to .  However, in general, the total number of (Fo
or wavelet) coefficients ’s would be countably infinite. Therefore, any finite size organism h
“decide”, which frequencies to observe (and remember) and which ones to filter out (and “forget”).  
 
Let us assume that the organism “decided” to only observe/remember discrete frequencies  
 

 (7.4) 
 
and forget everything else.  Then, to predict the state of the environment (7.3) and, as a result, mini
the loss function (5.5), the organism should be able to store, retrieve and adjust information  a

coefficients ’s  in some adaptable  trainable  variables .  
 

Given this simple model, we can study the flow of information between different non-trainable vari
of the organism . To this end, it is convenient to organize the variables as 

 

 (7.5) 
where 

 (7.6) 

and assume that the relevant information about ’s is stored in the adaptable trainable variables  

 

.  (7.7) 

 

In the estimate of   in Eq. (7.6), all the higher frequency modes are assumed to average to

as is often the case if we are only interested in the time scale .  A somewhat better estimate ca
obtained using, once again, the ideas of the renormalization group flow, following the fundam
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principle P4. To make learning (and thus survival) efficient, truncation of the set of variables releva
learning is crucial. The main point is that the higher frequency modes can still contribute statistically
then, an improved estimate of   would be obtained by appropriately modifying the values o
coefficients ’s. Either way, in order to make an actual prediction, the organism should first calc

 for  small   and then pass the result to the next level to calculate  for larger
and so on. Such computations can be described by a simple mapping  

 

 (7.8) 

 

which can be interpreted as passage of data from one layer to another in a deep, multilayer n
network (Fig. 2). Eq. (7.8) implies that, during the predicting phase, relevant information only flows
variables encoding low frequencies to variables encoding high frequencies, but not in the rev
direction. In other words, in the process of predicting the environment, information propagates 
slower variables to faster variables, that is, from genotype to phenotype, or from nucleic acids to pro
hence the Central Dogma. Because only the fast variables change in this process, the prediction o
state of the environment is rapid, as it is indeed required to be for the organism survival. Converse
the process of learning the environment, information is back-propagated in the opposite direction, th
from faster to slower variables. However, this back-propagation is not a microscopic reversal o
forward-propagation, but a distinct, much slower process (given that changes in slow variables
required) that involves mutation and selection. 

Thus, the meaning of the generalized Central Dogma from the point of view of the learning theory –
our theory of evolution - is that slow dynamics (that is, evolution on a long time-scale) should be m
independent of the fast variables. In less formal terms, slow variables determine the rules of the g
and changing these rules depending on the results of some particular games would be detrimental fo
organism. Optimization within the space of opportunities constrained by temporally stable rul
advantageous compared to optimization without such constraints. The trade-off between global and
optimization is a general, intrinsic property of frustrated systems (E2). For the system to fun
efficiently, the impact of local optimization on the global optimization should be restricted.
separation of the long-term and short-term forms of memory through different elemental bases (nu
acids vs proteins) serves this objective. 

 

8. Discussion 

In this work, we outline a theory of evolution on the basis of the theory of learning. The parallel bet
learning and the process of biological evolution is becoming obvious as soon as the mapping between
loss function and the fitness function is identified (Eq. (5.6)). Indeed, both processes represent movem
of an evolving (learning) system on a fitness (loss function) landscape, where adaptive (learn
upward moves are most consequential although neutral moves are most common, and downward m
also occur occasionally. However, we go beyond the obvious analogy and trace a det
correspondence between the essential features of the evolutionary and learning processes. Arguably
most important, fundamental commonality between evolution and learning is the stratification o
trainable variables (degrees of freedom) into multiple classes that differ by the rate of change. At lea
complex environments, all learning is multilevel learning, and all selection relevant for the evolutio
process is intrinsically multilevel. This is a substantial deviation from the current mainstream narrativ
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evolutionary biology, in which multilevel selection remains a controversial subject, and in any case, is 
not generally considered to be the central evolutionary trend.  However, the framework of evolution as 
learning developed here implies that evolution of biological complexity would be impossible without 
multilevel selection permeating the entire history of life. Under this perspective, the emergence of new 
levels of organization, in learning and in evolution, and in particular, MTE represent genuine phase 
transitions as previously suggested (42). Such transitions can be analyzed consistently only in the 
thermodynamic limit, which is addressed in detail in the accompanying paper (90).  

The detailed correspondence between the key features of the processes of learning and evolution implies 
that this is not a simple analogy but rather a reflection of the deep unity of evolutionary processes 
occurring in the universe. Indeed, the separation of the relevant degrees of freedom into multiple 
temporal classes is ubiquitous in the universe, from composite subatomic particles, such as protons, to 
atoms, molecules, life forms, planetary systems and galaxy clusters. If we take the seemingly radical but 
actually straightforward and consistent view that the entire universe is a neural network (37), then, all 
these systems would be considered emerging from the learning dynamics. Furthermore, scale separation 
and renormalizability appear to be essential conditions for a universe to be observable. According to the 
evolution theory outlined here, any observable universe consists of entities that undergo learning, or 
synonymously, adaptive evolution, and actually, the universe itself is such an entity, in development of 
the concept of the world as a neural network (37). The famous dictum of Dobzhansky (94), thus, can and 
arguably should be rephrased as “Nothing in the world is comprehensible except in the light of learning.” 

Within the framework of this theory of evolution, the difference between life and non-living matter is 
one in degree of optimization rather than in kind. Crucially, any complex optimization problem can be 
addressed only with a stochastic learning algorithm, hence the ubiquity of selection. Origin of life can 
then be conceptualized within the framework of multilevel learning as we explicitly show in the 
accompanying paper (90). The point when life begins can be naturally associated with the emergence of 
a distinct class of slowly changing variables that are digitized and thus can be accurately replicated; these 
digital variables store and supply information for forward-propagation to predict the state of the 
environment. In biological terms, this focal point corresponds to the advent of replicators (genomes) that 
carry information on the operation of reproducers, within which they resided (95). This is also the point 
when natural (Darwinian) selection takes off (64). Our theory of evolution implies that this pivotal stage 
was preceded by evolution of “pre-life”, which comprised reproducers that lacked genomes but 
nevertheless were learning systems that were subject to selection for persistence; self-reproducing 
catalytic micelles appear to be plausible models of such primordial reproducers (96). The first replicators 
(RNA molecules) would evolve within these reproducers, perhaps, initially, as molecular parasites (E9), 
but subsequently, under selection for the ability to store, express and share information essential for the 
entire system. This crucial step greatly increased the efficiency of evolution/learning and provided for 
long term memory that persisted throughout the history of life, providing for the onset of natural 
selection and the unprecedented diversification of life forms. For learning to be efficient, the capacity of 
the system to add new adaptable variables is essential. In biological terms, this implies expandability of 
the genome, that is, ability to add new genes, which necessitated the transition from RNA to DNA as the 
genome substrate, given the apparent inherent size constraints on replicating RNA molecules. Another 
essential condition for efficient learning is information sharing, which in the biological context 
corresponds to horizontal gene transfer. The essentiality of horizontal gene transfer at the earliest stages 
of life evolution is perceived as the cause of the universality of the translation machinery and genetic 
code in all known life forms (97). 
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The scenario of the origin of life within the encompassing framework of the presented theory of 
evolution, even if formulated in most general terms, implies that emergence of complexity commensurate 
with life is a general trend in the evolution of complex systems. At face value, this conclusion might 
seem to be at odds with the magnitude of complexification involved in the origin of life (suffice it to 
consider the complexity of the translation system (6)) and the uniqueness of this even, in the least, in the 
history of earth, and probably, on a much greater cosmic scale. Arguably, however, the origin of life can 
be conceptualized as an expected outcome of learning subject to the relevant constraints, such as the 
presence of the required chemicals in sufficient concentrations and more.  Such constraints would make 
life a rare phenomenon but likely far from unique, on the scale of the universe. The universe is 
sometimes claimed to be fine-tuned for the existence of life (98, 99). What we posit here, is that the 
universe is self-tuned for life emergence.  
 
Evidently, the analysis presented here and in the accompanying paper (90) is only an outline of a theory 
of evolution as learning. The details and implications including directly testable ones remain to be 
worked out.  
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