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Abstract

Linked-read whole genome sequencing methods, such as the 10x Chromium,
attach a unique molecular barcode to each high molecular weight DNA
molecule. The samples are then sequenced using short-read technology.
During analysis, sequence reads sharing the same barcode are aligned to
adjacent genomic locations. The pattern of barcode sharing between ge-
nomic regions allows the discovery of large structural variants (SVs) in
the range of 1 Kb to a few Mb. Most SV calling methods for these data,
such as LongRanger, analyze one sample at a time and often produces
inconsistent results for the same genomic location across multiple sam-
ples. We developed a method, SVJAM, for joint calling of SVs, using
data from 152 members of the BXD family of recombinant inbred strains
of mice. Our method first collects candidate SV regions from single sam-
ple analysis, such as those produced by LongRanger. We then retrieve
barcode overlapping data from all samples for each region. These data
are organized as a high dimensional matrix. The dimension of this matrix
is then reduced using principal component analysis. Samples projected
onto a two dimensional space formed by the first two principal compo-
nents forms two or three clusters based on their genotype, representing
the reference, alternative, or heterozygotic alleles. We developed a novel
distance measure for hierarchical clustering and rotating the axes to find
the optimal clustering results. We also developed an algorithm to decide
whether the pattern of sample distribution is best fitted with one, two,
or three genotypes. For each sample, we calculate its membership score
for each genotype. We compared results produced by SVJAM with Lon-
gRanger and few methods that rely on PacBio or Oxford Nanopore data.
In a comparison of SVJAM with SV detected using long-read sequencing
data for the DBA/2J strain, we found that our results recovered many SVs
missed by LongRanger. We also found many SVs called by LongRanger
were assigned with an incorrect SV type. Our algorithm also consistently
identified heterozygotic regions.
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1 Introduction

Linked-read whole genome sequencing (WGS) methods, such as the 10x Chromium
platform, attach a unique molecular barcode to each high molecular weight DNA
molecule. The samples are then sequenced using short-read technology, such as
the Illumina platform. During analysis, reads sharing the same barcode are
aligned to adjacent genomic locations. Linked-read sequencing provides a inter-
mediate platform between short read sequencing and single molecule long-read
technology (e.g. PacBio and Nanopore platforms). Because DNA are sequenced
using short read technology, linked-read data has high base-level quality and is
inexpensive to obtain. Further, the barcode unique to high molecular weight
DNA allows the detection of large structural variants (SV), roughly in the range
of 1 Kb – 2 Mb, which are difficult to detect using short-read sequencing.

After aligning the sequencing reads to a reference genome, the molecular bar-
codes can be visualized in a two dimensional space, with each axis presenting
a genomic location (i.e., matrix view). When both axis represent the same ge-
nomic region, the number of barcodes shared by any location are concentrated
on the diagonal line. Aberrant patterns in these image indicate the presence of
SVs. Figure 1 shows a 351 kb region of Chromosome (Chr) 4 for three samples.
Figure 1a belongs to B6 mouse (reference) and Figure 1b belongs to D2 mouse
(alternative). The sample in Figure 1c shows a heterozygous deletion.

Most SV calling methods for the linked read data, such as LongRanger, analyze
one sample at a time. We have found that the reported SVs for a given location
were often inconsistent across multiple samples. We developed a method, SV-
JAM (structural variant joint analysis by machine learning), that detects and
genotypes large structural variants (SVs) from linked-read whole genome se-
quence data generated on the 10x Chromium platform. We tested SVJAM on a
data set containing 152 BXD recombinant inbred mice. The BXD family of mice
were generated by crossing female C57BL/6J (B6) to male DBA/2J (D2) mice,
followed by generations of inbreeding of the offspring. Recently, these strains
have been fully sequenced using linked-read technology (Ashbrook et al., 2021).
By analyzing 152 individuals jointly, SVJAM produces consistent and accurate
SV detection and genotyping. In addition, SVJAM also detects heterozygotic
SVs with high accuracy.
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(a) C57BL/6J (b) DBA/2J (c) Heterozygous deletion

Figure 1: A 175 kb region on Chromosome 4 showing the reference allele (a), a
homozytotic deletion (b) and a heterozytotic deletion (c)

2 Methods

2.1 Overview

An overview of our method is presented in Figure 2. Like other joint analysis
methods for genetic variants (Yun et al., 2021), SVJAM takes candidate regions
suggested by other methods that analyzes one sample at a time. The input data
for SVJAM are barcode overlapping images for these candidate regions from all
samples. These data are generated by using the Loupe application of the 10x
Chromium Platform in the form of ”matrix view” (Figure 1). Although not
open source, the Loupe browser is freely available from 10x Genomic website 1.
The pixel intensity of these images corresponded to the depth of barcode over-
lapping between two genomic locations defined by the x- and y-axis. SVJAM
was developed using a data set containing linked-read WGS of 152 BXD family
of recombinant inbred (RI) mice (Ashbrook et al., 2021), primarily using 2,114
candidate regions on Chr 1 suggested by LongRanger 2 (321,328 matrix view
images).

After obtaining these images, we ran the pipeline for each genomic location.
First, we determine the presence of an SV. For deletions, we use image processing
techniques to analyze the lack of barcode overlapping (i.e., white pixels) along
the diagonal of the images, which indicates deletions. We trained a convolutional
neural network (CNN) for the detection of duplication and inversions. CNN is
a successful supervised machine learning technique for object detection. We
trained the model by using 12,000 images that belong to regions in which at
least 40 samples were annotated as having duplication or inversion. We labelled
the training set automatically by using a clustering algorithm. Then, we trained
the model by using a network containing 18 convolution, max pooling, dropout

1https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest#loupe
2https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-

long-ranger
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and flatten layers.

Figure 2: Workflow of SVJAM

The clustering algorithm is applied to each ge-
nomic region and begins by preprocessing the
images. We organize the images as columns
of a big matrix and apply dimension reduc-
tion techniques to visualize the representa-
tions of individuals in 2-dimensional plane.
The ranges of the axes after principal compo-
nents analysis (PCA) is usually not symmet-
ric which may bias the clustering methods.
To overcome this, we generated a custom dis-
tance matrix which is not symmetric in terms
of x and y. Some projections may also need
to be rotated to be ready for clustering. The
coefficient in the new distance metric and the
rotation angle is determined by optimizing a
quality function. The number of clusters rep-
resent the number of genotypes. A third clus-
ter exists when there are samples with het-
erozygous SVs present in a region. We de-
veloped a formula to determine the number
of clusters. After clustering, we assign a vec-
tor to each individual that shows the prob-
ability of it to be a member of each cluster.
The output of the pipeline is a text file in the
Genomic Variant Call Format (GVCF) that
contains general information about each SV
and genotype, as well as quality of the call
for each individual.

2.2 Data preprocessing

We converted matrix view images of each in-
dividual from RGB to grayscale using the
ITU-R 601-2 luma transformation. This does
not effect the processing since the pixels of
the images does not lose color intensity infor-
mation. The images are cropped to remove
the parts consisting the read depth and the
numbers about the genomic location and base pair information. There are 152,
1018× 1018 pixel images for each genomic location. After flattening the repre-
sentation matrices of these images, we arranged each sample as a column vector
to have a 1 million times 152 dimensional data frame. To sum up, the last
matrix represents the gray scale images of one particular genomic region of all
the individuals, each individual in one column.
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2.3 Dimension reduction

After standardizing the features by removing the mean and dividing by the
standard deviation, we applied principal component analysis (PCA) to project
the data into two dimensional plane. Figure 3 shows the results of PCA applied
to a 760 kb region on Chr 17. The axes of the figure are the first two principal
components of PCA. Each red point in the figure represents one individual.

Figure 3: Scatter plot of the first two principal components of PCA results of
153 samples, 760 kb region on Chr 17.

2.4 Clustering and metrics

The consistency of the structural variants among the samples makes unsuper-
vised machine learning approaches appropriate for the joint analysis of SVs.
After the preprocessing and dimension reduction, we formed an algorithm in-
cluding hierarchical clustering with some modifications. To merge two sets, we
used single linkage criterion which combines the clusters by using the minimum
of the distances between all elements of the two sets.

The default distance metric in these algorithms is Euclidean metric, yet we could
not use that since the ranges of two principal components are different. To get
a useful distance metric we broke the symmetry of the weights in horizontal
and vertical distances. We defined a weighted Manhattan distance (weighted
taxicab metric or weighted L1 − norm) between the points p = (p1, p2) and
q = (q1, q2) in the plane as follows:

dM(p, q) = n · |p1 − q1|+ |p2 − q2|

It is straightforward to show that this is a metric function hence this defines
a topology on R

2 for a given n ∈ R. For the values of n greater than 1,
this function puts a weight to horizontal direction which would work as if a
punishment in the clustering algorithm.

For each genomic region, we formed a distance matrix Mij = d(si, sj) where
si = (si1, si2) and sj = (sj1, sj2) are the coordinates of the first two principal
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components of ith and jth samples, respectively. We use this matrix for all the
distance calculations, so that clustering algorithms on a region is based on this
custom metric.

The best weight n in the distance function is automatically determined by the
machine for each genomic region. To this end, we need to define some perfor-
mance metrics for clustering. We also use these metrics to determine the number
of clusters. We will present the explanations of these in the next section. Before
that, we present one more arrangement.

The PCA results in some genomic locations needs to be rotated since they have
an oblique tendency. After a certain rotation, they become ready for clustering.
We use the following planar rotation matrix R to rotate the points.

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
where θ ∈ [0, π]

The rotation angle is also determined by the machine by using the performance
metrics defined in the next section.

2.4.1 Performance scores

We calculated a score for measuring the quality of clustering. First set of for-
mulas below are to see how well the elements within the clusters gathered. The
total distance of an element x to all other elements in the same cluster is called
wd(x) for ”within distance of x”. This quantity is divided to the number of
elements in that cluster to get ”within mean of x”, shortly wm(x). Then, we
got ”within mean” by finding the sum of within distance of each element and
dividing it to the total number of elements.

The formulations are as follows. Let dM be the weighted Manhattan distance
function that we defined above, Cx be the set of elements that are in the same
cluster with x, C be the set of all elements and |C| be the cardinality of C. Then
we find wm as:

wd(x) =
∑

pi∈Cx

dM(x, pi), wm(x) =
wd(x)

|Cx|
, wm =

∑

x∈C

wm(x)

|C|

We implemented similar calculations for the elements between different clusters
to see the quality of the separation of the clusters. The first equation finds
the total distance of an element x with the elements in other clusters. Second
equation aims to find the mean distance of x with elements in other clusters by
dividing the total distance by the number of elements in clusters not including
x. The last equation finds the sum of all distances with elements in different
clusters and divides it to the total number of elements to find the mean.
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bd(x) =
∑

qi∈C\Cx

dM(x, qi), bm(x) =
bd(x)

|C \ Cx|
, bm =

∑

x∈C

bm(x)

|C|

where bd(x), bm(x) and bm stands for ”between distance of x”, ”between mean
of x” and ”between mean”, respectively.

By using these identities, we assigned a quality score for each clustering. We
set the cluster quality as follows:

cq = 1− wm

wm+ bm

This gives a comparable scoring between different clustering cases. In an ideal
clustering with 3 clusters, the sets would be apart from each other as much as
possible whereas the points in each set are close to each other. Then, wm will
be very small but bm will be large to make qs close to 1. The opposite case
would make qs close to 0.

Besides putting a measure for overall quality of clustering, qs is also used to
determine the rotation angle that we discussed in the previous section. The
best angle for the rotation of the PCA plot of a genomic location is the one that
makes the quality score highest. For instance for Figure 3, the best angle is 45◦.
The PCA result for the same location with 45◦ rotation is shown below.

Figure 4: Scatter plot of the first two principal components of PCA results of
153 samples with 45◦ rotation, a 760 kb region on Chromosome 17

We also used the identities above to determine the best weight n for the distance
function dM(p, q) = n · |p1 − q1| + |p2 − q2| of two points p = (p1, p2) and
q = (q1, q2). Notice that, in this equation dM(p, q) increases if n increases,
which leads to an increase in wm and bm that are defined above. And, if the
other variables remain constant, qs increases as well. Therefore we could not
use qs as it is, to compare the clustering for different values of n. Instead, we
used the lag between wm for two consecutive values of n. This gave a good
measure for the improvement in the clustering when we increase n. We put a
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threshold to remove the irrelevant changes and we chose n that results in the
best improvement for each genomic location.

2.4.2 Number of Clusters

Determining the best number of clusters in unsupervised learning practices is
usually not an easy task. In our case, for each genomic location, three types of
clustering are possible as shown in Figure 5.

(a) 141 kb region on Chr11 (b) 381 kb region on Chr19 (c) 218 kb region on Chr10

Figure 5: Types of clusters

There may be an assembly error or all the samples may have the same vari-
ant. Both cases result in the samples to be in one cluster (Figure 5a). There
are two clusters if there are homozygous variants in some samples and alterna-
tive variants in the others whereas there are no heterozygous variants (Figure
5b). Three clusters are formed if there are both homozygous and heterozygous
variants (Figure 5c). To separate the first case from the other two, we used
Calinski-Habarasz score (CH-score) (Calinski and Harabasz (1974)). We put
a threshold to distinguish one cluster cases from the others. We could not use
CH-score and other known clustering metrics to distinguish the other two types.
One reason for that is they are by default using the Euclidean distance, hence
we needed to change it to a custom metric as explained above. The other reason
is that our data points need a refined measure rather more general and rough
measures.

To find the best number of clusters (either 2 or 3), we first find the centroids of
the clusters. In the following equation Ci is the centroids for the homozygous
reference (i : ref) and homozygous alternative (i : alt)

Ci =

∑

x∈Ci

x

|Ci|

where Ci is the corresponding cluster, x is the planar coordinates of the rep-
resentation of an individual in ith cluster, |Ci| is the cardinality of Ci and the
sum on the numerator is calculated coordinate-wise.
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In this step, we assume that there are 3 clusters, then either we accept or
reject that by using following calculations. If it is rejected, then the pipeline
proceeds with 2 clusters, otherwise it proceeds with 3 clusters. We calculate
the normalized mean distances between the heterozygous individuals to the
centroids Cref , Calt of other clusters.

hdi =

∑

h∈Chet

dM(h, Ci)

|Chet|
, dall,i =

∑

a∈C

dM(a, Ci)

|C| , ĥdi =
hd

dall,i

The first sum is taken over the individuals that belong to the heterozygous
cluster. The summand is the distance of a heterozygous individual to Ci, i ∈
{ref, alt}. The denumerator is the number of heterozygotic individuals. The
second sum finds the mean distance of all individuals to centroids of the clusters
where C is the set of all individuals. Lastly, ĥdi is the normalization of hdi. We
reject the assumption of having 3 clusters if the ratio between hdref and hdalt
is bounded by a treshold from below and above.

To sum up, if there is enough distance (normalized) between the heterozygous
cluster to both homozygous clusters, then we accept that there are 3 clusters.
Else, if the heterozygous cluster is close enough to one the other 2 clusters, we
reject the hypothesis of having 3 clusters.

2.4.3 Membership Probabilities

The last set of calculations assigns a membership probability vector to each in-
dividual, that is the probabilities of an individual to belong each cluster. Unlike
the scores that measures clustering performance, membership probabilities mea-
sure the affinity to the parental strains. We first calculated the total distance
of all elements to the reference strain, then divide it to the total number of in-
dividuals to get the mean distance to the reference strain, call it dref . Similarly
we calculated dalt to get the mean distance to the alternative strain.

dref =

∑

x∈C

dM(x,REF )

|C| , dalt =

∑

x∈C

dM(x,ALT )

|C| ,

where REF and ALT are the coordinates of the reference and alternative
strains. Then, the normalized distance of an individual to the reference and
alternative strains are calculated as:

dr =
dM(x,REF )

dref
, da =

dM(x,ALT )

dalt
,

The figure below is the (dr, da) pairs in the coordinate plane having distance of
the individuals to reference and alternative strains as x and y axes, respectively.
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Figure 6: Scatter plot of (dr, da) coordinates of 152 samples of a 760 kb region
on Chromosome 17

To determine the distance of an individual to being heterozygous, we take the
distance of (da, dr) pair to the diagonal line (y− x = 0) of the above figure. So,
we get

dh =




0 if there are two clusters

|da − dr|√
2

if there are three clusters

The last part is calculating the membership probabilities by using these dis-
tances. We explain the probability formulas on this sample case.

Figure 7: Scatter plot of the first two principal components of PCA results of
153 samples, 760 kb region on Chromosome 17.

We will calculate the probabilities of the highlighted point (y) in Figure 7 to
be a member of Green cluster (includes reference), Purple cluster (includes
alternative) and Yellow cluster (heterozygous individuals).

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.467006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.467006
http://creativecommons.org/licenses/by/4.0/


P (y ∈ Y ) = 1− dh

dr + da + dh
= 0.761

P (y ∈ P ) = (1− P (y ∈ Y )) · da

dr + da
= 0.173

P (y ∈ G) = (1− P (y ∈ Y )) · dr

dr + da
= 0.066

The vector of predicted probabilities of the highlighted individual y to be a
member of the clusters that include the samples with homozygous reference,
heterozygous and homozygous alternate variants is (0.066, 0.761, 0.173).

The membership probabilities for the individuals in other clusters are calculated
similarly, the only change is the order of the coordinates of vector (dh, dr, da)
in the formulas.

2.5 Detecting Structural Variants

We determine the type of SVs in each candidate genomic region once the clus-
tering step was finished.

2.5.1 Deletions

We used image processing techniques to detect the presence of deletions, which
were manifested as the lack of barcode overlap along the diagonal line in the
matrix view images, with the appearance of a white cross (Figure 8a). These
white strips were detected by an algorithm that are tolerant to a small percent-
age of grey pixels. After analyzing these we report the beginning and ending of
the deletions and their approximate lengths.

(a) Deletion: 166 kb region
on Chr1

(b) Duplication: 156 kb re-
gion on Chr11

(c) Inversion: 582 kb region
on ChrX

Figure 8: Sample images for deletion, duplication and inversion
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2.5.2 Duplication and Inversion

We trained a CNN to classify the images that include duplication (Figure 8b)
or inversion (Figure 8c). A dataset was arranged for training and validation
having 75 regions, totally 11,400 images. These images were selected from
regions where LongRanger reported at least 40 samples having duplications
or inversions. These locations are genotyped through the joint calling algorithm
and we got the labelling as an output. Hence, the labelling of the images that
would be used for supervised learning is set by the unsupervised algorithm rather
than a manual work. Then the data set was split as 70% and 30% randomly
into training and validation sets, respectively. Training accuracy is calculated on
the validation set after each epoch, and the best weights that gives the highest
accuracy was chosen for the model. We selected another set of 75 regions for
testing the model manually. The images are compressed to 512x512 pixels for
training and CNN is performed by using NVIDIA GeForce RTX 3090 GPU.

We used Keras API on Tensorflow framework. The model consists of 18 con-
volution, max pooling, dropout and flatten layers. The loss function that the
model tries to minimize is categorical cross entropy and the accuracy is mea-
sured by categorical accuracy. Adam optimizer function is used to update the
parameters with a learning rate 0.0001. The batch size is 64 which means 64
images are processed in one gradient update. The model has a categorical accu-
racy of 0.9983 on validation set. These weights are used to predict duplication
and inversion in over 4 million images.

2.6 Genotyping each sample and producing output

The presence of SV in each genomic region is first determined by the number of
clusters. Regions with one cluster were discarded in our current implementation
because the B6 mice, where the reference genome was based on, was one of the
samples in our analysis. However, this behavior can be easily modified. For
regions with two or three clusters, each sample were assigned the genotype of
the majority of the cluster. This approach corrected the occasional mistakes
made by the CNN in determining inversions or duplications.

The location of the deletion was determined by checking the beginning and
ending of white strips in the images. If the strip is less than 1000 bp, we
skipped that in case the image might be noisy. After we verify the existence of
duplications and inversions, we rely on the positions annotated by LongRanger,
even it finds them in only a few samples.

After SVJAM detected and genotyped the SVs, we collected all the information
in a text file in the Genomic Variant Call Format (GVCF). The file includes
clustering quality scores for each region and membership probability vectors
for each individual besides the common information as beginning and ending
positions, sizes, etc. We also include CIPOS and CIEND to the GVCF file that
shows the confidence interval for POS and END. So, CIPOS and CIEND are
intervals specifying the region of uncertainty around the POS and END values.
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2.7 Long-read genome sequencing of the DBA/2J mice
and data analysis

Two healthy adult male DBA/2J mice from the colony at the University of Ten-
nessee Health Science Center were used. Spleen was used for DNA extraction.
Oxford Nanopore (ONT) sequencing were conducted by using a Promethion in-
strument by DNA Link (Los Angeles, CA 90015). A total of 779,223 reads were
obtained (14.25 billion bases, N50 of 29,205). Pacific Biosciences (PacBio) HiFi
data were generated by the DNA sequencing core facility at the University of
Wisconsin. A total of 2,674,984 reads were obtained(28,568,875,629 bp, N50 of
11,307 and largest contig of 44,747). All sequencing runs were conducted using
manufacturer suggested protocols

ONT data were mapped to the reference genome mm10 using minimap2 (version
2-2.17) (Li, 2018). SVs were detected using Sniffles (version 1.0.12) (Sedlazeck
et al., 2018), SVIM (version 1.4.2) (Heller and Vingron, 2019), and NanoVar
(version 1.3.9) (Tham et al., 2020). PacBio data were mapped to mm10 using
pbmm2 3. SV were detected using Sniffles.

3 Results

3.1 Dimension reduction

We applied various linear and non-linear dimension reduction techniques. Three
of them are shown in Figure 9 for a 243kb region in Chr 4. First figure shows
the result for principal components analysis, second and third figures shows the
embedding for non-linear techniques, t-distributed Stochastic Neighbor Embed-
ding (t-SNE) and spectral embedding. We get the best embedding results by
using PCA, hence we decided to use it for the projection for all the regions.

(a) PCA (b) t-SNE (c) Spectral embedding

Figure 9: Dimension reduction examples

3.2 Distance metric

After we embed the data into 2-dimensions by PCA, we applied different cluster-
ing methods as k-means and hierarchical clustering. The result of hierarchical

3https://github.com/PacificBiosciences/pbmm2
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and k-means clustering for a 243kb region in Chr 4 is shown in Figure 10.

(a) Hierarchical clustering
Euclidean dist.

(b) k-means clustering
Euclidean dist.

(c) Hierarchical clustering,
Weighted Manhattan dist.

Figure 10: Dimension reduction examples

The first two images are formed by using Euclidean metric (L2 − norm) which
is the default metric distance for most machine learning libraries as Scikit-learn
for Python. Clustering by using the Manhattan distance (L1−norm) produced
the same results. We expect to have 3 clusters in this region as having two big
clusters on the left-right and one small cluster with 5 points in the middle as
in Figure 10c. However, since the embedding after PCA has different x and
y variance and these norms are symmetric in terms of x and y, we get these
unexpected figures. To solve this issue, we introduced a new metric that is
weighted Manhattan distance (dM) which gives the desired clustering for all
the regions. Figure 10c is the result of hierarchical clustering using weighted
Manhattan distance with n = 5 in the formula. The metric dM is explained in
detail in Methods section.

3.3 Rotating the points

The data points for some regions are structured as in Figure 11a after PCA
embedding. The points are rotated to improve clustering results. The rotation
results with different angles are shown in Figure 11b-11f. The best angle of
rotation for this example is 50◦, in general the angle is determined by the quality
scores for each region which is explained in Methods section.
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(a) 0◦ rotation (b) 10◦ rotation (c) 20◦ rotation

(d) 30◦ rotation (e) 40◦ rotation (f) 50◦ rotation

Figure 11: Rotation of the points

3.4 Analysis of SVs on Chr 1 by SVJAM

We jointly analyzed Chromosome 1 of 152 whole genome sequences of BXD
family and ran SVJAM for 2,114 regions including 321,328 individual images.
SVJAM found that 328 of these regions contain large SVs, 191 of them were
deletions, 62 of them were duplications and 75 of them were inversions. The
minimum size of SV was 1002 bp, and the mean of the sizes of all SVs was
33,480 bp. The summary statistics for sizes was shown in Table 1.

Min. 1st Qu. Median Mean 3rd Qu. Max
1002 4226 9394 33480 39767 1051306

Table 1: Summary statistics for the size of structural variants

We compared the SVs of the D2 mice reported by SVJAM with the original SVs
reported by LongRanger, and three result sets reported using different tools on
the D2 ONT data, and one result set produced using PacBio data. We focused
the analysis on the largest chromosome, Chr1. The distribution of SV size for
different methods was show in Figure 12. SVs reported by LongRanger were
the largest, centered around 38 kb. SVJAM retained some of these SVs but also
increased the proportion of SVs at about 9 kb.
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Figure 12: Size distribution of structural variants identified by different methods

The total number of SVs and the number of overlapping regions were shown in
Figure 13. A total of 185 SVs were only found by LongRanger which were most
likely false positives. All the SVs detected by SVJAM were reported by at least
one other method based on long read sequencing.
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Figure 13: Number of overlapping regions for Chromosome 1 analyzed by using
different SV callers. The blue bars on the left showed the number of SVs.
The black bars showed the intersecting subset of methods and the orange bars
showed the number of elements in those subsets.

4 Discussion

We developed a method, SVJAM, to jointly detect and genotype several types of
structural variants, including deletion, inversion, and duplication, from linked-
read WGS data. SVJAM used imaging processing techniques to detect deletion
and used CNN to detect duplication and inversion. The genotype of each sample
was determined by a clustering method. We compared the SVs detected by
SVJAM on Chr 1 for the D2 mice with those reported using the same data by
LongRanger, and those reported by four other methods using long-read PacBio
or ONT data. All variants reported by SVJAMwere corroborated by at least one
other method, while LongRanger reported many SVs not supported by the long
read data. Furthermore, joint calling makes it possible to identify heterozygotic
SVs accurately.

Similar to most methods of joint analysis of genomic variants, such as GLNexus
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(Yun et al., 2021), SVJAM does not detect SV by default. Instead, it takes
candidate regions suggested by other methods to start the joint analysis. We
used LongRanger to obtain these candidate regions. We required the candidate
regions to have at least 5 individuals with SVs. We observe that LongRanger
often produces inconsistent results, in both calling variants and determining the
type of SV. Hence, we apply SVJAM for all the candidate regions regardless
of the type of SV reported by LongRanger. Although we used LongRanger to
suggest candidate regions, SVJAM can work on any arbitrary genomic region.

Supervised and unsupervised learning practices have unique advantages and
disadvantages. In this project, we try to compensate a drawback of one by
using a benefit of the other. For example, labelling the training data set in
CNN is a time and effort consuming progress. We used clustering algorithm
to label the images in each region. The individuals were labelled by checking
that whether they were in the same cluster with the homozygous reference,
homozygous alternative or they belong to a third cluster, heterozygous samples.
By this way we were able to collect 12,000 labeled images with minimal effort.
Another example was to use clustering to correct the few mistakes made by
the CNN in the genotype stage. We first used the CNN to call duplication or
inversion on each sample. We then assign the cluster to the majority of the SV
type. If there were samples having SV type predicted by the CNN that were not
the same as that of the cluster it belong to, we consider those mistakes made
by the CNN and reassigned the SV type of those samples based on their cluster
identity.

The formulations in the clustering algorithm did not depend on the data. Hence,
we believe that they can be applied to other problems as well. The clustering
quality score formula was used to evaluate the performance of the clustering
independent from the method and the data. A formula based on the distances
of individuals to the centroids of the clusters was used for determining the
number of clusters. Lastly, the membership probability vectors assign each
point a vector that estimates the belonging of the point to each cluster. These
could easily be generalized to problems that include more number of clusters.

There were also many limitations in SVJAM. Similar to LongRanger, SVJAM
does not report insertions. This is because insertions do not have clear pattern in
Matrix View images. A second limitation, also because we used SV candidates
suggested by LongRanger, is that the result set lacks sensitivity to SVs smaller
than 500 bp. Another limitation is that the location of SV are either determined
by image processing (for deletion) or taken the average reported by LongRanger,
and thus are not exact. A third limitation is that the analysis is conducted using
image data retrieved from the Loupe browser, rather than numeric data. The
distinctive pattern of each SV in matrix view images facilitate the algorithm
development process. We also tested obtaining the same data in csv format
from the Loupe browser and found the time saving to be minimal. We therefore
did not change our procedure.
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