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Abstract

Invertebrates, animals (metazoans) without backbones, encompass ~97% of all animal yet remains
understudied. They have provided insights into molecular mechanisms underlying fundamentally
identical mechanisms in phylogenetically diverse animals, including vertebrates. Marine invertebrates
have long fascinated researchers due to their abundance, diversity, adaptations, and impact on
ecosystems and human economies. Here, we report a compendium and appraisal of 190 marine
invertebrate genomes spanning 21 phyla, 43 classes, 92 orders, and 134 families. We identify a high
proportion and long unit size of tandem repeats, likely contributing to reported difficulties in
invertebrate genome assembly. A well-supported phylogenetic tree of marine invertebrates from 974
single-copy orthologous genes resolved topological controversies. We show that Ctenophora is at the

basal phylum and Porifera is the sister group of Parahoxozoa; that Xenacoelomorpha is within Bilateria
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and is the sister group to Protostomia, rejecting three out of four hypotheses in the field; and that
Bryozoa is at the basal position of Lophotrochozoa, not grouped into Lophophorata. We also present
insights into the genetic underpinnings of metazoans from Hox genes, innate immune gene families,
and nervous system gene families. Our marine invertebrate genome compendium provides a unified

foundation for studies on their evolution and effects on ecological systems and human life.

Introduction

Invertebrates, encompassing ~97% of all animals (/), are named such because they lack a vertebral
column (i.e., ‘backbone’). With high diversity in morphology, invertebrates consist of 32 phyla, of
which marine invertebrates occupy 31. Marine invertebrates include a total of 178,023 extant species
(2) (Data from The World Register of Marine Species (WORMS, 1-7-2020)) (Figure S1). These
include ctenophores, sponges, corals, jellyfishes, sea stars, sea slugs, shrimps, crabs, squids, and
oysters — many of which have crucial roles in ecosystems. Nine major phyla occupy 97.17% of all
marine invertebrate species: Arthropoda, Mollusca, Annelida, Platyhelminthes, Cnidaria, Porifera,
Echinodermata, Bryozoa, and Nematoda. Given their abundance, diversity, and impact on ecosystems
and human economies, marine invertebrates have long fascinated researchers. Some marine
invertebrates are harmful to humans, economically important animals, and plants. Others provide
benefits. For example, marine species are harvested or cultured for human consumption, and some
molluscan species can supply nacre (‘mother-of-pearl”). Despite their importance, invertebrate species
have gathered relatively little attention compared to vertebrates and plants (3) and have by many been
considered ‘lower’ or more ‘primitive’ lifeforms (4).

In the past two decades, increasingly powerful genome sequencing technologies and analyses have
fuelled significant advances in our understanding of economically important species [i.e., fish,
livestock, and plants] and allowed unprecedented insights into the evolution of life. In contrast,
invertebrate genomics research has primarily employed a more ‘traditional’ lens, focusing on
morphology limited molecules or genes. Efforts such as the Global Invertebrate Genomics Alliance
(GIGA)(5) and BGI-Qingdao’s International Conference on Genomics of the Ocean have begun to fill

this research gap. An improved understanding of marine invertebrate genomes is sure to enhance our
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ability to decrease their negative impacts and provide positive benefits to ecological systems and
human life. Research on invertebrates also provides insights into the immune system, the nervous
system, and body plan of animals at the most fundamental level. To further this effort, we present an

appraisal of marine invertebrate genomes, highlighting salient themes from the unified data.

Results

Marine invertebrate genomes

Although the number of marine invertebrate species is enormous, only 190 species have a whole-
genome assembly to date (data as of 1-7-2020) — far fewer than the number of sequenced vertebrates
(approximately 700 species). The 190 species cover 21 phyla, 43 classes, 92 orders, and 134 families.
Arthropoda (46 species) and Mollusca (51 species) represent more than a half, followed by Cnidaria
(35 species), Echinodermata (19 species), and Rotifera (10 species) (Figure 1 and Table S1). The first
sequenced marine invertebrate was the purple sea urchin (Strongylocentrotus purpuratus) sequenced
in 2005 (6). Unfortunately, the following decade was marked by little progress in marine invertebrate
sequencing. The development of next-generation sequencing technologies from the mid-2010s and a
dramatic reduction in sequencing cost provided new marine invertebrate research opportunities. The
third wave of sequencing technologies, since 2017, fuelled the generation of a large number of
invertebrate genome assemblies. The number of sequenced invertebrate species now accounts for more

than half of all sequenced species (Figure S2), a remarkable turnaround in the past two years.

The high diversity of marine invertebrate manifests as a broad spectrum of genome sizes. About
~91% of sequenced marine invertebrate species have genome sizes smaller than 2 Gb (Figure 2,
Figure S3 and Table S1). The genome size of 62 species is smaller than 300 Mb (the smallest
vertebrate genome, that of the fugu, is ~360 Mb (7) and considered an extreme outlier), and 18
genomes are smaller than 100 Mb (Figure 2, Figure S3 and Table S1). Four species have compact,
~3-4 Mb genomes: the sponge Aplysina aerophoba, the shipworm Bankia setacea, and the copepods
Calanus glacialis and C. finmarchicus. These species are found in three phyla, suggesting that they

independently evolved remarkably compact genomes. There are only six species (five Arthropoda and
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one Mollusca species) with larger than 3 Gb genomes. The five Arthropoda species are found in the
crustacean order Decapoda. The genomes of the shrimp Palaemon carinicauda (Arthropoda) and the
squid Euprymna scolopes (Mollusca) are about 6.70 and 4.81 Gb, respectively. In contrast to many
vertebrate genomes, where there is a strong correlation between genome size and repeat content (see
detail in “Review of Marine Tetrapods” paper preprinted at the same time), invertebrate genomes do
not show an apparent linear relationship between genome size and repeat content (Figure 2). For
example, the parasitic worm Pomphorhynchus laevis, one of ten species with a genome repeat content
larger than 60%, is ~260 Mb genome and consists of 64.0% repeats. At the other extreme, the crayfish
Procambarus virginalis has a 3.3 Gb genome, but only 8.8% is repeats (Figure 2). Of course, some
species have both large genome sizes and high percentages of repeats. For example, the blue king crab
(Paralithodes platypus) has a 4.8 Gb genome with 77.2% of repeats. We also found that seven species
have less than 10% repeats in their genomes. The proportion of repeat subtypes is also diverse (Figure
S4). Approximately ~90.53% of species have a low proportion of SINEs (less than ~3%). Unclassified
repeats constitute more than half of the repeat content in five phyla (Rotifera, Arthropoda,
Echinodermata, Platyhelminthes, and Porifera). Marine invertebrate genomes also have quite diverse
GC contents. The average GC content is about 36.31%, which is slightly lower than that of marine
mammals (38.2%) and higher than that of fish (32.8%). Outliers include six sequenced species with
GC content higher than 47% — 59.6% in the case of the sponge (4Aplysina aerophoba) — and 26 species
with GC content less than 30% (Figure S3).

It becomes apparent that the various genomic features of marine invertebrates can contribute to
genome assembly difficulty. Only 22 genomes out of 190 have been assembled at the chromosome
level. Of these, about a quarter (47 genomes) have a scaffold N50 less than 20 kb — far below current
gold standards for genome annotation. Moreover, of the 143 genomes with a scaffold N50 larger than
20 kb, some have a low contig N50 —18 less than 10 kb, five as low as 3.7 kb — indicating that many

assemblies have numerous gaps and likely incomplete gene models.

Marine invertebrate phylogeny
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To resolve marine invertebrate phylogeny, we constructed trees based on a single-copy orthologous
gene set from the 190 whole-genomes assemblies covering 21 phyla. Genomes with scaffold N50
larger than 20 kb were deemed adequate for identifying single-copy orthologous groups (SCOGs),
retaining 143 genomes from 20 phyla. To include the phylum Nematoda in our phylogenetic analysis,
we included the most complete marine genome from this phylum assembled to date: the parasitic
herring worm (Anisakis simplex) (scaffold N50 ~6.8 kb, NCBI accession: GCA_900576815.1). As
discussed for a long time, tree reconstruction errors may be caused by inadequate models, long branch
attraction, short internal branches, and especially unrepresentative data. Therefore, here we identified
SCOGs by interrogating genome assemblies using BUSCO (v2.0) (Benchmarking Universal Single-
Copy Orthologue) with the metazoan gene database (8). A total of 974 SCOGs (BUSCO genes) were
identified in the 190 genomes. We excluded four species with low BUSCO single-copy ortholog
completeness scores: Bankia setacea (Mollusca; 3.7%), Anentome helena (Mollusca; 11.5%), Aplysina
aerophoba (Porifera; 3.5%), and Kudoa iwatai (Cnidaria; 9.5%). The final orthologous gene set
included 140 species in 21 phyla (average BUSCO completeness score 70.7%).

We used MAFFT (9) to perform protein sequence alignments for each SCOG and trimmed the
results using Aliscore (/0) and Alicut (/7) (to remove ambiguously aligned regions with little to no
phylogenetic signal), yielding a 365,588-amino acid alignment matrix. IQ-TREE (/2), which can
quickly test substitution models and choose the best model to generate reasonable trees, was employed
to construct 974 gene trees. ASTRAL (/3) was used to infer a consensus species tree (Figure 3). To
further validate the constructed trees, we also used the popular tool RAXML (/4) to build gene trees
with the ‘PROTGAMMAILG’ model and 100 rounds of bootstrapping, followed by species tree
inference using ASTRAL (Figure 4). Except for the position of Porifera, the RAXML and IQ-TREE
trees were identical. To evaluate the robustness of our reconstructed phylogeny, we also considered
the phylogenetic position of Placozoa, Xenacoelomorpha and Bryozoa with a subset of species. The
species trees agreed (Figure 5a, b, ¢, d, e and f) with the topology estimated using 140 species. Three
major findings can be inferred from the phylogeny. Firstly, Placozoa and Cnidaria are sister groups,
resolving a longstanding controversy (/5-21). Secondly, Xenacoelomorpha is nested within Bilateria

and is the sister group to Protostomia, rejecting three out of four hypotheses in the field (22-29).
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Thirdly, Bryozoa is at the basal position of Lophotrochozoa, not grouped into Lophophorata. The
phylogenetic position of Xenacoelomorpha (placed as a sister group to Nephrozoa) (Figure 5g), nor
the position of Bryozoa within the ‘traditional’ Lophophorata (a grouping of bryozoans, brachiopods,
and phoronids) (Figure 5h and i), agrees with a recent study by Cannon and colleagues (29) based on
transcriptome data from 77 metazoan taxa [60 invertebrates, of which 55 are marine species and 18
overlapped our data set]. This controversy is possibly attributed to an erroneous assignment of
paralogous genes as orthologs in the previous study and a limited overlap with our 974-gene BUSCO-
derived set (115/974, 11.7%; and 309/974, 31.6%). Taken together, we propose that our inferred

phylogeny (Figure 5j) is robust and a valuable resource for future studies.

Homeobox genes

Evolutionary biologists have long classified invertebrates into radially symmetrical and bilaterally
symmetrical animals based on morphology. Radially symmetrical animals include the phyla Porifera
(sponges), Cnidaria (jellyfishes, corals, and related species), Ctenophora (comb jellies), and Placozoa
(show the simplest morphology and is one of the most basal metazoan phyla). The remaining 17 marine
phyla analysed in this study are bilaterally symmetrical (i.e., possesses two orthogonal body plans)
and are members of the evolutionary lineage Bilateria. Some species not grouped within Bilateria have
bilateral symmetry (30), however. A salient example is Nematostella vectensis (starlet sea anemone)
of phylum Cnidaria (37).

It now appreciated that the loss or expansion of genes encoding homeobox proteins (particularly
the Hox genes), transcription factors that determine the identity of body segments, is key to the
evolution of a bilaterian body. We used our 140-species whole-genome data set to investigate the
homeobox gene repertoire of marine invertebrates (Figure 6). We identified very few homeobox genes
or gene fragments in the basal phyla Ctenophora (Hox2, Hox4, Hox5, and posterior Hox genes),
Placozoa (Hox1, Hox6, Hox8, and posterior Hox genes), and Porifera (Hox2 and Hox4, and a Hox7
fragment). Cnidaria genomes contain nine intact (Hox2, Hox3, Hox4, Hox5, Hox6, Hox7, Hox§8, and
posterior Hox genes) and one fragmented (Hox1) Hox genes. In the Bilateria lineage, Hox/ is found in

most phyla (85 out of 116 species). A lack of Hox!/ in Dicyemida, Bryozoa, Rotifera, Orthonectida,
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and Platyhelminthes suggests that bilateral symmetry can be achieved without this anterior Hox gene.
The phylum Arthropoda includes Chelicerata (sea spiders and horseshoe crabs). We found multiple
copies of the anterior Hox genes (Hox!I to Hox4) in marine Chelicerata genomes, likely resulting from
whole-genome duplication (WGD) and in agreement with recent work on the mangrove horseshoe
crab (Carcinoscorpius rotundicauda) genome (32) and sea spider transcriptomes(33). Interestingly,
cephalopods (phylum Mollusca) — giant squid (4Architeuthis dux), Hawaiian bobtail squid (Euprymna
scolopes), California two-spot octopus (Octopus bimaculoides), and common octopus (Octopus
vulgaris) — have lost several homeobox genes, in particular anterior Hox genes (HoxI, Hox2, Hox3,
and Hox4), in agreement with previous analyses of cephalopod Hox genes(34). Consistent with recent
studies (35), we found that most Bivalvia species (20 out of 22) have lost Hox7 (also known as Antp).
While except for Rotifera, most genomes contain more than one gene copy of the

Hox8/AbdA/Utx/Lox2/Lox4 group (denoted HOXS in Figure 6).

Innate immune gene families

Similar to plants, invertebrates lack an adaptive immunity but have developed a complex innate
immune system(36, 37). We investigated the classical innate immune receptor repertoire of marine
invertebrates (Figure 7). Six Toll-like receptors (TLRs) TLR1, TLR2, TLR3, TLR4, TLR7, and TLR13
were identified. No TLRs were found in Ctenophora, Porifera, Placozoa, Cnidaria, Xenacoelomorpha,
Platyhelminthes, Orthonectida, Acanthocephala, Rotifera, Dicyemida, Annelida, Nemertea, and the
majority of Arthropoda. TRL genes were present in Bilateria, including Ambulacraria and Mollusca.
In Ostreida and Pectinida species, five TLR genes were found. TLR1 was only found in Pectinida,
indicative of an ancestral origin. TLR3 (at least six copies) and 7LRI3 (at least nine copies) were
expanded in Pectinida. 7LR13 expanded in Ostreida [29 copies in Sydney rock oyster (Saccostrea
glomerata), 31 copies in the eastern oyster (Crassostrea virginica) and 55 copies in the Pacific oyster
(Crassostrea gigas)]. Four types of NOD-like receptors (NLRs) — including NLRC3, NLRC5, NLR
Family Pyrin Domain Containing 12 (NLRP12), and NLRP14 — were found in Porifera but lost in some
species of Cnidaria, Echinodermata, Arthropoda, Platyhelminthes, Orthonectida and Mollusca. CARD

Domain Containing 3 (NLRC3) genes were distributed among ten phyla and significantly expanded
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in Scleractinia species (25-135 copies). The scavenger receptors (SCARs) SCARAI (in particular),
SCARA2, SCARBI and SCARB? are broadly distributed in marine invertebrates, especially in Cnidaria,
Echinodermata and Mollusca. In contrast, SCARs could not be identified in Rotifera, Platyhelminthes
and Arthropoda. Concurring with the literature(38), genes encoding peptidoglycan recognition
proteins (PGRPs) are absent in radiation-symmetrical animals, including Ctenophora, Porifera,
Placozoa and Cnidaria. Broadly, our results suggest that the innate immune system of radiation-
symmetrical invertebrates employ NLRs and SCARs, hinting at a fundamental role of the immune
system. In bilateral invertebrates, TLRs and PGRPs may have further enhance innate immunity.
Arthropod species have lost most of the classic innate immune families examined here (TLRs, NLRs,
SCARs, and PGRPs), suggesting that alternative components have evolved. Indeed, the expansion and
robust expression of Dscam genes may endow the horseshoe crab with a strong immune and
environmental adaptability (39). Rotifera species have lost SCARs but retained PGRPs and NLRC3,
which may be associated with their freshwater habitats. A subset of Ambulacraria and Mollusca
(Ostreida and Pectinida) genomes harbour all the four gene families examined and gene expansions

(e.g., TLR3, TLR4, TLR13,SCARAI, and SCARA?2), indicating that they have a robust immune system.

Nervous system gene families

Although the invertebrate nervous system is considered much simpler than those found in vertebrates,
there is still a broad range in complexity. For examples, hydras and jellyfish have the simplest nervous
system, termed a ‘nerve net’, without distinct central or peripheral regions. Sea stars have a further
evolved nervous system, showing some centralised organisation. Some worms and molluscs evolved
a distinct separation of the peripheral and central nervous systems. To investigate the potential
evolutionary process of the marine invertebrate nervous system, we focused on three central
neurodevelopment associated gene families: Neurogenins (NEUROGs), a family of bHLH
transcription factors associated with neuronal differentiation; neurogenic differentiation factors
(NEURODs), which are also involved in the differentiation of nervous system during early neural
development; and protocadherins (PCDHs) which regulate neuronal development and mediate cell-

cell adhesion. We identified three, three, and seven members of the NEUROG, NEUROD and PCDH
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families, respectively (Figure 8 and Fig. S6). As expected, in the basal Ctenophora, Porifera and
Placozoa, no or few genes were found.

In the NEUROG family, we found that NEUROG! is broadly distributed (81 species has
NEUROG]I and 11 species a NEUROG! fragment) — especially in Mollusca (37 out of 40 species),
Arthropoda (24 out of 31 species) and Echinodermata (10 out of 15 species). For the remaining three,
seven and five species for which NEUROG 1 was not identified, NEUROG2 or NEUROG3 were found
in two, seven and five species, respectively, meaning that all Mollusca (except California two-spot
octopus), Arthropoda and Echinodermata genomes contain at least one member of the NEUROG
family. NEUROGI and NEUROG?2 were identified only in three and five Cnidaria species, while 19
out of 21 species were checked with NEUROG3 (Figure S6). In the NEUROD family, the distribution
of NEURODI (identified in 38 out of 40 Mollusca species, 22 out of 31 Arthropoda species and 10
out of 15 Echinodermata species) was similar to NEUROGI. NEUROG?2 was identified in 30 species,
while 74 harboured NEUROG?2 fragments. In contrast to neuroD/neurogenin, the distribution of PCDH
gene family genes was phyla-specific. Protocadherin gamma subfamily B (PCDHgB) was mainly
found in Arthropoda genomes, while protocadherin delta 1 (PCDHdI) was mainly found in part of
Cnidaria (10 species), Ambulacraria (10 species), Platyhelminthes (1 species), Annelida (2 species)
and Mollusca (27 species). Interestingly, all PCDH genes except PCDHa underwent a massive
expansion in octopuses (phylum Mollusca). This includes 104 PCDHs in California two-spot octopus
and 96 copies in common octopus, consistent with previous work (34). We identified 33 and 56 PCDHs
in the giant squid and Hawaiian bobtail squid, respectively — agreeing with previous work showing a

protocadherin gene expansion in this octopus sister group(40, 41).

Discussion

More comprehensive research on marine invertebrates promises to answer a broad range of
evolutionary, biological, and ecological questions. These include the origins of animal life such as the
formation of multicellularity and early-animal evolution, nervous and immune system development,
and ecological adaptations (e.g., biomineralisation and regeneration), breeding and aquaculture. High-

throughput sequencing technologies provide us with an unprecedented opportunity to integrate
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traditional biological approaches with genomic data to describe new aspects of the evolutionary,
functional and structural diversity of marine invertebrates. In this review, we constructed a database
of marine invertebrate genomes, which currently includes 194 published genomes. This database will
be continuously updated, including improving current assemblies using emerging sequencing
technologies and assembly methods (e.g., see sStLFR(42, 43)). While the current data set does not cover
the full spectrum of marine invertebrate species (21 out of 31 phyla), and many of the genomes do not
match current gold standards, we show that valuable insights can be gained.

The phylogenetic relationship of marine invertebrate has been contentious for a long time, especially
in the case of Ctenophora, Porifera, Placozoa, Cnidaria and Xenacoelomorpha. Whole-genome
assemblies enable the generation of orthologous gene sets that can be used to help resolve this dispute.
Here, we used single-copy orthologous BUSCO genes to provide an unprecedented panorama of
marine invertebrate phylogeny. We hope that this effort will be a valuable reference for future research.
We also employed the data set to investigate the distribution of gene families associated with the
immune system, the nervous system, and body plan of animals. Gene expansions generally agree with
features observed in the immune and nervous system of invertebrates. NeuroD/neurogenin
(NEUROGI and NEURODI) appears to be correlated with a more complex nervous system in marine
invertebrates, while an expansion of protocadherin (PCDH) genes likely underlies the exceptional
intelligence of octopuses and squids. While our data support the concept of Hox genes underlying the
invertebrate body plan and driving bilateral symmetry, it must nevertheless be appreciated that
complex gene clusters may not be resolved in genome assemblies without chromosome-conformation-
capture methods such as Hi-C(44).

In summary, the data and results presented in this review provides a valuable, continuously updated

resource for and insights into marine invertebrates.

Materials and Methods

Genome data collection
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Marine invertebrate species information (species number and classification) were collected from
“The World Register of Marine Species (WORMS, 1-7-2020)” (2) and NCBI database. Assembled

genomes were mainly collected from NCBI database (see Table S1).

Genome repeat annotation

Repeat sequences of all collected genomes were identified using a unified pipeline. Firstly,
transposable elements were searched using RepeatMasker (v4.0.5) (45) and RepeatProteinMask
(v4.0.5) against the Repbase database(46) at the nuclear and protein levels, respectively. Secondly,
RepeatModeler (v1.0.8) and LTR-FINDER (v1.0.6) (47) were used to performing de novo
prediction and construct a custom transposable element database, which was used to predict
transposable element using RepeatMasker again. Thirdly, tandem repeats were predicted by using

Tandem Repeat Finder (v4.0.7) (48).

Construction of phylogenetic trees

All of the trees constructed in the present study are based on protein sequences of Single Copy
Orthologous Genes (SCOGs). SCOGs were identified using BUSCO (v2.0) (Benchmarking Universal
Single-Copy Orthologue) with the metazoan gene database (8), searching the whole genome
assemblies. Next , MAFFT (9) was used to carry out protein sequence alignments for each SCOG and
Aliscore (/0) and Alicut (/7) were used to remove ambiguously aligned regions with little to no
phylogenetic signal. Then IQ-TREE (/2), RAXML (/4) and MrBayes(49) were used to construct gene

trees for each SCOGs. Finally, ASTRAL (/3) was used to infer a consensus species tree.

Identification of gene families

For Hox, representative immune and nervous systems related gene family identification, we
downloaded all Hox genes from the NCBI database, TLRs, NLRs, SCARs, PGRPs, NEUROG:s,
NEURODs and PCDHs from the KEGG database, and carried out a manual check to remove poor

sequences to generate reference protein library. Then we mapped the reference proteins to 140
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collected genomes using BLAT (50) and predicted relevant genes using GeneWise (v2.4.1) (51)

based on the BLAT results.
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Figure 1. Distribution of 190 marine invertebrate species with nuclear genome assemblies.
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Figure 3. The maximum likelihood phylogenetic tree constructed using whole-genome sequences
of 140 marine invertebrate species and IQ-TREE. The species tree was inferred using ASTRAL
and 974-gene trees (IQ-TREE) of metazoan BUSCO genes. The numbers presented “*/*” near the

branches represent reliability evaluation inferred by IQ-TREE (1 means 100% support) / bootstrap


https://doi.org/10.1101/2021.10.31.465852
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.31.465852; this version posted November 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

values. The blue dots represent these branched are “1/100” support. The red stars represent the different

positions of important phyla inferred from this study compared to previous researches.
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Figure 4. The maximum likelihood phylogenetic tree constructed using whole-genome sequences
of 140 marine invertebrate species and RAxML. The species tree was inferred by using ASTRAL

based on 974-gene trees (RAxML) of metazoan BUSCO genes.
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Figure 5. Verification of our constructed trees using subset species with different methods and
inferred phylogenetic tree of 21 phyla by combining our data. a, b and ¢), phylogenetic trees for
verification of Xenacoelomorpha position using IQ-TREE, RAXML and MrBayes, respectively. The
three trees were constructed using eight representative species, including Hofstenia miamia
(Xenacoelomorpha), Pocillopora damicornis (Cnidaria,), Acanthaster planci (Echinodermata),
Saccoglossus kowalevskii (Hemichordata), Daphnia magna (Arthropoda), Capitella teleta (Annelida),

Pomacea maculate (Mollusca) and Phoronis australis (Phoronida). d, e and f: phylogenetic trees for
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verification of Bryozoa position using IQ-TREE, RAXxML and MrBayes (49), respectively. The three
trees were constructed using six representative species, including Bugula neritina (Bryozoa),
Tigriopus californicus (Arthropoda), Capitella teleta (Annelida), Notospermus geniculatus
(Nemertea), Lingula anatina (Brachiopoda) and Phoronis australis (Phoronida). g), Phylogenetic
position inferred by Cannon et al (29). h), Bryozoa position inferred by Cannon et al. i) Bryozoa

position from traditional view(52). j) inferred relationship of 21 marine phyla by combing all data in

this study.
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Figure 6. Overview of homeobox genes identified in 140 marine invertebrate species.

The figure shows distribution of anterior (Hox! to Hox4), central (Hox5 to Hox8) and posterior Hox
genes (POST, POSTI and POST?2), as well as non-Hox homeobox genes (PRX1, MSX2, and TLX1).
Blue dots indicate homeobox genes; green dots, homeobox fragments (less than 80 amino acids). The
red, blue and green bars next to the species names indicate Bivalvia, Cephalopoda and Chelicerata
species. Genes or gene fragments (with the suffix ‘-f) were assigned using a sigmoid model by

calculating protein lengths of predicted gene (Figure S5).
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Figure 7. Distribution of four gene families of the innate system in marine invertebrates. The heat map
shows the number of genes (the number is shown in the centre). The suffix TLR denotes Toll-like
receptor genes; NRL, NOD-like receptor genes; SCAR, scavenger receptors genes; PGRPs,
peptidoglycan recognition protein genes. The green, red and blue bars next to species names represent

Ostreida, Pectinida and Scleractinia species.
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Figure S2. Summary of published marine invertebrate genomes since 2005.
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