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ABSTRACT

Beta cells intrinsically contribute to the pathogenesis of type 1 diabetes (T1D), but the genes and
molecular processes that mediate beta cell survival in T1D remain largely unknown. We combined
high throughput functional genomics and human genetics to identify T1D risk loci regulating genes
affecting beta cell survival in response to the proinflammatory cytokines IL-1p, IFNy, and TNFa.
We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) active in
beta cells using ATAC-seq and single nuclear ATAC-seq (snATAC-seq), and linked cytokine-
responsive beta cell cCCREs to putative target genes using single cell co-accessibility and HiChlIP.
We performed a genome-wide pooled CRISPR loss-of-function screen in EndoC-BH1 cells, which
identified 867 genes affecting cytokine-induced beta cell loss. Genes that promoted beta cell
survival and had up-regulated expression in cytokine exposure were specifically enriched at T1D
loci, and these genes were preferentially involved in inhibiting inflammatory response, ubiquitin-
mediated proteolysis, mitophagy and autophagy. We identified 2,229 variants in cytokine-
responsive beta cell cCCREs altering transcription factor (TF) binding using high-throughput SNP-
SELEX, and variants altering binding of TF families regulating stress, inflammation and apoptosis
were broadly enriched for T1D association. Finally, through integration with genetic fine mapping,
we annotated T1D loci regulating beta cell survival in cytokine exposure. At the 16p13 locus, a
T1D variant affected TF binding in a cytokine-induced beta cell cCRE that physically interacted
with the SOCS1 promoter, and increased SOCS1 activity promoted beta cell survival in cytokine
exposure. Together our findings reveal processes and genes acting in beta cells during cytokine

exposure that intrinsically modulate risk of T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is a complex disease characterized by autoimmune destruction of the
insulin-producing beta cells in the pancreas. During progression to T1D, immune infiltration and
inflammation occurs in the local environment around beta cells, through which beta cells are
directly exposed to external stimuli such as proinflammatory cytokines secreted by immune cells’.
Beta cells themselves intrinsically contribute to the development of T1D in response to these
stimuli. Studying beta cell function during T1D progression directly is challenging due to the limited
availability of samples and the difficulty in capturing the precise window in which beta cells are
the target of immune attack. An alternate strategy is to model T1D progression in vitro, for
example by culturing islets or beta cells with pro-inflammatory cytokines interleukin 13 (IL-1B),
interferon y (IFNy), and tumor necrosis factor a (TNFa)?®. Application of this model has revealed
widespread effects on beta cell gene regulation, function and survival in response to cytokine

2,4~

exposure’*’. However, the genes and processes in beta cells that directly contribute to the

development of T1D in the context of cytokine exposure remain poorly defined.

Human genetics represents an avenue through which to identify genes and processes within beta
cells that play a causal role in T1D. Genome-wide association studies have identified over 90
genomic regions associated with T1D, the majority of which are non-coding and likely affect gene
regulation®®. Variants at T1D risk loci are enriched in islet cis-regulatory elements (cCREs)
induced by pro-inflammatory cytokine exposure®, but not islet regulatory elements in the basal
state, which supports that risk of T1D in beta cells acts downstream of external stimuli during
disease progression. Genes at several T1D risk loci have been shown to affect beta cell function
in cytokine signaling such PTPN2 and DEX/®*"". At most T1D loci, however, whether risk genes
mediate beta cell function in cytokine exposure is unknown. More broadly, determining the
pathways through which these risk genes operate can help to converge on mechanisms through

which beta cells intrinsically affect disease.

In this study we used a suite of functional genomics assays to map cis-regulatory programs in
pancreatic beta cells as well as identify genes that affect beta cell survival upon exposure to the
pro-inflammatory cytokines IL1B3, IFNy and TNFa. We then integrated these data with fine-

mapping data to identify T1D risk variants regulating beta cell survival during cytokine exposure.
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RESULTS
Overview of study design

In this study we combined human genetics and functional genomics to identify genes that affect
risk of T1D by modulating pancreatic beta cell survival in response to proinflammatory cytokine
exposure (Figure 1). First, we created a map of cytokine-responsive cis-regulatory elements
(cCRESs) in pancreatic beta cells treatment using bulk and single nuclear ATAC-seq. Second, we
linked cytokine-responsive beta cell cCREs to target genes using single cell co-accessibility and
HiChIP. Third, we identified genes affecting beta cell survival in cytokine exposure using a
genome-wide CRISPR knockout screen in EndoC-BH1 cells. Fourth, we identified functional
variants in cytokine-responsive beta cell chromatin by assaying in vitro transcription factor binding
using high-throughput SNP-SELEX. Finally, we integrated these functional genomics data with
fine-mapping of 136 T1D signals to annotate functional T1D risk variants directly regulating genes

involved in cytokine-induced beta cell survival.
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Figure 1. Overview of study design. Schematic representation of the experimental design to
model inflammation of human pancreatic islet and characterization of changes using multiple
genome-wide functional assays to identify mechanisms involved in type 1 diabetes risk.
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Map of pancreatic beta cell chromatin in response to cytokines

To identify epigenomic changes in pancreatic islets in response to cytokine exposure, we
performed ATAC-seq in a total of 7 primary islet preparations cultured in vitro with the cytokines
IL-1B, IFNy, and TNFa as well as in untreated conditions (Supplementary Table 1). We
performed these assays across multiple dimensions of cytokine treatment (35 assays in total),
including different treatment doses (high-dose: 0.5 ng/mL IL-13, 10 ng/mL IFN-y, 1 ng/mL TNF-
a; low-dose: 0.01 ng/mL IL-1B, 0.2 ng/mL IFN-y, and 0.02 ng/mL TNF-a), duration (6hr, 24hr,
48hr, 72hr), and cytokines used (3 cytokines: IL-1B3, IFN-y and TNFa, or 2 cytokines: IL-13 and
IFN-y).

We determined the effects of inflammatory cytokine signaling for all treatments on islet accessible
chromatin genome-wide by performing principal component analysis (PCA) using normalized
read counts (Figure 2a). There were reproducible patterns of chromatin accessibility across
replicate samples of the same treatment, with clear separation between the cytokine-treated and
untreated samples. We also observed patterns across different cytokine treatments, where the
low-dose cytokine had an intermediate effect to the high-dose cytokine treatment. For example,
at the CXCL10/11 locus there was a notable gradient of increasing accessible chromatin signal

across untreated, low-dose cytokine and high-dose cytokine treated samples (Figure 2b).

We next identified islet cCREs with significant differences in chromatin accessibility in cytokine-
treated compared to untreated cells. We first defined a set of 165,884 cCREs genome-wide active
in islets. From these 165,884 cCREs, we next identified cCREs with differential accessibility in
cytokine treatment compared to control using DESeq2'?. There were 22,877 cCREs with
increased activity in any cytokine treatment and 22,092 cCREs with decreased activity in any
cytokine treatment (FDR<0.1, Figure 2c, Supplementary Table 2). Notably, there was a marked
difference in the number of cytokine-responsive cCREs across treatment dose, with almost no
such cCREs at low-dose treatment (Figure 2c). When comparing treatments with and without
TNFa, including TNFa produced a broadly stronger effect on cytokine-responsive cCREs overall
(Supplementary Figure 1a), although there were no cCREs with significant changes in activity
between the two conditions, suggesting modest effects on individual cCREs. Finally, we identified
1,000 cCREs with differential activity across duration (Supplementary Figure 1b, p-value <0.01,
linear regression), the majority with increased accessibility with longer duration of treatment

(Supplementary Figure 1c).
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In order to identify transcriptional regulators of cytokine-responsive cCREs in islets, we performed
sequence motif enrichment using HOMER™. Consistent with previous reports®, cCREs with
increased activity in cytokine treatment were strongly enriched for IRF (IRF1 P<10°%, IRF2 P<10°
300y STAT (STAT1 P=2.8x10"%") and NFkB (NFKB-P65-REL P=2.1x10%"°) motifs (Figure 2d,
Supplementary Table 3). Conversely, cCREs with decreased activity in any cytokine treatment
were most enriched for FOXA (P=5.8x10%%), NKX6.1 (P=1.1x10%), NFAT (P=3.8x10"%°), and
MEF2 (P=9.2x10"%"), motifs (Figure 2e, Supplementary Table 3). We next identified sequence
motifs with variable enrichment across different dimensions of cytokine treatment. For example,
motifs with variable enrichment in up-regulated cCREs across duration of cytokine treatment
included SMAD family TFs, which had stronger enrichment at later timepoints (SMAD2 6hr P
=0.24, 24hr P =0.03, 48hr P =8.6x10™*, 72hr P =2.2x10'6), and motifs with variable enrichment
among down regulated cCREs included RFX, NFAT and MEF2 family motifs (Supplementary
Figure 1d).

The effects of cytokine exposure on individual islet cell types are obscured from assays of bulk
tissue. Therefore, we next performed single nuclear ATAC-seq (snATAC-seq) in cytokine-treated
and untreated islets from four donors at 24 hours post-treatment. We used high-dose of all three
cytokines IL-1B, IFNy, and TNFa as the treatment for these assays, as this produced the strongest
effects in bulk assays. After extensive quality control, which included removal of low quality and
doublet cells (see Methods), we performed UMAP dimensionality reduction and clustering on a
total of 7,829 nuclei, which identified 9 clusters (Figure 2f). Each cluster contained cells from all
four donors and was equally represented by untreated (total nuclei = 3,947) and cytokine-treated
(total nuclei = 3,882) cells (Figure 2g, Supplementary Figure 2a-b). We assigned each cluster
cell type identity based on accessibility levels at the promoters of known marker genes
(Supplementary Figure 2c-d), which revealed endocrine alpha, beta and delta cells as well as

exocrine, endothelial and stellate cells.

We next defined cCREs in beta and other cell types and used the resulting cCREs to annotate
the cytokine-responsive cCREs identified in bulk ATAC-seq (Supplementary Figure 3a). We
identified 38,931 cytokine-responsive islet cCREs active in beta cells, a small percentage (8.2%)
of which were specific to beta cells relative to other endocrine cell types (example in Figure 2h).
We further used snATAC data from cytokine-treated and untreated cells to identify differential

sites in beta cells directly. There were 2,412 cytokine-responsive beta cell cCREs (FDR<0.1
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Supplementary Figure 3b, Supplementary Table 2), almost all of which (99%, 2,388) had
significant and concordant effects in bulk islets. The effects of cytokine treatment on cCRE activity
were generally stronger on beta cells relative to bulk islets, although there were fewer cCREs

overall with significant changes in activity in beta cells likely owing to the
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Figure 2. Map of islet accessible chromatin upon exposure to inflammatory cytokines. A) Principal
component analysis showing distribution of samples (n=35) based on the different cytokine treatments,
color-coded as shown in the legend. Hi: high dose; Lo: low dose; 3cyt: IL-1[, IFN-y, TNFa; 2cyt: IL-1B, IFN-
y. B) Genome-browser screenshot at the CXCL70/CXCL11 locus, showing ATAC-seq tracks combined
across cytokine treatments at 24hrs. The example shows increased chromatin accessibility at cCRE with
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higher doses and number of cytokines used for stimulation. C) Number of differential cCRE for each
treatment compared to control, and union of all differential sites. D-E) Sequence TF motifs enriched in all
up-regulated (D) and all down-regulated (E) cCRE compared to all cCRE. F) Clustering of single cell
accessible chromatin profiles of islet samples from 4 individuals. Cells are plotted based on the first two
UMAP components. G) Barplot showing the proportion of cytokine treated and untreated cells in each
cluster. H) Genome-browser screenshots showing example of cytokine-induced cCREs with constitutive
effect in all cell types (left) or specific effect in beta cells (right). I) Scatterplot showing effect of cytokine-
resposive cCREs in bulk ATAC (x-axis) and in beta cell snATAC (y-axis). Spearman correlation coefficient
and p-values are indicated. Bottom: density plot showing increased effect size in beta cells, across DACs
significant in both snATAC for beta cells and bulk ATAC. Wilcoxon signed rank test p-value is shown.

smaller number of samples (Figure 2i). Compared to alpha cells, there were substantially more
cCREs with cytokine-responsive activity in beta cells (2,412 vs. 226), despite having similar total
numbers of cells (Supplementary Figure 3c). Furthermore, the effects of cytokine treatment on
cCRE activity were consistently stronger in beta cells compared to alpha cells (Wilcox signed rank
test P=1.2x10%°) (Supplementary Figure 3d). These results suggest that beta cell chromatin is

more responsive to pro-inflammatory stress than chromatin in other islet cell types.

Finally, we identified TF motifs differentially enriched in cytokine-responsive beta cell accessible
chromatin. We identified motifs differentially enriched in single cytokine-treated and untreated
beta cells using ChromVAR'™. The most enriched motifs in beta cells were broadly consistent with
those identified in bulk data, with IRF-family TFs showing highest enrichment in cytokine-treated
beta cells and FOXA TFs the strongest depletion (Supplementary Figure 3e, Supplementary
Table 3). However, when comparing motif enrichments in alpha and beta cells there was more
significant enrichment of IRF- and STAT-family motifs in cytokine-treated beta cells, further

supporting that cytokine treatment has stronger effects in beta cells (Supplementary Figure 3e).

In summary, we generated a comprehensive catalog of cCREs that respond to pro-inflammatory

cytokines in pancreatic islets and beta cells.

Linking cytokine-responsive beta cell cCREs to target genes

As the maijority of cytokine-responsive beta cell cCCREs are distal to gene promoters, we next

sought to link cytokine-responsive cCREs to the target genes they regulate in beta cells.
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We first identified cytokine-responsive cCREs correlated with the activity of gene promoter cCREs
using co-accessibility across single cytokine-treated and untreated beta cells with Cicero'. In
total, we identified 400,403 and 277,447 pairs of co-accessible cCREs (score >0.05), in cytokine-
treated and untreated beta cells, respectively, 30% of which involved a gene promoter cCRE. We
then annotated cytokine-responsive beta cell cCREs co-accessible with at least one gene
promoter. There were 11,124 and 8,434 cytokine-responsive cCREs co-accessible with a putative
target gene in cytokine-treated and untreated beta cells, respectively, while ~10% of cytokine-
responsive cCREs were at promoters directly (Figure 3a). As co-accessibility represents a
correlation between cCREs that may not always reflect direct cis regulation, we next mapped 3D
physical interactions between cCREs using HiChlIP in high-dose cytokine-treated (IL183, IFNy and
TNFa) and untreated EndoC-BH1 beta cells. Co-accessible sites were significantly enriched for
3D interactions compared to non-co-accessible sites (Fisher's exact test P<2.2x107'°; cytokine
treated OR=3.6; untreated OR=3.2). In total, 2,520 and 2,063 distal cCREs co-accessible with a

promoter in cytokine-treated and untreated cells, respectively, had a 3D interaction (FDR<.10).

We next assessed the relationship between the activity of cytokine-responsive beta cell cCCREs
and the expression of target genes linked to the cCREs in cytokine treatment. We performed
RNA-seq in islets treated with high- and low-dose cytokines for 24hr and identified differentially
expressed genes (DEGSs) in cytokine-treated compared to untreated cells. High-dose exposure to
all three cytokines (IL1B, IFNy and TNFa) produced the largest changes in expression, where
3,367 genes had increased, and 3,414 genes had decreased expression in cytokine-treated
compared to untreated islets (Supplementary Figure 4a-f, Supplementary Table 4). High-dose
treatment using just IL1B and IFNy resulted in 5,051 differentially expressed genes. As with bulk
ATAC-seq data, low-dose treatment resulted in fewer differentially expressed genes overall (330
with three cytokines, 324 with two cytokines), and these genes were largely a subset of the genes

identified in high dose treatment (Supplementary Figure 4b-c, Supplementary Table 4).
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Figure 3. Target genes of beta cells cCREs in inflammatory cytokine exposure

A) Fraction of cytokine-responsive cCREs (Differentially Accessible cCREs -DACs) either co-accessible
with at least one gene promoter in beta cells in untreated, cytokine-stimulated or pooled conditions; or
proximal to a promoter (<10kb TSS). B) Enrichment of distal DACs (>10kb from TSS) for co-accessibility to
genes with concordant cytokine-induced effects. Fisher's exact test p-values and odds ratios are shown.
Co-accessibility was calculated from pooled cytokine-treated and untreated beta cells. C) Enrichment of
promoter-proximal DACs (<10kb from TSS) for genes with concordant cytokine-induced effects. Fisher’s
exact test p-values and odds ratios are shown. D-E) Example of a cytokine up-regulated peak (blue vertical
line) with HiChlP-validated co-accessibility with the promoter of a cytokine-upregulated gene (BCL6). D)
From top to bottom: co-accessibility in beta cells in cytokine or untreated conditions, virtual 4C profiles from
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HiChIP in EndoC-BH1 in cytokine or untreated conditions, snATAC profiles in beta cells in cytokine or
untreated conditions, gene annotations. Only co-accessibility arcs that link the highlighted distal peak and
a promoter peak are shown. E) Voom-normalized and batch-corrected expression of BCL6 in human islet
samples after different cytokine treatment conditions. DESeq p-value and logz fold change are from DESeq
differential expression between 3-cytokine, high-doses treated islets (red) vs untreated (purple). F-G) Same
as D-E, but showing an example of a cytokine down-regulated peak (blue vertical line) with HiChIP-
validated co-accessibility with the promoter of a cytokine-downregulated gene (MNXT). 2cyt: cytokine
treatment with IL1b and IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-
dose, untr: untreated

We determined whether genes co-accessible with cytokine-response distal cCREs had
directionally concordant changes in expression. Here we used just genes differentially expressed
in high-dose cytokine treatment. Distal cCREs (>10kb from TSS) with up-regulated or down-
regulated activity in cytokine treatment were significantly enriched for co-accessibility to genes
with increased or decreased expression, respectively (Figure 3b). We observed similar patterns
when considering distal cCCREs with 3D physical interactions to genes (Supplementary Figure
4g). Cytokine-responsive cCREs proximal to gene promoters were also enriched for concordant
effects on expression with stronger enrichment than for distal cCREs (Figure 3c). At the 3927
locus, a cytokine-induced beta cell cCRE was co-accessible with the BCL6 promoter in cytokine-
treated beta cells, and BCL6 attenuates the proinflammatory response but induces apoptosis in
beta cells'® (Figure 3d). The beta cell cCRE interacted with the BCL6 promoter in cytokine-treated
cells only (cytokine-treated FDR=6.2x10?), and BCL6 had increased expression in cytokine
treatment (Figure 3d-e). Similarly, at the 7q36 locus, a beta cell cCRE with decreased activity in
cytokine exposure was co-accessible with the promoter of MNX1, which is involved in maintaining
beta cell fate (Figure 3f). We observed an interaction between the beta cell cCRE and the MNX1
promoter in untreated beta cells only (untreated FDR=5.4x10°) and MNX7 had decreased

expression in cytokine treatment (Figure 3g-f).

Together these results reveal the target genes of cytokine-responsive distal cCCRE activity in beta

cells.
Genes affecting beta cell survival in response to cytokine exposure
Given target genes of cytokine-responsive cCREs in beta cells, we next determined which genes

had cellular functions directly relevant to T1D pathogenesis. As beta cell loss is the primary

pathogenic endpoint of T1D, we sought to identify genes affecting beta cell survival in response
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to cytokine exposure. We therefore performed a genome-wide pooled CRISPR loss-of-function
screen in the human EndoC-BH1 beta cell line using cell survival under cytokine exposure (high-
dose IL-1B, IFN-y, TNF-a) for 72hr as an endpoint. We selected a longer duration of treatment
than for chromatin and gene expression assays to effectively capture cell loss in response to
cytokine treatment. In brief, after transfecting cells with the GeCKO v2 CRISPR single guide RNA
(sgRNA) library, we split and cultured cells in either high-dose cytokine or control (0.1% BSA).
The representation of sgRNAs between cytokine-treated and untreated conditions was compared
to identify genes promoting or preventing beta cell loss in response to cytokine exposure. An

overview of the screen design is shown in Figure 4a.

Among 18,703 genes targeted by sgRNAs (6 sgRNAs per gene) after transduction, 867 genes
had significant (FDR<.10) differences in recovered sgRNAs between cytokine-treated and
untreated cells. Among these, sgRNAs for 427 genes were enriched in cytokine-treated compared
to untreated cells and therefore these genes promoted beta cell loss (‘pro-death’) in response to
cytokine exposure (Figure 4b, Supplementary Table 5). Conversely, sgRNAs for 440 genes
were depleted in cytokine-treated compared to untreated cells and therefore these genes
prevented beta cell loss (‘pro-survival’) in response to cytokine exposure (Figure 4b,
Supplementary Table 5). The results of our screen identified genes previously shown to affect
survival in beta cells, for example XIAP', JUND'®, PTPN2'°, and SOCS1'%%. To annotate the
function of pro-death and pro-survival genes, we performed gene ontology enrichment analyses
(Supplementary Table 6). As expected, pro-death genes were enriched for terms related to DNA
damage response, apoptosis and protein folding, and pro-survival genes were enriched for
autophagy, which protects against beta cell stress, and phosphorylation and kinase activity, which
suppress inflammatory responses. Pro-survival genes were also enriched for RNA metabolism
and splicing and pro-death genes were enriched for lipid metabolism, processes which have all

been implicated in beta cell function and survival?'%.

Interestingly, genes regulating processes related to mitochondrial function were highly enriched
among both pro-death and pro-survival genes. We found that pro-survival mitochondria-related
genes were primarily involved in mitochondria organization and mitophagy, such as USP36,
VDAC1, MFF, TIMM9, YME1L1, SIRT5, and SPATA18. Conversely, mitochondria-related genes
in the pro-death category were mostly electron transport chain components, such as NDUFAG®,
NDUFB2, ACAD9, CYCS and SDHD. A key mitophagy regulator, CLEC16A, has been previously

shown to protect beta cells against inflammatory damage, mediated in part by reactive oxygen
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species (ROS) generated in beta cell mitochondria?®. Our data suggest that mitophagy and
mitochondria quality control are important pro-survival processes in beta cells in response to pro-

inflammatory cytokines and provide novel regulators of beta cell mitophagy.
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Figure 4. Genes affecting beta cell survival in cytokine exposure. A) Overview of the genome-wide
CRISPR loss-of-function screen in cytokine-treated EndoC-BH1 cells. B) Volcano plot of genes with
significant (FDR<0.1) enrichment and depletion from the screen. Labeled genes include the top genes with
an average TPM expression >1 in islets. C) Enrichment of known T1D risk loci for genes enriched and
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depleted in screen, partitioned by differential expression (+/- exp = FDR<0.1, ++/-- exp = FDR<0.1 and
P<1x107?) in islets after cytokine stimulation (3-cyt, high-doses). Values are odds ratio and error bars are
95% confidence interval from Fisher's exact test. D) Scatterplot showing the effect size (beta) of genes
promoting beta survival in the screen and differential expression of the gene in islets after cytokine
treatment (z-scores). Genes mapping within 1MB of a known T1D locus or within 1MB of a variant with
nominal (p<1x10-4) T1D association are colored. E) Molecular pathways from gene ontology (GO) and
KEGG enriched in genes with increased expression in cytokine-treated islets and promoting beta cell
survival. A subset of genes mapping to known T1D loci or loci with nominal T1D association are shown with
corresponding pathway annotations. Only pathways that contain at least one T1D gene are shown, while
the full list is shown in Supplementary Table 6.

Given genes and molecular processes affecting cytokine-induced beta cell loss, we next
determined which genes and processes might be relevant to T1D pathogenesis. First, we tested
for enrichment of genes affecting cytokine-induced beta cell loss at loci involved in genetic risk of
T1D. We observed no evidence for enrichment among the full set of either pro-survival or pro-
death genes. Next, we further segregated pro-survival and pro-death genes based on whether
their expression was significantly up-regulated or down-regulated, or had no change, in cytokine
exposure. Pro-survival genes that had up-regulated expression in cytokines (n=84 genes) were
significantly enriched at known T1D loci (+exp OR=1.82, 95% CI=0.97,3.23 P=.048, Fisher’s test),
and no other subset showed any enrichment (Figure 4c). This enrichment was stronger when
considering only genes with the largest increases (P<1x10?®) in cytokine-induced expression
(++exp OR=3.28, 95% CI=1.33,7.37 P=5.1x10%). Numerous genes with highly induced
expression mapped to known T1D risk loci such as PTPN2, EPSTI1, SOCS1, PSMB2, PPP1R11,
LPIN1 and LMO? (Figure 4d). This subset of genes also included several with roles in mitophagy
such as NBR1 and MFN1.

We next characterized the molecular functions of the pro-survival genes with up-regulated
expression in cytokine exposure. These genes were broadly enriched for molecular processes
related to modulation of the inflammatory response, ubiquitination and proteasomal degradation,
translation, and autophagy (Supplementary Table 6, Figure 4e). Among genes at T1D loci were
negative regulators of cytokine signaling PTPN2 and SOCS1, both of which function by inhibiting
JAK/STAT signaling to suppress inflammatory responses and promote beta cell survival'®. Other
beta cell survival genes such as KLHL5, LMO7, NEDD4L, ASB2 and PPP1R11 function in protein
ubiquitination, which targets proteins for degradation by the proteasome, and PSMD2 is a
component of the 20S proteasome itself. Proinflammatory cytokines induce endoplasmic

reticulum (ER) stress in beta cells**, and proteasome-mediated ER-associated protein
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degradation (ERAD) resolves ER stress in beta cells?®®. Ubiquitin-mediated proteolysis may
therefore protect beta cells from cytokine-induced stress, although the function of most of these
genes in beta cells is unknown. We also observed enrichment of class | MHC antigen-related

terms, although genes annotated with these terms were largely overlapping with other terms.

Together these results identify genes and molecular processes that affect beta cell loss in
response to proinflammatory cytokine exposure and reveal that T1D risk is specifically enriched

for pro-survival genes highly induced in cytokine exposure.

Identifying functional regulatory variants in beta cell cCREs with SNP-SELEX
Given that beta cell pro-survival genes up-regulated in cytokine exposure were enriched at T1D
risk loci, we next sought to determine the transcriptional regulators of gene activity in beta cells

during cytokine exposure through which T1D genetic risk is mediated.

Because risk variants often affect transcriptional regulation via differential transcription factor
binding (TF), we systematically determined the effects of genetic variants in cytokine-responsive
beta cell cCREs on TF binding. A total of 184,086 variants were tested for in vitro differential TF
binding using a highly multiplexed assay SNP-SELEX?. The 184,086 variants were selected
based on mapping in islet enhancer regions genome-wide (56,796) or mapping to known diabetes
risk loci (T1D: 86,067, T2D: 33,354), in addition to variants randomly selected across the genome
(7,869). Among the tested variants were 183,373 SNPs and 713 indels (insertions/deletions of 1-
3 bp). We designed a library of 44bp oligos surrounding each variant containing each of the four
possible alleles for SNPs, or each of the two observed alleles for indels. We then tested oligos for
binding to 530 distinct E. coli-expressed TF proteins by sequencing recovered oligos across four
binding cycles, where the entire experiment was performed in duplicate (Figure 5a;

Supplementary Table 7).

After applying quality-filtering criteria (Supplementary Figure 5a-c), a total of 130,225 variants
were bound by at least one TF and were further analyzed for differential allelic binding. We
identified variants with allelic differences in TF binding from SNP-SELEX by calculating a
preferential binding score (PBS) score between alleles (see Methods) (Figure 5b, Methods).
There were 28,972 variants that affected binding of at least one TF (P<0.05 by Monte Carlo
randomization), with a mean of 2 TFs per variant and of 123 variants per TF (Figure 5b). TFs

from the same family often clustered together based on the correlation in variant effects on binding
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(Supplementary Figure 5d)?*-%. Variant effects on TF binding from SNP-SELEX were generally
correlated with predicted effects including from DeepSEA?® (mean r=0.81, Supplementary
Figure 5e) and position weight matrix (PWM) models (r=0.91, Supplementary Figure 5f),
although this was also highly variable across TFs (Supplementary Figure 5g). Consistent with
previous findings?®, a minority of variants (29% on average per TF) with allelic effects from SNP-
SELEX had a corresponding PWM prediction (Supplementary Figure 5h), which highlights the

benefit of this experimentally generated resource.

In total, there were 8,424 variants in beta cell cCREs affecting TF binding, including 2,229 in
cytokine-responsive beta cell cCREs. We determined if variants affecting TF binding within beta
cell cCREs were enriched for T1D association at different p-value thresholds compared to other
tested variants. T1D-associated variants in beta cell cCREs were enriched for allelic effects on
TF binding, and this enrichment was stronger for variants in cytokine-responsive cCREs (Figure
5c). By comparison, there was limited enrichment among all tested variants for allelic effects on
TF binding (Figure 5¢). We next grouped TFs into 220 sub-families using TFClass®, and tested
for enrichment of T1D association among variants in cytokine-responsive beta cell cCREs
disrupting TF binding in each sub-family. TF sub-families with strongest enrichment (OR>2)
included BCL6, POU3, PBX, MYC, ARX and PDX1 (Figure 5d). We also observed enrichment
for sub-families regulating stress, mitophagy and immune responses such as ATF3-like, IRF,
NR4, and GLI-like TFs (Figure 5d). To identify specific TFs likely regulating cytokine-induced
beta cell cCREs, we annotated TF genes in each sub-family with differential expression in
cytokine exposure. TF genes within enriched sub-families with cytokine-induced expression
included BCL6, GLIS3, IRF1/2/719, PBX1, PDX1, ATF3, NR4A1/3, and MYC (Supplementary
Table 4).

We then identified specific variants at T1D risk loci affecting TF binding in cytokine-responsive
beta cell cCREs. In total 380 variants in cytokine-responsive beta cell cCREs mapped within 1MB
of a known T1D locus and affected TF binding, including for TF with differential expression in
cytokine stimulation. For example, at the RAD51B locus, variant rs10483809 (T1D P=8.1x10%)
mapped in a cytokine-induced beta cell cCRE and the T1D risk allele had preferential binding to
IRF- and CUX-family TFs (Figure 5e). As SNP-SELEX is based on in vitro interactions, we
validated allelic effects on regulatory activity in beta cells directly. Electrophoretic mobility shift
assay (EMSA) demonstrated protein binding to the T1D risk allele using nuclear extract from the

beta cell line MING (Figure 5f). We also identified increased enhancer activity for the risk allele in
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luciferase gene reporter assays in MING cells, which was more pronounced in cytokine stimulation
(Figure 5g). This variant maps in RAD51B which is a pro-apoptotic protein involved in DNA
recombination®' and up-regulated in cytokine-treated islets (Supplementary Table 4), although

did not affect cell death in our screen.

Together these results identify functional variants altering TF binding in beta cell cCREs and

reveal transcriptional regulators through which variants in cytokine-responsive beta cell cCREs

broadly affect T1D risk.
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Figure 5. Identifying transcriptional regulators affecting T1D risk in beta cell cCREs with SNP-
SELEX. A) Overview of the HT-SELEX-Seq experiment. B) Top: Example of enrichment profiles of bound
oligos within an experiment and of one SNP with preferential binding to one nucleotide. Bottom: Distribution
of the number of variants with allelic binding per TF across 489 TFs and table summarizing the number of
bound variants and significant allelic binding variants across TFs. C) Enrichment of variants with allelic
binding for T1D association among all tested variants, variants in beta cell cCREs and variants in cytokine-
induced beta cell cCREs. Values represent odds ratio and 95% CI by Fisher's exact test. D) Enrichment
of variants with allelic binding of specific TF sub-families for T1D association among variants in cytokine-
induced beta cell cCCREs. Values represent odds ratio by Fisher’s exact test, and points are colored by p-
value. E) Regional plot of association p-values with T1D, with variants with p-value <10 in black; bulk
ATAC-seq tracks from human islets 2cyt: cytokine treatment with IL1b and IFNg, 3cyt: cytokine treatment
with IL1b, IFNg and TNFa, lo: low-dose, hi: high-dose, untr: untreated. A zoom in to the candidate variant
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is shown in the panel. F) Electrophoretic mobility shift assay using nuclear extract (NE) from MING cells
with probes for the alleles of rs10483809. G) Luciferase assays for rs10483809 in untreated MING cells or
after 24h treatment with high-dose cytokines. Relative light units (RLUs) are normalized to cells transfected
with the empty vector (pGL4.23). Average and standard deviation of 6 transfection replicates are shown.
P-values from two-tailed t-tests are shown.

T1D risk variants linked to genes affecting beta cell survival in cytokines
Finally, given the molecular processes and regulatory networks enriched for T1D risk in cytokine-
induced beta cells, we layered functional genomics together with human genetics data to annotate

specific T1D loci that regulate genes affecting beta cell loss in cytokine exposure.

We first intersected cytokine-responsive beta cell cCREs with fine-mapping 99% credible sets of
136 T1D signals®. At 77 T1D signals, at least one credible set variant overlapped a beta cell
cCRE, and at 52 signals a credible set variant overlapped a cytokine-responsive beta cell cCRE
(Supplementary Table 8). Among T1D signals with credible set variants in cytokine-responsive
beta cell cCCREs were those at loci previously implicated in beta cell function such as PTPN2,
DEXI/CLEC16A, GLIS3 and DLK1'%"32=* For the T1D signals with credible set variants in
cytokine-induced beta cell cCREs, we next linked variants at 37 signals to putative target genes
using beta cell co-accessibility (Supplementary Table 8). Genes linked to credible set variants
in cytokine-responsive beta cell cCREs included 19 genes affecting beta cell loss from the

CRISPR screen in addition to several key stress response genes (Supplementary Table 8).

Atthe DEXI/CLEC16A (16p13) locus, which has two independent T1D risk signals, seven credible
set T1D variants from the secondary signal overlapped cytokine-induced beta cell cCREs (Figure
6a-c, Supplementary Table 8). Among these, only one variant rs35342456 had significant allelic
effects on TF binding from SNP-SELEX (P=2.4x107), and therefore is a functional candidate for
underlying the association signal at this locus (Figure 6d). A previous study identified a functional
variant rs193778 in cytokine-stimulated islet chromatin at this locus®, but this variant was not
present in our 99% credible set data. To validate that rs35342456 has regulatory effects in beta
cells, we performed an EMSA to measure TF binding to each allele using nuclear extract from
cytokine-treated and untreated MIN6 beta cells (Figure 6e, Supplementary Figure 6).
Consistent with the SNP-SELEX data, we observed allele-specific effects of this variant on TF

binding in beta cells (Figure 6e).
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Figure 6. T1D locus 16p13 regulates beta cell survival gene SOCS1 in cytokine exposure. A) T1D
GWAS regional association plot showing two independent signals at the DEXI/SOCS1 locus. B) Fine
mapping posterior probabilities of the secondary signal. Variants with SNP-SELEX significant effect on
differential TF binding and within a cytokine-responsive cCRE are highlighted in red. C) Genome-browser
of the DEXI/SOCS1 locus showing bullk ATAC-seq tracks from human islets after the indicated treatments
and gene annotations. D) SNP-SELEX results for the candidate variant rs35342456. 2cyt: cytokine
treatment with IL1b and IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-
dose, untr: untreated. E) EMSA with nuclear extract (NE) from MING cells showing preferential binding to
probes with the reference allele, consistent with SNP-SELEX results. F) Zoom in of the locus showing
location of the candidate variant rs35342456 (yellow vertical line) in a cytokine-up regulated beta cell peak
that is co-accessible and show HiChlIP interaction with SOCS71 promoter in cytokine-treated beta cells and
EndoC-BH1 respectively. G) Count number of each sgRNA in the CRISPR-KO screen targeting SOCS1 in
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untreated ang high-cytokine treated EndoB-CH1, normalised to the sequencing depth of each sample,
showing higher counts in untreated samples for five out of six sgRNAs. Counts for the same sgRNA in the
two conditions are connected with a line. H) Normalized and batch-corrected expression of SOCS1 in
human islet samples after different cytokine treatment conditions. DESeq p-value and logz fold change are
from DESeq, showing significant (FDR<0.1) higher expression between 3-cytokine, high-doses treated
islets (red) vs untreated (purple). H) Effect of Socs? knock-down by siRNA on cell death-induced DNA
fragmentation using an anti-BrdU ELISA in MING cells. ANOVA p-values testing effect of both siRNA and
treatment are shown on the top. Two-tailed t-test p-values are shown for pairs of Socs1/scramble siRNA in
each treatment condition. Error bars represent standard deviation. 2cyt: cytokine treatment with IL1b and
IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-dose, untr: untreated.

The cytokine-induced cCRE harboring rs35342456 was co-accessible with the promoter region
of SOCS1, which had up-regulated expression and promoted beta cell survival in cytokine
exposure, implicating SOCS1 as a candidate causal gene for T1D risk (Figure 6f-h). We
confirmed SOCST1 as a target of cytokine-dependent cCRE activity at this locus using the HiChIP
data in cytokine-treated and untreated EndoC-BH1 beta cells. We observed a significant
interaction (FDR=0.068) between the cCRE and SOCS1 promoter in cytokine-treated beta cells,
which is highlighted using virtual 4C centered on the cCRE (Figure 6f). By comparison, there was
no evidence for an interaction between the cCRE and SOCS1 promoter in untreated beta cells
(Figure 6f). Furthermore, there was no evidence of interaction between the cCRE and the
promoter regions of other genes at the locus, including previously implicated candidate genes
DEXI and CLEC16A, the expression of which was also not significantly affected by cytokine
treatment (Supplementary Table 4). These results reveal that SOCS1 is a likely cis-regulatory

target of T1D risk variant activity in cytokine-induced beta cells at the 16p13 locus.

In the CRISPR screen SOCS1 promoted beta cell survival after cytokine exposure, and SOCS1
had significant increase in cytokine-induced expression (Figure 6g-h). We determined the effects
of SOCS1 on cytokine-induced beta cell survival using an independent assay that measures cell
death via DNA fragmentation (see Methods). We performed siRNA-mediated knockdown of
Socs1in the pancreatic beta cell line MING cultured with high-dose or low-dose cytokine treatment
with or without TNFa as well as in untreated conditions, and measured DNA fragmentation using
an anti-BrdU ELISA. We observed significant increase in DNA fragmentation in Socs7 siRNA
compared to scramble control siRNA (two-way ANOVA P=3.3x107, Figure 6i). Furthermore, the
effects of Socs? knockdown were more pronounced in cytokine-treated compared to untreated

beta cells, although this interaction was not significant (P>.05) (Figure 6i).
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These results reveal that the up-regulation of SOCS17 activity in response to cytokine exposure

promotes beta cell survival and plays a likely causal role in risk of T1D.

DISCUSSION

Combining functional genomics and genetic association data revealed genes and molecular
processes involved in risk of T1D in beta cells. Genes with highly induced expression that
promoted beta cell survival in response to cytokine exposure were specifically enriched at T1D
loci. These genes broadly reflect two classes of intrinsic mechanisms that protect beta cells
against proinflammatory cytokines: first, direct inhibition of the inflammatory response and,
second, resolution of stress-induced damage due to the inflammatory response. The activity of
these pro-survival genes is induced by distal beta cell cCREs that respond to cytokine signaling,
and these cCREs in turn often harbor T1D risk variants. As a result, risk of T1D can likely be
explained in part by reduced induction of pro-survival genes in beta cells in response to

proinflammatory cytokines during disease progression.

Pro-survival genes involved in modulating the immune response included PTPN2 and SOCST,
which map to known T1D risk loci. Both PTPN2 and SOCS1 suppress the inflammatory response
by inhibiting the JAK/STAT pathway. Previous studies in model systems demonstrated that
knockdown of PTPNZ2 in beta cells led to increased phosphorylation of STAT1/3 upon activation
by interferon gamma as well as phosphorylation of the pro-apoptotic protein BIM'*3%, which in turn
increased beta cell death. Studies in model systems have shown that SOCS1 promotes beta cell
survival by blocking the phosphorylation of JAK to suppress the inflammatory response’®?%%. |n
line with these findings in model organisms, our study reveals a role for PTPN2 and SOCS1 in
promoting cell survival in human beta cells in cytokine exposure. Furthermore, based on direct
links to a T1D risk variant, the regulation of SOCS1 activity in beta cells after cytokine exposure

likely plays a causal role in T1D.

Pro-survival genes with highly induced expression in cytokines were also involved ubiquitin-
mediated proteolysis. Among these were several LMO7, PPP1R11 and PSMD2 which mapped
to T1D loci®*. Cytokine signaling in beta cells induces proteasomal activity®®, and the
proteasome is involved in cell survival®®**2. As proinflammatory cytokines induce ER stress in beta
cells in the context of T1D? which can lead to cell death*’, and ER stress is resolved in in part

through protein degradation*, these genes may function in resolving ER stress. However, at
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present, the function of these genes in beta cells and the mechanisms through which
ubiquitination-mediated proteolysis may regulate survival in T1D are unclear. In addition to ER
stress, cytokines also cause beta cell death through the production of ROS in mitochondria®**—*'.
Mitophagy is induced by ROS production downstream of inflammation to prevent beta cell
damage*®, and our analyses revealed pro-survival genes affecting mitophagy. Moreover, many
pro-survival genes were also involved in class | MHC antigen processing and presentation. Class
I MHC activity in beta cells is necessary for progression of T1D*, likely by an increased exposure
of beta cell antigens promoting an immune response. It is thus possible that some genes play
dual roles in T1D via beta cell survival as well as antigen presentation, although other models will

be needed to test the latter hypothesis.

While our study identifies SOCS1 as a novel candidate gene for T1D, several other genes at the
16p13 locus have been previously implicated in disease including DEXI and CLEC16A. Inhibition
of DEXI in beta cells was previously shown to reduce the activation of STAT and chemokine
production and promote survival in response to viral double-stranded RNA (dsRNA)". In our
CRISPR screen we observed the opposite effect where DEXI function promoted beta cell survival.
T1D risk variants at 16p13 were also previously shown to physically interact with the DEXI
promoter in cytokine-treated beta cells, although we did not find corresponding evidence in our
HiChIP data in this study, nor did DEXI have differential expression in cytokine exposure. In the
case of CLEC16A, pancreas-specific deletion in mice led to decreased mitophagy and abnormal
mitochondria®, although we didn’t identify CLEC16A in our screen and CLEC16A expression was
not affected in cytokine treatment. Another candidate gene at this locus, CIITA, is an MHC class
Il trans-activator that has induced expression in cytokine treatment and is expressed in beta cells
from T1D donors®. Therefore, it is likely that several genes mediate T1D risk in beta cells at this

locus.

Multiple genes such as DEXI had opposite effects on beta cell survival compared to previous
reports. DEXI is a pro-survival gene in our screen but was previously shown to induce beta cell
death in response to viral dSsSRNA'". In another example, NDRG2 is a pro-death gene in our data
but was previously shown to protect beta cells from lipotoxicity®. In such cases, opposing effects
on survival could arise from differences in the cellular responses to different stressors such as
viral dsRNA, cytokines, or lipids, or from differences between human and mouse. In addition, our
screen identified genes affecting beta cell proliferation, such as NFATC2%?. The relevance of such

genes to primary beta cell function in cytokine exposure is unclear, however, as these genes
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might reflect the transformed nature of EndoC-BH1 cells. At present, EndoC-BH1 is the only
human beta cell option for a genome wide CRISPR screen, which require large numbers of cells
for sufficient coverage. Study designs that compare sgRNAs recovered from cell populations
FACS-sorted based on a cellular marker, as was recently done for insulin content in EndoC-H1
cells®®, may also complement the cell loss design used here. Human pluripotent stem cell (hPSC)
derived islet organoids could be a future platform for screens but will require a differentiation-

compatible lentivirus transduction method and scalable beta cell purification strategy.

Our study also provided novel insight into transcriptional regulators of gene activity in beta cells
through which T1D risk variants act in response to cytokine signaling. Variants with differential
transcription factor binding within cytokine-responsive beta cells cCREs were broadly enriched
for T1D association, supporting that a subset of T1D risk acts in beta cells by disrupting
transcriptional programs which respond to cytokine signaling. The function of TF sub-families
most enriched for T1D association largely mirrored the molecular processes enriched in beta cell
pro-survival genes with induced expression, providing orthogonal support for the role of these
processes in T1D risk in beta cells. Furthermore, by annotating TF genes within these sub-
families with altered expression in cytokine exposure, we pinpointed specific TFs likely driving
beta cell cis-regulatory activity affecting T1D risk. For example, in beta cells, IRF TFs and BCL6
regulate inflammation'®%*%° ATF3, GLIS3, and MYC regulate stress response and apoptosis®®-
% and NR4A1, NR4A3, PDX1 and MYC regulate mitochondrial function and mitophagy®¢%°¢".
These findings also support a model in which T1D risk variants broadly affect the activity of a wide

variety of TFs regulating disease-relevant pathways in beta cells.

While IL1B, IFNy and TNFa have been extensively used as an in vitro model of T1D, beta cells
are exposed to additional cytokines during disease progression. For example, a recent study
revealed widespread changes in beta cell regulatory programs after exposure to IFNa®?, which is
involved in anti-viral immunity. Continued generation of genomic maps in beta cells exposed to
other disease-relevant cytokines will therefore be informative in interpreting T1D risk. Beta cells
are also exposed to other T1D-relevant external stimuli beyond cytokines. In vitro models of
endoplasmic reticulum stress®®, oxidative stress®*, hypoxia® and hyperglycemia®® have all been
used to study beta cell function in the context of disease but the genomic response of beta cells
to these stressors and their role in T1D genetic risk remains largely unknown. As in vitro models
only partially re-capitulate disease biology, mapping regulatory programs in beta cells from

individuals in the early stages of T1D will also help in interpreting disease risk.
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In summary we identified transcriptional regulators, genes and molecular pathways that affect
T1D risk by modulating beta cell survival after cytokine exposure, providing new avenues to

preserve beta cell mass in T1D.

METHODS

Human islet samples

Human islet samples obtained through the Integrated Islet Distribution Program (IIDP) and the
University of Alberta were enriched using a dithizone stain and cultured in CMRL 1066
supplemented with 10% FBS, 1X pen-strep, 8mM glucose, 2mM L-glutamine, 1mM sodium
pyruvate, 10mM HEPES, and 250ng/mL Amphotericin B. For cytokine-treated samples, human
cytokines were added to the culture media for 24 hours as follows: for high doses, 10ng/mL and
IFN-g, 0.5ng/mL IL-1B (2 cytokines), with 1ng/mL TNF-a where indicated (3 cytokines); for low
doses, 0.2ng/mL IFN-g and 0.01ng/mL IL-1B (2 cytokines), with 0.02ng/mL TNF-a where
indicated (3 cytokines). Islet studies were approved by the Institutional Review Board of the

University of California San Diego.

Islet nuclei isolation

Human islets were collected from culture and homogenized in permeabilization buffer consisting
of 5% BSA, 0.2% IGEPAL-CA630, 1mM DTT, and 1X cOmplete EDTA-free protease inhibitor
(Sigma) in 1X PBS. Isolated nuclei were resuspended in 1X TDE1 buffer (lllumina) and quantified

using a Countess Il Automated Cell Counter (Thermo).

ATAC-seq data generation

Approximately 50,000 nuclei were tagmented in a 25uL reaction volume using 2.5uL TDE1
(NMumina). Transposition reactions were carried out for 30 minutes at 37C in a thermal cycler.
Tagmentation reactions were cleaned up using a 2X reaction volume of Ampure XP beads
(Beckman Coulter) and used to prepare libraries using the Nextera XT Dual-Indexed primer
system (Nextera) and NEBNext High-Fidelity PCR Master Mix (New England Biolabs). Libraries
were sequenced by the UCSD Institute for Genomic Medicine on an lllumina HiSeq 4000 using

paired end reads of 100bp.
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ATAC-seq data analysis

Processing. FASTQ reads were trimmed using Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with flags ‘--paired’ and ‘--
quality 10’ and aligned to the hg19 reference genome with BWA mem®’ using the M’ flag. We
used Picard to mark duplicate reads and filtered, sorted, indexed, and aligned reads using
samtools®® with flags ‘-q 30", -f 3’, ‘-F 3332’. Mitochondrial reads were also removed. Peaks were
called on the filtered reads using MACS2% with parameters ‘-—-extsize 200 --keep-dup all --shift -
100 --nomodel’. We generated bigWig tracks normalized by RPKM for each experiment using
bamCoverage’™. TSS enrichment scores for each ATAC-seq experiment were calculated using
‘tssenrich’ (https://pypi.org/project/tssenrich/), as the aggregate read distribution in a 4kb window
centered on the TSS and normalized to an extended region of 1.9 kb on each side, according to

the Encyclopedia of DNA Elements (ENCODE) guidelines.

PCA. We identified all peaks identified in at least two individual samples and constructed a read
count matrix using edgeR’". We then calculated normalization factors using the ‘calcNormFactors’
function and used limma to apply the voom transformation and regress out batch effects and
sample quality as measured by TSS enrichment scores. We then calculated principal components
(PCs) using the top 10,000 most variable peaks using the ‘prcomp’ function with rank 2. The
software used to generate PCs is located at https://rdrr.io/github/anthony-

aylward/exploreatacseq’.

Differential chromatin accessibility. We generated a ‘master’ set of consensus ATAC-seq peaks
by merging reads from all experiments and calling peaks on these merged reads using MACS2
as described above. The peaks were filtered to remove sites found in less than three individual
samples and the ENCODE hg19 blacklist v273. A count matrix of reads from each sample mapping
to this list of peaks was created using featureCounts™ and used for differential accessibility
analysis using DESeq2'%. We used the experimental design ‘~treatment + donor’ and a cutoff of
FDR<0.1 as computed by the Benjamini-Hochberg method to call differentially accessible sites
between treated and untreated conditions. To compare the effects of treatment with and without
TNF-a, we compared the absolute log. fold changes from DESeq using a Wilcoxon signed rank
test in R. To identify differentially accessible sites with different effects at different treatment
durations we performed a linear regression of log2 fold changes with respect to matched controls

as a function of time (6, 24, 48 and 72 hours). A nominal p-value of 0.01 was chosen as threshold.
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Motif enrichment analysis. We used the ‘findMotifsGenome’ tool from HOMER™ to test
differentially accessible chromatin sites for motif enrichment compared to a background of

consensus ATAC-seq peaks, and using the masked hg19 genome as reference.

RNA-seq data generation

RNA was isolated using the RNeasy Mini system from Qiagen from a total of 16 samples of human
islets from 4 different donors and exposed for 24 hours to either 3 cytokines-high dose, 2
cytokines-high dose, 3 cytokines-low dose, 2 cytokines-low dose or control conditions.
Approximately 500-1000 islets were used per sample. RNA quality was assessed using a 2200
TapeStation to confirm RNA integrity, and all samples had a RINe score of >7. Ribodepleted total
RNA libraries were prepared and sequenced by the UCSD Institute for Genomic Medicine on an

lllumina HiSeq 4000 using paired end reads of 100bp.

RNA-seq data analysis

We used STAR (2.5.3a)° to align paired-end RNA-Seq reads to hg19 genome with a splice
junction database built from the Gencode v19 gene annotation’® and the following parameters: -
-outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --alignintronMin 20 --alignintronMax
1000000 --alignMatesGapMax 1000000 --outSAMtype BAM Unsorted --quantMode
TranscriptomeSAM. Gene expression values were quantified using the RSEM package (1.3.1) 77
with default parameters and loaded into R for further processing. Genes were filtered for >0.1
TPM on average per sample with 22,175 genes remaining after filtering. Raw expression counts
were normalized using voom transformation from limma package and corrected for sample batch
effects using limma removeBatchEffect. The R prcomp function was used to perform principal
component analysis for the top 500 most variable genes. We identified differentially expressed
genes between each cytokine treatment (3 cytokines-high dose, 2 cytokines-high dose, 3
cytokines-low dose, 2 cytokines-low dose) and untreated conditions using DESeq2'? with default
settings and controlling for sample of origin using design= ~ sample + condition. An FDR of 10%
was chosen as significance threshold. Metascape (metascape.org) was used to perform gene

ontology enrichment analysis with standard settings.

Single nuclei ATAC-Seq data generation
Islet nuclei from 4 donors (3 samples treated for 24h with 3 cytokines, high doses, and 4 untreated

samples) were prepared as described above, and adjusted to a concentration of approximately
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3000 nuclei/uL. Samples from two donors and same treatment conditions (SAMN12833535 and
SAMN12889245) were pooled prior to snATAC library preparation and were de-multiplexed after
sequencing as described below. We targeted 5000 nuclei per assay for use in the 10X Genomics
Chromium Single Cell ATAC assay using v1 chemistry. Sequencing was performed at the UCSD
Institute for Genomic Medicine on an lllumina NovaSeq using a specific paired-end 10X ATAC

run configuration with reads of 50bp to a final read depth between 49 to 109M reads per sample.

Single nuclei ATAC-Seq data analysis

Processing. 10x Genomics Cell Ranger ATAC v1.1 (cellranger-atac count) was used to process
10x fastq files for each sample and perform alignment to the hg19 reference genome. For each
assay, we then removed barcode multiplets using Cell Ranger’s multiplet removal script (version
1.1). BAM files were filtered for PCR duplicates, converted into tagAlign files, and intersected with
a reference set of islet ATAC-seq peaks’® to construct a sparse matrix containing read counts in
peaks for each cell. Cells with a minimum of 500 (sample SAMN15337453, untreated), 1,000
(samples SAMN12833535 and SAMN12889245), or 4,000 (sample SAMN15337453, treated and
sample SAMN15314807) total mapped reads were retained for further analysis.

Clustering. Prior to combining all samples, each assay was clustered separately using scanpy
v.1.6.07°. First, we extracted highly variable peaks using mean read depth and dispersion. Read
depth was normalized and log-transformed counts were regressed out within highly variable
peaks. We then performed PCA analysis and obtained the top 50 principal components. We
calculated the nearest 30 neighbors using cosine metric to perform UMAP dimensionality
reduction (min_dist = 0.3) and clustering using the Leiden algorithm. For each assay, cells with
low usable counts and fraction of reads in peaks were iteratively removed. In order to obtain more
accurate clustering and cell type assignment, the filtered assays were then merged and combined
with 3 existing islet SNnATAC datasets previously filtered using the same criteria as above®’, and
the top 50 PCs were obtained from the merged experiments. Harmony®' was then used to batch
correct PCs for donor across experiments. Using the corrected PCs, we applied the UMAP
dimensionality reduction method, and clustered cells using the Leiden algorithm (Resolution =
0.5), and sub-clustered using the Louvain algorithm (Resolution = 1.5). Low-quality cells from the
merged clusters were iteratively removed and manual doublet removal was performed on sub-
clusters with above average high usable read depth or those that expressed multiple marker
genes. After the entire filtering process, 28,853 cells were removed in total, and the final merged

cluster contained 25,200 cells (untreated cells: 21,318; cytokine-treated cells: 3882) mapping to
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10 clusters. Cell type of each cluster was assigned based on chromatin accessibility at promoter
regions of known marker genes’® and verified through UCSC genome browser tracks. The islet
samples from Wang et al®® were removed from the final clustering and the remaining cells

(untreated cells: 3,947, cytokine-treated cells: 3,882) were used for downstream analysis.

SnATAC pooled sample demultiplexing. In order to assign the pooled assays to the two sample
donors, we genotyped non-islet tissue from the two samples. During islet picking, non-islet cells
were collected separately from the islets, washed with 1X HBSS, pelleted at 500rcf for 5 minutes,
and snap frozen with liquid nitrogen until genomic DNA extraction. We extracted genomic DNA
from the non-islet cells using the PureLink Genomic DNA mini kit. Samples were genotyped by
the UCSD Institute for Genomic Medicine using the lllumina Infinium Omni 2.5-8 assay.
Genotypes were called using GenomeStudio (v2.0.4) with default settings. Using PLINK®?, we
filtered out rare variants with MAF <0.01 in the Haplotype Reference Consortium panel r1.1 and
ambiguous alleles with MAF > 0.4. Filtered variants were used to impute genotypes into the HRC
r1.1 panel using the Michigan Imputation Server with minimac4. Genotypes with high imputation
quality (R2>0.3) were used to demultiplex pooled snATAC samples using Demuxlet®® with default

settings.

Peak Calling. To identify chromatin accessibility peaks in each islet cell type, we extracted the
reads from all cells within a given cluster and generated separate tagAlign files for each cell type.
To correct for the 9-nt duplication created by Tn5 transposase, we shifted the reads aligned to
the positive strand by +4bp and reads aligned to the negative strand by -5bp. We then called
peaks using MACS2% with the parameters ‘q 0.05’, --nomodel’, ‘--keep-dup all’, and ‘g hs'.
Blacklisted regions (v.2) from ENCODE were removed. The bedgraph output by MACS2 was
sorted, normalized to counts per million (CPM), and converted to bigwig for visualization on UCSC
genome browser. The peak calls from the individual cell types were then used to annotate the

consensus set of peaks identified in bulk islet ATAC using bedtools intersect (v2.26.0).

Differential chromatin accessibility in islet cell types. We generated distinct BAM files for each cell
type, donor and condition, using the barcodes to extract reads from the filtered and duplicate-
removed BAM files from each assay using ‘samtools’ and ‘grep’. For each cell type, we then
generated a matrix of read counts mapping to bulk ATAC consensus peaks using featureCounts’
. Each matrix was filtered for an average read depth of 1 per sample/condition and DESeq2 was

used to identify differentially accessible sites between cytokine treated and untreated samples
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with the donor as covariate (design = ~ treatment + donor). FDR <0.1 was chosen as significance
threshold. To visualize results as heatmap and hierarchical clustering, we concatenated the
matrices for each cell types, normalized the raw counts using DESeq variance stabilizing
transformation (vst) function, filtered for peaks with differential accessibility in at least one cell
type and plotted the resulting matrix using ‘pheatmap’. To compare the effects of cytokine
treatment between beta cells and bulk islets and between beta cells and alpha cells, we compared
the absolute log fold changes from DESeq at the same peaks using a Wilcoxon signed rank test
in R.

Co-accessibility. Using Cicero (version 1.4.4)", we calculated co-accessibility between pairs of
snATAC peaks. To indicate which cells were accessible in which peak, we created a sparse m x
n binary matrix by encoding cells from a given cell type (n) and merged peaks across all cell types
(m), obtained using bedtools merge. We calculated Cicero co-accessibility scores following the
recommended analysis protocol (https://cole-trapnell-lab.github.io/cicero-
release/docs/#recommended-analysis-protocol), using the 30 nearest neighbors of UMAP
coordinates to aggregate cells, and a window size of 1Mb to calculate cicero models. We then set
a threshold of 0.05 and a minimum distance of 10kb to define pairs co-accessible for a given cell
type. Co-accessibility was calculated for either untreated beta cells, cytokine-treated beta cells or
merged treated-untreated beta cells. To annotate co-accessibility links between distal and
promoter peaks, we categorized peaks within a 5kb window of a transcription start site (+/- 2.5 kb
from TSS (GENCODE version 197°) as ‘promoter’, and otherwise as ‘distal’. To calculate
enrichment in cytokine responsive cCRE for concordant effects with distal genes, we annotated
each bulk ATAC consensus peak with results of differential accessibility in islets (3 cytokines,
high-doses, 24 hrs) and co-accessibility in beta cells (merged treated-untreated conditions) with
at least one gene with differential expression (3 cytokines, high-doses, 24 hrs). We then
performed Fisher’s exact test on each combination of direction of effects (upregulated cCRE vs
upregulated gene, upregulated cCRE vs downregulated gene, downregulated cCRE vs
upregulated gene and downregulated cCRE vs downregulated gene). The same test was

performed for cCREs proximal to gene promoters (<10 kb from TSS).

Motif enrichment analysis. Using ChromVAR™ (version 1.8.0) we calculated the deviation in
accessibility from expected accessibility within islet cell types. We used a binary sparse matrix of
accessible cells in each ATAC peak (see above) as input, and add GC bias using the

‘BSgenome.Hsapiens.UCSC.hg19’ library for genome sequence input. We then filtered cells with
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a minimum depth of 1500 and a minimum proportion of reads in peaks of .15, and filtered peaks
for non-overlapping coordinates. The remaining peaks were annotated for motif occurrence from
the JASPAR database, using the matchMotifs function from the motifmatchr package. We then
computed deviations and variability for each cell type separately (alpha and beta) with the
provided ChromVAR functions. For each transcription factor (n=386) we then calculated the
absolute difference of the average deviation scores of cytokine treated and untreated cells and

compared these differences in alpha versus beta cells using a scatterplot.

EndoC-BH1 cell culture

EndoC-BH1 cells were cultured at 9x10* cells/cm? of cell culture surface area pre-coated with
ECM (Sigma, E1270) and Fibronectin (Sigma, F1141). Cell culture media containing DMEM
(Gibco,11885084), 2% BSA (Sigma, A1470), 3.5x 10*% 2-mercaptoethanol (Gibco, 21985023),
0.12% Nicotinamide (Calbiochem, 481907), 5.5 ng/mL transferrin (Sigma, T8158), 6.7pg/mL
Sodium Selenite (Sigma, 214485) and 1% Penicillin-Streptomycin (Gibco, 15140122) were
refreshed every 2 days. Cells were passaged weekly using 0.25% Trypsin-EDTA for dissociation,
which was quenched with an equal volume of FBS and two volumes of IMDM media (Gibco,
12440053). Dissociated cells were spun down at 1200 rpm for 5 minutes and counted before

seeding with the above-mentioned density.

HiChIP sample preparation

To collect samples for HiChIP assays, 10 million EndoC-BH1 cells were treated with either control
(0.1% BSA) or cytokines (0.5 ng/mL IL1B, 1 ng/mL TNFa and 10 ng/mL IFNy) for 72 hours.
Treated cells were cross-linked with 1% formaldehyde for 15 minutes with shaking at room
temperature, followed by a 5-minute quenching step with 1.25M glycine/PBS. Cross-linked
EndoC-BH1 cells in both control and cytokine-treated conditions were washed three times with
ice-cold PBS and collected from the dish with a cell scraper. Cells were then pelleted, and flash
frozen with liquid nitrogen. HiChIP assays were performed by Arima Genomics using the HiC+
protocol with a H3K27ac antibody, and libraries were sequenced on an lllumina NovoSeq with

150 bp paired end reads.

HiChIP data analysis

Data was processed wusing the MAPS v2.0 pipeline from Arima Genomics
(https://github.com/ijuric/MAPS/tree/master/Arima_Genomics). We used hg19 as the reference
genome and H3K27ac ChlP-seq peaks in EndoC-BH1 cells from a published study®*. Interactions


https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466025; this version posted October 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

between 5kb windows containing a H3K27ac peak were considered significant at FDR<0.10.
Loop calls were intersected with promoter regions of genes from GENCODE to identify enhancer-
promoter interactions. Contact matrices were generated using the pre command from Juicer
tools®. For virtual 4C, we extracted all contacts which included the 5kb window around the site

of interest.

Lentiviral human GeCKO-V2 library preparation, transduction, and titration

To package lentivirus encoding the human GeCKO-V2 CRISPR screen library®, plasmids
containg the gRNA library (Addgene, 1000000048) were transfected into the HEK 293T cells
together with the lentiviral packing vectors, pMD2.G (Addgene, 12259) and psPAX2 (Addgene,
12260), using a PolyJet™ DNA transfection reagent (Signagen Laboratories, 504788).
Transfected cells were kept in the culture to allow virus to be released. And the media containing
lentivirus was collected at 36, 48, 72 hours post transfection before filtered through a 0.45um cell
strainer to remove cell debris. Lentiviral particles were pelleted down at 20,000 rcf for 2 hours,
using an Optima L-80 XP Ultracentrifuge machine (Beckman Coulter) provided by the Human
Stem Cell Core at UCSD. The same media for EndoC-BH1 cell culture was used to resuspend

the virus.

A spin-inoculation method was adopted to transduce the viral library into the EndoC-BH1 cell line.
To do this, the cells were pre-treated with 8 pg/mL polybrene (Sigma, TR-1003) in the culture
media for 30 minutes. Then the virus was added before the entire plate was spun in a swing-
bucket centrifuge machine at 930g for 45 minutes. It takes 48 hours for the sgRNA and Cas9

protein to be expressed in the EndoC-BH1 cells.

CRISPR loss-of-function screen for regulators of B-cell survival under cytokine stress

The EndoC-BH1 cells were expanded to a total of 300 million cells before spin-inoculated with the
lentiviral human GeCKO-V2 library at an MOI=0.3. To enrich for successfully transduced cells, a
3-day puromycin (5 pg/mL, Sigma, P8833) selection was performed 48 hours after the spin-
inoculation. And 60M (500X genome coverage) cells were harvested as a representation control
for the GeCKO-V2 sgRNA library. The rest of the cells were kept in the culture condition for an
additional 14 days with puromycin (1 ug/mL) to achieve sufficient gene deletion and treated with
either 0.1% BSA or a combination 0.5 ng/mL IL13 (PerroTech, 200-01B), 1 ng/mL TNFa
(PerroTech, 300-01A) and 10 ng/mL IFNy (PerroTech, 300-02) for 72 hours. A time-point

experiment was performed to evaluate which treatment duration was necessary to induce cell
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death. EndoC-BH1 cells were seeded 24 hours before the cytokine treatment and residual cell
number was counted at 24, 48 and 72 hours of treatment (n=3). Cell number are shown in
Supplementary Table 5. We were able to harvest another 60M (500X genome coverage) cells
from the control (0.1% BSA) treated cells and 30M (250X genome coverage) from the cytokine

treated cell, although they were started with the same number.

Genomic DNA from all three conditions were purified with a Quick-gDNA™ MidiPrep kit (Zymo
Research, D3100). And sgRNA library were amplified from the genomic DNA using a two-step
nested PCR method modified from a previous published protocol (PMID: 28417999). In brief,
guide RNA inserts were amplified from the genomic DNA with the following primers:

F1-1: TCCCTACACGACGCTCTTCCGATCTNNNNNGGAAAGGACGAAACACCG
F1-2.TCCCTACACGACGCTCTTCCGATCTNNNNNHGGAAAGGACGAAACACCG
F1-3:TCCCTACACGACGCTCTTCCGATCTNNNNNHHGGAAAGGACGAAACACCG

F1-4: TCCCTACACGACGCTCTTCCGATCTNNNNNHHYGGAAAGGACGAAACACCG
R1-1:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNTGCTATTTCTAGCTCTAAAAC
R1-2:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVTGCTATTTCTAGCTCTAAAAC
R1-3:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVMTGCTATTTCTAGCTCTAAAAC
R1-4:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVMAATGCTATTTCTAGCTCTAAAAC

Pooled F1 primers (F1-1 to F1-4) and R1 primers (R1-1 to R1-4) were used each PCR reaction
to avoid cluster registration failure on lllumina machines. Amplicons from the first step of PCR
were gel purified and subjected to a second round of PCR to add Illlumina sequencing adaptors
and TruSeq indexes. Primers used in the second PCR step were listed below:
F2:AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
R2:CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC
CG

Sequencing library amplified from the second round of PCR were size-selected and purified with
a magnetic bead-based SPRIselect reagent (Beckman Coulter, B23318), and subjected to
HiSeq4000 lllumina NGS platform using a single read (SR75) method.

Analysis of CRISPR screen results
Adaptor sequences ggaaaggacgaaacaccg and gttttagagctagaaatagca flanking the 19-20 base

pair of sgRNA sequences were trimmed using cutadapt. Trimmed sequencing reads were then
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aligned to the reference sgRNA library with bowtie2 with default settings, resulting in a BAM file
that can be used for sgRNA counting with the MAGeCK model-based tool for CRISPR-Cas9
knockout screens®’. Statistical significance of guide RNA representation in control and cytokine
treated datasets was estimated with the mle subcommand in the MAGeCK package. An effect
(beta) for each gene from this analysis was extracted as an indicator of enrichment (positive beta)
or depletion (negative beta) of sgRNAs targeting this gene in the cytokine-treated cells. miRNA
genes and genes with less that 3 sgRNA guides were excluded from further analysis. Significantly
enriched (427) or depleted (440) genes at FDR<.10 were further filtered for expression in islet
(average sample TPM>=1). Gene ontology analysis was performed using GSEA
(http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) against the REACTOME and GO
biological process gene sets, including only gene sets with more than 20 and less than 1000
genes. A Fisher’s exact test was used to calculate the enrichment of pro-cell survival and pro-cell
death genes segregated by up-regulated, down-regulated or no change in expression in high-

dose cytokine treatment within 1Mb of all known T1D risk loci including MHC.

SNP-SELEX variant selection.

Variants were selected and classified based on 4 criteria. (1) T1D loci: We selected 86,067
variants from 57 known T1D loci, including the MHC region. Variants at these 57 loci were
selected based on: credible set variants from fine mapping data for 36 loci®, all variants in 1,000
Genomes Project (1KGP) phase 3 EUR LD (r2>0.2) with index variants at the remaining 21 loci,
and all variants in 1KGP with EUR MAF >0.5% in regulatory elements within 250 kb of index
variants at all 57 loci. (2) T2D loci: We selected 33,354 variants at known T2D loci, which include
lead variants and variants in LD with r2>=0.6 in EUR and non-EUR, and credible variants from
fine mapping studies. (3) Islet enhancers: We included 56,796 variants in TKGP phase 3, filtered
for Hardy-Weinberg Equilibrium p-value >=1e-5 and MAF >=0.5% that intersected with islet
enhancers, defined using published ATAC-Seq and H3K27ac ChIP-Seq data from human
islets®¥®°. (4) Random: 7,869 negative control variants from filtered 1KGP SNPs, but randomly
chosen from the genome were included. Variants from categories 2, 3 and 4 have been included
as a validation set in a previous publication®. The total number of selected variants is 184,086,
including 183,373 SNPs and 713 indels. A small subset of variants overlaps between the 4

different selection methods, and therefore in total there were 182,226 distinct variants selected.
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SNP-SELEX data generation.

Oligonucleotide design consisted of a target sequence of 44 nt containing the variant, flanked by
illumina TruSeq dual-index system adapters and barcodes. Three hundred and eighty-four pools
of oligonucleotides were synthesized by CustomArray (Seattle, WA), each pool carrying a unique
sequence barcode. To control for PCR duplicates, the 3 nucleotides at each end of the 44 nt
sequence were synthesized Ns, which generated random combination of nucleotides tagging
each molecule. For SNPs, the central position was substituted by an N, resulting in synthesis of
all 4 nucleotidic variations (97,758 oligos), while for indels (maximum 3bp-long) both a long (44
nt) and a short (41-43 nt) form were synthesized (259 x 2 oligos). The oligos were double stranded
using 20 cycles of PCR and sequenced for 2x50 paired-end cycles with illumina Hiseq 2500 as

input references.

SNP-SELEX data was generated as previously described?®. The cDNA of 530 distinct TF proteins
were cloned into pET20a plasmids and expressed using Rosetta (DE3) pLysS E. coli strains.
6xHis-tagged TF proteins were immobilized to Ni sepharose beads (GE, 17-5318-01) in Promega
binding buffer (10mM Tris pH7.5, 50mM NaCl, 1mM MgCI2, 4% glycerol, 0.5mM EDTA, 5ug/mi
poly-dIdC) across 8x96-well plates. Oligos from input were added into the protein beads mixture
and incubated at RT for 30 min. Beads were washed for 12 times with the Promega binding buffer
and re-suspended in TE (10mM Tris pH 8.0, 1mM EDTA). The eluted DNA was amplified by PCR
and purified (Qiagen, 28004): an aliquot used for library preparation and sequencing and another
aliquot of the same product was added to the protein beads mixtures for a new binding cycle. Two
independent replicates consisting of four binding cycles each were performed and sequenced
using two flow cells of 2x50 paired end illumina Hiseq 2500. To reduce confounders due to
systematic synthesis bias, in the second experiment the order of the input pools was inverted (i.e.

the same TF protein was hybridized to an oligo pool synthesized with a different barcode).

SNP-SELEX sequencing data analysis.

Sequence processing. FASTQ files from each cycle and input were first filtered for identical
sequences using FastUniq (v1.1)°', which removed on average 10% of reads in each experiment,
to a final median depth of 3 and 0.64 million paired-end reads for the input and the selected oligos
respectively. Sequencing reads were then aligned using BWA-MEM (version 0.7.12)%" to the oligo
library fasta files. For each oligo, the number of read pairs carrying each nucleotide was counted,
only counting reads that were uniquely mapped, correctly paired, with quality=60 and with the

same sequence at the SNP position. Oligos with less than 8 read pairs for SNPs and 4 reads
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pairs for indels were excluded for further analysis. To estimate the consistency between the two
experimental replicates we calculated the correlation between the proportion of reads aligning to
a given SNP over the total number of reads in a given experiments. The proportion of reads
aligning to each oligo in each experiment was well correlated between the two replicates (median
Pearson coefficient r=0.86), and the correlation increased over the cycles, indicating that the
selection for the same oligo by a given protein was reproducible between the two replicates. We
excluded that this result was due to the starting oligonucleotide stoichiometry in the pools, as the

different replicates had different input material.

Motif analysis was performed on the oligo sequences (40 nt) that were selected at cycle 4 of each
experiment to determine the enrichment for the expected motif or family of motifs. For motif
enrichment we used HOMER (library 4.7)® and MEME 4.12.0 (libraries:
JASPAR_CORE_2014 _vertebrates, jolma2013, encode_known, Mariani_2017 and
Barrera_2016)%. A positive motif match was determined if the expected motif (matching with the
first three letters of the name) or a motif from the same structural family (defined by homer
classification) were found among the top 20 enriched motifs. For 564 experiments, we found a
positive motif match in both replicates, for 90 in either of the two replicates and for 114 in none of
the replicates. Because for some analyzed TFs the motif is not known, for example for Zinc Finger
proteins, we did not consider failed experiment only based on the motif enrichment, but also on
the correlation between replicates. If the correlation between replicates was <0.5 and one of the
two replicates was enriched for the expected motif, then remove only the replicate that did not
contain the motif (16 experiments removed). If the correlation was <0.5 and both replicates did
not have motif in the corresponding family, we removed both replicates (53 experiments

removed).

Identification of variants with differential TF binding. For each experimental replicate, allelic counts
were tabulated for each oligo at each cycle, including only those variants covered by at least 8
read pairs for SNPs, or 4 reads pairs for indels, in all five cycles (0-4). Furthermore, variants with
less than 2 read pairs in the input for both the reference and alternate alleles and composing <
5% of the total reads in the pool were removed, as potentially biased inputs. To quantifying the
magnitude of the difference between reference and alternate allele binding across all cycles, we
used the “Preferential Binding Score” or PBS, which has been previously described?®. The PBS
corresponds to the AUC between the differences of log odds ratios of the two alleles compared

to cycle O (the input), and is calculated as follows:
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1) For a given oligo, the odds of allele a at cycle c is defined by the frequency P of allele a at
cycle c, divided by 1-Pa,c, which is equal to the read counts of allele a divided by the sum of
read counts of all other nucleotides r: Odds a,c = P a,c/ (1-P a,c) = counts (a,c) / counts(r,c)

2) The odds ratio is calculated as the ratio between the odds of allele a at cycle ¢ and the odds
of allele a at cycle 0: OR a,c = Odds a,c / Odds a,0

3) LogOR are calculated for reference and alternate allele for each cycle: LogORa,c =
log10(counts (a,c)) + log10(counts (rest, 0)) - log10(counts(a,0)) -log10(counts (rest,c))

4) The PBS is the AUC of the difference between LogORref and LogORalt (ALogOR), calculated

with the formula: PBS = %2, (c; — Ci41)(ALOGOR; + ALOGOR;41)

For each experiment replicate, to determine the statistical significance of the observed values, a
Monte Carlo randomization was conducted, which consisted of 250,000 randomly generated PBS
measurements. The randomizations consisted of shuffling the SNP labels 250,000 times within
each cycle and one PBS measurement was extracted each time. We observed that experiments
with fewer than 25 oligos generated non-normal PBS random distributions, therefore experiments

with less than 25 variants remaining after the above filtering steps were excluded.

After calculating preferential binding statistics in each individual experiment (same “well”, two
technical replicates), results of the two replicates for each experiment were combined using meta-
analysis of p-values, weighted on the total number or reads for reference and alternate allele in
cycles 1 to 4, and the average of effect sizes (PBS). Further, experimental replicates of the same
TF protein (different “wells”, variable number of replicates) were meta-analyzed to obtain a unique
value for each TF. A nominal p-value of 0.05 was chosen as arbitrary threshold to define a

preferentially bound variant.

Correlation of SNP-SELEX results between transcription factors. To compare variant effects on
binding of different TFs, we first computed a matrix of PBS scores where each row corresponded
to a SNP and each column to a TF. After filtering the matrix to retain only TFs with at least 50
bound variants, TF families with at least 3 components and variants that were ppSNPs in at least
one TF (27,655 variants and 457 TFs), we calculated a pairwise correlation matrix using the cor()
function in R, using the “pairwise” option. To perform hierarchical clustering on TFs, we filtered
the pairwise correlation matrix, retaining only rows and columns with non-missing values (264
TFs). The dendrogram of the hierarchical clustering of distances was obtained using the R
command as.dendrogram(hclust(as.dist(1-correlation_matrix))) and plotted using functions form

the “circlize” R package.
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Correlation between SNP-SELEX and SNP effect predictions. Predictions of TF motif alteration
by SNPs were calculated using the package motifbreakR®, using the H.sapiens
'HOCOMOCOV10' library of motifs PWM (640 TFs, including most of those tested by SNP-
SELEX) and using the parameters: filterp = TRUE, method="ic", threshold = 5e-4, BPPARAM =
BiocParallel::bpparam("SerialParam"). We tested using this approach 181,540 variants (some
where excluded in the formatting process by the function: snps.from.file (search.genome =
BSgenome.Hsapiens.UCSC.hg19), of which 177,270 were predicted to alter at least one of the
motif of the library. For each SNP, the difference of PWM scores from the two alleles was
compared with the PBS scores from SELEX from the corresponding TFs (500 unique TFs,
129,842 unique variants, 1,896,977 combinations). Pearson correlation coefficient was calculated
for 234s TF that had a minimum of 10 testable, bound SNPs with PWM predicted effects, or 146
when only considering pbSNPs. Similarly, predictions of SNP effect on TF binding were obtained
from DeepSEA calculations (http://deepsea.princeton.edu/job/analysis/create/) and filtered for E-
value <0.01. For each TF in the database, the predicted allelic log2 fold change of each SNP
was averaged across the different cell types and then compared with SELEX PBS scores, for TFs
having a minimum of 10 bound SNP (37 TFs: ATF2, ATF3, BATF, CEBPB, CTCF, E2F4, ELF1,
ELK1, ELK4, ETS1, FOSL1, FOXA1, FOXA2, FOXM1, FOXP2, GATA2, GATA3, IRF3, IRF4,
MEF2C, MYBL2, NANOG, NFATC1, NFIC, POU2F2, POU5F1, PRDM1, RFX5, RUNX3, RXRA,
SRF, TCF12, TCF7L2, USF1, USF2, YY1, ZBTB7A) or pbSNPs (24 TFs).

Genetic association enrichment analysis. We tested variants with allelic effects on TF binding for
enrichment of T1D association using genome-wide summary statistic data®. We defined three
categories of variants: (i) all variants, (ii) mapping in beta cell cCREs, (iii) mapping in cytokine-
responsive beta cell cCREs. For each variant category, we identified several different p-value
thresholds and segregated SNP-SELEX variants based on (i) allelic effects of TF binding, or no
allelic effect on TF binding, (ii) reaching p-value threshold or not, and then for each threshold

performed a Fisher’'s exact test.

Electrophoretic Mobility Shift Assay

Electrophoretic Mobility Shift Assay (EMSA) was carried out using LightShift™ Chemiluminescent
EMSA Kit (20148, ThermoFisher Scientific). Untreated and cytokine treated MING nuclear extracts
(NEs) were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents as per

manufacturer’'s recommendation (78833, ThermoFisher Scientific), supplemented with 1x


https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.29.466025; this version posted October 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

protease inhibitors (40694200, Roche Diagnostics GmbH). For cytokine-treated condition, MING
cells were cultured in T75 flasks to 70% confluency and treated with 10ng/mL IFN-y, 0.5ng/mL IL-
18, and 1ng/mL TNF-a cytokine mixture prepared fresh 24 hours prior to NE preparation. NE
protein concentration was determined using a NanoDrop (ThermoFisher Scientific) and samples
were stored at -80°C until analyses. Sense and anti-sense single-stranded EMSA
oligonucleotides for reference and alternate alleles were purchased from Integrated DNA
Technologies, with the following sequences:

rs10483809 (RAD51B): 5 Biotin~ATCTTTCACTTTCCCT[A/G]TCGATACTTCATATGT
rs35342456 (SOCS1): 5 Biotin~-GCTGGGCGTGGTGGCTCACGCCTGT[A/CIATCTTGTTG
Binding reaction mixtures were prepared for each allele and contained 10x Binding Buffer, 50%
glycerol, 0.1M MgCl,, 1ug/puL in 10mM Tris Poly(dI*dC), 1% NP-40 (20148, ThermoFisher
Scientific), 100fmol and 25fmol of labeled probe for rs10483809 and rs35342456 respectively,
and 8-17 ug NE. For corresponding competition reaction(s), 200-fold excess of unlabeled probe
at (20 or 5 pmol) was used. Competition reactions were incubated at RT for 10 minutes with NE
and unlabeled probe prior to adding biotin-labeled probe. Reaction mixtures were further
incubated for 20 minutes at RT, and 5x Loading Buffer was added to each mixture to stop the
reaction. Empty 6% TBE gel (EC62655BOX, Invitrogen) was run at 100V in 0.5x UltraPure TBE
Buffer (15581-044, Invitrogen, Life Technologies) at 4 °C prior to loading samples. Samples were
subsequently run on the same gel at 100V for 90 minutes at 4°C. DNA-protein complexes on the
gel were transferred to 0.45mm Biodyne™ Pre-Cut Modified Nylon Membrane (77016, Thermo
Scientific) at 380 mA for 45 minutes, and were crosslinked for 15 minutes using UV
Transilluminator (VWR, VWR International). Complexes were detected using Chemiluminescent
Nucleic Acid Detection Module (20148, ThermoFisher Scientific) after blocking for 1 hour. Images

were captured using a C-DiGit Blot Scanner (Model 3600, Li-Cor Biosciences).

Gene reporter assays

We cloned a 400bp insert containing the rs10483809 variant using human DNA from Coriell as a
template into the pGL4.23 reporter vector in the forward direction using the restriction enzymes
Kpnl and Sacl. A reporter containing the alternate allele was generated through SDM using the
Q5 Site-Directed Mutagenesis kit (New England Biolabs). The primer sequences used were as
follows:

rs10483809_cloning FWD CCATGGTTTCTTCCTGGGTA

rs10483809_cloning_ REV GCACAAAATAGAAGAAAGATCAAGAA

rs10483809_SDM_P1 TTTCTCTTTCgCAAACTCCTC
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rs10483809_SDM_P2 TGTCACTGACTGAGTTGC

For gene reporter assays, MIN6 between passages 17-21 were plated at a density of 0.25E6
viable cells/mL in a 48-well plate. 500ng experimental vector was co-transfected with pRL-SV40
using Lipofectamine 3000 (Thermo Fisher). 48 hours post-transfection, cells were lysed and used
in the Dual-Luciferase Reporter System assay (Promega). Firefly activity from the experimental
plasmids, normalized by dividing by the corresponding Renilla activity, was compared to the
normalized activity of the empty pGL4.23 vector. A two-sided t-test was used to compare the

luciferase activity between the alternate and reference allele.

DNA fragmentation ELISA

MING cells between passages 17-21 were grown to approximately 80% confluency in 24-well
plates and transfected with 30uM of either Socs? siRNA (Invitrogen Silencer select) or scramble
siRNA (Invitrogen Silencer Negative Control No. 1) using the Lipofectamine 3000 agent
(Invitrogen). 24 hours after transfection, cells were washed once with 1X PBS and labelled with
10uM BrdU for two hours. Cells were washed twice with 1X PBS before being given complete
MIN6 media, with cytokines added to the indicated samples. 150uL of supernatant was collected
at indicated times and spun down at 500rcf for 5 minutes to pellet cell debris. 100uL of the clarified
supernatant was used in the anti-BrdU DNA fragmentation ELISA (Roche). Each condition was

tested in technical triplicates, from MIN6 wells seeded from the same passage.
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Supplementary Material

Supplementary Figure 1. Effect of different cytokine treatments on islet accessible
chromatin. A) Top: Scatterplot showing effect on cytokine-responsive cCREs (DESeq FDR
<0.10) chromatin accessibility in islets after treatment with high doses of 3 cytokines (IL-1p, IFNy,
and TNFa , x-axis) versus 2 cytokines (IL-1p and IFNy, y-axis). Bottom: density plot showing
increased effect size in cytokine treatment with TNFo.. Wilcoxon signed rank test p-value is shown.
B) Heatmap of cytokine effect sizes (logzfold change, DESeq) on cytokine-responsive cCREs that
change with treatment duration (linear regression p< 0.01) C) Example of two cytokine-responsive
cCREs at the HEATR2 and CRHR1 loci that show increased accessibility over time. D) Motif
enrichment for up-regulated or down-regulated cytokine-responsive cCREs identified using
different duration of cytokine treatments. Motifs that were significantly enriched in at least one
condition (HOMER FDR<0.05, indicated by an asterisk) are shown. Red boxes highlight motifs

with visible differences in enrichment over time.

Supplementary Figure 2. Defining islet cell sub-types from snATAC-seq profiles. A) UMAP
plots showing clusters of islet snATAC. B) Proportion of cells derived from different donors in each
cluster. C) UMAP plots showing promoter accessibility in a 1 kb window around the TSS for
selected cell type marker genes. D) Genome browser plots showing aggregate read density
(CPM-normalized read depth, range: 0-7, shown on vertical axis for each plot) for cells within

each cell type for selected cell type marker genes.

Supplementary Figure 3. Cell type-specific changes in islet accessible chromatin upon
inflammatory cytokine exposure. A) Number of cytokine-responsive cCREs (or DACs) in bulk
islet ATAC that overlap a snATAC from different cell types. B) Number of DACs in bulk islet ATAC
that overlap a snATAC specific to a cell type. C) Heatmap of z-score normalized chromatin
accessibility at significant DACs (DESeq FDR<0.1) identified in beta, alpha and delta cells by
snATAC comparing cytokine-treated and untreated samples. Endothelial, acinar and stellate cells

did not show any significant DAC. C) Scatterplot showing DACs effect sizes (DESeq log: fold
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change) in alpha and beta cells. D) Density plot showing increased cytokine response in beta
cells at DACs significant in either beta or alpha cells (top), and in DACs significant in both cell
types (bottom). E) Comparison of motif enrichment in chromatin accessibility from cytokine treated
alpha and beta cells. ChromVAR deviation scores within alpha or beta cells were averaged across
treated and untreated cells and their difference (ACTY-UNT) was plotted in a scatterplot. The
slope (R) from linear regression and the most different motifs between alpha and beta are shown

are shown.

Supplementary Figure 4. Cytokine-induced gene expression changes in pancreatic islets.
A) Principal components plot of normalized and batch-corrected gene expression from high-dose-
2-cytokine (orange), high-dose-3-cytokine (red) low-dose-2-cytokine (blue), low-dose-3-cytokine
(green) -treated and untreated (purple) islets from a total of 16 samples. Donor ID is indicated on
the top of each dot. B) Number of differentially expressed genes (DE genes, DESeq FDR<0.1)
between each cytokine treatment condition and untreated islets. C) Venn diagram showing
overlap between DE genes in each treatment. D) Heatmap showing the top 20 upregulated and
top 20 downregulated genes common to each treatment vs untreated islets, and the top 10
differential genes (in bold) between high-dose-2-cytokine and high-dose-3-cytokine (i.e due to
TNFa). E) Gene ontology terms enriched among genes with up-regulated expression in cytokine-
treated islets. F) Gene ontology terms enriched among genes with down-regulated expression in
cytokine-treated islets. G) Enrichment of islet distal differentially accessible cCREs (DACs)
(>10kb from TSS) for genes with concordant cytokine-induced effects, linked by HiChIP (FDR
<0.1). Fisher’s exact test p-values and odds ratios are shown. HiChIP was performed in untreated
(left) or cytokine-treated (right) EndoC-BH1 cells.

Supplementary Figure 5. SNP-SELEX sequencing metrics, replicate consistency, and
comparison with TF binding predictions. A) Fraction of reads retained after removing identical
sequencing duplicate reads. The input is composed of 384 pools of oligos with different barcodes
(from 4x 96-well plates); each SELEX cycle is composed of 768 assays (8x 96-well plates),
performed twice. Median value is indicated at the top of each boxplot. B) Number of reads retained
after removing identical sequencing duplicate reads. The y-axis is log scaled. C) Left: example of
one experiment showing correlation between the percentages of reads mapping to each oligo (i.e.
each dot) in replicate 1 versus replicate 2. Pearson correlation coefficient is indicated. Right:
distributions of Pearson coefficients calculated as in the example, across all 768 experiments and

cycles. D) Number of experiments showing enrichment at cycle 4 for motifs similar to the assayed
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TF protein in both replicates, only one of the two, or none. E) Hierarchical clustering of the pairwise
distance (1-correlation) of allelic effects (PBS score) across different TF proteins, color-coded
according to the structural family. 264 TFs that had a minimum of 100 testable SNPs are shown.
F) Left: distribution of correlation between PBS and DeepSea Log fold change across TFs. The
number of TFs analyzed (having both DeepSea predictions and SNP-SELEX results for at least
10 SNPs) are indicated. Rigth: scatterplot of PBS and DeepSea Log fold change across tested
SNP-TF pairs (number indicated). ppSNPs are shown in purple. G) Top: distribution of correlation
between PBS and APWM across TFs. The number of TFs analyzed (having measurements for
both PWMs and SNP-SELEX for at least 10 SNPs) are indicated. Bottom: scatterplot of PBS and
APWM across all tested SNP-TF pairs (number indicated). ppSNPs are shown in purple. H)
Pearson correlation coefficients between SNP-SELEX PBS score and APWM in each TF across
all bound SNPs, grouped by structural families. 234 TFs that had a minimum of 10 testable SNPs
with PWM predicted effects are shown. I) Percentage of pbSNPs that corresponded to a predicted
PWM change in each TF, grouped by TF family. 234 TFs that had a minimum of 10 testable SNPs

with PWM predicted effects are shown

Supplementary Figure 6. Electrophoretic mobility shift assay (EMSA) for rs35342456

at the DEXI/SOCS1 locus. Three independent EMSA experiments (different cell cultures) and
one replicate of binding reaction for experiment #3 are shown. MIN6 were cultured in control and
cytokine media and nuclear extracts were used in binding reaction with oligonucleotides carrying
either the reference (A) or alternate (C) allele of rs35342456. Both treated and untreated MING
cells nuclear extracts showed preferential binding to probes with the reference allele. The top-left

panel (Experiment 1) shows the non-cropped image shown in Figure 6E.

Supplementary Table 1. Pancreatic islet donor samples

Supplementary Table 2. Cytokine-responsive cCREs in pancreatic islets and cell types
Supplementary Table 3. Sequence motifs enriched in cytokine-responsive islet cCRE and motif
deviation between cytokine treated and untreated cells

Supplementary Table 4. Genes with differential expression in cytokine-treated islets
Supplementary Table 5. Genes affecting survival in cytokine-treated beta cells
Supplementary Table 6. GSEA for genes affecting survival in cytokine-treated beta cells
Supplementary Table 7. TFs tested in SNP-SELEX assay and motif enrichment

Supplementary Table 8. T1D risk variants in cytokine-responsive beta cell cCREs
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