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ABSTRACT 

Beta cells intrinsically contribute to the pathogenesis of type 1 diabetes (T1D), but the genes and 

molecular processes that mediate beta cell survival in T1D remain largely unknown. We combined 

high throughput functional genomics and human genetics to identify T1D risk loci regulating genes 

affecting beta cell survival in response to the proinflammatory cytokines IL-1b, IFNg, and TNFa. 

We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) active in 

beta cells using ATAC-seq and single nuclear ATAC-seq (snATAC-seq), and linked cytokine-

responsive beta cell cCREs to putative target genes using single cell co-accessibility and HiChIP. 

We performed a genome-wide pooled CRISPR loss-of-function screen in EndoC-³H1 cells, which 

identified 867 genes affecting cytokine-induced beta cell loss. Genes that promoted beta cell 

survival and had up-regulated expression in cytokine exposure were specifically enriched at T1D 

loci, and these genes were preferentially involved in inhibiting inflammatory response, ubiquitin-

mediated proteolysis, mitophagy and autophagy. We identified 2,229 variants in cytokine-

responsive beta cell cCREs altering transcription factor (TF) binding using high-throughput SNP-

SELEX, and variants altering binding of TF families regulating stress, inflammation and apoptosis 

were broadly enriched for T1D association. Finally, through integration with genetic fine mapping, 

we annotated T1D loci regulating beta cell survival in cytokine exposure.  At the 16p13 locus, a 

T1D variant affected TF binding in a cytokine-induced beta cell cCRE that physically interacted 

with the SOCS1 promoter, and increased SOCS1 activity promoted beta cell survival in cytokine 

exposure. Together our findings reveal processes and genes acting in beta cells during cytokine 

exposure that intrinsically modulate risk of T1D.  
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INTRODUCTION 

 

Type 1 diabetes (T1D) is a complex disease characterized by autoimmune destruction of the 

insulin-producing beta cells in the pancreas.  During progression to T1D, immune infiltration and 

inflammation occurs in the local environment around beta cells, through which beta cells are 

directly exposed to external stimuli such as proinflammatory cytokines secreted by immune cells1.  

Beta cells themselves intrinsically contribute to the development of T1D in response to these 

stimuli. Studying beta cell function during T1D progression directly is challenging due to the limited 

availability of samples and the difficulty in capturing the precise window in which beta cells are 

the target of immune attack. An alternate strategy is to model T1D progression in vitro, for 

example by culturing islets or beta cells with pro-inflammatory cytokines interleukin 1³ (IL-1³), 

interferon ³ (IFN³), and tumor necrosis factor ³ (TNF³)236. Application of this model has revealed 

widespread effects on beta cell gene regulation, function and survival in response to cytokine 

exposure2,437. However, the genes and processes in beta cells that directly contribute to the 

development of T1D in the context of cytokine exposure remain poorly defined.   

 

Human genetics represents an avenue through which to identify genes and processes within beta 

cells that play a causal role in T1D. Genome-wide association studies have identified over 90 

genomic regions associated with T1D, the majority of which are non-coding and likely affect gene 

regulation8,9. Variants at T1D risk loci are enriched in islet cis-regulatory elements (cCREs) 

induced by pro-inflammatory cytokine exposure6, but not islet regulatory elements in the basal 

state, which supports that risk of T1D in beta cells acts downstream of external stimuli during 

disease progression. Genes at several T1D risk loci have been shown to affect beta cell function 

in cytokine signaling such PTPN2 and DEXI6,10,11. At most T1D loci, however, whether risk genes 

mediate beta cell function in cytokine exposure is unknown. More broadly, determining the 

pathways through which these risk genes operate can help to converge on mechanisms through 

which beta cells intrinsically affect disease.            

 

In this study we used a suite of functional genomics assays to map cis-regulatory programs in 

pancreatic beta cells as well as identify genes that affect beta cell survival upon exposure to the 

pro-inflammatory cytokines IL1³, IFN³ and TNF³. We then integrated these data with fine-

mapping data to identify T1D risk variants regulating beta cell survival during cytokine exposure.   
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RESULTS 

 

Overview of study design 

 

In this study we combined human genetics and functional genomics to identify genes that affect 

risk of T1D by modulating pancreatic beta cell survival in response to proinflammatory cytokine 

exposure (Figure 1). First, we created a map of cytokine-responsive cis-regulatory elements 

(cCREs) in pancreatic beta cells treatment using bulk and single nuclear ATAC-seq. Second, we 

linked cytokine-responsive beta cell cCREs to target genes using single cell co-accessibility and 

HiChIP. Third, we identified genes affecting beta cell survival in cytokine exposure using a 

genome-wide CRISPR knockout screen in EndoC-³H1 cells. Fourth, we identified functional 

variants in cytokine-responsive beta cell chromatin by assaying in vitro transcription factor binding 

using high-throughput SNP-SELEX. Finally, we integrated these functional genomics data with 

fine-mapping of 136 T1D signals to annotate functional T1D risk variants directly regulating genes 

involved in cytokine-induced beta cell survival. 

 

 

 

Figure 1. Overview of study design. Schematic representation of the experimental design to 
model inflammation of human pancreatic islet and characterization of changes using multiple 
genome-wide functional assays to identify mechanisms involved in type 1 diabetes risk. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.29.466025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Map of pancreatic beta cell chromatin in response to cytokines 

 

To identify epigenomic changes in pancreatic islets in response to cytokine exposure, we 

performed ATAC-seq in a total of 7 primary islet preparations cultured in vitro with the cytokines 

IL-1b, IFNg, and TNFa as well as in untreated conditions (Supplementary Table 1). We 

performed these assays across multiple dimensions of cytokine treatment (35 assays in total), 

including different treatment doses (high-dose: 0.5 ng/mL IL-1³, 10 ng/mL IFN-³, 1 ng/mL TNF-

³; low-dose: 0.01 ng/mL IL-1³, 0.2 ng/mL IFN-³, and 0.02 ng/mL TNF-³), duration (6hr, 24hr, 

48hr, 72hr), and cytokines used (3 cytokines: IL-1³, IFN-³  and TNFa, or 2 cytokines: IL-1³ and 

IFN-³).   

 

We determined the effects of inflammatory cytokine signaling for all treatments on islet accessible 

chromatin genome-wide by performing principal component analysis (PCA) using normalized 

read counts (Figure 2a). There were reproducible patterns of chromatin accessibility across 

replicate samples of the same treatment, with clear separation between the cytokine-treated and 

untreated samples. We also observed patterns across different cytokine treatments, where the 

low-dose cytokine had an intermediate effect to the high-dose cytokine treatment. For example, 

at the CXCL10/11 locus there was a notable gradient of increasing accessible chromatin signal 

across untreated, low-dose cytokine and high-dose cytokine treated samples (Figure 2b).  

 

We next identified islet cCREs with significant differences in chromatin accessibility in cytokine-

treated compared to untreated cells. We first defined a set of 165,884 cCREs genome-wide active 

in islets. From these 165,884 cCREs, we next identified cCREs with differential accessibility in 

cytokine treatment compared to control using DESeq212. There were 22,877 cCREs with 

increased activity in any cytokine treatment and 22,092 cCREs with decreased activity in any 

cytokine treatment (FDR<0.1, Figure 2c, Supplementary Table 2). Notably, there was a marked 

difference in the number of cytokine-responsive cCREs across treatment dose, with almost no 

such cCREs at low-dose treatment (Figure 2c). When comparing treatments with and without 

TNFa, including TNFa produced a broadly stronger effect on cytokine-responsive cCREs overall 

(Supplementary Figure 1a), although there were no cCREs with significant changes in activity 

between the two conditions, suggesting modest effects on individual cCREs. Finally, we identified 

1,000 cCREs with differential activity across duration (Supplementary Figure 1b, p-value <0.01, 

linear regression), the majority with increased accessibility with longer duration of treatment 

(Supplementary Figure 1c). 
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In order to identify transcriptional regulators of cytokine-responsive cCREs in islets, we performed 

sequence motif enrichment using HOMER13. Consistent with previous reports6, cCREs with 

increased activity in cytokine treatment were strongly enriched for IRF (IRF1 P<10-300, IRF2 P<10-

300), STAT (STAT1 P=2.8x10-130) and NFkB (NFKB-P65-REL P=2.1x10-279) motifs (Figure 2d, 

Supplementary Table 3). Conversely, cCREs with decreased activity in any cytokine treatment 

were most enriched for FOXA (P=5.8x10-63), NKX6.1 (P=1.1x10-28), NFAT (P=3.8x10-29), and 

MEF2 (P=9.2x10-27), motifs (Figure 2e, Supplementary Table 3).  We next identified sequence 

motifs with variable enrichment across different dimensions of cytokine treatment. For example, 

motifs with variable enrichment in up-regulated cCREs across duration of cytokine treatment 

included SMAD family TFs, which had stronger enrichment at later timepoints (SMAD2 6hr P 

=0.24, 24hr P =0.03, 48hr P =8.6x10-4, 72hr P =2.2x10-6), and motifs with variable enrichment 

among down regulated cCREs included RFX, NFAT and MEF2 family motifs (Supplementary 

Figure 1d).    

 

The effects of cytokine exposure on individual islet cell types are obscured from assays of bulk 

tissue. Therefore, we next performed single nuclear ATAC-seq (snATAC-seq) in cytokine-treated 

and untreated islets from four donors at 24 hours post-treatment.  We used high-dose of all three 

cytokines IL-1b, IFNg, and TNFa as the treatment for these assays, as this produced the strongest 

effects in bulk assays.  After extensive quality control, which included removal of low quality and 

doublet cells (see Methods), we performed UMAP dimensionality reduction and clustering on a 

total of 7,829 nuclei, which identified 9 clusters (Figure 2f). Each cluster contained cells from all 

four donors and was equally represented by untreated (total nuclei = 3,947) and cytokine-treated 

(total nuclei = 3,882) cells (Figure 2g, Supplementary Figure 2a-b). We assigned each cluster 

cell type identity based on accessibility levels at the promoters of known marker genes 

(Supplementary Figure 2c-d), which revealed endocrine alpha, beta and delta cells as well as 

exocrine, endothelial and stellate cells.    

 

We next defined cCREs in beta and other cell types and used the resulting cCREs to annotate 

the cytokine-responsive cCREs identified in bulk ATAC-seq (Supplementary Figure 3a). We 

identified 38,931 cytokine-responsive islet cCREs active in beta cells, a small percentage (8.2%) 

of which were specific to beta cells relative to other endocrine cell types (example in Figure 2h). 

We further used snATAC data from cytokine-treated and untreated cells to identify differential 

sites in beta cells directly. There were 2,412 cytokine-responsive beta cell cCREs (FDR<0.1 
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Supplementary Figure 3b, Supplementary Table 2), almost all of which (99%, 2,388) had 

significant and concordant effects in bulk islets. The effects of cytokine treatment on cCRE activity 

were generally stronger on beta cells relative to bulk islets, although there were fewer cCREs 

overall with significant changes in activity in beta cells likely owing to the  

 

Figure 2. Map of islet accessible chromatin upon exposure to inflammatory cytokines. A) Principal 

component analysis showing distribution of samples (n=35) based on the different cytokine treatments, 

color-coded as shown in the legend. Hi: high dose; Lo: low dose; 3cyt: IL-1³, IFN-³, TNFa; 2cyt: IL-1³, IFN-

³. B) Genome-browser screenshot at the CXCL10/CXCL11 locus, showing ATAC-seq tracks combined 

across cytokine treatments at 24hrs. The example shows increased chromatin accessibility at cCRE with 
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higher doses and number of cytokines used for stimulation. C) Number of differential cCRE for each 

treatment compared to control, and union of all differential sites. D-E) Sequence TF motifs enriched in all 

up-regulated (D) and all down-regulated (E) cCRE compared to all cCRE. F) Clustering of single cell 

accessible chromatin profiles of islet samples from 4 individuals. Cells are plotted based on the first two 

UMAP components. G) Barplot showing the proportion of cytokine treated and untreated cells in each 

cluster. H) Genome-browser screenshots showing example of cytokine-induced cCREs with constitutive 

effect in all cell types (left) or specific effect in beta cells (right). I) Scatterplot showing effect of cytokine-

resposive cCREs in bulk ATAC (x-axis) and in beta cell snATAC (y-axis). Spearman correlation coefficient 

and p-values are indicated. Bottom: density plot showing increased effect size in beta cells, across DACs 

significant in both snATAC for beta cells and bulk ATAC. Wilcoxon signed rank test p-value is shown. 

 

 

smaller number of samples (Figure 2i). Compared to alpha cells, there were substantially more 

cCREs with cytokine-responsive activity in beta cells (2,412 vs. 226), despite having similar total 

numbers of cells (Supplementary Figure 3c).  Furthermore, the effects of cytokine treatment on 

cCRE activity were consistently stronger in beta cells compared to alpha cells (Wilcox signed rank 

test P=1.2x10-255) (Supplementary Figure 3d). These results suggest that beta cell chromatin is 

more responsive to pro-inflammatory stress than chromatin in other islet cell types. 

 

Finally, we identified TF motifs differentially enriched in cytokine-responsive beta cell accessible 

chromatin. We identified motifs differentially enriched in single cytokine-treated and untreated 

beta cells using ChromVAR14. The most enriched motifs in beta cells were broadly consistent with 

those identified in bulk data, with IRF-family TFs showing highest enrichment in cytokine-treated 

beta cells and FOXA TFs the strongest depletion (Supplementary Figure 3e, Supplementary 

Table 3).  However, when comparing motif enrichments in alpha and beta cells there was more 

significant enrichment of IRF- and STAT-family motifs in cytokine-treated beta cells, further 

supporting that cytokine treatment has stronger effects in beta cells (Supplementary Figure 3e).   

  
In summary, we generated a comprehensive catalog of cCREs that respond to pro-inflammatory 

cytokines in pancreatic islets and beta cells.   

 

Linking cytokine-responsive beta cell cCREs to target genes 

 

As the majority of cytokine-responsive beta cell cCREs are distal to gene promoters, we next 

sought to link cytokine-responsive cCREs to the target genes they regulate in beta cells.  
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We first identified cytokine-responsive cCREs correlated with the activity of gene promoter cCREs 

using co-accessibility across single cytokine-treated and untreated beta cells with Cicero15. In 

total, we identified 400,403 and 277,447 pairs of co-accessible cCREs (score >0.05), in cytokine-

treated and untreated beta cells, respectively, 30% of which involved a gene promoter cCRE. We 

then annotated cytokine-responsive beta cell cCREs co-accessible with at least one gene 

promoter. There were 11,124 and 8,434 cytokine-responsive cCREs co-accessible with a putative 

target gene in cytokine-treated and untreated beta cells, respectively, while ~10% of cytokine-

responsive cCREs were at promoters directly (Figure 3a).  As co-accessibility represents a 

correlation between cCREs that may not always reflect direct cis regulation, we next mapped 3D 

physical interactions between cCREs using HiChIP in high-dose cytokine-treated (IL1³, IFN³ and 

TNF³) and untreated EndoC-³H1 beta cells. Co-accessible sites were significantly enriched for 

3D interactions compared to non-co-accessible sites (Fisher9s exact test P<2.2x10-16; cytokine 

treated OR=3.6; untreated OR=3.2). In total, 2,520 and 2,063 distal cCREs co-accessible with a 

promoter in cytokine-treated and untreated cells, respectively, had a 3D interaction (FDR<.10).  

 

We next assessed the relationship between the activity of cytokine-responsive beta cell cCREs 

and the expression of target genes linked to the cCREs in cytokine treatment.  We performed 

RNA-seq in islets treated with high- and low-dose cytokines for 24hr and identified differentially 

expressed genes (DEGs) in cytokine-treated compared to untreated cells. High-dose exposure to 

all three cytokines (IL1³, IFN³ and TNF³) produced the largest changes in expression, where 

3,367 genes had increased, and 3,414 genes had decreased expression in cytokine-treated 

compared to untreated islets (Supplementary Figure 4a-f, Supplementary Table 4). High-dose 

treatment using just IL1³ and IFN³ resulted in 5,051 differentially expressed genes. As with bulk 

ATAC-seq data, low-dose treatment resulted in fewer differentially expressed genes overall (330 

with three cytokines, 324 with two cytokines), and these genes were largely a subset of the genes 

identified in high dose treatment (Supplementary Figure 4b-c, Supplementary Table 4).   
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Figure 3. Target genes of beta cells cCREs in inflammatory cytokine exposure   

A) Fraction of cytokine-responsive cCREs (Differentially Accessible cCREs -DACs) either co-accessible 

with at least one gene promoter in beta cells in untreated, cytokine-stimulated or pooled conditions; or 

proximal to a promoter (<10kb TSS). B) Enrichment of distal DACs (>10kb from TSS) for co-accessibility to 

genes with concordant cytokine-induced effects. Fisher9s exact test p-values and odds ratios are shown. 

Co-accessibility was calculated from pooled cytokine-treated and untreated beta cells. C) Enrichment of 

promoter-proximal DACs (<10kb from TSS) for genes with concordant cytokine-induced effects. Fisher9s 

exact test p-values and odds ratios are shown.  D-E) Example of a cytokine up-regulated peak (blue vertical 

line) with HiChIP-validated co-accessibility with the promoter of a cytokine-upregulated gene (BCL6). D) 

From top to bottom: co-accessibility in beta cells in cytokine or untreated conditions, virtual 4C profiles from 
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HiChIP in EndoC-³H1 in cytokine or untreated conditions, snATAC profiles in beta cells in cytokine or 

untreated conditions, gene annotations. Only co-accessibility arcs that link the highlighted distal peak and 

a promoter peak are shown. E) Voom-normalized and batch-corrected expression of BCL6 in human islet 

samples after different cytokine treatment conditions. DESeq p-value and log2 fold change are from DESeq 

differential expression between 3-cytokine, high-doses treated islets (red) vs untreated (purple). F-G) Same 

as D-E, but showing an example of a cytokine down-regulated peak (blue vertical line) with HiChIP-

validated co-accessibility with the promoter of a cytokine-downregulated gene (MNX1). 2cyt: cytokine 

treatment with IL1b and IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-

dose, untr: untreated 

 

 

We determined whether genes co-accessible with cytokine-response distal cCREs had 

directionally concordant changes in expression. Here we used just genes differentially expressed 

in high-dose cytokine treatment. Distal cCREs (>10kb from TSS) with up-regulated or down-

regulated activity in cytokine treatment were significantly enriched for co-accessibility to genes 

with increased or decreased expression, respectively (Figure 3b). We observed similar patterns 

when considering distal cCREs with 3D physical interactions to genes (Supplementary Figure 

4g). Cytokine-responsive cCREs proximal to gene promoters were also enriched for concordant 

effects on expression with stronger enrichment than for distal cCREs (Figure 3c). At the 3q27 

locus, a cytokine-induced beta cell cCRE was co-accessible with the BCL6 promoter in cytokine-

treated beta cells, and BCL6 attenuates the proinflammatory response but induces apoptosis in 

beta cells16 (Figure 3d). The beta cell cCRE interacted with the BCL6 promoter in cytokine-treated 

cells only (cytokine-treated FDR=6.2x10-6), and BCL6 had increased expression in cytokine 

treatment (Figure 3d-e). Similarly, at the 7q36 locus, a beta cell cCRE with decreased activity in 

cytokine exposure was co-accessible with the promoter of MNX1, which is involved in maintaining 

beta cell fate (Figure 3f). We observed an interaction between the beta cell cCRE and the MNX1 

promoter in untreated beta cells only (untreated FDR=5.4x10-6) and MNX1 had decreased 

expression in cytokine treatment (Figure 3g-f).  

 

Together these results reveal the target genes of cytokine-responsive distal cCRE activity in beta 

cells.  

 

Genes affecting beta cell survival in response to cytokine exposure 

 

Given target genes of cytokine-responsive cCREs in beta cells, we next determined which genes 

had cellular functions directly relevant to T1D pathogenesis. As beta cell loss is the primary 

pathogenic endpoint of T1D, we sought to identify genes affecting beta cell survival in response 
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to cytokine exposure. We therefore performed a genome-wide pooled CRISPR loss-of-function 

screen in the human EndoC-³H1 beta cell line using cell survival under cytokine exposure (high-

dose IL-1³, IFN-³, TNF-³) for 72hr as an endpoint. We selected a longer duration of treatment 

than for chromatin and gene expression assays to effectively capture cell loss in response to 

cytokine treatment. In brief, after transfecting cells with the GeCKO v2 CRISPR single guide RNA 

(sgRNA) library, we split and cultured cells in either high-dose cytokine or control (0.1% BSA). 

The representation of sgRNAs between cytokine-treated and untreated conditions was compared 

to identify genes promoting or preventing beta cell loss in response to cytokine exposure. An 

overview of the screen design is shown in Figure 4a. 

 

Among 18,703 genes targeted by sgRNAs (6 sgRNAs per gene) after transduction, 867 genes 

had significant (FDR<.10) differences in recovered sgRNAs between cytokine-treated and 

untreated cells. Among these, sgRNAs for 427 genes were enriched in cytokine-treated compared 

to untreated cells and therefore these genes promoted beta cell loss (8pro-death9) in response to 

cytokine exposure (Figure 4b, Supplementary Table 5). Conversely, sgRNAs for 440 genes 

were depleted in cytokine-treated compared to untreated cells and therefore these genes 

prevented beta cell loss (8pro-survival9) in response to cytokine exposure (Figure 4b, 

Supplementary Table 5).  The results of our screen identified genes previously shown to affect 

survival in beta cells, for example XIAP17, JUND18, PTPN210, and SOCS119,20. To annotate the 

function of pro-death and pro-survival genes, we performed gene ontology enrichment analyses 

(Supplementary Table 6). As expected, pro-death genes were enriched for terms related to DNA 

damage response, apoptosis and protein folding, and pro-survival genes were enriched for 

autophagy, which protects against beta cell stress, and phosphorylation and kinase activity, which 

suppress inflammatory responses.  Pro-survival genes were also enriched for RNA metabolism 

and splicing and pro-death genes were enriched for lipid metabolism, processes which have all 

been implicated in beta cell function and survival21,22.   

 

Interestingly, genes regulating processes related to mitochondrial function were highly enriched 

among both pro-death and pro-survival genes. We found that pro-survival mitochondria-related 

genes were primarily involved in mitochondria organization and mitophagy, such as USP36, 

VDAC1, MFF, TIMM9, YME1L1, SIRT5, and SPATA18. Conversely, mitochondria-related genes 

in the pro-death category were mostly electron transport chain components, such as NDUFA6, 

NDUFB2, ACAD9, CYCS and SDHD. A key mitophagy regulator, CLEC16A, has been previously 

shown to protect beta cells against inflammatory damage, mediated in part by reactive oxygen 
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species (ROS) generated in beta cell mitochondria23. Our data suggest that mitophagy and 

mitochondria quality control are important pro-survival processes in beta cells in response to pro-

inflammatory cytokines and provide novel regulators of beta cell mitophagy.   

 

 
 

Figure 4.  Genes affecting beta cell survival in cytokine exposure. A) Overview of the genome-wide 

CRISPR loss-of-function screen in cytokine-treated EndoC-³H1 cells. B) Volcano plot of genes with 

significant (FDR<0.1) enrichment and depletion from the screen. Labeled genes include the top genes with 

an average TPM expression >1 in islets. C) Enrichment of known T1D risk loci for genes enriched and 
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depleted in screen, partitioned by differential expression (+/- exp = FDR<0.1, ++/-- exp = FDR<0.1 and 

P<1x10-5) in islets after cytokine stimulation (3-cyt, high-doses). Values are odds ratio and error bars are 

95% confidence interval from Fisher9s exact test. D) Scatterplot showing the effect size (beta) of genes 

promoting beta survival in the screen and differential expression of the gene in islets after cytokine 

treatment (z-scores). Genes mapping within 1MB of a known T1D locus or within 1MB of a variant with 

nominal (p<1x10-4) T1D association are colored.  E) Molecular pathways from gene ontology (GO) and 

KEGG enriched in genes with increased expression in cytokine-treated islets and promoting beta cell 

survival. A subset of genes mapping to known T1D loci or loci with nominal T1D association are shown with 

corresponding pathway annotations.  Only pathways that contain at least one T1D gene are shown, while 

the full list is shown in Supplementary Table 6. 

 

 

Given genes and molecular processes affecting cytokine-induced beta cell loss, we next 

determined which genes and processes might be relevant to T1D pathogenesis. First, we tested 

for enrichment of genes affecting cytokine-induced beta cell loss at loci involved in genetic risk of 

T1D.  We observed no evidence for enrichment among the full set of either pro-survival or pro-

death genes.  Next, we further segregated pro-survival and pro-death genes based on whether 

their expression was significantly up-regulated or down-regulated, or had no change, in cytokine 

exposure. Pro-survival genes that had up-regulated expression in cytokines (n=84 genes) were 

significantly enriched at known T1D loci (+exp OR=1.82, 95% CI=0.97,3.23 P=.048, Fisher9s test), 

and no other subset showed any enrichment (Figure 4c). This enrichment was stronger when 

considering only genes with the largest increases (P<1x10-5) in cytokine-induced expression 

(++exp OR=3.28, 95% CI=1.33,7.37 P=5.1x10-3). Numerous genes with highly induced 

expression mapped to known T1D risk loci such as PTPN2, EPSTI1, SOCS1, PSMB2, PPP1R11, 

LPIN1 and LMO7 (Figure 4d). This subset of genes also included several with roles in mitophagy 

such as NBR1 and MFN1.  

 

We next characterized the molecular functions of the pro-survival genes with up-regulated 

expression in cytokine exposure. These genes were broadly enriched for molecular processes 

related to modulation of the inflammatory response, ubiquitination and proteasomal degradation, 

translation, and autophagy (Supplementary Table 6, Figure 4e).  Among genes at T1D loci were 

negative regulators of cytokine signaling PTPN2 and SOCS1, both of which function by inhibiting 

JAK/STAT signaling to suppress inflammatory responses and promote beta cell survival10. Other 

beta cell survival genes such as KLHL5, LMO7, NEDD4L, ASB2 and PPP1R11 function in protein 

ubiquitination, which targets proteins for degradation by the proteasome, and PSMD2 is a 

component of the 20S proteasome itself. Proinflammatory cytokines induce endoplasmic 

reticulum (ER) stress in beta cells24, and proteasome-mediated ER-associated protein 
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degradation (ERAD) resolves ER stress in beta cells25. Ubiquitin-mediated proteolysis may 

therefore protect beta cells from cytokine-induced stress, although the function of most of these 

genes in beta cells is unknown. We also observed enrichment of class I MHC antigen-related 

terms, although genes annotated with these terms were largely overlapping with other terms.   

 

Together these results identify genes and molecular processes that affect beta cell loss in 

response to proinflammatory cytokine exposure and reveal that T1D risk is specifically enriched 

for pro-survival genes highly induced in cytokine exposure. 

 

Identifying functional regulatory variants in beta cell cCREs with SNP-SELEX 

Given that beta cell pro-survival genes up-regulated in cytokine exposure were enriched at T1D 

risk loci, we next sought to determine the transcriptional regulators of gene activity in beta cells 

during cytokine exposure through which T1D genetic risk is mediated.  

 

Because risk variants often affect transcriptional regulation via differential transcription factor 

binding (TF), we systematically determined the effects of genetic variants in cytokine-responsive 

beta cell cCREs on TF binding. A total of 184,086 variants were tested for in vitro differential TF 

binding using a highly multiplexed assay SNP-SELEX26. The 184,086 variants were selected 

based on mapping in islet enhancer regions genome-wide (56,796) or mapping to known diabetes 

risk loci (T1D: 86,067, T2D: 33,354), in addition to variants randomly selected across the genome 

(7,869). Among the tested variants were 183,373 SNPs and 713 indels (insertions/deletions of 1-

3 bp). We designed a library of 44bp oligos surrounding each variant containing each of the four 

possible alleles for SNPs, or each of the two observed alleles for indels. We then tested oligos for 

binding to 530 distinct E. coli-expressed TF proteins by sequencing recovered oligos across four 

binding cycles, where the entire experiment was performed in duplicate (Figure 5a; 

Supplementary Table 7).   

 

After applying quality-filtering criteria (Supplementary Figure 5a-c), a total of 130,225 variants 

were bound by at least one TF and were further analyzed for differential allelic binding. We 

identified variants with allelic differences in TF binding from SNP-SELEX by calculating a 

preferential binding score (PBS) score between alleles (see Methods) (Figure 5b, Methods). 

There were 28,972 variants that affected binding of at least one TF (P<0.05 by Monte Carlo 

randomization), with a mean of 2 TFs per variant and of 123 variants per TF (Figure 5b). TFs 

from the same family often clustered together based on the correlation in variant effects on binding 
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(Supplementary Figure 5d)26328. Variant effects on TF binding from SNP-SELEX were generally 

correlated with predicted effects including from DeepSEA29 (mean r=0.81, Supplementary 

Figure 5e) and position weight matrix (PWM) models (r=0.91, Supplementary Figure 5f), 

although this was also highly variable across TFs (Supplementary Figure 5g). Consistent with 

previous findings26, a minority of variants (29% on average per TF) with allelic effects from SNP-

SELEX had a corresponding PWM prediction (Supplementary Figure 5h), which highlights the 

benefit of this experimentally generated resource.  

 

In total, there were 8,424 variants in beta cell cCREs affecting TF binding, including 2,229 in 

cytokine-responsive beta cell cCREs. We determined if variants affecting TF binding within beta 

cell cCREs were enriched for T1D association at different p-value thresholds compared to other 

tested variants. T1D-associated variants in beta cell cCREs were enriched for allelic effects on 

TF binding, and this enrichment was stronger for variants in cytokine-responsive cCREs (Figure 

5c). By comparison, there was limited enrichment among all tested variants for allelic effects on 

TF binding (Figure 5c). We next grouped TFs into 220 sub-families using TFClass30, and tested 

for enrichment of T1D association among variants in cytokine-responsive beta cell cCREs 

disrupting TF binding in each sub-family. TF sub-families with strongest enrichment (OR>2) 

included BCL6, POU3, PBX, MYC, ARX and PDX1 (Figure 5d). We also observed enrichment 

for sub-families regulating stress, mitophagy and immune responses such as ATF3-like, IRF, 

NR4, and GLI-like TFs (Figure 5d). To identify specific TFs likely regulating cytokine-induced 

beta cell cCREs, we annotated TF genes in each sub-family with differential expression in 

cytokine exposure. TF genes within enriched sub-families with cytokine-induced expression 

included BCL6, GLIS3, IRF1/2/7/9, PBX1, PDX1, ATF3, NR4A1/3, and MYC (Supplementary 

Table 4).       

 

We then identified specific variants at T1D risk loci affecting TF binding in cytokine-responsive 

beta cell cCREs. In total 380 variants in cytokine-responsive beta cell cCREs mapped within 1MB 

of a known T1D locus and affected TF binding, including for TF with differential expression in 

cytokine stimulation. For example, at the RAD51B locus, variant rs10483809 (T1D P=8.1x10-6) 

mapped in a cytokine-induced beta cell cCRE and the T1D risk allele had preferential binding to 

IRF- and CUX-family TFs (Figure 5e). As SNP-SELEX is based on in vitro interactions, we 

validated allelic effects on regulatory activity in beta cells directly. Electrophoretic mobility shift 

assay (EMSA) demonstrated protein binding to the T1D risk allele using nuclear extract from the 

beta cell line MIN6 (Figure 5f). We also identified increased enhancer activity for the risk allele in 
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luciferase gene reporter assays in MIN6 cells, which was more pronounced in cytokine stimulation 

(Figure 5g). This variant maps in RAD51B which is a pro-apoptotic protein involved in DNA 

recombination31 and up-regulated in cytokine-treated islets (Supplementary Table 4), although 

did not affect cell death in our screen.  

 

Together these results identify functional variants altering TF binding in beta cell cCREs and 

reveal transcriptional regulators through which variants in cytokine-responsive beta cell cCREs 

broadly affect T1D risk. 

 

 

Figure 5. Identifying transcriptional regulators affecting T1D risk in beta cell cCREs with SNP-

SELEX. A) Overview of the HT-SELEX3Seq experiment. B) Top: Example of enrichment profiles of bound 

oligos within an experiment and of one SNP with preferential binding to one nucleotide. Bottom: Distribution 

of the number of variants with allelic binding per TF across 489 TFs and table summarizing the number of 

bound variants and significant allelic binding variants across TFs. C) Enrichment of variants with allelic 

binding for T1D association among all tested variants, variants in beta cell cCREs and variants in cytokine-

induced beta cell cCREs.  Values represent odds ratio and 95% CI by Fisher9s exact test.  D) Enrichment 

of variants with allelic binding of specific TF sub-families for T1D association among variants in cytokine-

induced beta cell cCREs.  Values represent odds ratio by Fisher9s exact test, and points are colored by p-

value.  E) Regional plot of association p-values with T1D, with variants with p-value <10-4 in black; bulk 

ATAC-seq tracks from human islets 2cyt: cytokine treatment with IL1b and IFNg, 3cyt: cytokine treatment 

with IL1b, IFNg and TNFa, lo: low-dose, hi: high-dose, untr: untreated.  A zoom in to the candidate variant 
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is shown in the panel. F) Electrophoretic mobility shift assay using nuclear extract (NE) from MIN6 cells 

with probes for the alleles of rs10483809. G) Luciferase assays for rs10483809 in untreated MIN6 cells or 

after 24h treatment with high-dose cytokines. Relative light units (RLUs) are normalized to cells transfected 

with the empty vector (pGL4.23). Average and standard deviation of 6 transfection replicates are shown. 

P-values from two-tailed t-tests are shown. 

 

 

T1D risk variants linked to genes affecting beta cell survival in cytokines 

Finally, given the molecular processes and regulatory networks enriched for T1D risk in cytokine-

induced beta cells, we layered functional genomics together with human genetics data to annotate 

specific T1D loci that regulate genes affecting beta cell loss in cytokine exposure.   

 

We first intersected cytokine-responsive beta cell cCREs with fine-mapping 99% credible sets of 

136 T1D signals8.  At 77 T1D signals, at least one credible set variant overlapped a beta cell 

cCRE, and at 52 signals a credible set variant overlapped a cytokine-responsive beta cell cCRE 

(Supplementary Table 8). Among T1D signals with credible set variants in cytokine-responsive 

beta cell cCREs were those at loci previously implicated in beta cell function such as PTPN2, 

DEXI/CLEC16A, GLIS3 and DLK110,11,32334. For the T1D signals with credible set variants in 

cytokine-induced beta cell cCREs, we next linked variants at 37 signals to putative target genes 

using beta cell co-accessibility (Supplementary Table 8). Genes linked to credible set variants 

in cytokine-responsive beta cell cCREs included 19 genes affecting beta cell loss from the 

CRISPR screen in addition to several key stress response genes (Supplementary Table 8).   

 

At the DEXI/CLEC16A (16p13) locus, which has two independent T1D risk signals, seven credible 

set T1D variants from the secondary signal overlapped cytokine-induced beta cell cCREs (Figure 

6a-c, Supplementary Table 8). Among these, only one variant rs35342456 had significant allelic 

effects on TF binding from SNP-SELEX (P=2.4x10-5), and therefore is a functional candidate for 

underlying the association signal at this locus (Figure 6d). A previous study identified a functional 

variant rs193778 in cytokine-stimulated islet chromatin at this locus6, but this variant was not 

present in our 99% credible set data. To validate that rs35342456 has regulatory effects in beta 

cells, we performed an EMSA to measure TF binding to each allele using nuclear extract from 

cytokine-treated and untreated MIN6 beta cells (Figure 6e, Supplementary Figure 6). 

Consistent with the SNP-SELEX data, we observed allele-specific effects of this variant on TF 

binding in beta cells (Figure 6e).    
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Figure 6.  T1D locus 16p13 regulates beta cell survival gene SOCS1 in cytokine exposure. A) T1D 

GWAS regional association plot showing two independent signals at the DEXI/SOCS1 locus. B) Fine 

mapping posterior probabilities of the secondary signal.  Variants with SNP-SELEX significant effect on 

differential TF binding and within a cytokine-responsive cCRE are highlighted in red. C) Genome-browser 

of the DEXI/SOCS1 locus showing bullk ATAC-seq tracks from human islets after the indicated treatments 

and gene annotations. D) SNP-SELEX results for the candidate variant rs35342456. 2cyt: cytokine 

treatment with IL1b and IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-

dose, untr: untreated. E) EMSA with nuclear extract (NE) from MIN6 cells showing preferential binding to 

probes with the reference allele, consistent with SNP-SELEX results.  F) Zoom in of the locus showing 

location of the candidate variant rs35342456 (yellow vertical line) in a cytokine-up regulated beta cell peak 

that is co-accessible and show HiChIP interaction with SOCS1 promoter in cytokine-treated beta cells and 

EndoC-³H1 respectively. G) Count number of each sgRNA in the CRISPR-KO screen targeting SOCS1 in 
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untreated ang high-cytokine treated Endo³-CH1, normalised to the sequencing depth of each sample, 

showing higher counts in untreated samples for five out of six sgRNAs. Counts for the same sgRNA in the 

two conditions are connected with a line. H) Normalized and batch-corrected expression of SOCS1 in 

human islet samples after different cytokine treatment conditions. DESeq p-value and log2 fold change are 

from DESeq, showing significant (FDR<0.1) higher expression between 3-cytokine, high-doses treated 

islets (red) vs untreated (purple). H) Effect of Socs1 knock-down by siRNA on cell death-induced DNA 

fragmentation using an anti-BrdU ELISA in MIN6 cells. ANOVA p-values testing effect of both siRNA and 

treatment are shown on the top. Two-tailed t-test p-values are shown for pairs of Socs1/scramble siRNA in 

each treatment condition. Error bars represent standard deviation. 2cyt: cytokine treatment with IL1b and 

IFNg, 3cyt: cytokine treatment with IL1b, IFNg and TNFa, lo: low-dose, hi: high-dose, untr: untreated. 

 

The cytokine-induced cCRE harboring rs35342456 was co-accessible with the promoter region 

of SOCS1, which had up-regulated expression and promoted beta cell survival in cytokine 

exposure, implicating SOCS1 as a candidate causal gene for T1D risk (Figure 6f-h). We 

confirmed SOCS1 as a target of cytokine-dependent cCRE activity at this locus using the HiChIP 

data in cytokine-treated and untreated EndoC-³H1 beta cells. We observed a significant 

interaction (FDR=0.068) between the cCRE and SOCS1 promoter in cytokine-treated beta cells, 

which is highlighted using virtual 4C centered on the cCRE (Figure 6f). By comparison, there was 

no evidence for an interaction between the cCRE and SOCS1 promoter in untreated beta cells 

(Figure 6f). Furthermore, there was no evidence of interaction between the cCRE and the 

promoter regions of other genes at the locus, including previously implicated candidate genes 

DEXI and CLEC16A, the expression of which was also not significantly affected by cytokine 

treatment (Supplementary Table 4). These results reveal that SOCS1 is a likely cis-regulatory 

target of T1D risk variant activity in cytokine-induced beta cells at the 16p13 locus.    

 

In the CRISPR screen SOCS1 promoted beta cell survival after cytokine exposure, and SOCS1 

had significant increase in cytokine-induced expression (Figure 6g-h). We determined the effects 

of SOCS1 on cytokine-induced beta cell survival using an independent assay that measures cell 

death via DNA fragmentation (see Methods). We performed siRNA-mediated knockdown of 

Socs1 in the pancreatic beta cell line MIN6 cultured with high-dose or low-dose cytokine treatment 

with or without TNFa as well as in untreated conditions, and measured DNA fragmentation using 

an anti-BrdU ELISA. We observed significant increase in DNA fragmentation in Socs1 siRNA 

compared to scramble control siRNA (two-way ANOVA P=3.3x10-7, Figure 6i). Furthermore, the 

effects of Socs1 knockdown were more pronounced in cytokine-treated compared to untreated 

beta cells, although this interaction was not significant (P>.05) (Figure 6i).      
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These results reveal that the up-regulation of SOCS1 activity in response to cytokine exposure 

promotes beta cell survival and plays a likely causal role in risk of T1D.   

 

DISCUSSION 

 

Combining functional genomics and genetic association data revealed genes and molecular 

processes involved in risk of T1D in beta cells. Genes with highly induced expression that 

promoted beta cell survival in response to cytokine exposure were specifically enriched at T1D 

loci. These genes broadly reflect two classes of intrinsic mechanisms that protect beta cells 

against proinflammatory cytokines: first, direct inhibition of the inflammatory response and, 

second, resolution of stress-induced damage due to the inflammatory response. The activity of 

these pro-survival genes is induced by distal beta cell cCREs that respond to cytokine signaling, 

and these cCREs in turn often harbor T1D risk variants.  As a result, risk of T1D can likely be 

explained in part by reduced induction of pro-survival genes in beta cells in response to 

proinflammatory cytokines during disease progression.  

 

Pro-survival genes involved in modulating the immune response included PTPN2 and SOCS1, 

which map to known T1D risk loci.  Both PTPN2 and SOCS1 suppress the inflammatory response 

by inhibiting the JAK/STAT pathway. Previous studies in model systems demonstrated that 

knockdown of PTPN2 in beta cells led to increased phosphorylation of STAT1/3 upon activation 

by interferon gamma as well as phosphorylation of the pro-apoptotic protein BIM10,35, which in turn 

increased beta cell death. Studies in model systems have shown that SOCS1 promotes beta cell 

survival by blocking the phosphorylation of JAK to suppress the inflammatory response19,20,36. In 

line with these findings in model organisms, our study reveals a role for PTPN2 and SOCS1 in 

promoting cell survival in human beta cells in cytokine exposure. Furthermore, based on direct 

links to a T1D risk variant, the regulation of SOCS1 activity in beta cells after cytokine exposure 

likely plays a causal role in T1D. 

 

Pro-survival genes with highly induced expression in cytokines were also involved ubiquitin-

mediated proteolysis. Among these were several LMO7, PPP1R11 and PSMD2 which mapped 

to T1D loci36338. Cytokine signaling in beta cells induces proteasomal activity39, and the 

proteasome is involved in cell survival39342. As proinflammatory cytokines induce ER stress in beta 

cells in the context of T1D2 which can lead to cell death43, and ER stress is resolved in in part 

through protein degradation44, these genes may function in resolving ER stress. However, at 
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present, the function of these genes in beta cells and the mechanisms through which 

ubiquitination-mediated proteolysis may regulate survival in T1D are unclear. In addition to ER 

stress, cytokines also cause beta cell death through the production of ROS in mitochondria45347. 

Mitophagy is induced by ROS production downstream of inflammation to prevent beta cell 

damage48, and our analyses revealed pro-survival genes affecting mitophagy. Moreover, many 

pro-survival genes were also involved in class I MHC antigen processing and presentation. Class 

I MHC activity in beta cells is necessary for progression of T1D49, likely by an increased exposure 

of beta cell antigens promoting an immune response. It is thus possible that some genes play 

dual roles in T1D via beta cell survival as well as antigen presentation, although other models will 

be needed to test the latter hypothesis.  

 

While our study identifies SOCS1 as a novel candidate gene for T1D, several other genes at the 

16p13 locus have been previously implicated in disease including DEXI and CLEC16A. Inhibition 

of DEXI in beta cells was previously shown to reduce the activation of STAT and chemokine 

production and promote survival in response to viral double-stranded RNA (dsRNA)11. In our 

CRISPR screen we observed the opposite effect where DEXI function promoted beta cell survival. 

T1D risk variants at 16p13 were also previously shown to physically interact with the DEXI 

promoter in cytokine-treated beta cells, although we did not find corresponding evidence in our 

HiChIP data in this study, nor did DEXI have differential expression in cytokine exposure. In the 

case of CLEC16A, pancreas-specific deletion in mice led to decreased mitophagy and abnormal 

mitochondria33, although we didn9t identify CLEC16A in our screen and CLEC16A expression was 

not affected in cytokine treatment.  Another candidate gene at this locus, CIITA, is an MHC class 

II trans-activator that has induced expression in cytokine treatment and is expressed in beta cells 

from T1D donors50. Therefore, it is likely that several genes mediate T1D risk in beta cells at this 

locus.     

 

Multiple genes such as DEXI had opposite effects on beta cell survival compared to previous 

reports. DEXI is a pro-survival gene in our screen but was previously shown to induce beta cell 

death in response to viral dsRNA11.  In another example, NDRG2 is a pro-death gene in our data 

but was previously shown to protect beta cells from lipotoxicity51. In such cases, opposing effects 

on survival could arise from differences in the cellular responses to different stressors such as 

viral dsRNA, cytokines, or lipids, or from differences between human and mouse. In addition, our 

screen identified genes affecting beta cell proliferation, such as NFATC252. The relevance of such 

genes to primary beta cell function in cytokine exposure is unclear, however, as these genes 
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might reflect the transformed nature of EndoC-³H1 cells. At present, EndoC-³H1 is the only 

human beta cell option for a genome wide CRISPR screen, which require large numbers of cells 

for sufficient coverage. Study designs that compare sgRNAs recovered from cell populations 

FACS-sorted based on a cellular marker, as was recently done for insulin content in EndoC-³H1 

cells53, may also complement the cell loss design used here.  Human pluripotent stem cell (hPSC) 

derived islet organoids could be a future platform for screens but will require a differentiation-

compatible lentivirus transduction method and scalable beta cell purification strategy. 

 

Our study also provided novel insight into transcriptional regulators of gene activity in beta cells 

through which T1D risk variants act in response to cytokine signaling. Variants with differential 

transcription factor binding within cytokine-responsive beta cells cCREs were broadly enriched 

for T1D association, supporting that a subset of T1D risk acts in beta cells by disrupting 

transcriptional programs which respond to cytokine signaling. The function of TF sub-families 

most enriched for T1D association largely mirrored the molecular processes enriched in beta cell 

pro-survival genes with induced expression, providing orthogonal support for the role of these 

processes in T1D risk in beta cells.  Furthermore, by annotating TF genes within these sub-

families with altered expression in cytokine exposure, we pinpointed specific TFs likely driving 

beta cell cis-regulatory activity affecting T1D risk.  For example, in beta cells, IRF TFs and BCL6 

regulate inflammation16,54,55, ATF3, GLIS3, and MYC regulate stress response and apoptosis563

59, and NR4A1, NR4A3, PDX1 and MYC regulate mitochondrial function and mitophagy58,60,61.  

These findings also support a model in which T1D risk variants broadly affect the activity of a wide 

variety of TFs regulating disease-relevant pathways in beta cells.  

 

While IL1³, IFN³ and TNF³ have been extensively used as an in vitro model of T1D, beta cells 

are exposed to additional cytokines during disease progression. For example, a recent study 

revealed widespread changes in beta cell regulatory programs after exposure to IFN³62, which is 

involved in anti-viral immunity. Continued generation of genomic maps in beta cells exposed to 

other disease-relevant cytokines will therefore be informative in interpreting T1D risk. Beta cells 

are also exposed to other T1D-relevant external stimuli beyond cytokines. In vitro models of 

endoplasmic reticulum stress63, oxidative stress64, hypoxia65 and hyperglycemia66 have all been 

used to study beta cell function in the context of disease but the genomic response of beta cells 

to these stressors and their role in T1D genetic risk remains largely unknown.  As in vitro models 

only partially re-capitulate disease biology, mapping regulatory programs in beta cells from 

individuals in the early stages of T1D will also help in interpreting disease risk.      
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In summary we identified transcriptional regulators, genes and molecular pathways that affect 

T1D risk by modulating beta cell survival after cytokine exposure, providing new avenues to 

preserve beta cell mass in T1D.    

 

 

METHODS 

 

Human islet samples  

Human islet samples obtained through the Integrated Islet Distribution Program (IIDP) and the 

University of Alberta were enriched using a dithizone stain and cultured in CMRL 1066 

supplemented with 10% FBS, 1X pen-strep, 8mM glucose, 2mM L-glutamine, 1mM sodium 

pyruvate, 10mM HEPES, and 250ng/mL Amphotericin B. For cytokine-treated samples, human 

cytokines were added to the culture media for 24 hours as follows: for high doses, 10ng/mL and 

IFN-g, 0.5ng/mL IL-1B (2 cytokines), with 1ng/mL TNF-³ where indicated (3 cytokines); for low 

doses, 0.2ng/mL IFN-g and 0.01ng/mL IL-1B (2 cytokines), with 0.02ng/mL TNF-³ where 

indicated (3 cytokines). Islet studies were approved by the Institutional Review Board of the 

University of California San Diego. 

 

Islet nuclei isolation  

Human islets were collected from culture and homogenized in permeabilization buffer consisting 

of 5% BSA, 0.2% IGEPAL-CA630, 1mM DTT, and 1X cOmplete EDTA-free protease inhibitor 

(Sigma) in 1X PBS. Isolated nuclei were resuspended in 1X TDE1 buffer (Illumina) and quantified 

using a Countess II Automated Cell Counter (Thermo).  

 

ATAC-seq data generation  

Approximately 50,000 nuclei were tagmented in a 25uL reaction volume using 2.5uL TDE1 

(Illumina). Transposition reactions were carried out for 30 minutes at 37C in a thermal cycler. 

Tagmentation reactions were cleaned up using a 2X reaction volume of Ampure XP beads 

(Beckman Coulter) and used to prepare libraries using the Nextera XT Dual-Indexed primer 

system (Nextera) and NEBNext High-Fidelity PCR Master Mix (New England Biolabs). Libraries 

were sequenced by the UCSD Institute for Genomic Medicine on an Illumina HiSeq 4000 using 

paired end reads of 100bp. 
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ATAC-seq data analysis  

 

Processing. FASTQ reads were trimmed using Trim Galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with flags 8--paired9 and 8--

quality 109 and aligned to the hg19 reference genome with BWA mem67 using the 8-M9 flag. We 

used Picard to mark duplicate reads and filtered, sorted, indexed, and aligned reads using 

samtools68 with flags 8-q 309, 8-f 39, 8-F 33329. Mitochondrial reads were also removed. Peaks were 

called on the filtered reads using MACS269 with parameters 8--extsize 200 --keep-dup all --shift -

100 --nomodel9. We generated bigWig tracks normalized by RPKM for each experiment using 

bamCoverage70. TSS enrichment scores for each ATAC-seq experiment were calculated using 

8tssenrich9 (https://pypi.org/project/tssenrich/), as the aggregate read distribution in a 4kb window 

centered on the TSS and normalized to an extended region of 1.9 kb on each side, according to 

the Encyclopedia of DNA Elements (ENCODE) guidelines. 

 

PCA. We identified all peaks identified in at least two individual samples and constructed a read 

count matrix using edgeR71. We then calculated normalization factors using the 8calcNormFactors9 

function and used limma to apply the voom transformation and regress out batch effects and 

sample quality as measured by TSS enrichment scores. We then calculated principal components 

(PCs) using the top 10,000 most variable peaks using the 8prcomp9 function with rank 2. The 

software used to generate PCs is located at https://rdrr.io/github/anthony-

aylward/exploreatacseq72.  

 

Differential chromatin accessibility. We generated a 8master9 set of consensus ATAC-seq peaks 

by merging reads from all experiments and calling peaks on these merged reads using MACS2 

as described above. The peaks were filtered to remove sites found in less than three individual 

samples and the ENCODE hg19 blacklist v273. A count matrix of reads from each sample mapping 

to this list of peaks was created using featureCounts74 and used for differential accessibility 

analysis using DESeq212. We used the experimental design 8~treatment + donor9 and a cutoff of 

FDR<0.1 as computed by the Benjamini-Hochberg method to call differentially accessible sites 

between treated and untreated conditions. To compare the effects of treatment with and without 

TNF-³, we compared the absolute log2 fold changes from DESeq using a Wilcoxon signed rank 

test in R. To identify differentially accessible sites with different effects at different treatment 

durations we performed a linear regression of log2 fold changes with respect to matched controls 

as a function of time (6, 24, 48 and 72 hours). A nominal p-value of 0.01 was chosen as threshold. 
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Motif enrichment analysis. We used the 8findMotifsGenome9 tool from HOMER13 to test 

differentially accessible chromatin sites for motif enrichment compared to a background of 

consensus ATAC-seq peaks, and using the masked hg19 genome as reference. 

 

RNA-seq data generation  

RNA was isolated using the RNeasy Mini system from Qiagen from a total of 16 samples of human 

islets from 4 different donors and exposed for 24 hours to either 3 cytokines-high dose, 2 

cytokines-high dose, 3 cytokines-low dose, 2 cytokines-low dose or control conditions.  

Approximately 500-1000 islets were used per sample. RNA quality was assessed using a 2200 

TapeStation to confirm RNA integrity, and all samples had a RINe score of >7. Ribodepleted total 

RNA libraries were prepared and sequenced by the UCSD Institute for Genomic Medicine on an 

Illumina HiSeq 4000 using paired end reads of 100bp.  

 

RNA-seq data analysis 

We used STAR (2.5.3a)75 to align paired-end RNA-Seq reads to hg19 genome with a splice 

junction database built from the Gencode v19 gene annotation76 and the following parameters:  -

-outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --alignIntronMin 20 --alignIntronMax 

1000000 --alignMatesGapMax 1000000 --outSAMtype BAM Unsorted --quantMode 

TranscriptomeSAM. Gene expression values were quantified using the RSEM package (1.3.1) 77 

with default parameters and loaded into R for further processing. Genes were filtered for >0.1 

TPM on average per sample with 22,175 genes remaining after filtering. Raw expression counts 

were normalized using voom transformation from limma package and corrected for sample batch 

effects using limma removeBatchEffect. The R prcomp function was used to perform principal 

component analysis for the top 500 most variable genes. We identified differentially expressed 

genes between each cytokine treatment (3 cytokines-high dose, 2 cytokines-high dose, 3 

cytokines-low dose, 2 cytokines-low dose) and untreated conditions using DESeq212 with default 

settings and controlling for sample of origin using design= ~ sample + condition.  An FDR of 10% 

was chosen as significance threshold. Metascape (metascape.org) was used to perform gene 

ontology enrichment analysis with standard settings. 

 

Single nuclei ATAC-Seq data generation  

Islet nuclei from 4 donors (3 samples treated for 24h with 3 cytokines, high doses, and 4 untreated 

samples) were prepared as described above, and adjusted to a concentration of approximately 
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3000 nuclei/uL. Samples from two donors and same treatment conditions (SAMN12833535 and 

SAMN12889245) were pooled prior to snATAC library preparation and were de-multiplexed after 

sequencing as described below. We targeted 5000 nuclei per assay for use in the 10X Genomics 

Chromium Single Cell ATAC assay using v1 chemistry. Sequencing was performed at the UCSD 

Institute for Genomic Medicine on an Illumina NovaSeq using a specific paired-end 10X ATAC 

run configuration with reads of 50bp to a final read depth between 49 to 109M reads per sample. 

 

Single nuclei ATAC-Seq data analysis 

Processing. 10x Genomics Cell Ranger ATAC v1.1 (cellranger-atac count) was used to process 

10x fastq files for each sample and perform alignment to the hg19 reference genome. For each 

assay, we then removed barcode multiplets using Cell Ranger9s multiplet removal script (version 

1.1). BAM files were filtered for PCR duplicates, converted into tagAlign files, and intersected with 

a reference set of islet ATAC-seq peaks78 to construct a sparse matrix containing read counts in 

peaks for each cell. Cells with a minimum of 500 (sample SAMN15337453, untreated), 1,000 

(samples SAMN12833535 and SAMN12889245), or 4,000 (sample SAMN15337453, treated and 

sample SAMN15314807) total mapped reads were retained for further analysis. 

 

Clustering. Prior to combining all samples, each assay was clustered separately using scanpy 

v.1.6.079. First, we extracted highly variable peaks using mean read depth and dispersion. Read 

depth was normalized and log-transformed counts were regressed out within highly variable 

peaks. We then performed PCA analysis and obtained the top 50 principal components. We 

calculated the nearest 30 neighbors using cosine metric to perform UMAP dimensionality 

reduction (min_dist = 0.3) and clustering using the Leiden algorithm. For each assay, cells with 

low usable counts and fraction of reads in peaks were iteratively removed. In order to obtain more 

accurate clustering and cell type assignment, the filtered assays were then merged and combined 

with 3 existing islet snATAC datasets previously filtered using the same criteria as above80, and 

the top 50 PCs were obtained from the merged experiments. Harmony81 was then used to batch 

correct PCs for donor across experiments. Using the corrected PCs, we applied the UMAP 

dimensionality reduction method, and clustered cells using the Leiden algorithm (Resolution = 

0.5), and sub-clustered using the Louvain algorithm (Resolution = 1.5). Low-quality cells from the 

merged clusters were iteratively removed and manual doublet removal was performed on sub-

clusters with above average high usable read depth or those that expressed multiple marker 

genes. After the entire filtering process, 28,853 cells were removed in total, and the final merged 

cluster contained 25,200 cells (untreated cells: 21,318; cytokine-treated cells: 3882) mapping to 
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10 clusters. Cell type of each cluster was assigned based on chromatin accessibility at promoter 

regions of known marker genes78 and verified through UCSC genome browser tracks. The islet 

samples from Wang et al80 were removed from the final clustering and the remaining cells 

(untreated cells: 3,947, cytokine-treated cells: 3,882) were used for downstream analysis. 

  

snATAC pooled sample demultiplexing. In order to assign the pooled assays to the two sample 

donors, we genotyped non-islet tissue from the two samples. During islet picking, non-islet cells 

were collected separately from the islets, washed with 1X HBSS, pelleted at 500rcf for 5 minutes, 

and snap frozen with liquid nitrogen until genomic DNA extraction. We extracted genomic DNA 

from the non-islet cells using the PureLink Genomic DNA mini kit. Samples were genotyped by 

the UCSD Institute for Genomic Medicine using the Illumina Infinium Omni 2.5-8 assay. 

Genotypes were called using GenomeStudio (v2.0.4) with default settings. Using PLINK82, we 

filtered out rare variants with MAF <0.01 in the Haplotype Reference Consortium panel r1.1 and 

ambiguous alleles with MAF > 0.4. Filtered variants were used to impute genotypes into the HRC 

r1.1 panel using the Michigan Imputation Server with minimac4. Genotypes with high imputation 

quality (R2>0.3) were used to demultiplex pooled snATAC samples using Demuxlet83 with default 

settings.  

 

Peak Calling. To identify chromatin accessibility peaks in each islet cell type, we extracted the 

reads from all cells within a given cluster and generated separate tagAlign files for each cell type. 

To correct for the 9-nt duplication created by Tn5 transposase, we shifted the reads aligned to 

the positive strand by +4bp and reads aligned to the negative strand by -5bp.  We then called 

peaks using MACS269 with the parameters 8q 0.059, 8--nomodel9, 8--keep-dup all9, and 8g hs9. 

Blacklisted regions (v.2) from ENCODE were removed. The bedgraph output by MACS2 was 

sorted, normalized to counts per million (CPM), and converted to bigwig for visualization on UCSC 

genome browser. The peak calls from the individual cell types were then used to annotate the 

consensus set of peaks identified in bulk islet ATAC using bedtools intersect (v2.26.0).  

 

Differential chromatin accessibility in islet cell types. We generated distinct BAM files for each cell 

type, donor and condition, using the barcodes to extract reads from the filtered and duplicate-

removed BAM files from each assay using 8samtools9 and 8grep9. For each cell type, we then 

generated a matrix of read counts mapping to bulk ATAC consensus peaks using featureCounts74 

. Each matrix was filtered for an average read depth of 1 per sample/condition and DESeq2 was 

used to identify differentially accessible sites between cytokine treated and untreated samples 
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with the donor as covariate (design = ~ treatment + donor). FDR <0.1 was chosen as significance 

threshold. To visualize results as heatmap and hierarchical clustering, we concatenated the 

matrices for each cell types, normalized the raw counts using DESeq variance stabilizing 

transformation (vst) function, filtered for peaks with differential accessibility in at least one cell 

type and plotted the resulting matrix using 8pheatmap9. To compare the effects of cytokine 

treatment between beta cells and bulk islets and between beta cells and alpha cells, we compared 

the absolute log2 fold changes from DESeq at the same peaks using a Wilcoxon signed rank test 

in R. 

 

Co-accessibility. Using Cicero (version 1.4.4)15, we calculated co-accessibility between pairs of 

snATAC peaks. To indicate which cells were accessible in which peak, we created a sparse m x 

n binary matrix by encoding cells from a given cell type (n) and merged peaks across all cell types 

(m), obtained using bedtools merge. We calculated Cicero co-accessibility scores following the 

recommended analysis protocol (https://cole-trapnell-lab.github.io/cicero-

release/docs/#recommended-analysis-protocol), using the 30 nearest neighbors of UMAP 

coordinates to aggregate cells, and a window size of 1Mb to calculate cicero models. We then set 

a threshold of 0.05 and a minimum distance of 10kb to define pairs co-accessible for a given cell 

type. Co-accessibility was calculated for either untreated beta cells, cytokine-treated beta cells or 

merged treated-untreated beta cells. To annotate co-accessibility links between distal and 

promoter peaks, we categorized peaks within a 5kb window of a transcription start site (+/- 2.5 kb 

from TSS (GENCODE version 1976) as 8promoter9, and otherwise as 8distal9. To calculate 

enrichment in cytokine responsive cCRE for concordant effects with distal genes, we annotated 

each bulk ATAC consensus peak with results of differential accessibility in islets (3 cytokines, 

high-doses, 24 hrs) and co-accessibility in beta cells (merged treated-untreated conditions) with 

at least one gene with differential expression (3 cytokines, high-doses, 24 hrs). We then 

performed Fisher9s exact test on each combination of direction of effects (upregulated cCRE vs 

upregulated gene, upregulated cCRE vs downregulated gene, downregulated cCRE vs 

upregulated gene and downregulated cCRE vs downregulated gene). The same test was 

performed for cCREs proximal to gene promoters (<10 kb from TSS). 

 

Motif enrichment analysis. Using ChromVAR14 (version 1.8.0) we calculated the deviation in 

accessibility from expected accessibility within islet cell types. We used a binary sparse matrix of 

accessible cells in each ATAC peak (see above) as input, and add GC bias using the 

8BSgenome.Hsapiens.UCSC.hg199 library for genome sequence input. We then filtered cells with 
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a minimum depth of 1500 and a minimum proportion of reads in peaks of .15, and filtered peaks 

for non-overlapping coordinates. The remaining peaks were annotated for motif occurrence from 

the JASPAR database, using the matchMotifs function from the motifmatchr package. We then 

computed deviations and variability for each cell type separately (alpha and beta) with the 

provided ChromVAR functions. For each transcription factor (n=386) we then calculated the 

absolute difference of the average deviation scores of cytokine treated and untreated cells and 

compared these differences in alpha versus beta cells using a scatterplot. 

 

EndoC-³H1 cell culture 

EndoC-³H1 cells were cultured at 9×104 cells/cm2 of cell culture surface area pre-coated with 

ECM (Sigma, E1270) and Fibronectin (Sigma, F1141). Cell culture media containing DMEM 

(Gibco,11885084), 2% BSA (Sigma, A1470), 3.5× 10-4% 2-mercaptoethanol (Gibco, 21985023), 

0.12% Nicotinamide (Calbiochem, 481907), 5.5 ng/mL transferrin (Sigma, T8158), 6.7pg/mL 

Sodium Selenite (Sigma, 214485) and 1% Penicillin-Streptomycin (Gibco, 15140122) were 

refreshed every 2 days. Cells were passaged weekly using 0.25% Trypsin-EDTA for dissociation, 

which was quenched with an equal volume of FBS and two volumes of IMDM media (Gibco, 

12440053). Dissociated cells were spun down at 1200 rpm for 5 minutes and counted before 

seeding with the above-mentioned density. 

 

HiChIP sample preparation 

To collect samples for HiChIP assays, 10 million EndoC-³H1 cells were treated with either control 

(0.1% BSA) or cytokines (0.5 ng/mL IL1³, 1 ng/mL TNF³ and 10 ng/mL IFN³) for 72 hours. 

Treated cells were cross-linked with 1% formaldehyde for 15 minutes with shaking at room 

temperature, followed by a 5-minute quenching step with 1.25)M glycine/PBS. Cross-linked 

EndoC-³H1 cells in both control and cytokine-treated conditions were washed three times with 

ice-cold PBS and collected from the dish with a cell scraper. Cells were then pelleted, and flash 

frozen with liquid nitrogen.  HiChIP assays were performed by Arima Genomics using the HiC+ 

protocol with a H3K27ac antibody, and libraries were sequenced on an Illumina NovoSeq with 

150 bp paired end reads. 

 

HiChIP data analysis  

Data was processed using the MAPS v2.0 pipeline from Arima Genomics 

(https://github.com/ijuric/MAPS/tree/master/Arima_Genomics).  We used hg19 as the reference 

genome and H3K27ac ChIP-seq peaks in EndoC-³H1 cells from a published study84. Interactions 
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between 5kb windows containing a H3K27ac peak were considered significant at FDR<0.10. 

Loop calls were intersected with promoter regions of genes from GENCODE to identify enhancer-

promoter interactions. Contact matrices were generated using the pre command from Juicer 

tools85.  For virtual 4C, we extracted all contacts which included the 5kb window around the site 

of interest. 

 

Lentiviral human GeCKO-V2 library preparation, transduction, and titration 

To package lentivirus encoding the human GeCKO-V2 CRISPR screen library86, plasmids 

containg the gRNA library (Addgene, 1000000048) were transfected into the HEK 293T cells 

together with the lentiviral packing vectors, pMD2.G (Addgene, 12259) and psPAX2 (Addgene, 

12260), using a PolyJetTM DNA transfection reagent (Signagen Laboratories, 504788). 

Transfected cells were kept in the culture to allow virus to be released. And the media containing 

lentivirus was collected at 36, 48, 72 hours post transfection before filtered through a 0.45¿m cell 

strainer to remove cell debris. Lentiviral particles were pelleted down at 20,000 rcf for 2 hours, 

using an Optima L-80 XP Ultracentrifuge machine (Beckman Coulter) provided by the Human 

Stem Cell Core at UCSD. The same media for EndoC-³H1 cell culture was used to resuspend 

the virus.  

 

A spin-inoculation method was adopted to transduce the viral library into the EndoC-³H1 cell line. 

To do this, the cells were pre-treated with 8 ¿g/mL polybrene (Sigma, TR-1003) in the culture 

media for 30 minutes. Then the virus was added before the entire plate was spun in a swing-

bucket centrifuge machine at 930g for 45 minutes. It takes 48 hours for the sgRNA and Cas9 

protein to be expressed in the EndoC-³H1 cells. 

 

CRISPR loss-of-function screen for regulators of ³-cell survival under cytokine stress 

The EndoC-³H1 cells were expanded to a total of 300 million cells before spin-inoculated with the 

lentiviral human GeCKO-V2 library at an MOI=0.3. To enrich for successfully transduced cells, a 

3-day puromycin (5 ¿g/mL, Sigma, P8833) selection was performed 48 hours after the spin-

inoculation. And 60M (500X genome coverage) cells were harvested as a representation control 

for the GeCKO-V2 sgRNA library. The rest of the cells were kept in the culture condition for an 

additional 14 days with puromycin (1 ¿g/mL) to achieve sufficient gene deletion and treated with 

either 0.1% BSA or a combination 0.5 ng/mL IL1³ (PerroTech, 200-01B), 1 ng/mL TNF³ 

(PerroTech, 300-01A) and 10 ng/mL IFN³ (PerroTech, 300-02) for 72 hours. A time-point 

experiment was performed to evaluate which treatment duration was necessary to induce cell 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.29.466025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/


death. EndoC-³H1 cells were seeded 24 hours before the cytokine treatment and residual cell 

number was counted at 24, 48 and 72 hours of treatment (n=3). Cell number are shown in 

Supplementary Table 5. We were able to harvest another 60M (500X genome coverage) cells 

from the control (0.1% BSA) treated cells and 30M (250X genome coverage) from the cytokine 

treated cell, although they were started with the same number.  

 

Genomic DNA from all three conditions were purified with a Quick-gDNA# MidiPrep kit (Zymo 

Research, D3100). And sgRNA library were amplified from the genomic DNA using a two-step 

nested PCR method modified from a previous published protocol (PMID: 28417999). In brief, 

guide RNA inserts were amplified from the genomic DNA with the following primers: 

F1-1:TCCCTACACGACGCTCTTCCGATCTNNNNNGGAAAGGACGAAACACCG 

F1-2:TCCCTACACGACGCTCTTCCGATCTNNNNNHGGAAAGGACGAAACACCG 

F1-3:TCCCTACACGACGCTCTTCCGATCTNNNNNHHGGAAAGGACGAAACACCG 

F1-4:TCCCTACACGACGCTCTTCCGATCTNNNNNHHYGGAAAGGACGAAACACCG 

R1-1:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNTGCTATTTCTAGCTCTAAAAC 

R1-2:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVTGCTATTTCTAGCTCTAAAAC 

R1-3:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVMTGCTATTTCTAGCTCTAAAAC 

R1-4:GGAGTTCAGACGTGTGCTCTTCCGATCNNNNNVMAATGCTATTTCTAGCTCTAAAAC 

 

Pooled F1 primers (F1-1 to F1-4) and R1 primers (R1-1 to R1-4) were used each PCR reaction 

to avoid cluster registration failure on Illumina machines. Amplicons from the first step of PCR 

were gel purified and subjected to a second round of PCR to add Illumina sequencing adaptors 

and TruSeq indexes. Primers used in the second PCR step were listed below: 

F2:AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA 

R2:CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC

CG 

 

Sequencing library amplified from the second round of PCR were size-selected and purified with 

a magnetic bead-based SPRIselect reagent (Beckman Coulter, B23318), and subjected to 

HiSeq4000 Illumina NGS platform using a single read (SR75) method. 

 

Analysis of CRISPR screen results 

Adaptor sequences ggaaaggacgaaacaccg and gttttagagctagaaatagca flanking the 19-20 base 

pair of sgRNA sequences were trimmed using cutadapt. Trimmed sequencing reads were then 
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aligned to the reference sgRNA library with bowtie2 with default settings, resulting in a BAM file 

that can be used for sgRNA counting with the MAGeCK model-based tool for CRISPR-Cas9 

knockout screens87. Statistical significance of guide RNA representation in control and cytokine 

treated datasets was estimated with the mle subcommand in the MAGeCK package. An effect 

(beta) for each gene from this analysis was extracted as an indicator of enrichment (positive beta) 

or depletion (negative beta) of sgRNAs targeting this gene in the cytokine-treated cells. miRNA 

genes and genes with less that 3 sgRNA guides were excluded from further analysis. Significantly 

enriched (427) or depleted (440) genes at FDR<.10 were further filtered for expression in islet 

(average sample TPM>=1). Gene ontology analysis was performed using GSEA 

(http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) against the REACTOME and GO 

biological process gene sets, including only gene sets with more than 20 and less than 1000 

genes. A Fisher9s exact test was used to calculate the enrichment of pro-cell survival and pro-cell 

death genes segregated by up-regulated, down-regulated or no change in expression in high-

dose cytokine treatment within 1Mb of all known T1D risk loci including MHC. 

 

SNP-SELEX variant selection.   

Variants were selected and classified based on 4 criteria. (1) T1D loci: We selected 86,067 

variants from 57 known T1D loci, including the MHC region. Variants at these 57 loci were 

selected based on: credible set variants from fine mapping data for 36 loci88, all variants in 1,000 

Genomes Project (1KGP) phase 3 EUR LD (r2>0.2) with index variants at the remaining 21 loci, 

and all variants in 1KGP with EUR MAF >0.5% in regulatory elements within 250 kb of index 

variants at all 57 loci. (2) T2D loci: We selected 33,354 variants at known T2D loci, which include 

lead variants and variants in LD with r2>=0.6 in EUR and non-EUR, and credible variants from 

fine mapping studies. (3) Islet enhancers: We included 56,796 variants in 1KGP phase 3, filtered 

for Hardy-Weinberg Equilibrium p-value >=1e-5 and MAF >=0.5% that intersected with islet 

enhancers, defined using published ATAC-Seq and H3K27ac ChIP-Seq data from human 

islets89,90. (4) Random: 7,869 negative control variants from filtered 1KGP SNPs, but randomly 

chosen from the genome were included.  Variants from categories 2, 3 and 4 have been included 

as a validation set in a previous publication26. The total number of selected variants is 184,086, 

including 183,373 SNPs and 713 indels. A small subset of variants overlaps between the 4 

different selection methods, and therefore in total there were 182,226 distinct variants selected.  
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SNP-SELEX data generation.  

Oligonucleotide design consisted of a target sequence of 44 nt containing the variant, flanked by 

illumina TruSeq dual-index system adapters and barcodes. Three hundred and eighty-four pools 

of oligonucleotides were synthesized by CustomArray (Seattle, WA), each pool carrying a unique 

sequence barcode. To control for PCR duplicates, the 3 nucleotides at each end of the 44 nt 

sequence were synthesized Ns, which generated random combination of nucleotides tagging 

each molecule. For SNPs, the central position was substituted by an N, resulting in synthesis of 

all 4 nucleotidic variations (97,758 oligos), while for indels (maximum 3bp-long) both a long (44 

nt) and a short (41-43 nt) form were synthesized (259 x 2 oligos). The oligos were double stranded 

using 20 cycles of PCR and sequenced for 2x50 paired-end cycles with illumina Hiseq 2500 as 

input references.  

SNP-SELEX data was generated as previously described26. The cDNA of 530 distinct TF proteins 

were cloned into pET20a plasmids and expressed using Rosetta (DE3) pLysS E. coli strains. 

6xHis-tagged TF proteins were immobilized to Ni sepharose beads (GE, 17-5318-01) in Promega 

binding buffer (10mM Tris pH7.5, 50mM NaCl, 1mM MgCl2, 4% glycerol, 0.5mM EDTA, 5µg/ml 

poly-dIdC) across 8x96-well plates. Oligos from input were added into the protein beads mixture 

and incubated at RT for 30 min. Beads were washed for 12 times with the Promega binding buffer 

and re-suspended in TE (10mM Tris pH 8.0, 1mM EDTA). The eluted DNA was amplified by PCR 

and purified (Qiagen, 28004): an aliquot used for library preparation and sequencing and another 

aliquot of the same product was added to the protein beads mixtures for a new binding cycle. Two 

independent replicates consisting of four binding cycles each were performed and sequenced 

using two flow cells of 2x50 paired end illumina Hiseq 2500. To reduce confounders due to 

systematic synthesis bias, in the second experiment the order of the input pools was inverted (i.e. 

the same TF protein was hybridized to an oligo pool synthesized with a different barcode). 

  

SNP-SELEX sequencing data analysis.   

Sequence processing. FASTQ files from each cycle and input were first filtered for identical 

sequences using FastUniq (v1.1)91, which removed on average 10% of reads in each experiment, 

to a final median depth of 3 and 0.64 million paired-end reads for the input and the selected oligos 

respectively. Sequencing reads were then aligned using BWA-MEM (version 0.7.12)67 to the oligo 

library fasta files. For each oligo, the number of read pairs carrying each nucleotide was counted, 

only counting reads that were uniquely mapped, correctly paired, with quality=60 and with the 

same sequence at the SNP position. Oligos with less than 8 read pairs for SNPs and 4 reads 
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pairs for indels were excluded for further analysis. To estimate the consistency between the two 

experimental replicates we calculated the correlation between the proportion of reads aligning to 

a given SNP over the total number of reads in a given experiments. The proportion of reads 

aligning to each oligo in each experiment was well correlated between the two replicates (median 

Pearson coefficient r=0.86), and the correlation increased over the cycles, indicating that the 

selection for the same oligo by a given protein was reproducible between the two replicates. We 

excluded that this result was due to the starting oligonucleotide stoichiometry in the pools, as the 

different replicates had different input material.  

 

Motif analysis was performed on the oligo sequences (40 nt) that were selected at cycle 4 of each 

experiment to determine the enrichment for the expected motif or family of motifs. For motif 

enrichment we used HOMER (library 4.7)13 and MEME 4.12.0 (libraries: 

JASPAR_CORE_2014_vertebrates, jolma2013, encode_known, Mariani_2017 and 

Barrera_2016)92. A positive motif match was determined if the expected motif (matching with the 

first three letters of the name) or a motif from the same structural family (defined by homer 

classification) were found among the top 20 enriched motifs. For 564 experiments, we found a 

positive motif match in both replicates, for 90 in either of the two replicates and for 114 in none of 

the replicates. Because for some analyzed TFs the motif is not known, for example for Zinc Finger 

proteins, we did not consider failed experiment only based on the motif enrichment, but also on 

the correlation between replicates. If the correlation between replicates was <0.5 and one of the 

two replicates was enriched for the expected motif, then remove only the replicate that did not 

contain the motif (16 experiments removed). If the correlation was <0.5 and both replicates did 

not have motif in the corresponding family, we removed both replicates (53 experiments 

removed).  

Identification of variants with differential TF binding. For each experimental replicate, allelic counts 

were tabulated for each oligo at each cycle, including only those variants covered by at least 8 

read pairs for SNPs, or 4 reads pairs for indels, in all five cycles (0-4). Furthermore, variants with 

less than 2 read pairs in the input for both the reference and alternate alleles and composing < 

5% of the total reads in the pool were removed, as potentially biased inputs. To quantifying the 

magnitude of the difference between reference and alternate allele binding across all cycles, we 

used the <Preferential Binding Score= or PBS, which has been previously described26. The PBS 

corresponds to the AUC between the differences of log odds ratios of the two alleles compared 

to cycle 0 (the input), and is calculated as follows: 
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1) For a given oligo, the odds of allele a at cycle c is defined by the frequency P of allele a at 

cycle c, divided by 1-Pa,c, which is equal to the read counts of allele a divided by the sum of 

read counts of all other nucleotides r: Odds a,c = P a,c /  (1-P a,c) = counts (a,c) / counts(r,c) 

2) The odds ratio is calculated as the ratio between the odds of allele a at cycle c and the odds 

of allele a at cycle 0: OR a,c = Odds a,c / Odds a,0 

3) LogOR are calculated for reference and alternate allele for each cycle: LogORa,c = 

log10(counts (a,c)) + log10(counts (rest, 0)) - log10(counts(a,0)) -log10(counts (rest,c)) 

4) The PBS is the AUC of the difference between LogORref and LogORalt (&LogOR), calculated 

with the formula:  ��� =
!

"
3 (�# 2 �#$!)(&�����# + &�����#$!)
%

#&!  

For each experiment replicate, to determine the statistical significance of the observed values, a 

Monte Carlo randomization was conducted, which consisted of 250,000 randomly generated PBS 

measurements. The randomizations consisted of shuffling the SNP labels 250,000 times within 

each cycle and one PBS measurement was extracted each time. We observed that experiments 

with fewer than 25 oligos generated non-normal PBS random distributions, therefore experiments 

with less than 25 variants remaining after the above filtering steps were excluded. 

After calculating preferential binding statistics in each individual experiment (same <well=, two 

technical replicates), results of the two replicates for each experiment were combined using meta-

analysis of p-values, weighted on the total number or reads for reference and alternate allele in 

cycles 1 to 4, and the average of effect sizes (PBS). Further, experimental replicates of the same 

TF protein (different <wells=, variable number of replicates) were meta-analyzed to obtain a unique 

value for each TF. A nominal p-value of 0.05 was chosen as arbitrary threshold to define a 

preferentially bound variant. 

 

Correlation of SNP-SELEX results between transcription factors.  To compare variant effects on 

binding of different TFs, we first computed a matrix of PBS scores where each row corresponded 

to a SNP and each column to a TF. After filtering the matrix to retain only TFs with at least 50 

bound variants, TF families with at least 3 components and variants that were pbSNPs in at least 

one TF (27,655 variants and 457 TFs), we calculated a pairwise correlation matrix using the cor() 

function in R, using the <pairwise= option. To perform hierarchical clustering on TFs, we filtered 

the pairwise correlation matrix, retaining only rows and columns with non-missing values (264 

TFs). The dendrogram of the hierarchical clustering of distances was obtained using the R 

command as.dendrogram(hclust(as.dist(1-correlation_matrix)))  and plotted using functions form 

the <circlize= R package. 
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Correlation between SNP-SELEX and SNP effect predictions.  Predictions of TF motif alteration 

by SNPs were calculated using the package motifbreakR93, using the H.sapiens 

'HOCOMOCOv10' library of motifs PWM (640 TFs, including most of those tested by SNP-

SELEX) and using the parameters: filterp = TRUE, method="ic", threshold = 5e-4, BPPARAM = 

BiocParallel::bpparam("SerialParam"). We tested using this approach 181,540 variants (some 

where excluded in the formatting process by the function: snps.from.file (search.genome = 

BSgenome.Hsapiens.UCSC.hg19), of which 177,270 were predicted to alter at least one of the 

motif of the library. For each SNP, the difference of PWM scores from the two alleles was 

compared with the PBS scores from SELEX from the corresponding TFs (500 unique TFs, 

129,842 unique variants, 1,896,977 combinations). Pearson correlation coefficient was calculated 

for 234s TF that had a minimum of 10 testable, bound SNPs with PWM predicted effects, or 146 

when only considering pbSNPs. Similarly, predictions of SNP effect on TF binding were obtained 

from DeepSEA calculations (http://deepsea.princeton.edu/job/analysis/create/) and filtered for E-

value <0.01.  For each TF in the database, the predicted allelic log2 fold change of each SNP 

was averaged across the different cell types and then compared with SELEX PBS scores, for TFs 

having a minimum of 10 bound SNP (37 TFs: ATF2, ATF3, BATF, CEBPB, CTCF, E2F4, ELF1, 

ELK1, ELK4, ETS1, FOSL1, FOXA1, FOXA2, FOXM1, FOXP2, GATA2, GATA3, IRF3, IRF4, 

MEF2C, MYBL2, NANOG, NFATC1, NFIC, POU2F2, POU5F1, PRDM1, RFX5, RUNX3, RXRA, 

SRF, TCF12, TCF7L2, USF1, USF2, YY1, ZBTB7A) or pbSNPs (24 TFs). 

 

Genetic association enrichment analysis. We tested variants with allelic effects on TF binding for 

enrichment of T1D association using genome-wide summary statistic data8
.  We defined three 

categories of variants: (i) all variants, (ii) mapping in beta cell cCREs, (iii) mapping in cytokine-

responsive beta cell cCREs.  For each variant category, we identified several different p-value 

thresholds and segregated SNP-SELEX variants based on (i) allelic effects of TF binding, or no 

allelic effect on TF binding, (ii) reaching p-value threshold or not, and then for each threshold 

performed a Fisher9s exact test.   

 

Electrophoretic Mobility Shift Assay 

Electrophoretic Mobility Shift Assay (EMSA) was carried out using LightShift# Chemiluminescent 

EMSA Kit (20148, ThermoFisher Scientific). Untreated and cytokine treated MIN6 nuclear extracts 

(NEs) were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents as per 

manufacturer9s recommendation (78833, ThermoFisher Scientific), supplemented with 1x 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.29.466025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/


protease inhibitors (40694200, Roche Diagnostics GmbH). For cytokine-treated condition, MIN6 

cells were cultured in T75 flasks to 70% confluency and treated with 10ng/mL IFN-g, 0.5ng/mL IL-

1b, and 1ng/mL TNF-a cytokine mixture prepared fresh 24 hours prior to NE preparation. NE 

protein concentration was determined using a NanoDrop (ThermoFisher Scientific) and samples 

were stored at -800C until analyses. Sense and anti-sense single-stranded EMSA 

oligonucleotides for reference and alternate alleles were purchased from Integrated DNA 

Technologies, with the following sequences: 

rs10483809 (RAD51B): 5`Biotin3ATCTTTCACTTTCCCT[A/G]TCGATACTTCATATGT  

rs35342456 (SOCS1): 5`Biotin3GCTGGGCGTGGTGGCTCACGCCTGT[A/C]ATCTTGTTG  

Binding reaction mixtures were prepared for each allele and contained 10x Binding Buffer, 50% 

glycerol, 0.1M MgCl2, 1µg/µL in 10mM Tris Poly(dI*dC), 1% NP-40 (20148, ThermoFisher 

Scientific), 100fmol and 25fmol of labeled probe for rs10483809 and rs35342456 respectively, 

and 8-17 µg NE. For corresponding competition reaction(s), 200-fold excess of unlabeled probe 

at (20 or 5 pmol) was used. Competition reactions were incubated at RT for 10 minutes with NE 

and unlabeled probe prior to adding biotin-labeled probe. Reaction mixtures were further 

incubated for 20 minutes at RT, and 5x Loading Buffer was added to each mixture to stop the 

reaction. Empty 6% TBE gel (EC62655BOX, Invitrogen) was run at 100V in 0.5x UltraPure TBE 

Buffer (15581-044, Invitrogen, Life Technologies) at 4 ÚC prior to loading samples. Samples were 

subsequently run on the same gel at 100V for 90 minutes at 4ÚC. DNA-protein complexes on the 

gel were transferred to 0.45mm Biodyne# Pre-Cut Modified Nylon Membrane (77016, Thermo 

Scientific) at 380 mÅ for 45 minutes, and were crosslinked for 15 minutes using UV 

Transilluminator (VWR, VWR International). Complexes were detected using Chemiluminescent 

Nucleic Acid Detection Module (20148, ThermoFisher Scientific) after blocking for 1 hour. Images 

were captured using a C-DiGit Blot Scanner (Model 3600, Li-Cor Biosciences). 

 

Gene reporter assays  

We cloned a 400bp insert containing the rs10483809 variant using human DNA from Coriell as a 

template into the pGL4.23 reporter vector in the forward direction using the restriction enzymes 

KpnI and SacI. A reporter containing the alternate allele was generated through SDM using the 

Q5 Site-Directed Mutagenesis kit (New England Biolabs). The primer sequences used were as 

follows: 

rs10483809_cloning_FWD CCATGGTTTCTTCCTGGGTA 

rs10483809_cloning_REV GCACAAAATAGAAGAAAGATCAAGAA 

rs10483809_SDM_P1 TTTCTCTTTCgCAAACTCCTC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.29.466025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466025
http://creativecommons.org/licenses/by-nc-nd/4.0/


rs10483809_SDM_P2 TGTCACTGACTGAGTTGC 

For gene reporter assays, MIN6 between passages 17-21 were plated at a density of 0.25E6 

viable cells/mL in a 48-well plate. 500ng experimental vector was co-transfected with pRL-SV40 

using Lipofectamine 3000 (Thermo Fisher). 48 hours post-transfection, cells were lysed and used 

in the Dual-Luciferase Reporter System assay (Promega). Firefly activity from the experimental 

plasmids, normalized by dividing by the corresponding Renilla activity, was compared to the 

normalized activity of the empty pGL4.23 vector. A two-sided t-test was used to compare the 

luciferase activity between the alternate and reference allele. 

 

DNA fragmentation ELISA 

MIN6 cells between passages 17-21 were grown to approximately 80% confluency in 24-well 

plates and transfected with 30µM of either Socs1 siRNA (Invitrogen Silencer select) or scramble 

siRNA (Invitrogen Silencer Negative Control No. 1) using the Lipofectamine 3000 agent 

(Invitrogen). 24 hours after transfection, cells were washed once with 1X PBS and labelled with 

10µM BrdU for two hours. Cells were washed twice with 1X PBS before being given complete 

MIN6 media, with cytokines added to the indicated samples. 150uL of supernatant was collected 

at indicated times and spun down at 500rcf for 5 minutes to pellet cell debris. 100uL of the clarified 

supernatant was used in the anti-BrdU DNA fragmentation ELISA (Roche). Each condition was 

tested in technical triplicates, from MIN6 wells seeded from the same passage. 
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DATA AVAILABILITY 

The ATAC-seq, RNA-seq, snATAC-seq, HiChIP and CRISPR screen data will be deposited in 

GEO and CMDGA.  The SELEX-seq data are in GEO under accession number GSE118725.   

 

Supplementary Material 

 

Supplementary Figure 1. Effect of different cytokine treatments on islet accessible 

chromatin. A) Top: Scatterplot showing effect on cytokine-responsive cCREs (DESeq FDR 

<0.10) chromatin accessibility in islets after treatment with high doses of 3 cytokines (IL-1b, IFNg, 

and TNFa , x-axis) versus 2 cytokines (IL-1b and IFNg, y-axis). Bottom: density plot showing 

increased effect size in cytokine treatment with TNFa. Wilcoxon signed rank test p-value is shown. 

B) Heatmap of cytokine effect sizes (log2 fold change, DESeq) on cytokine-responsive cCREs that 

change with treatment duration (linear regression p< 0.01) C) Example of two cytokine-responsive 

cCREs at the HEATR2 and CRHR1 loci that show increased accessibility over time. D) Motif 

enrichment for up-regulated or down-regulated cytokine3responsive cCREs identified using 

different duration of cytokine treatments. Motifs that were significantly enriched in at least one 

condition (HOMER FDR<0.05, indicated by an asterisk) are shown. Red boxes highlight motifs 

with visible differences in enrichment over time. 

 

Supplementary Figure 2. Defining islet cell sub-types from snATAC-seq profiles.  A) UMAP 

plots showing clusters of islet snATAC. B) Proportion of cells derived from different donors in each 

cluster. C) UMAP plots showing promoter accessibility in a 1 kb window around the TSS for 

selected cell type marker genes. D) Genome browser plots showing aggregate read density 

(CPM-normalized read depth, range: 0-7, shown on vertical axis for each plot) for cells within 

each cell type for selected cell type marker genes. 

 

Supplementary Figure 3. Cell type-specific changes in islet accessible chromatin upon 

inflammatory cytokine exposure. A) Number of cytokine-responsive cCREs (or DACs) in bulk 

islet ATAC that overlap a snATAC from different cell types. B) Number of DACs in bulk islet ATAC 

that overlap a snATAC specific to a cell type. C) Heatmap of z-score normalized chromatin 

accessibility at significant DACs (DESeq FDR<0.1) identified in beta, alpha and delta cells by 

snATAC comparing cytokine-treated and untreated samples. Endothelial, acinar and stellate cells 

did not show any significant DAC. C) Scatterplot showing DACs effect sizes (DESeq log2 fold 
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change) in alpha and beta cells. D) Density plot showing increased cytokine response in beta 

cells at DACs significant in either beta or alpha cells (top), and in DACs significant in both cell 

types (bottom). E) Comparison of motif enrichment in chromatin accessibility from cytokine treated 

alpha and beta cells. ChromVAR deviation scores within alpha or beta cells were averaged across 

treated and untreated cells and their difference (&CTY-UNT) was plotted in a scatterplot. The 

slope (ß) from linear regression and the most different motifs between alpha and beta are shown 

are shown. 

 

Supplementary Figure 4. Cytokine-induced gene expression changes in pancreatic islets.  

A) Principal components plot of normalized and batch-corrected gene expression from high-dose-

2-cytokine (orange), high-dose-3-cytokine (red) low-dose-2-cytokine (blue), low-dose-3-cytokine 

(green) -treated and untreated (purple) islets from a total of 16 samples.  Donor ID is indicated on 

the top of each dot. B) Number of differentially expressed genes (DE genes, DESeq FDR<0.1) 

between each cytokine treatment condition and untreated islets. C) Venn diagram showing 

overlap between DE genes in each treatment. D) Heatmap showing the top 20 upregulated and 

top 20 downregulated genes common to each treatment vs untreated islets, and the top 10 

differential genes (in bold) between high-dose-2-cytokine and high-dose-3-cytokine (i.e due to 

TNFa).  E) Gene ontology terms enriched among genes with up-regulated expression in cytokine-

treated islets. F) Gene ontology terms enriched among genes with down-regulated expression in 

cytokine-treated islets. G) Enrichment of islet distal differentially accessible cCREs (DACs) 

(>10kb from TSS) for genes with concordant cytokine-induced effects, linked by HiChIP (FDR 

<0.1). Fisher9s exact test p-values and odds ratios are shown. HiChIP was performed in untreated 

(left) or cytokine-treated (right) EndoC-³H1 cells. 

 

Supplementary Figure 5. SNP-SELEX sequencing metrics, replicate consistency, and 

comparison with TF binding predictions. A) Fraction of reads retained after removing identical 

sequencing duplicate reads. The input is composed of 384 pools of oligos with different barcodes 

(from 4x 96-well plates); each SELEX cycle is composed of 768 assays (8x 96-well plates), 

performed twice. Median value is indicated at the top of each boxplot. B) Number of reads retained 

after removing identical sequencing duplicate reads. The y-axis is log scaled. C) Left: example of 

one experiment showing correlation between the percentages of reads mapping to each oligo (i.e. 

each dot) in replicate 1 versus replicate 2. Pearson correlation coefficient is indicated. Right: 

distributions of Pearson coefficients calculated as in the example, across all 768 experiments and 

cycles. D) Number of experiments showing enrichment at cycle 4 for motifs similar to the assayed 
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TF protein in both replicates, only one of the two, or none. E) Hierarchical clustering of the pairwise 

distance (1-correlation) of allelic effects (PBS score) across different TF proteins, color-coded 

according to the structural family. 264 TFs that had a minimum of 100 testable SNPs are shown. 

F) Left: distribution of correlation between PBS and DeepSea Log fold change across TFs. The 

number of TFs analyzed (having both DeepSea predictions and SNP-SELEX results for at least 

10 SNPs) are indicated.  Rigth: scatterplot of PBS and DeepSea Log fold change across tested 

SNP-TF pairs (number indicated). pbSNPs are shown in purple. G) Top: distribution of correlation 

between PBS and &PWM across TFs. The number of TFs analyzed (having measurements for 

both PWMs and SNP-SELEX for at least 10 SNPs) are indicated. Bottom: scatterplot of PBS and 

&PWM across all tested SNP-TF pairs (number indicated). pbSNPs are shown in purple. H) 

Pearson correlation coefficients between SNP-SELEX PBS score and &PWM in each TF across 

all bound SNPs, grouped by structural families. 234 TFs that had a minimum of 10 testable SNPs 

with PWM predicted effects are shown. I) Percentage of pbSNPs that corresponded to a predicted 

PWM change in each TF, grouped by TF family. 234 TFs that had a minimum of 10 testable SNPs 

with PWM predicted effects are shown 

 

Supplementary Figure 6. Electrophoretic mobility shift assay (EMSA) for rs35342456 

at the DEXI/SOCS1 locus. Three independent EMSA experiments (different cell cultures) and 

one replicate of binding reaction for experiment #3 are shown. MIN6 were cultured in control and 

cytokine media and nuclear extracts were used in binding reaction with oligonucleotides carrying 

either the reference (A) or alternate (C) allele of rs35342456. Both treated and untreated MIN6 

cells nuclear extracts showed preferential binding to probes with the reference allele. The top-left 
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