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Abstract

Classical mathematical models of tumor growth have shaped our understanding of cancer and have
broad practical implications for treatment scheduling and dosage. However, even the simplest
textbook models have been barely validated in real world-data of human patients. In this study, we
fitted a range of differential equation models to tumor volume measurements of patients undergoing
chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients
with three or more measurements per target lesion, of which 652 patients had six or more data
points. We show that the early treatment response shows only moderate correlation with the final
treatment response, demonstrating the need for nuanced models. We then perform a head-to-head
comparison of six classical models which are widely used in the field: the Exponential, Logistic,
Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several
models provide a good fit to tumor volume measurements, with the Gompertz model providing the
best balance between goodness of fit and number of parameters. Similarly, when fitting to early
treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to
forecasted data, indicating that these models could potentially be effective at predicting treatment
outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-
of-the art models of human tumor growth. We publicly release an anonymized version of our original
data, providing the first benchmark set of human tumor growth data for evaluation of mathematical

models.


https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.23.465549; this version posted December 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Author Summary

Mathematical oncology uses quantitative models for prediction of tumor growth and treatment

response. The theoretical foundation of mathematical oncology is provided by six classical
mathematical models: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic
Gompertz and General Gompertz model. These models have been introduced decades ago, have
been used in thousands of scientific articles and are part of textbooks and curricula in mathematical
oncology. However, these models have not been systematically tested in clinical data from actual
patients. In this study, we have collected quantitative tumor volume measurements from thousands of
patients in five large clinical trials of cancer immunotherapy. We use this dataset to systematically
investigate how accurately mathematical models can describe tumor growth, showing that there are
pronounced differences between models. In addition, we show that two of these models can predict
tumor response to immunotherapy and chemotherapy at later time points when trained on early
tumor growth dynamics. Thus, our article closes a conceptual gap in the literature and at the same
time provides a simple tool to predict response to chemotherapy and immunotherapy on the level of

individual patients.
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Introduction

The growth of solid tumors and their response to therapy is hard to predict on the level of individual
patients. Similar to other complex systems such as the climate [1,2] or stock markets [3], quantitative
mathematical models can be used to describe and forecast the behavior of cancer: this is one of the
main objectives of “mathematical oncology” [4,5]. Mathematical models of tumor growth kinetics have
improved the understanding of underlying biological mechanisms. [6-8] In addition, they have
resulted in a number of modeling approaches for cancer treatments including chemotherapy [9,10]
and immunotherapy [11,12], improved drug dosage [13,14] and have yielded candidate biomarkers
for treatment response [15]. The roots of tumor growth models go back to 1825, when Gompertz
published a mathematical model to analyze the population growth [16]. He argued that the number of
people alive as a function of their age L(x) declines faster than exponential functions which means
that the death rate should be increasing with age. 135 years later, von Bertalanffy addressed the
guestion of “why does an organism grow at all and why after a certain time, does its growth come to
stop?” [17] By replacing its concept of an “organism” with a malignant tumor, the answer to this
question resulted in a mathematical model for tumor growth. Tumor modeling provides information
about the net tumor growth rate, facilitates their comparison among different tumor types [18] and
makes it possible to predict the future growth of tumors [19].

A number of “textbook” models have been used in the past to approximate tumor growth with
mathematical equations. In addition to the above-mentioned models by Gompertz and von
Bertalanffy (each in a “classical” and a more general form), exponential and logistic models are
standard approaches to describe tumor growth (Table 1) [20]. Exponential models are able to predict
either exponential growth or decay depending on the absolute values of birth and death rates, and
the resulting sign of (birth rate - death rate). Logistic models can simulate the fact that tumor growth
is limited by nutritional, immunological or spatial constraints by including a carrying capacity into the
model at which the tumor volume plateaus. This carrying capacity is included in the per capita growth
rate, in line with the observation that tumor growth slows down when the tumor volume becomes
large. [21] To be precise, the carrying capacity can be interpreted to comprise a number of biological
constraints to tumor cell proliferation. These constraints include the availability of nutrients and
oxygen and thus, the concept of tumor angiogenesis is implicit in the carrying capacity. In addition,
the pressure of immune cells attacking tumor cells limits the niche the tumor cells can fill and thus,
the concept of antitumor immune response is implicit in the carrying capacity. The Gompertz model is
another model which illustrates the experimentally observed decrease in the growth speed of tumors.
Similarly to the logistic model it has a sigmoid shape, hence representing limited tumor growth. Its
main assumption is the exponential decay of the growth rate [18]. Since this model has been applied
in many fields to various problems a few equivalent Gompertz models exist, differing in the chosen

re-parametrization. Gompertz and von Bertalanffy growth models are two basic but important models
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which are commonly used to model tumor volume growth since they have outperformed exponential
models in many cases in the past [22].

Unlike in other domains in which mathematical models and practice are strongly linked, the field of
mathematical oncology is, by and large, somewhat disconnected from clinical practice of oncology.
While in recent years, large quantitative data collections have deepened the genetic [23] and
immunological [24-26] understanding of solid tumors, even well-established textbook models in
mathematical oncology have not been linked with or validated in large amounts of quantitative real-
world data. As a result, growth models that form a conceptual backbone of mathematical oncology
have never been formally validated in large patient-derived datasets. In 2014, Benzekry et al. have
systematically validated a range of textbook mathematical models on quantitative data obtained from
two mouse models [20]. More recently, Vaghi et al. have extended that study and have validated
classical growth models in 833 measurements in 94 animals [27]. These systematic large-scale
approaches are highly important to link mathematical oncology to real-world data, but bear one major
drawback: since almost all drugs that result in tumor control in mice fail in human experiments [28],
mouse-based models are not suitable for human tumor growth estimations [29]. In addition, little
validation of textbook models has been performed for tumors undergoing treatment, prompting
caution whether unvalidated mathematical models have predictive power for clinical oncology.[30]
While modeling of unabated tumor growth has academic relevance, fortunately untreated tumor
growth for extended periods of time is rare in clinical practice [30]. Almost all patients with metastatic
cancer undergo some type of systemic pharmacotherapy which slows down tumor progression [31].
In this study, we retrospectively collected quantitative measurements of tumor diameter changes over
time from Non-Small Cell Lung Cancer (NSCLC) and bladder cancer patients from five large clinical
trials. We systematically used this data with each of the standard mathematical models to address
two questions: Firstly, how well can existing tumor growth models fit real-world data of patients
undergoing treatment? (experiment #1) Secondly, how well can these models predict tumor growth at

later disease stages when fitted to early-stage data? (experiment #2)
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Methods

Ethics statement and data sharing

All experiments were conducted in accordance with the Declaration of Helsinki and the International
Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council for International
Organizations of Medical Sciences (CIOMS). This study complies with the “Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) statement [32]. All
data were obtained in an anonymized way through a proposal to F. Hoffmann-La Roche Ltd. through
the platform “Clinical Study Data Request” (CSDR, www.ClinicalStudyDataRequest.com), which is
now inactive and has been replaced by the Vivli platform (https://vivli.org, April 2021). Qualified
researchers may request access to individual patient level data through the clinical study data

request platform (https://vivli.org/). Further details on Roche's criteria for eligible studies are available

here (https://vivli.org/members/ourmembers/). For further details on Roche's Global Policy on the

Sharing of Clinical Information and how to request access to related clinical study documents, see

(https://www.roche.com/research_and_development/

who_we_are_how_we_work/clinical_trials/our_commitment _to_data_sharing.htm).  The  original

proposal submitted to the CSDR platform is available in Annex 1. In order to enable reproduction of
our experiments, we publicly release a fully anonymized subset of the data containing only the tumor
volume measurements for the target lesion and the respective study and treatment arm (Suppl.
Table 1).

Data acquisition and preprocessing

We used data sets from five different clinical trials (Table 1 and Table 2). The purpose of the original
studies was the evaluation of the efficacy and safety of Atezolizumab (previously known as
MPDL3280A), an immune checkpoint inhibitor directed against the Programmed Death Ligand 1 (PD-
L1). In two out of the five trials (GO28753, G0O28915), the performance of Atezolizumab was
compared to Docetaxel, a chemotherapy drug. In the other three trials, all the participants received
Atezolizumab as a treatment and the participants were further categorized into treatment arms or
clinical subgroups as defined in the study protocols. One-dimensional longest diameter and shortest
diameter of target and non-target lesions as manually measured on CT scans were available from the
study database and were reported for each patient at different time intervals (Figure 1A). Because
the shortest diameter was only available for a subset of patients, we used only the longest diameter
(LD) and converted it to tumor volume (V) by V = LD3 = 0.5 as described before [33]. Using the
maximum value of V in the whole data set, the volumes were normalized to be in the range of 0 and 1
for the whole dataset. Most patients in the data sets had multiple tumor lesions (primary tumor and/or

metastases). For simplicity, we refer to these lesions as “tumors”. In the data set, one of these tumors
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for each patient was labeled as a “first target lesion” (‘INV-T001'), i.e. an easily measurable lesion for
which the diameter was closely monitored over time. In addition, patients usually had one or more
“non-target lesions”. In this study, we only used the target lesion which was labeled as for all the
patients, as this was usually the tumor with the highest number of data points. Each patient has a
different number of data points for this selected target lesion. While the intervals between data points
were relatively similar (they were on average 50.62 days, with a standard deviation of 6.2 days), the
absolute number varied (there were on average 3.63 data points for the selected target lesion per
patient with a standard deviation of 3.22). Patients with few data points likely dropped out of the study
early due to death or other reasons. To enable robust fitting of mathematical models to the data, we
limited our data set to two sets of patients with three or more (or six or more, respectively) data points
for the target lesion. Cumulatively, the original data sets had 2693 patients, of which 1472 had three

or more data points and 652 had six or more data points available (Figure 1B).

Patient categorization according to RECIST and trajectory type

For each patient, the ultimate response was encoded according to the response evaluation criteria in
solid tumors (RECIST) system [34]. Based on the latest modification of this criteria (RECIST 1.1) [35],
four tumor responses to treatments can be defined: Complete Response (CR, disappearance of all
target lesions), Partial Response (PR, at least 30% decrease in sum of the longest diameters of
target lesions in comparison to the baseline value), Progressive Disease (PD, at least an increase of
20% in the sum of the longest diameters of target lesions in comparison to baseline value) and
Stable Disease (SD, when none of the above criteria fits to the tumor response). Because the
RECIST system only assesses best response at discrete time points but does not categorize the full
tumor volume trajectories, we additionally categorized the patients into three treatment response
groups: “up”, “down” and “fluctuate” (Figure 1C). For this purpose, we calculated a vector containing
the difference of each LD measurement at time point t+1 to its previous measurement at time point t
for each patient. If the LD at ¢ + 1 was bigger than at ¢, the difference would be positive and vice
versa. Patients for whom only the shortest distance measurement was available were excluded from
the analysis. The “up” category includes patients whose difference vector values are always positive
and patients with a positive difference after the first measurement if the ratio between the sum of all
positive values to the sum of all negative values is >2. The “down” category includes patients whose
difference vector values are always negative or a negative difference after the first measurement if
the overall ratio between the sum of all negative values to the sum of all positive values is >2. The
“fluctuate” category contains all patients that correspond to neither up nor down categories. In all five

nou

studies, the pattern “up”, “down” and “fluctuate” was present (Figure 1D).
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Models and experimental design

We predefined six classical mathematical models to be fitted to the data (Table 3). Theoretically,
there are two ways to integrate the effect of pharmacotherapy into models: either, explicit treatment-
related arguments can be added to model equations, or, the effects of treatment can be implicit in the
model. Here, we choose the implicit interpretation of treatment effects by assuming that therapies
change either the growth or death rate of tumor cells or the carrying capacity of the tumor niche. For
all models, the dependent variable is the volume of the tumor as a function of time. We subsequently
performed to experiments: Experiment #1 was aimed at fitting models to the entire time series for

each patient. The statistical endpoint for experiment #1 was the mean absolute error (MAE, also L1-

",yiobserved versus ¥, predicted values), the Akaike

norm, the lower the better, MAE = Zt=1|+‘f

Information Criterion (AIC € %R, lower is better , AIC = 2k — Zln(E), k is the number of parameters
and L is the maximum value of the likelihood function for the model), Root Mean Square Error (RMSE
, the lower the better, RMSE = \/%Z?zl(yi — ¥)? and R-squared fit (highest value is 1, higher is
Y0 T)°

i i-¥)?

patients with three or more data points and the set with patients with six or more data points.

better, R? = 1 ). Experiment #1 was run on both patient sets separately: The set with all

Experiment #2 was aimed at fitting models to the early measurements for each patient, excluding the
last three data points and subsequently estimating the predictive accuracy for the excluded data
points. The statistical endpoint for experiment #2 was the MAE. Experiment #2 was only run on the

set of patients with six or more data points.

Fitting and implementation

All model fitting procedures were implemented in Python 3.7. In particular, we used differential
evolution to generate the initial data points for the differential equations. Differential evolution is a
stochastic population based method which is used for global optimization problems [36]. Based on
these initial guessed parameter values, the “Curve_fit” function (from the python package “scipy”) is
used to fit the model parameters to the experimental data. This function uses the Trust Region
Reflective (trf) algorithm with the non-linear least squares loss function to find an optimal fit of the
model parameters to the data points. The inputs to this function are the sorted time and its
corresponding tumor volume measurements, the respective mathematical function to fit the data and
the maximum number of iterations (we used 1000 iterations in this study). The output of the
“Curve_fit” function is the calculated optimum parameters for the selected mathematical function.
Having these parameters, it is possible to predict the volume values for each time point and then
evaluate the goodness of the fitt The source codes are publicly available at

https://github.com/KatherLab/ImmunotherapyModels.qit
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Results

Early RECIST status does not correspond well with ultimate treatment response

In clinical routine and clinical trials, RECIST response at early time points during treatment is often
used to determine whether a given treatment should be continued [34]. If these initial RECIST results
perfectly matched the ultimate RECIST, there would not be a need for more mathematical prediction
models. Therefore, we systematically compared the RECIST status at the first, second, third and
fourth tumor size evaluation for each patient with the “final” RECIST status as defined in the study
protocol. In all treatment arms, we found an imperfect overlap between early and final
measurements. Overall, the median concordance between first, second, third and fourth data point
and final RECIST was 53.5, 64.0, 63.5 and 78.0, respectively. The same pattern was seen for the
concordance between early and final RECIST calculated for only one target lesion (Figure 1E).
Hence, the RECIST classification can be a useful tool to assess therapy response status, but it might
be insufficient for therapy response estimation at an early therapy stage. These findings provide a
rationale for the use of mathematical models to improve response prediction. In addition, we
compared statistically the correlation between the RECIST standard classification categories (CR/PR,
SD and PD) with the developed grouping methods (up, down and fluctuate). As the results are
summarized in Suppl. Figure 1 both grouping systems are partially correlated (PD is mostly
overlapping with “up”, PR/CR with “down” and SD with “fluctuate”). However, the correlation was not
perfect and particularly in the OAK study, 37 patients from 95 down category patients are classified
as PD and 87 patients out of 133 patients in fluctuate category are classified as PD . This comparison
shows that while RECIST is the standard classification system in clinical routine, our grouping

method does provide an additional perspective on tumor response categories.

The Gompertz model outperforms other models when fitting clinical data points

We tested how well classical differential equation models (Table 3) can fit tumor volume trajectories
under immunotherapy and chemotherapy. To compare these models, we first fitted them to all
available data points for all patients with at least six measurements (experiment #1). This set the
stage for experiment #2 (Figure 2A), in which models were fit to all points except the three last points
and the predictive power was assessed for each model. In experiment #1, we found that all models
provided a good fit to most data points, but the number of poorly fitted points differed between the
models. Overall, the General Bertalanffy, the Gompertz and the General Gompertz model had the
lowest number of poorly fitted data points (Figure 2C). We quantified this by calculating multiple
metrics for the goodness of fit for each model, for each study arm, further stratifying patients in each
study arm by the ultimate RECIST response. Again, we found that the General Bertalanffy, the

Gompertz and the General Gompertz model consistently outperformed more simple models. (Figure
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3A and B) The exponential model yielded the worst fit for 13 out of 19 patient groups in this analysis
(Figure 3A). To rule out a selection bias, we repeated experiment #1 with all patients with at least
three measurements, yielding comparable results (Suppl. Figure 2A and B). Due to their higher
degree of freedom, complex models always yield a better fit than simple models to any data set. To
account for this, we assessed the Akaike Information Criterion (AIC) which incentivises goodness of
fit but penalizes model complexity. We found that according to the AIC, the General Bertalanffy
model consistently yielded the poorest performance compared to the other models (Figure 3C and
D). This observation also held when all patients with three or more measurements were considered
(Suppl. Figure 2C and D). However, the Gompertz model had a low (good) AIC for most study arms,
showing that this model give a good balance between goodness of fit and model complexity. To rule
out that these effects were obtained by sub-stratifying patients according to their final RECIST status,
we repeated experiment #1 with patients sub-stratified as “up”, “down” and “fluctuate”, thereby
considering the shape of the whole timeline for each patient. Again, we found that the General
Bertalanffy, the Gompertz and the General Gompertz model consistently outperformed the
exponential model, the logistic model and the Classic Bertalanffy model in terms of Mean Absolute
Error (Suppl. Figure 3A and B), the Root Mean Square Error (Suppl. Figure 3C and D) and the R-
squared Error (Suppl. Figure 3E and F). In particular, this was the case for “fluctuating” patients
which for the most clinically interesting group of patients (Suppl. Figure 4). For the “up” and “down”
patient groups, the fitted model parameters were generally in a close range. For the “fluctuating”
patient group, the fitted model parameters showed a higher variability between the patients,
indicating the difficulty of to fit these trajectories (Suppl. Table 2). When penalizing for model
complexity by using the Akaike Information Criterion, again the Gompertz model provided the best
balance between goodness of fit and model complexity (Suppl. Figure 3 G and H). In summary, the
Gompertz model adequately fitted the response to immunotherapy and chemotherapy across a range

of clinically relevant populations, while having only two free parameters (Table 3).

Differential equation models can predict tumor response from early time points

While it is important to assess a model’s ability to fit a tumor volume timeline a posteriori, a more
clinically relevant problem is to predict final treatment response based on early tumor behavior under
therapy. Therefore, we investigated if these models can predict the last data points when only fitted to
early treatment response. To investigate this, we held out the three last data points on any given
patient, fit the model to all remaining (early) data points and evaluated the mean absolute error from
extrapolation to the holdout test measurements (experiment #2). Interestingly, we found that in most
patient groups in most treatment arms the holdout data points could be very well predicted with this
approach. A remarkable exception was the Classic Bertalanffy Model, which yielded the worst fit on
the last three points as assessed by the Mean Absolute Error (Suppl. Figure 5A and B). Overall, the

best models for predicting holdout measurements were the General Bertalanffy and the Gompertz
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model (Suppl. Figure 5A and B). When analyzing the predictions of the exponential model (Figure
4A) and the General Bertalanffy model (Figure 4B) in more detail, we found that for the “up” and
“down” patients, the exponential and the General Bertalanffy model visually recapitulated the
trajectory of the tumor volume. A notable exception are U-shaped curves present in some of the
“fluctuating” patients (Figure 4A and B).

Discussion

Cancer immunotherapy with immune checkpoint inhibitors is now an established part of the
therapeutic arsenal for solid tumors [37]. Patterns of response to this class of drugs are more
complex than for classical chemotherapy [38]. Previous studies have at length discussed new
response trajectories such as hyperprogression, pseudoprogression [38,39] or delayed response [40]
in immune checkpoint inhibitors. Accordingly, simple assessment systems for treatment response
such as RECIST are not ideally suited to predict future treatment response for a given patient.
Although mathematical models of tumor growth have been used for decades to understand
mechanisms of tumor progression and treatment response, they have not been systematically
validated in human real-world data of patients undergoing systemic treatment. To our knowledge, the
only large systematic evaluation of these models have been performed on mouse tumors [20,27],
which function merely as a proxy for human tumors. Moreover, although immunotherapy is a
cornerstone of cancer treatment and classical mathematical models are in principle useful to model
cancer growth under therapy, they have not been previously applied to large cohorts of patients
under immunotherapy. In this study, we present a systematic application of mathematical tumor
growth models on a large human dataset of patients undergoing immunotherapy and chemotherapy.
We restricted our analysis to six consensus mathematical models selected from [41]. We show that in
particular the Gompertz model and the General Bertalanffy can successfully fit the tumor growth
trajectory and provide an accurate prediction of ultimate treatment response on the basis of early
treatment data. However, we also show that the fit for “fluctuating” patients is lower in all models, and
fully U-shaped tumor growth trajectories could not be fitted at all. Comparison of the results between
experiment #1 and #2 shows that models perform better if all the data points are used. However,
from the clinical point of view, it is very useful if a model can predict the final response points from the
early treatment response. This highlights the usefulness of stratifying patients into different categories
and, in the future, of using more sophisticated models which can overcome this limitation. Our
findings mirror a previous study by Benzekry et al. who demonstrated that the Gompertz model
provides a good approximation of tumor growth in mice. [20] Therefore, our study provides a potential
bridge between textbook models of mathematical oncology and oncology practice today, providing
evidence that simple mathematical functions can be used to predict inmunotherapy response in most

patient subsets.

11


https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.23.465549; this version posted December 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A structural limitation to our study lies in the circumstance that the simple modelling of tumor growth
or decay might not be the best predictor for the overall therapy outcome. Although the assessment of
tumor growth might be useful to evaluate the drug or therapy regime response, it does not provide
overall survival prediction for individual patients. Tumors might show a positive therapy response, but
at the same time patients might die from adverse therapy events, infections or other therapy-related
problems. Consequently, mathematical models which are solely based on tumor growth data should
only be used together with other prognostic and predictive factors in clinical routine. Another limitation
is the fact that by setting a threshold of at least six measurements at six points of time per patient, we
had to exclude a part of patients from our final analysis. We mitigated this problem by repeating the
analysis for patients with at least three data points, but this could still represent a selection bias by
neglecting early study drop-outs and early cancer-related deaths. Other data-related limitations are
that for some patients, only very few points can be present during the initial dynamics which might
create problems. In the future, the availability of more complex datasets could allow researchers to
build more complex models, thereby capturing more nuanced details of tumor growth. In practice, this
is limited by the availability of structured data in oncology. In addition, in line with previous studies
performed on mouse data, we used very simple mathematical models in this study [20,27]. Such
models are a strong simplification of the reality of solid tumors, which are multicellular structures with
a distinct spatial architecture [42]. Fundamentally, the key question is: how granular should a model
be? This has been discussed extensively in the literature [8,43—-47]. More complex models have been
proposed for modeling tumor growth under immunotherapy which could improve the fit to the data, for
example the Kuznetsov model [12] and game theoretical models [48-50]. As a starting point for the
analysis of more complex models of computational oncology in real-life human datasets of various
cancer types, we provide our raw data for re-use by other groups. In addition to non-spatial models
like the ordinary differential equation (ODE) models in this study, other studies have explored the use
of spatial models in the context of cancer immunotherapy. [45,46] However, in these studies we
found that it is very hard to fit the parameters of spatial models to clinical routine data. Even simple
spatial models have >25 free parameters, which means that for every patient at least 25
measurements are needed (ideally much more). In comparison, the ordinary differential equation
(ODE) models in our study are much simpler and they only have two or three free parameters. This
simplicity enables fitting the model parameters to routine clinical data such as the databases used in
our study. Furthermore, the use of non-spatial models is supported by theoretical considerations.
Solid tumors consist of billions of cells which show some mobility in the immediates spatial vicinity.
Tumors are not perfectly homogeneous in the spatial dimension, but if we assume that the relevant
biological processes are sufficiently similar in distinct parts of the tumor, spatial patterns do not have
to be explicitly modeled, but can be implicit as in ODE models. Ultimately, complex spatial models
and simplistic ODE models are both very valuable tools which could be implemented in the clinic in

different situations. Our present study provides the first large-scale evidence for the usefulness of
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ODE models. Future studies should investigate more complex models in similar experimental
approaches. In general, clinical utility remains the ultimate benchmark, as was pointed out by Gerlee
[51], “a model that is disconnected from reality in terms of mechanisms and dynamics is acceptable,
as long as it does the job of predicting”.

Ultimately, after refinement and prospective validation, such models could conceivably be used in the
clinic to provide guidance on treatment recommendations for cancer patients. Unlike molecular
biology-based biomarkers in the field of oncology, mathematical models could potentially improve

response prediction for individual cancer patients based on ubiquitously available routine data.
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Tables
Study ID Cancer Phase No. Treatment Subgroup No. Pats.
Type Pats. per group
NCT01846416 | Non-Small 2 138 Atezolizumab* | MPDL3280A-1 31
(G0O28625) Cell Lung
FIR [52] Calesr MPDL3280A-2 94
MPDL3280A-3 13
NCT01903993 | Non-Small 2 287 Atezolizumab - 144
(G0O28753) Cell Lung
POPLAR [53] Cancer Docetaxel 143
NCT02031458 | Non-Small 2 657 Atezolizumab** |MPDL3280A-1a 31
(G0O28754) Cell Lung
BIRCH [54] Cancer MPDL3280A-2a 79
MPDL3280A-3a 70
MPDL3280A-1b 104
MPDL3280A-2b 189
MPDL3280A-3b 184
NCT02008227 | Non-Small 3 1182 Atezolizumab - 609
(G0O28915) Cell Lung
OAK [55] Cancer Docetaxel 578
NCT02951767 Bladder 2 429 Atezolizumab - 429
(G029293) Cancer
IMvigor 210 [56]

Table 1 - Data Description. Five data sets were used in this study. The original number of patients
in each data set and the treatment arm / subgroups are reported in this table. Two of the data sets
have more than one treatment arm (Atezolizumab and Docetacxel) and the others have only one arm

with a number of subgroups defined by clinical features. No. = Number, Pats. = Patients.
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Study Design
NCT01846416 - Atezolizumab in PD-L1 + in NSCLC (n=138), Phase 2
GO28625 -1 patient with no first treatment
- 2) patients progress following platinum chemo
FIR[52] - 3) patients 2L + treated brain metastases
- ORR=32%/21%/23%
NCT01903993 - After platinum failure: Atezolizumab or Docetaxel in NSCLC n=287;
Phase 2
GO28753 - 1) 144 in Atezolizumab group
POPLARI[53] - 2) 143 in docetaxel group
- 0S 12.6 months / 9.7 months
- improvement in OS with higher PD-L1 expression
- Atezolizumab improved survival, correlated with expression PD-L1
NCT02031458 - Atezolizumab in PD-L1 positive advanced or metastatic NSCLC
n=667; Phase 2
GO28754 - 1) 1L Atezolizumab
BIRCHI[54] - 2) 2L Atezolizumab
- 3) 3L Atezolizumab
- ORR:22% /19% / 18%
NCT02008227 - Atezolizumab vs Docetaxel advanced or metastatic NSCLC (2L) n =
1225, Phase 3
G0O28915 - OS better in Atezolizumab
OAK][55] - confirmed results of POPLAR study
NCT02951767 - Atezolizumab in locally advanced or metastatic Bladder Cancer
Phase 2
6029293 - 1) 1L atezolizumab
IMvigor - 2) 2L atezolizumab after platinum based chemo

study still ongoing (2020)
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Table 2 - Detailed summary of included studies. Data from five studies were used in this work. All

studies can be identified either by their clinical trial registry number (“NCT...") or by their Roche ID

(“GO...").
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Model name [Solution of the differential |Differential equation Parameter description Ref.
equation (with  initial ~ condition
V(0) =Vo)
Exponential V(E) = Nye @bt a _ (@— BV a [time‘i]: birth rate* [41]
dt B [time™"]: death rate*
. yt
Logistic V() = Vole” . av _ YN — K) y [time " ]: max. net growth rate  {[41]
(Verhulst) K —Vo(1—er) dt K |K [mm3]:carrying capacity
V() =
Gompertz av 31, 1 [19,41,
5 5, _ — =V(@ —ylaV) |y [mm® time ]:max. net
exp(+ (In(V) = e | e O =y it rate 57]
&8 [time™!]:constant
y [7117113_1 timeil]' max. net
S, Yoy [ &
dt § [time™']:constant
A :constant
. 1 1,\3 Lo .
\(/:(L?]SSIC V() = (E + <V03 _%) e—gﬁt) Z_t = aVé — BV a [time™']: birth rate [41]
Bertalanffy B [time™']:death rate
V(t) =
General 1 a pA v a [time™*]:birth rate [41]
von @ y.1=2 @Y p-pa-ne\ 1A a — T g B [time ']:death rate
Bertalanffy |\ + ~5)¢ :
A :constant

Table 3 - Model Description and interpretation of the parameters. For all differential equation

models in the current study, the model name, equations and variables are listed. *birth rate and

growth rate can be combined to one parameter, the effective growth rate.
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Figure Legends

Figure 1 - Data Description. (A) Longest tumor diameter over time for all lesions in representative
patients in each data set. (B) Number of patients in each dataset. (C) Tumors can be categorized in
three trajectory types based on their response to the treatment: Up, Down, Fluctuate. (D) Proportions
of trajectory type in each dataset. (E) Initial RECIST status does not predict final RECIST status.

Figure 2 - Experimental design and model fit. - (A) In experiment #1, models were fitted to all
available data points for each patient (only for patients with at least 3 or 6 data points, respectively).
In experiment #2, models were fitted to all but the last 3 data points for all patients with at least 6 data
points. Then, the predictions for the last 3 data points were compared with the actual values. (B) Fit
and prediction for three representative patients. (C) Plot of real data points and fitted data points for
all models for all studies. A larger deviation from the diagonal indicates a worse fit. Models with a

“raincloud” appearance systematically underestimate true tumor volume.

Figure 3 - Head-to-head comparison of all models. (A) Model fit for all treatment arms in all trials,
stratified by final RECIST, for all models. The loss function is the Mean Absolute Error (MAE, L1-
Loss), after row-wise normalization. (B) Corresponding plot without row-wise normalization, showing
the raw MAE. The worst MAE in each figure is indicated with “#” and best one is indicated with “*”.
(C) Corresponding plot showing the Akaike Information Criterion (AIC) which penalizes models with a
large number of free parameters, row-wise normalized. (D) Corresponding plot without row-wise

normalization.

Figure 4 - Fit of the exponential model and the General Bertalanffy model to unseen data. (A)
Fit (blue) of the exponential model to the full timeline of representative patients with “up”, “down” and
“fluctuate” trajectories. For the same patients, the prediction (yellow) is shown which was fitted to all
points except the last three data points. (B) Corresponding plot for the General Bertalanffy model.
The y axis is the relative tumor volume with respect to the largest tumor in the whole dataset, shown
as 107-3.
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Legend of supporting information

Suppl. Figure 1: Statistical comparison between the “up”/"down”/"fluctuate” and the standard
RECIST-based grouping “CR/PR"/"CR”/"PD".

Suppl. Figure 2: Model fit to all patients with three or more measurements. (A) Model fit for all
treatment arms in all trials, stratified by final RECIST, for all models. The loss function is the Mean
Absolute Error (MAE, L1-Loss), after row-wise normalization. (B) Corresponding plot without row-
wise normalization, showing the raw MAE. The worst MAE in each figure is indicated with “#” and
best one is indicated with “*”. (C) Corresponding plot showing the Akaike Information Criterion (AIC)
which penalizes models with a large number of free parameters, row-wise normalized. (D)

Corresponding plot without row-wise normalization.

Suppl. Figure 3: Model fit to all patients grouped by trajectory type and additional loss

functions.

Suppl. Figure 4: Goodness of fit for all models, all trial arms, all patient groups.

Suppl. Figure 5: Goodness of fit for unseen data points for each model. Results of experiment
#2.

Annex 1: Original data sharing request

Suppl. Table 1: fully anonymized subset of the data containing the tumor volume

measurements for the target lesion and the respective study and treatment arm.

Suppl. Table 2: Distribution of the parameters for different types of trajectories in all the 5
datasets calculated by the examined 6 mathematical models. Table 3 is a reference to the used
parameters for each function.

23


https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/

(@]

|w ]

45 100
40 80 all patients
35 n=2693
€ = 60
: |
z E
925 9 40
20 5 POPLAR BIRCH IMvigor
15— n=287 n =657 = n=429
L o
0 50 100 150 200 250 300 —-20 0 20 40 60 80 100
Time (days) Time (days) |
BIRCH OAK
80 at least three measurements
2 n=1472
70
32
- _60
: | | | |
Eso
028 [a]
= =40 5 y ) / g
o FIR POPLAR BIRCH OAK IMvigor
30 /
n=76 n =165 =387 n=701 n=143
24 20 I | I I
0 50 100150200250300350400 0 1001_ 2(%0 )300 400
Time (days) ime (days.
IMvigor at lease six measurements
30.0 n=652
275 —— INV_T001
25.0 —— INV_T002
_ —— INV_T003
£22.5 —— INV_T004
EZO'O —— INV_T005
S5 — oot FIR POPLAR BIRCH OAK IMvigor
15.0 RAD1-T003 n=38 n=71 n= 204 n=277 n=62
—— INV-NEW201
12.5
0 50 100 150 200 250 300 350
Time (days)
FIR POPLAR BIRCH OAK IMvigor
- ~ 40 = = 40 -~
£ £ £ £ =
£ L £ £ £ E®
£ £ 2 £ w0 £ £ a0
8 o 2 2 2 2
@ 8 o & 20 a Or 8 20
£ £ £ £ E
£2-20 2 g o £_20 g o
o a-20 a a 2
- ) - — -
40 £ <720 S 40 P
o~ © © © _g0. <
5 6 g0 5 -60 5] (S
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 20 40 60 80 100
Time (days) Time (days) Time (days) Time (days) Time (days)
FIR POPLAR BIRCH E o )
MPDL3280A-1 AmezoiumaD g Atezolizumab Concordance with Final RECIST (Target Lesion)
100 .
90
MPDL3280A-3 '
80
9
MPDL32804:2 Docetaxel Bocsiei &; 70
locetaxel =
OAK IMvigor S 60
MPDL3280A-3a B
o
MPDL3280A-1a MPDL3280A2a & 50
40
MPDL3280A-1a
Atezolizumab »
Up 30
—— Down
MPDL3280A-2a 20 st 2nd 3rd ath

MPDL3280A-3a

Fluctuate Data Point


https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/

>

Volume (mm~3) [x 107{-3}]

N

et

experiment #1: fit to all points

R-Square for Fit: 0.975

R-Square for Fit: 0.993

R-Square for Fit: 0.376
.

B experiment #2: fit to all except the 3 last points

R-Square for Prediction: 0.974

R-Square for Prediction: 0.993

R-Square for Prediction: 0.317
030 030 .
® data - ® data 16 . ® data = ® data /' & ° data 16| . e data
00, — Fit 025 — Fit 14 — Fit @200 — fit .25 — fit 14 — fit
b oo d Prediction b Prediction <, Prediction
2020 gt ] 2020 gt \
50 X 10 X150 X 10
20.15 g . g 2;0.15 g al®
00 £0.10 E6 £100 £o10] | Es6
g g 5 s g g
50| 3005 3 3 50 > 130,05 3
S s 2 S S . S 2
0.00 . 5 . 0.00 D - o .
0 10 20 30 40 50 0 20 40 60 80 100 0 20 40 60 80 100 0 10 20 30 40 50 0 20 40 60 80 100 0 20 40 60 80 100
Time (weeks) Time (weeks) Time (weeks) Time (weeks) Time (weeks) Time (weeks)
Real Vs Predicted values
FIR\ Logistic
Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values
FIR \ Exponential AR\ Logistic FIR \ ClassicBertalanffy FIR \ GeneralBertalanffy FIR\ Gompertz FIR \ GeneralGompertz
0t »:
.
5. - 3. g /’ i $.
3 3 3 3 H
S g s s s
E,.—- o Ew 1&.,- ‘E’ 5,.-
3 3 3 3 3
% 200 8 e 8 B o
& & & & &
T MReatVales T T T PReatVawesT T T T RealValues ¢ 7 BT Real Values T PReatVaesT T Y T Real Values” h
Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values
POPLAR \ Exponential POPLAR \ Logistic POPLAR \ ClassicBertalanffy POPLAR \ GeneralBertalanffy POPLAR \ Gompertz POPLAR \ GeneralGompertz
S s §u £ §
s s S s
e P o B B
g g g s
3 o 3 3 3
& & & &
bt W £ td o W 0 1o £ W i i e ot i W o e W E e W (0 A i o e o W E i W 3 oo o £ o i i E
Real Values Real Values Real Values Real Values Real Values Real Values
Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values
BIRCH \ Exponential BIRCH \ Logi BIRCH \ ClassicBertalanffy BIRCH \ GeneralBertalanffy BIRCH \ Gompertz BIRCH \ GeneralGompertz
0 ? ° 0 0 9
.. 3. .. 3. 3. ..
H 3 3 H H 3
2 s s g s ]
B 3 2 B T Ep
£ 8 £ £ £ £
H H H H H H
9 w0, 9 10 9 w0, 9 10 9 10 9 0]
& & & & & &
e s o s s o
b 7 7 W i ot o W Eow i T o W it £ i T N £ i o i W 7 W i o o i i 5 i ot
Real Values Real Values Real Values Real Values Real Values Real Values
Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values
OAK \ Exponential AK \ Logistic ) OAK \ ClassicBertalanffy ) OAK \ GeneralBertalanffy OAK\ Gompertz OAK \ GeneralGompertz
& " @ 2 w
8. . g e H e
s s s 2 s
B e e ¥ T B o0 B
3 3 3 £ e
k4 ] k4 2 ]
3 - e 3 4 T
a a a & a
T "RealValuesT T Y " “Real Values O MReatVaes T T MRealVaes ¢ : “Real Values "
Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values Real Vs Predicted values
IMvigor \ Exponential IMvigor \ Logistic \Muigor \ Classi IMvigor \ GeneralBertalanffy IMvigor \ Gompertz IMvigor \ GeneralGompertz
8 e 8 o 8 8 . 8.
3 3 3 3 3
g s s s s
E - E - E . E - 'eu .
3 3 3 3 3
| [ 9o o 9 w0
& & & & &

“Real Values

“Real Values

“Real Values

“Real Values

“Real Values


https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/

Mean Absolute Error

Akaike Information Criterion

Model fit to all patients with 6 or more measurements, grouped by final RECIST status
normalized by treatment arm non-normalized
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