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Abstract 

Classical mathematical models of tumor growth have shaped our understanding of cancer and have 

broad practical implications for treatment scheduling and dosage. However, even the simplest 

textbook models have been barely validated in real world-data of human patients. In this study, we 

fitted a range of differential equation models to tumor volume measurements of patients undergoing 

chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients 

with three or more measurements per target lesion, of which 652 patients had six or more data 

points. We show that the early treatment response shows only moderate correlation with the final 

treatment response, demonstrating the need for nuanced models. We then perform a head-to-head 

comparison of six classical models which are widely used in the field: the Exponential, Logistic, 

Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several 

models provide a good fit to tumor volume measurements, with the Gompertz model providing the 

best balance between goodness of fit and number of parameters. Similarly, when fitting to early 

treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to 

forecasted data, indicating that these models could potentially be effective at predicting treatment 

outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-

of-the art models of human tumor growth. We publicly release an anonymized version of our original 

data, providing the first benchmark set of human tumor growth data for evaluation of mathematical 

models. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

3 

Author Summary 
Mathematical oncology uses quantitative models for prediction of tumor growth and treatment 

response. The theoretical foundation of mathematical oncology is provided by six classical 

mathematical models: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic 

Gompertz and General Gompertz model. These models have been introduced decades ago, have 

been used in thousands of scientific articles and are part of textbooks and curricula in mathematical 

oncology. However, these models have not been systematically tested in clinical data from actual 

patients. In this study, we have collected quantitative tumor volume measurements from thousands of 

patients in five large clinical trials of cancer immunotherapy. We use this dataset to systematically 

investigate how accurately mathematical models can describe tumor growth, showing that there are 

pronounced differences between models. In addition, we show that two of these models can predict 

tumor response to immunotherapy and chemotherapy at later time points when trained on early 

tumor growth dynamics. Thus, our article closes a conceptual gap in the literature and at the same 

time provides a simple tool to predict response to chemotherapy and immunotherapy on the level of 

individual patients. 
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Introduction 

The growth of solid tumors and their response to therapy is hard to predict on the level of individual 

patients. Similar to other complex systems such as the climate [1,2] or stock markets [3], quantitative 

mathematical models can be used to describe and forecast the behavior of cancer: this is one of the 

main objectives of “mathematical oncology” [4,5]. Mathematical models of tumor growth kinetics have 

improved the understanding of underlying biological mechanisms. [6–8] In addition, they have 

resulted in a number of modeling approaches for cancer treatments including chemotherapy [9,10] 

and immunotherapy [11,12], improved drug dosage [13,14] and have yielded candidate biomarkers 

for treatment response [15]. The roots of tumor growth models go back to 1825, when Gompertz 

published a mathematical model to analyze the population growth [16]. He argued that the number of 

people alive as a function of their age ���� declines faster than exponential functions which means 

that the death rate should be increasing with age. 135 years later, von Bertalanffy addressed the 

question of “why does an organism grow at all and why after a certain time, does its growth come to 

stop?” [17] By replacing its concept of an “organism” with a malignant tumor, the answer to this 

question resulted in a mathematical model for tumor growth. Tumor modeling provides information 

about the net tumor growth rate, facilitates their comparison among different tumor types [18] and 

makes it possible to predict the future growth of tumors [19].  

A number of “textbook” models have been used in the past to approximate tumor growth with 

mathematical equations. In addition to the above-mentioned models by Gompertz and von 

Bertalanffy (each in a “classical” and a more general form), exponential and logistic models are 

standard approaches to describe tumor growth (Table 1) [20]. Exponential models are able to predict 

either exponential growth or decay depending on the absolute values of birth and death rates, and 

the resulting sign of (birth rate - death rate). Logistic models can simulate the fact that tumor growth 

is limited by nutritional, immunological or spatial constraints by including a carrying capacity into the 

model at which the tumor volume plateaus. This carrying capacity is included in the per capita growth 

rate, in line with the observation that tumor growth slows down when the tumor volume becomes 

large. [21] To be precise, the carrying capacity can be interpreted to comprise a number of biological 

constraints to tumor cell proliferation. These constraints include the availability of nutrients and 

oxygen and thus, the concept of tumor angiogenesis is implicit in the carrying capacity. In addition, 

the pressure of immune cells attacking tumor cells limits the niche the tumor cells can fill and thus, 

the concept of antitumor immune response is implicit in the carrying capacity. The Gompertz model is 

another model which illustrates the experimentally observed decrease in the growth speed of tumors. 

Similarly to the logistic model it has a sigmoid shape, hence representing limited tumor growth. Its 

main assumption is the exponential decay of the growth rate [18]. Since this model has been applied 

in many fields to various problems a few equivalent Gompertz models exist, differing in the chosen 

re-parametrization. Gompertz and von Bertalanffy growth models are two basic but important models 
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which are commonly used to model tumor volume growth since they have outperformed exponential 

models in many cases in the past [22].  

Unlike in other domains in which mathematical models and practice are strongly linked, the field of 

mathematical oncology is, by and large, somewhat disconnected from clinical practice of oncology. 

While in recent years, large quantitative data collections have deepened the genetic [23] and 

immunological [24–26] understanding of solid tumors, even well-established textbook models in 

mathematical oncology have not been linked with or validated in large amounts of quantitative real-

world data. As a result, growth models that form a conceptual backbone of mathematical oncology 

have never been formally validated in large patient-derived datasets. In 2014, Benzekry et al. have 

systematically validated a range of textbook mathematical models on quantitative data obtained from 

two mouse models [20]. More recently, Vaghi et al. have extended that study and have validated 

classical growth models in 833 measurements in 94 animals [27]. These systematic large-scale 

approaches are highly important to link mathematical oncology to real-world data, but bear one major 

drawback: since almost all drugs that result in tumor control in mice fail in human experiments [28], 

mouse-based models are not suitable for human tumor growth estimations [29]. In addition, little 

validation of textbook models has been performed for tumors undergoing treatment, prompting 

caution whether unvalidated mathematical models have predictive power for clinical oncology.[30] 

While modeling of unabated tumor growth has academic relevance, fortunately untreated tumor 

growth for extended periods of time is rare in clinical practice [30]. Almost all patients with metastatic 

cancer undergo some type of systemic pharmacotherapy which slows down tumor progression [31].  

In this study, we retrospectively collected quantitative measurements of tumor diameter changes over 

time from Non-Small Cell Lung Cancer (NSCLC) and bladder cancer patients from five large clinical 

trials. We systematically used this data with each of the standard mathematical models to address 

two questions: Firstly, how well can existing tumor growth models fit real-world data of patients 

undergoing treatment? (experiment #1) Secondly, how well can these models predict tumor growth at 

later disease stages when fitted to early-stage data? (experiment #2)   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

6 

Methods 

Ethics statement and data sharing 

All experiments were conducted in accordance with the Declaration of Helsinki and the International 

Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council for International 

Organizations of Medical Sciences (CIOMS). This study complies with the “Transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) statement [32]. All 

data were obtained in an anonymized way through a proposal to F. Hoffmann-La Roche Ltd. through 

the platform “Clinical Study Data Request” (CSDR, www.ClinicalStudyDataRequest.com), which is 

now inactive and has been replaced by the Vivli platform (https://vivli.org, April 2021). Qualified 

researchers may request access to individual patient level data through the clinical study data 

request platform (https://vivli.org/). Further details on Roche's criteria for eligible studies are available 

here (https://vivli.org/members/ourmembers/). For further details on Roche's Global Policy on the 

Sharing of Clinical Information and how to request access to related clinical study documents, see 

(https://www.roche.com/research_and_development/ 

who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm). The original 

proposal submitted to the CSDR platform is available in Annex 1. In order to enable reproduction of 

our experiments, we publicly release a fully anonymized subset of the data containing only the tumor 

volume measurements for the target lesion and the respective study and treatment arm (Suppl. 

Table 1). 

Data acquisition and preprocessing 

We used data sets from five different clinical trials (Table 1 and Table 2). The purpose of the original 

studies was the evaluation of the efficacy and safety of Atezolizumab (previously known as 

MPDL3280A), an immune checkpoint inhibitor directed against the Programmed Death Ligand 1 (PD-

L1). In two out of the five trials (GO28753, GO28915), the performance of Atezolizumab was 

compared to Docetaxel, a chemotherapy drug. In the other three trials, all the participants received 

Atezolizumab as a treatment and the participants were further categorized into treatment arms or 

clinical subgroups as defined in the study protocols. One-dimensional longest diameter and shortest 

diameter of target and non-target lesions as manually measured on CT scans were available from the 

study database and were reported for each patient at different time intervals (Figure 1A). Because 

the shortest diameter was only available for a subset of patients, we used only the longest diameter 

(LD) and converted it to tumor volume (V) by � �  ���  	  0.5 as described before [33]. Using the 

maximum value of V in the whole data set, the volumes were normalized to be in the range of 0 and 1 

for the whole dataset. Most patients in the data sets had multiple tumor lesions (primary tumor and/or 

metastases). For simplicity, we refer to these lesions as “tumors”. In the data set, one of these tumors 
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for each patient was labeled as a “first target lesion” (‘INV-T001’), i.e. an easily measurable lesion for 

which the diameter was closely monitored over time. In addition, patients usually had one or more 

“non-target lesions”. In this study, we only used the target lesion which was labeled as for all the 

patients, as this was usually the tumor with the highest number of data points. Each patient has a 

different number of data points for this selected target lesion. While the intervals between data points 

were relatively similar (they were on average 50.62 days, with a standard deviation of 6.2 days), the 

absolute number varied (there were on average 3.63 data points for the selected target lesion per 

patient with a standard deviation of 3.22). Patients with few data points likely dropped out of the study 

early due to death or other reasons. To enable robust fitting of mathematical models to the data, we 

limited our data set to two sets of patients with three or more (or six or more, respectively) data points 

for the target lesion. Cumulatively, the original data sets had 2693 patients, of which 1472 had three 

or more data points and 652 had six or more data points available (Figure 1B).  

Patient categorization according to RECIST and trajectory type 

For each patient, the ultimate response was encoded according to the response evaluation criteria in 

solid tumors (RECIST) system [34]. Based on the latest modification of this criteria (RECIST 1.1) [35], 

four tumor responses to treatments can be defined: Complete Response (CR, disappearance of all 

target lesions), Partial Response (PR, at least 30% decrease in sum of the longest diameters of 

target lesions in comparison to the baseline value), Progressive Disease (PD, at least an increase of 

20% in the sum of the longest diameters of target lesions in comparison to baseline value) and 

Stable Disease (SD, when none of the above criteria fits to the tumor response). Because the 

RECIST system only assesses best response at discrete time points but does not categorize the full 

tumor volume trajectories, we additionally categorized the patients into three treatment response 

groups: “up”, “down” and “fluctuate” (Figure 1C). For this purpose, we calculated a vector containing 

the difference of each LD measurement at time point t+1 to its previous measurement at time point t 

for each patient. If the LD at � � 1 was bigger than at �, the difference would be positive and vice 

versa. Patients for whom only the shortest distance measurement was available were excluded from 

the analysis. The “up” category includes patients whose difference vector values are always positive 

and patients with a positive difference after the first measurement if the ratio between the sum of all 

positive values to the sum of all negative values is >2. The “down” category includes patients whose 

difference vector values are always negative or a negative difference after the first measurement if 

the overall ratio between the sum of all negative values to the sum of all positive values is >2. The 

“fluctuate” category contains all patients that correspond to neither up nor down categories. In all five 

studies, the pattern “up”, “down” and “fluctuate” was present (Figure 1D). 
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Models and experimental design 

We predefined six classical mathematical models to be fitted to the data (Table 3). Theoretically, 

there are two ways to integrate the effect of pharmacotherapy into models: either, explicit treatment-

related arguments can be added to model equations, or, the effects of treatment can be implicit in the 

model. Here, we choose the implicit interpretation of treatment effects by assuming that therapies 

change either the growth or death rate of tumor cells or the carrying capacity of the tumor niche. For 

all models, the dependent variable is the volume of the tumor as a function of time. We subsequently 

performed to experiments: Experiment #1 was aimed at fitting models to the entire time series for 

each patient. The statistical endpoint for experiment #1 was the mean absolute error (MAE, also L1-

norm, the lower the better, ��� �  ∑ |�� ���� |�
���

�
, �	observed versus �
�  predicted values), the Akaike 

Information Criterion (AIC � �, lower is better , ��� �  2� �  2���� �, � is the number of parameters 

and �  is the maximum value of the likelihood function for the model), Root Mean Square Error (RMSE 

, the lower the better, !�"� �  #�

�
∑ ��	  � �
�% ��

	
�  and R-squared fit (highest value is 1, higher is 

better, !�  �  1 � ∑  ���� ���� �
�

∑   ���� ������
�

). Experiment #1 was run on both patient sets separately: The set with all 

patients with three or more data points and the set with patients with six or more data points. 

Experiment #2 was aimed at fitting models to the early measurements for each patient, excluding the 

last three data points and subsequently estimating the predictive accuracy for the excluded data 

points. The statistical endpoint for experiment #2 was the MAE. Experiment #2 was only run on the 

set of patients with six or more data points.  

Fitting and implementation 

All model fitting procedures were implemented in Python 3.7. In particular, we used differential 

evolution to generate the initial data points for the differential equations. Differential evolution is a 

stochastic population based method which is used for global optimization problems [36]. Based on 

these initial guessed parameter values, the “Curve_fit” function (from the python package “scipy”) is 

used to fit the model parameters to the experimental data. This function uses the Trust Region 

Reflective (trf) algorithm with the non-linear least squares loss function to find an optimal fit of the 

model parameters to the data points. The inputs to this function are the sorted time and its 

corresponding tumor volume measurements, the respective mathematical function to fit the data and 

the maximum number of iterations (we used 1000 iterations in this study). The output of the 

“Curve_fit” function is the calculated optimum parameters for the selected mathematical function. 

Having these parameters, it is possible to predict the volume values for each time point and then 

evaluate the goodness of the fit. The source codes are publicly available at 

https://github.com/KatherLab/ImmunotherapyModels.git  
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Results 

Early RECIST status does not correspond well with ultimate treatment response 

In clinical routine and clinical trials, RECIST response at early time points during treatment is often 

used to determine whether a given treatment should be continued [34]. If these initial RECIST results 

perfectly matched the ultimate RECIST, there would not be a need for more mathematical prediction 

models. Therefore, we systematically compared the RECIST status at the first, second, third and 

fourth tumor size evaluation for each patient with the “final” RECIST status as defined in the study 

protocol. In all treatment arms, we found an imperfect overlap between early and final 

measurements. Overall, the median concordance between first, second, third and fourth data point 

and final RECIST was 53.5, 64.0, 63.5 and 78.0, respectively. The same pattern was seen for the 

concordance between early and final RECIST calculated for only one target lesion (Figure 1E). 

Hence, the RECIST classification can be a useful tool to assess therapy response status, but it might 

be insufficient for therapy response estimation at an early therapy stage. These findings provide a 

rationale for the use of mathematical models to improve response prediction. In addition, we 

compared statistically the correlation between the RECIST standard classification categories (CR/PR, 

SD and PD) with the developed grouping methods (up, down and fluctuate). As the results are 

summarized in Suppl. Figure 1 both grouping systems are partially correlated (PD is mostly 

overlapping with “up”, PR/CR with “down” and SD with “fluctuate”). However, the correlation was not 

perfect and particularly in the OAK study, 37 patients from 95 down category patients are classified 

as PD and 87 patients out of 133 patients in fluctuate category are classified as PD . This comparison 

shows that while RECIST is the standard classification system in clinical routine, our grouping 

method does provide an additional perspective on tumor response categories.  

The Gompertz model outperforms other models when fitting clinical data points 

We tested how well classical differential equation models (Table 3) can fit tumor volume trajectories 

under immunotherapy and chemotherapy. To compare these models, we first fitted them to all 

available data points for all patients with at least six measurements (experiment #1). This set the 

stage for experiment #2 (Figure 2A), in which models were fit to all points except the three last points 

and the predictive power was assessed for each model. In experiment #1, we found that all models 

provided a good fit to most data points, but the number of poorly fitted points differed between the 

models. Overall, the General Bertalanffy, the Gompertz and the General Gompertz model had the 

lowest number of poorly fitted data points (Figure 2C). We quantified this by calculating multiple 

metrics for the goodness of fit for each model, for each study arm, further stratifying patients in each 

study arm by the ultimate RECIST response. Again, we found that the General Bertalanffy, the 

Gompertz and the General Gompertz model consistently outperformed more simple models. (Figure 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

10 

3A and B) The exponential model yielded the worst fit for 13 out of 19 patient groups in this analysis 

(Figure 3A). To rule out a selection bias, we repeated experiment #1 with all patients with at least 

three measurements, yielding comparable results (Suppl. Figure 2A and B). Due to their higher 

degree of freedom, complex models always yield a better fit than simple models to any data set. To 

account for this, we assessed the Akaike Information Criterion (AIC) which incentivises goodness of 

fit but penalizes model complexity. We found that according to the AIC, the General Bertalanffy 

model consistently yielded the poorest performance compared to the other models (Figure 3C and 

D). This observation also held when all patients with three or more measurements were considered 

(Suppl. Figure 2C and D). However, the Gompertz model had a low (good) AIC for most study arms, 

showing that this model give a good balance between goodness of fit and model complexity. To rule 

out that these effects were obtained by sub-stratifying patients according to their final RECIST status, 

we repeated experiment #1 with patients sub-stratified as “up”, “down” and “fluctuate”, thereby 

considering the shape of the whole timeline for each patient. Again, we found that the General 

Bertalanffy, the Gompertz and the General Gompertz model consistently outperformed the 

exponential model, the logistic model and the Classic Bertalanffy model in terms of Mean Absolute 

Error (Suppl. Figure 3A and B), the Root Mean Square Error (Suppl. Figure 3C and D) and the R-

squared Error (Suppl. Figure 3E and F). In particular, this was the case for “fluctuating” patients 

which for the most clinically interesting group of patients (Suppl. Figure 4). For the “up” and “down” 

patient groups, the fitted model parameters were generally in a close range. For the “fluctuating” 

patient group, the fitted model parameters showed a higher variability between the patients, 

indicating the difficulty of to fit these trajectories (Suppl. Table 2). When penalizing for model 

complexity by using the Akaike Information Criterion, again the Gompertz model provided the best 

balance between goodness of fit and model complexity (Suppl. Figure 3 G and H). In summary, the 

Gompertz model adequately fitted the response to immunotherapy and chemotherapy across a range 

of clinically relevant populations, while having only two free parameters (Table 3). 

Differential equation models can predict tumor response from early time points 

While it is important to assess a model’s ability to fit a tumor volume timeline a posteriori, a more 

clinically relevant problem is to predict final treatment response based on early tumor behavior under 

therapy. Therefore, we investigated if these models can predict the last data points when only fitted to 

early treatment response. To investigate this, we held out the three last data points on any given 

patient, fit the model to all remaining (early) data points and evaluated the mean absolute error from 

extrapolation to the holdout test measurements (experiment #2). Interestingly, we found that in most 

patient groups in most treatment arms the holdout data points could be very well predicted with this 

approach. A remarkable exception was the Classic Bertalanffy Model, which yielded the worst fit on 

the last three points as assessed by the Mean Absolute Error (Suppl. Figure 5A and B). Overall, the  

best models for predicting holdout measurements were the General Bertalanffy and the Gompertz 
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model (Suppl. Figure 5A and B). When analyzing the predictions of the exponential model (Figure 

4A) and the General Bertalanffy model (Figure 4B) in more detail, we found that for the “up” and 

“down” patients, the exponential and the General Bertalanffy model visually recapitulated the 

trajectory of the tumor volume. A notable exception are U-shaped curves present in some of the 

“fluctuating” patients (Figure 4A and B).  

Discussion 

Cancer immunotherapy with immune checkpoint inhibitors is now an established part of the 

therapeutic arsenal for solid tumors [37]. Patterns of response to this class of drugs are more 

complex than for classical chemotherapy [38]. Previous studies have at length discussed new 

response trajectories such as hyperprogression, pseudoprogression [38,39] or delayed response [40] 

in immune checkpoint inhibitors. Accordingly, simple assessment systems for treatment response 

such as RECIST are not ideally suited to predict future treatment response for a given patient. 

Although mathematical models of tumor growth have been used for decades to understand 

mechanisms of tumor progression and treatment response, they have not been systematically 

validated in human real-world data of patients undergoing systemic treatment. To our knowledge, the 

only large systematic evaluation of these models have been performed on mouse tumors [20,27], 

which function merely as a proxy for human tumors. Moreover, although immunotherapy is a 

cornerstone of cancer treatment and classical mathematical models are in principle useful to model 

cancer growth under therapy, they have not been previously applied to large cohorts of patients 

under immunotherapy. In this study, we present a systematic application of mathematical tumor 

growth models on a large human dataset of patients undergoing immunotherapy and chemotherapy. 

We restricted our analysis to six consensus mathematical models selected from [41]. We show that in 

particular the Gompertz model and the General Bertalanffy can successfully fit the tumor growth 

trajectory and provide an accurate prediction of ultimate treatment response on the basis of early 

treatment data. However, we also show that the fit for “fluctuating” patients is lower in all models, and 

fully U-shaped tumor growth trajectories could not be fitted at all. Comparison of the results between 

experiment #1 and #2 shows that models perform better if all the data points are used. However, 

from the clinical point of view, it is very useful if a model can predict the final response points from the 

early treatment response. This highlights the usefulness of stratifying patients into different categories 

and, in the future, of using more sophisticated models which can overcome this limitation. Our 

findings mirror a previous study by Benzekry et al. who demonstrated that the Gompertz model 

provides a good approximation of tumor growth in mice. [20] Therefore, our study provides a potential 

bridge between textbook models of mathematical oncology and oncology practice today, providing 

evidence that simple mathematical functions can be used to predict immunotherapy response in most 

patient subsets.  
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A structural limitation to our study lies in the circumstance that the simple modelling of tumor growth 

or decay might not be the best predictor for the overall therapy outcome. Although the assessment of 

tumor growth might be useful to evaluate the drug or therapy regime response, it does not provide 

overall survival prediction for individual patients. Tumors might show a positive therapy response, but 

at the same time patients might die from adverse therapy events, infections or other therapy-related 

problems. Consequently, mathematical models which are solely based on tumor growth data should 

only be used together with other prognostic and predictive factors in clinical routine. Another limitation 

is the fact that by setting a threshold of at least six measurements at six points of time per patient, we 

had to exclude a part of patients from our final analysis. We mitigated this problem by repeating the 

analysis for patients with at least three data points, but this could still represent a selection bias by 

neglecting early study drop-outs and early cancer-related deaths. Other data-related limitations are 

that for some patients, only very few points can be present during the initial dynamics which might 

create problems. In the future, the availability of more complex datasets could allow researchers to 

build more complex models, thereby capturing more nuanced details of tumor growth. In practice, this 

is limited by the availability of structured data in oncology. In addition, in line with previous studies 

performed on mouse data, we used very simple mathematical models in this study [20,27]. Such 

models are a strong simplification of the reality of solid tumors, which are multicellular structures with 

a distinct spatial architecture [42]. Fundamentally, the key question is: how granular should a model 

be? This has been discussed extensively in the literature [8,43–47]. More complex models have been 

proposed for modeling tumor growth under immunotherapy which could improve the fit to the data, for 

example the Kuznetsov model [12] and game theoretical models [48–50]. As a starting point for the 

analysis of more complex models of computational oncology in real-life human datasets of various 

cancer types, we provide our raw data for re-use by other groups. In addition to non-spatial models 

like the ordinary differential equation (ODE) models in this study, other studies have explored the use 

of spatial models in the context of cancer immunotherapy. [45,46] However, in these studies we 

found that it is very hard to fit the parameters of spatial models to clinical routine data. Even simple 

spatial models have >25 free parameters, which means that for every patient at least 25 

measurements are needed (ideally much more). In comparison, the ordinary differential equation 

(ODE) models in our study are much simpler and they only have two or three free parameters. This 

simplicity enables fitting the model parameters to routine clinical data such as the databases used in 

our study. Furthermore, the use of non-spatial models is supported by theoretical considerations. 

Solid tumors consist of billions of cells which show some mobility in the immediates spatial vicinity. 

Tumors are not perfectly homogeneous in the spatial dimension, but if we assume that the relevant 

biological processes are sufficiently similar in distinct parts of the tumor, spatial patterns do not have 

to be explicitly modeled, but can be implicit as in ODE models. Ultimately, complex spatial models 

and simplistic ODE models are both very valuable tools which could be implemented in the clinic in 

different situations. Our present study provides the first large-scale evidence for the usefulness of 
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ODE models. Future studies should investigate more complex models in similar experimental 

approaches. In general, clinical utility remains the ultimate benchmark, as was pointed out by Gerlee 

[51], “a model that is disconnected from reality in terms of mechanisms and dynamics is acceptable, 

as long as it does the job of predicting”.  

Ultimately, after refinement and prospective validation, such models could conceivably be used in the 

clinic to provide guidance on treatment recommendations for cancer patients. Unlike molecular 

biology-based biomarkers in the field of oncology, mathematical models could potentially improve 

response prediction for individual cancer patients based on ubiquitously available routine data.  
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Tables  

 

Study ID Cancer 
Type 

Phase No. 
Pats. 

Treatment Subgroup No. Pats. 
per group 

NCT01846416 
(GO28625) 

FIR [52] 

Non-Small 
Cell Lung 
Cancer 

2 138 Atezolizumab* MPDL3280A-1 31 

MPDL3280A-2 94 

MPDL3280A-3 13 

NCT01903993 
(GO28753) 

POPLAR [53] 

Non-Small 
Cell Lung 
Cancer 

2 287 Atezolizumab - 144 

Docetaxel 143 

NCT02031458 
(GO28754) 
BIRCH [54] 

Non-Small 
Cell Lung 
Cancer 

2 657 Atezolizumab** MPDL3280A-1a 31 

MPDL3280A-2a 79 

MPDL3280A-3a 70 

MPDL3280A-1b 104 

MPDL3280A-2b 189 

MPDL3280A-3b 184 

NCT02008227 
(GO28915) 
OAK [55] 

Non-Small 
Cell Lung 
Cancer 

3 1182 Atezolizumab - 609 

Docetaxel 578 

NCT02951767 
(GO29293) 

IMvigor 210 [56] 

 

Bladder 
Cancer 

2 429 Atezolizumab - 429 

 

Table 1 - Data Description. Five data sets were used in this study. The original number of patients 

in each data set and the treatment arm / subgroups are reported in this table. Two of the data sets 

have more than one treatment arm (Atezolizumab and Docetacxel) and the others have only one arm 

with a number of subgroups defined by clinical features. No. = Number, Pats. = Patients. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

15 

 

Study Design 

NCT01846416 

GO28625 

FIR[52] 

- Atezolizumab in PD-L1 + in NSCLC (n=138), Phase 2 
- 1) patient with no first treatment 
- 2) patients progress following platinum chemo 
- 3) patients 2L + treated brain metastases 
- ORR = 32 % /21% / 23%  

NCT01903993 

GO28753 

POPLAR[53] 

- After platinum failure: Atezolizumab or Docetaxel in NSCLC n=287; 
Phase 2 

- 1) 144 in Atezolizumab group 
- 2) 143 in docetaxel group 
- OS 12.6 months / 9.7 months 
- improvement in OS with higher PD-L1 expression 
- Atezolizumab improved survival, correlated with expression PD-L1 

NCT02031458 

GO28754 

BIRCH[54] 

- Atezolizumab in PD-L1 positive advanced or metastatic NSCLC 
n=667; Phase 2 

- 1) 1L Atezolizumab 
- 2) 2L Atezolizumab 
- 3) 3L Atezolizumab 
- ORR: 22% /19% / 18% 

NCT02008227 

GO28915 

OAK[55] 

- Atezolizumab vs Docetaxel advanced or metastatic NSCLC (2L) n = 
1225, Phase 3 

- OS better in Atezolizumab 
- confirmed results of POPLAR study 

NCT02951767 

GO29293 

IMvigor 

- Atezolizumab in locally advanced or metastatic Bladder Cancer 
Phase 2 

- 1) 1L atezolizumab 
- 2) 2L atezolizumab after platinum based chemo 
- study still ongoing (2020) 

Table 2 - Detailed summary of included studies. Data from five studies were used in this work. All 

studies can be identified either by their clinical trial registry number (“NCT…”) or by their Roche ID 

(“GO…”).   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.23.465549doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465549
http://creativecommons.org/licenses/by/4.0/


 

 

16 

 

Model name Solution of the differential 
equation 

Differential equation 
(with initial condition ��0� � ��) 

Parameter description Ref. 

 
Exponential 
 ���� � ��������� 

 	�
	�  �  �� �  
� � 

 

 
& ������1�: birth rate* 
' ������1�: death rate* 

 
[41] 

 
Logistic 
(Verhulst) 
 

���� � ����
�

� � ���1 � �
�� 
	�
	�  �  �� �1 � ��� 

 
( ������1�: max. net growth rate � �����:carrying capacity 

 
[41] 

 
Gompertz 
 

���� � 

�����
� � ������ � �

����
�� 

 	�
	�  �  ��� �  ����� 

 

(  ���3�1 �����1�: max. net 
growth rate 
) ������1�:constant 

 
[19,41,
57] 

 
General 
Gompertz 

  	�
	�  �  �
 �� �  ����� 

( ���3�1 �����1�: max. net 
growth rate � ��������:constant 

* �constant 

 
[41] 

 
Classic 
von 
Bertalanffy 
 

����  � ��

 � ��

�

�
� � �


� �������
�

 

 

 	�
	� � ���

�  �  
� 

 � ��������: birth rate 


  ��������:death rate 

 
[41] 

 
General 
von 
Bertalanffy 

���� � 

+&
' � +�0

1�� � �

, ����1����,

1

1��
 

 
 

 	�
	�  �  ��
  �  
� 

 �  ��������:birth rate 


  ��������:death rate 

� �constant 

 
[41] 

 

Table 3 - Model Description and interpretation of the parameters. For all differential equation 

models in the current study, the model name, equations and variables are listed. *birth rate and 

growth rate can be combined to one parameter, the effective growth rate.   
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Figure Legends 

 

Figure 1 - Data Description. (A) Longest tumor diameter over time for all lesions in representative 

patients in each data set. (B) Number of patients in each dataset. (C) Tumors can be categorized in 

three trajectory types based on their response to the treatment: Up, Down, Fluctuate. (D) Proportions 

of trajectory type in each dataset. (E) Initial RECIST status does not predict final RECIST status.  

 

Figure 2 - Experimental design and model fit. - (A) In experiment #1, models were fitted to all 

available data points for each patient (only for patients with at least 3 or 6 data points, respectively). 

In experiment #2, models were fitted to all but the last 3 data points for all patients with at least 6 data 

points. Then, the predictions for the last 3 data points were compared with the actual values. (B) Fit 

and prediction for three representative patients. (C) Plot of real data points and fitted data points for 

all models for all studies. A larger deviation from the diagonal indicates a worse fit. Models with a 

“raincloud” appearance systematically underestimate true tumor volume. 

 

Figure 3 - Head-to-head comparison of all models. (A) Model fit for all treatment arms in all trials, 

stratified by final RECIST, for all models. The loss function is the Mean Absolute Error (MAE, L1-

Loss), after row-wise normalization. (B) Corresponding plot without row-wise normalization, showing 

the raw MAE. The worst MAE in each figure is indicated with “#” and best one is indicated with “*”. 

(C) Corresponding plot showing the Akaike Information Criterion (AIC) which penalizes models with a 

large number of free parameters, row-wise normalized. (D) Corresponding plot without row-wise 

normalization. 

 

Figure 4 - Fit of the exponential model and the General Bertalanffy model to unseen data. (A) 

Fit (blue) of the exponential model to the full timeline of representative patients with “up”, “down” and 

“fluctuate” trajectories. For the same patients, the prediction (yellow) is shown which was fitted to all 

points except the last three data points. (B) Corresponding plot for the General Bertalanffy model. 

The y axis is the relative tumor volume with respect to the largest tumor in the whole dataset, shown 

as 10 -̂3.  
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Legend of supporting information 
Suppl. Figure 1: Statistical comparison between the “up”/”down”/”fluctuate” and the standard 

RECIST-based grouping “CR/PR”/”CR”/”PD”. 

  

Suppl. Figure 2: Model fit to all patients with three or more measurements. (A) Model fit for all 

treatment arms in all trials, stratified by final RECIST, for all models. The loss function is the Mean 

Absolute Error (MAE, L1-Loss), after row-wise normalization. (B) Corresponding plot without row-

wise normalization, showing the raw MAE. The worst MAE in each figure is indicated with “#” and 

best one is indicated with “*”. (C) Corresponding plot showing the Akaike Information Criterion (AIC) 

which penalizes models with a large number of free parameters, row-wise normalized. (D) 

Corresponding plot without row-wise normalization. 

  

Suppl. Figure 3: Model fit to all patients grouped by trajectory type and additional loss 

functions. 

  

Suppl. Figure 4: Goodness of fit for all models, all trial arms, all patient groups. 
  

Suppl. Figure 5: Goodness of fit for unseen data points for each model. Results of experiment 
#2. 
  

Annex 1: Original data sharing request 
  
Suppl. Table 1: fully anonymized subset of the data containing the tumor volume 

measurements for the target lesion and the respective study and treatment arm. 

  

Suppl. Table 2: Distribution of the parameters for different types of trajectories in all the 5 

datasets calculated by the examined 6 mathematical models. Table 3 is a reference to the used 

parameters for each function. 
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