

1 **Microbiota mediated plasticity promotes thermal**
2 **adaptation in *Nematostella vectensis***

3

4 Laura Baldassarre^{1,4}, Hua Ying², Adam Reitzel³, Sebastian Fraune^{1*}

5

6 ¹Institute for Zoology und Organismic Interactions, Heinrich-Heine Universität
7 Düsseldorf, Germany;

8 ²ANU Research School of Biology, The Australian National University, Canberra,
9 Australia;

10 ³Biological Sciences, University of North Carolina at Charlotte, Charlotte, United
11 States;

12 ⁴Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Sezione di
13 Oceanografia, Trieste, Italy.

14

15 *Corresponding author:

16 Prof. Dr. Sebastian Fraune

17 Heinrich-Heine Universität Düsseldorf

18 Institut für Zoologie und Organismische Interaktionen

19 Universitätsstraße 1

20 Gebäude: 26.12 Etage/Raum: 00.27

21 40225 Düsseldorf

22 Tel.: +49 211 81-14991

23 Fax: +49 211 81-11971

24 Email: [fraune\(a\)hhu.de](mailto:fraune(a)hhu.de)

25 <https://www.organismicinteractions.hhu.de/>

26

27 Running title: Microbiota contribution to host thermal tolerance

28

29 **Abstract**

30 At the current rate of climate change, it is unlikely that multicellular organisms will be
31 able to adapt to changing environmental conditions through genetic recombination
32 and natural selection alone. Thus, it is critical to understand alternative mechanisms
33 that allow organisms to cope with rapid environmental changes. Here, we used the
34 sea anemone *Nematostella vectensis* as model to investigate the microbiota as
35 putative source of rapid adaptation. Living in estuarine ecosystems, highly variable
36 aquatic environments, *N. vectensis* has evolved the capability of surviving in a wide
37 range of temperatures and salinities. In a long-term experiment, we acclimated
38 polyps of *Nematostella* to low (15°C), medium (20°C) and high (25°C) temperatures,
39 in order to test the impact of microbiota-mediated plasticity on animal acclimation.
40 Using the same animal clonal line, propagated from a single polyp, allowed us to
41 eliminate effects of the host genotype. Interestingly, the higher thermal tolerance of
42 animals acclimated to high temperature, could be transferred to non-acclimated
43 animals through microbiota transplantation. In addition, offspring survival was highest
44 from mothers acclimated to high temperature, indicating the transmission of thermal
45 resistance to the next generation. Microbial community analyses of the F1 generation
46 revealed the transmission of the acclimated microbiota to the next generation. These
47 results indicate that microbiota plasticity can contribute to animal thermal acclimation
48 and its transmission to the next generation may represent a rapid mechanism for
49 thermal adaptation.

50

51 **Introduction**

52 Changes in the climate are proceeding worldwide at a rate never registered before
53 and temperatures will rise dramatically in the coming decades. Species able to
54 migrate could move toward new-favourable areas, but those that have limited
55 dispersal capacities or are sessile will have only two options: adaptation or extinction.
56 Traditional theory and research since the Modern Synthesis have focused on the
57 balance of mutation and selection as the central explanation for the adaptation of
58 populations to their environment and as the generator of phenotypic novelty.
59 However, some organisms also have a remarkable ability to acclimate to
60 environmental change during their lifetime.

61 The mechanisms for acclimation are generally assumed to be due to shifts in gene
62 expression regulation ^{1,2}. A focus on this factor alone is surely incomplete because
63 the phenotype of an animal cannot be explained entirely by its genes. In 1927, the
64 microbiologist Ivan E. Wallin hypothesized in his book, “*Symbiontism and the Origin*
65 *of Species*”, that the acquisition of bacterial endosymbionts favours the origin of new
66 species ³. Unlike the genes and regulatory regions of the genome, microbial
67 composition can be rapidly modified by environmental cues, and may thus represent
68 a mechanism for rapid acclimation and adaptions of individuals to a changing
69 environment ⁴⁻⁷. Recently, the microbiota-mediated transgenerational acclimatization
70 (MMTA) concept was proposed ⁸, suggesting that changes in microbiota
71 assemblages, occurring in acclimating animals, may be passed on through
72 generations to confer long-lasting resistance to changing environments by individuals
73 and populations.

74 To be able to disentangle host genetic and microbial contributions to thermal
75 acclimation, we took advantage of the model system *Nematostella vectensis* ⁹. *N.*
76 *vectensis*, an anthozoan cnidarian, is a sedentary predator that resides exclusively in
77 estuaries and brackish water environments, where it lives borrowed in sediments ¹⁰.
78 It is a wide-spread species that has been found in both Pacific and Atlantic coasts of
79 the US and of the UK. In their natural habitats, wild populations of *N. vectensis*
80 experience high variations of salinity, temperature and pollutants ¹¹⁻¹⁶. Under lab
81 conditions, all the developmental stages are procurable on a weekly basis and
82 spawning is induced by a shift in temperature and exposure to light ¹⁷. *N. vectensis*
83 can be easily cultured in high numbers ¹³ and clonally propagated to eliminate
84 genetic confounding effects. A detailed analyses of its microbiota revealed that *N.*

85 *vectensis* harbors a specific microbiota whose composition changes in response to
86 different environmental conditions and among geographic locations ¹⁸. Recently, has
87 been shown that female and male polyps transmit different bacterial species to the
88 offspring and that further symbionts are acquired from the environment during
89 development ¹⁹. Furthermore, a protocol based on antibiotic-treatment was
90 established to generate germ-free animals that allow controlled recolonization
91 experiments to be conducted ²⁰. All together, these characteristics make the sea
92 anemone *N. vectensis* a uniquely informative model organism to investigate the
93 effects of bacterial plasticity on thermal acclimation ⁵.
94 Here we used a clonal line of *N. vectensis* to characterise physiological and microbial
95 plasticity of the holobiont under different thermal conditions, while eliminating the
96 variability due to different host genotypes. Using microbial transplantations to non-
97 acclimated polyps, we proved the ability of acclimated microbes to confer resistance
98 to thermal stress. We further showed that thermal resistance to heat stress is
99 transmitted to the next generation.
100 Altogether, we provide strong evidences that microbiota-mediated plasticity
101 contributes to the adaptability of *N. vectensis* to high temperature and that the
102 transmission of acclimated microbiotas represents a mechanism for rapid adaptation.
103

104 **Materials and methods**

105

106 **Animal culture**

107 All experiments were carried out with polyps of *N. vectensis* (Stephenson 1935). The
108 adult animals of the laboratory culture were F1 offspring of CH2XCH6 individuals
109 collected from the Rhode River in Maryland, USA^{13,17} They were kept under
110 constant, artificial conditions without substrate or light in plastic boxes filled with 1L
111 ca. *Nematostella* Medium (NM), which was adjusted to 16‰ salinity with Red Sea
112 Salt® and Millipore H₂O. Polyps were fed 2 times a week with first instar nauplius
113 larvae of *Artemia salina* as prey (Ocean Nutrition Micro *Artemia* Cysts 430 - 500 gr,
114 Coralsands, Wiesbaden, Germany) and washed once a week with media pre-
115 incubated at the relative culture temperatures.

116

117 **Animal acclimation**

118 A single female polyp from the standard laboratory culture conditions (16‰ ppt,
119 20°C) was isolated and propagated via clonal reproduction. When a total of 150 new
120 clones was reached, they were split into 15 different boxes with 10 animals each.
121 The boxes were moved into 3 different incubators (5 boxes each) set at 15, 20 and
122 25°C respectively and the animals were kept under constant culture regime as
123 described above. When the total of 50 polyps per box was reached, it was
124 maintained constant by manually removing the new clones formed. Every week the
125 number of new clones, dead and spontaneous spawning events where recorded.

126

127 **Dry weights**

128 Ten animals from each acclimation temperature (AT) were rinsed quickly in pure
129 ethanol and placed singularly in 1.5ml tubes, previously weighted on an analytical
130 scale. The animals were left dry at 80°C in a ventilated incubator for 4 hours. After
131 complete evaporation of fluids, the animals with the tubes were weighed on the same
132 analytical scale and the dry weight calculated.

133

134 **Generation of axenic polyps**

135 In order to reduce the total bacterial load and remove the most of associated bacteria
136 (axenic state), animals belonging to the same clonal line, were treated with an
137 antibiotic (AB) cocktail of ampicillin, neomycin, rifampicin, spectinomycin and

138 streptomycin (50 µg/ml each) in filtered (on 0.2µm filter membrane), autoclaved NM
139 (modified from ²¹). The polyps were incubated in the antibiotic cocktail for two weeks
140 in 50ml Falcon tubes (10 animals each). The medium and the antibiotics were
141 changed every day and the tubes 3 times per week. After the treatment the polyps
142 were incubated for 1 week in sterile NM without antibiotics to let them recover before
143 the recolonization. After the 2 weeks AB treatment, the axenic state was checked by
144 smashing single polyps into 1ml sterile NM and by plating 100µl of the homogenate
145 on marine broth plates, successively incubated for 1 week at 20°C. In addition, we
146 performed a PCR with primers specific for the V1-V2 region of the bacterial 16S
147 rRNA gene (27F and 338R). No CFUs on the plates and a weaker signal in the PCR
148 electrophoretic gel compared with wild-type controls were considered evidences of
149 bacteria reduction and axenic state of the animals.

150

151 **Bacteria transplantation**

152 For this experiment, the protocol for conventionalised recolonised *Hydra* polyps was
153 modified from ²¹. For each AT, 100 axenic adult polyps were recolonised with the
154 supernatant of 10 acclimated adult polyps (2 polyps from each acclimated culture
155 box), singularly smashed in 5ml of sterile NM. One ml of supernatant was added into
156 single Falcon tubes, containing 10 axenic animals each and filled with 50ml sterile
157 NM. At the recolonization time, additional animals from the original acclimated
158 cultures (1 polyp/box) were collected for DNA extraction and 16S sequencing. After
159 24 hours, the medium was exchanged to remove tissue debris and non-associated
160 bacteria. One month after recolonization, the recolonised animals were tested for
161 heat stress tolerance as described above (in 3 rounds of 5 recolonized polyps for
162 each AT). At the time of HS, 15 recolonised polyps for each AT, were sampled for
163 DNA extraction and 16S sequencing.

164

165 **Heat stress experiment (HS)**

166 Adult polyps for each AT were placed singularly in 6-well plates and incubated at
167 40°C for 6 hours (adapted from ²²). The day after, the number of survivors was
168 recorded and the mortality rate calculated.

169

170 **Sexual reproduction induction**

171 Animals separated singularly in 6-well plates, were induced for sexual reproduction
172 via light exposure for 10 h ¹⁷ and temperature shift to 20°C for the animals acclimated
173 at 15°C, and to 25°C for those acclimated at 20 and 25°C. At each fertilization event,
174 sperm from a single induced male were pipetted directly onto each oocyte pack.
175 Fertilization was performed within 3 hours after spawning. The developing animals
176 were then cultured for 1 month under different temperatures (15, 20 or 25°C).

177

178 **Offspring survival test**

179 Ten female polyps from each of the three ATs and one male polyp from the standard
180 culture conditions, were induced separately for spawning. After spawning the adult
181 polyps were removed and the oocyte packs fertilized as described above.
182 Fertilization was confirmed by observation under a binocular of the oocytes first
183 cleavages. After fertilization each oocyte pack was split with a scalpel in 3 parts that
184 were transferred into 3 distinct Petri dishes. The 3 oocyte pack sub-portions were
185 placed into 3 different incubators, set at 15, 20 and 25°C respectively and let develop
186 for one month. Right after fertilization and after one month of development, pictures
187 of the oocytes and the juvenile polyps were acquired for successive counting through
188 ImageJ. Ratios between initial number of oocytes and survived juvenile polyps was
189 calculated and survival rate estimated.

190

191 **Bacteria vertical transmission test**

192 Five female polyps from each of the three ATs and one male polyp from the standard
193 conditions, were induced separately for spawning as described above. Immediately
194 after spawning the parental polyps were collected, frozen in liquid N and stored at -
195 80°C for successive DNA and RNA extraction. Five not induced female polyps from
196 each of the three ATs were also collected, frozen and stored for DNA extraction.
197 Oocyte packs were fertilised, split in 3 parts each and let develop for one month at
198 the three different developing temperatures (DTs), as described for the offspring
199 survival test. After one month of development, the juvenile polyps were collected,
200 frozen in liquid N and stored at -80°C. DNA was extracted from both the adults and
201 the offspring as described herein.

202

203 **DNA extraction**

204 DNA was extracted from adult polyps starving for 3 days before sacrifice and from
205 never fed juveniles. The recolonized animals were not fed for the whole duration of
206 the AB treatment and the transplantation test (7 weeks in total). Animals were
207 washed two times with 2ml autoclaved MQ, instantly frozen in liquid N without liquid
208 and stored at -80°C until extraction. The gDNA was extracted from whole animals
209 with the DNeasy®Blood & Tissue Kit (Qiagen, Hilden, Germany), as described in the
210 manufacturer's protocol. Elution was done in 50µl and the eluate was stored at
211 -80°C until sequencing. DNA concentration was measured by gel electrophoresis
212 (5µl sample on 1.2% agarose) and by spectrophotometry through Nanodrop 3300
213 (Thermo Fisher Scientific).

214

215 **RNA extraction**

216 Adult animals starved for 3 days before sacrifice. Polyps were washed two times with
217 2ml autoclaved MQ, instantly frozen in liquid N without liquid and stored at -80°C
218 until extraction. Total RNA was extracted from the body column only, with the
219 AllPrep® DNA/RNA/miRNA Universal Kit (Qiagen, Hilden, Germany), as described in
220 the manufacturer's protocol. RNA elution was done in 20µl of RNase-free water and
221 the eluates were stored at -80°C until sequencing. RNA concentration was
222 measured through electrophoresis by loading 1µl of each sample on 1% agarose gel
223 and by spectrophotometry through Nanodrop 3300 (Thermo Fisher Scientific).

224

225 **16S RNA sequencing and analysis**

226 For each sample the hypervariable regions V1 and V2 of bacterial 16S rRNA genes
227 were amplified. The forward primer (5'-
228 **AATGATAACGGCGACCACCGAGATCTACAC** XXXXXXXX TATGGTAATTGT
229 AGAGTTGATCCTGGCTCAG-3') and reverse primer (5'-
230 **CAAGCAGAACGACGGCATACGAGAT** XXXXXXXX AGTCAGTCAGCC
231 TGCTGCCTCCCGTAGGAGT -3') contained the Illumina Adaptor (in bold) p5
232 (forward) and p7 (reverse)²³. Both primers contain a unique 8 base index (index;
233 designated as XXXXXXXX) to tag each PCR product. For the PCR, 100 ng of
234 template DNA (measured with Qubit) were added to 25 µl PCR reactions, which were
235 performed using Phusion® Hot Start II DNA Polymerase (Finnzymes, Espoo,
236 Finland). All dilutions were carried out using certified DNA-free PCR water (JT
237 Baker). PCRs were conducted with the following cycling conditions (98 °C—30 s, 30

238 \times [98 °C—9s, 55 °C—60s, 72 °C—90s], 72 °C—10 min) and checked on a 1.5%
239 agarose gel. The concentration of the amplicons was estimated using a Gel Doc TM
240 XR+ System coupled with Image Lab TM Software (BioRad, Hercules, CA USA) with
241 3 μ l of O'GeneRulerTM 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Inc.,
242 Waltham, MA, USA) as the internal standard for band intensity measurement. The
243 samples of individual gels were pooled into approximately equimolar subpools as
244 indicated by band intensity and measured with the Qubit dsDNA br Assay Kit (Life
245 Technologies GmbH, Darmstadt, Germany). Subpools were mixed in an equimolar
246 fashion and stored at -20 °C until sequencing. Sequencing was performed on the
247 Illumina MiSeq platform with v3 chemistry (2 \times 300 cycle kit)²⁴. The raw data are
248 deposited at the Sequence Read Archive (SRA) and available under the project ID
249 PRJNA742683.

250 The 16S rRNA gene amplicon sequence analysis was conducted through the QIIME
251 1.9.0 package²⁵. Sequences with at least 97% identity were grouped into OTUs and
252 clustered against the QIIME reference sequence collection; any reads which did not
253 hit the references, were clustered *de novo*. OTUs with less than 50 reads were
254 removed from the dataset to avoid false positives which rely on the overall error rate
255 of the sequencing method²⁶. Samples with less than 3600 sequences were also
256 removed from the dataset, being considered as outliers. For the successive analysis
257 the number of OTUs per sample was normalized to that of the sample with the lowest
258 number of reads after filtering.

259 Alpha-diversity was calculated using the Chao1 metric implemented in QIIME. Data
260 were subjected to descriptive analysis, and normality and homogeneity tests as
261 described herein. When normality, homogeneity and absence of significant outliers
262 assumptions were met; statistical significance was tested through one-way ANOVA.
263 When at least one of the assumptions was violated, the non-parametric Kruskal-
264 Wallis test was performed instead. When a significant difference between treatments
265 was stated, post-hoc comparisons were performed in order to infer its direction and
266 size effect.

267 Beta-diversity was calculated in QIIME according with the different β -diversity metrics
268 available (Binary-Pearson, Bray-Curtis, Pearson, Weighted-Unifrac and Unweighted-
269 Unifrac). Statistical values of clustering were calculated using the nonparametric
270 comparing categories methods Adonis and Anosim.

271 Bacterial groups associated with specific conditions were identified by LEfSe
272 (<http://huttenhower.sph.harvard.edu/galaxy>)²⁷. LEfSe uses the non-parametric
273 factorial Kruskal-Wallis sum-rank test to detect features with significant differential
274 abundance, with respect to the biological conditions of interest; subsequently LEfSe
275 uses Linear Discriminant Analysis (LDA) to estimate the effect size of each
276 differentially abundant feature.

277

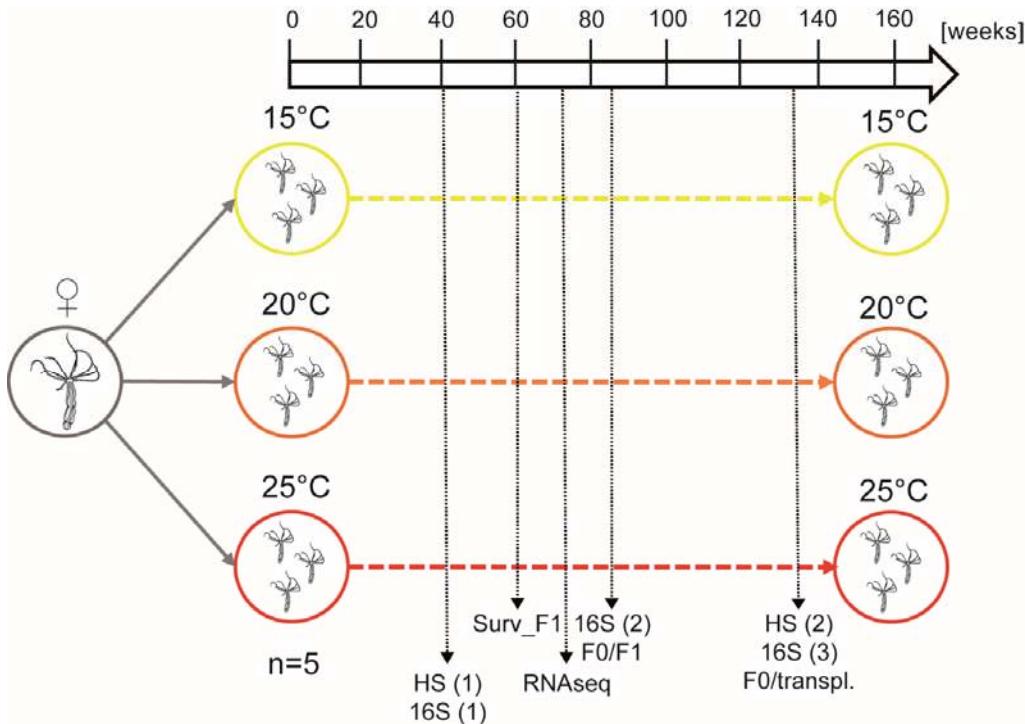
278 **Transcriptome analyses**

279 The analysis was performed on five animals from each AT in two sequencing runs.
280 mRNA sequencing with previous poly-A selection was performed for 15 libraries on
281 the Illumina HiSeq 4000 platform, with 75bp and 150 bp paired-end sequencing
282 respectively. The quality of raw reads was assessed using FastQC v0.11.7
283 (Andrews, 2014). Trimmomatic v.0.38²⁸ was then applied to remove adaptors and
284 low-quality bases whose quality scores were less than 20. Reads shorter than 50 bp
285 were removed, and only paired-end reads after trimming were retained. Reads were
286 mapped to the Ensembl metazoa *Nematostella vectensis* genome (release 40) using
287 the splice-aware aligner hisat2 v2.1.0²⁹ with rna-strandness RF option and default
288 parameters (**Table S1**).

289 RNA-seq data was used to improve the predicted *N. vectensis* gene model
290 downloaded from Ensembl Metazoa database release 40. Using mapped reads from
291 each temperature condition as input, StringTie v2.0³⁰ and Scallop v0.10.4³¹ were
292 applied to perform genome guided transcriptome assemblies. The assembled
293 transcripts were subsequently compared and merged using TACO³². This produced
294 42488 genes with 81163 transcripts, among which 21245 genes had significant
295 matches (blastx with parameter e-value 1^{e-5}) with proteins in the SwissProt database.
296 Assembled genes were compared with the Ensembl gene model using gffCompare
297 v0.11.2³³, from which genes with lower blastx e-value were selected. Ensembl genes
298 without matching assembled genes were retained, and assembled genes without
299 matching Ensembl genes but with significant matching SwissProt proteins were
300 added to the gene model. The final gene model included 20376 Ensembl genes,
301 4400 improved genes and 2751 novel assembled genes (**Table S2**). The gene model
302 statistics and the completeness of gene models were assessed using BUSCO v3³⁴
303 on the Metazoa dataset that consisted of 978 core genes (**Table S3**).

304 Total counts of read fragments aligned to the annotated gene regions were derived
305 using FeatureCounts program (Subread-2.0.0)³⁵ with default parameters. Genes
306 whose combined counts from all samples were lower than 5 counts per million (cpm)
307 mapped reads were excluded from the analyses. Differential expression analyses
308 were performed in parallel using DESeq2 (v1.28.1) BioConductor package³⁶, and
309 limma (voom v3.44.3) package³⁷. Differentially expressed genes (DEGs, **Table S4**)
310 were determined based on False Discovery rate (FDR, Benjamini-Hochberg adjusted
311 p-value ≤ 0.05). Gene ontology annotation was derived from the best matching
312 SwissProt proteins. Enriched GO-terms in DEGs were identified by the topGO
313 (v2.40.0) BioConductor package (**Table S5**).

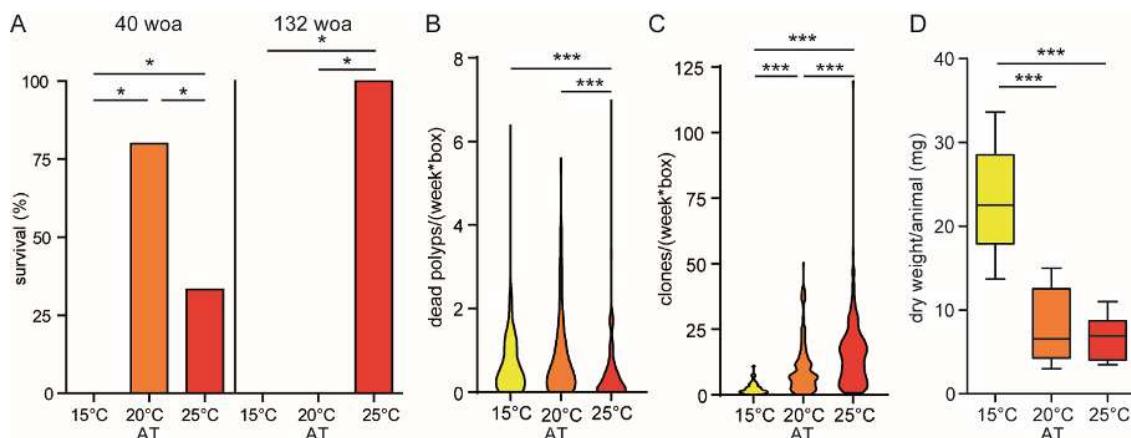
314


315 **Results**

316

317 **Long-term acclimation at high temperature increases heat resistance in** 318 ***Nematostella vectensis***

319 Before starting the acclimation experiment, we propagated a single female polyp to
320 150 clones and split these clones into 15 different cultures with 10 clonal animals
321 each, to ensure the same genotype in all acclimation regimes. We further propagated
322 these animals to 50 animals per culture and constantly maintained this number over
323 the course of the experiment. Subsequently, we acclimated these independent
324 cultures at low (15°C), medium (20°C) and high temperature (25°C) (five cultures
325 each) for the period of 3 years (160 weeks) (**Figure 1**).


326

327

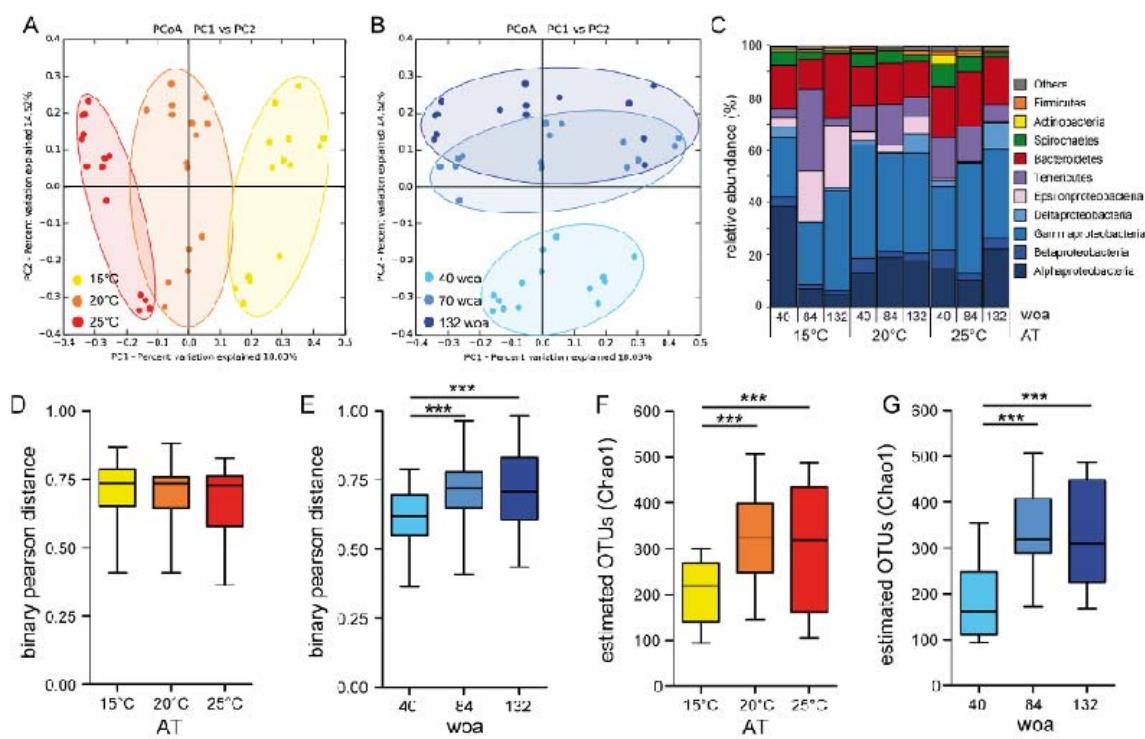
328 **Figure 1. Experimental setup.** A single female polyp from the standard culture conditions (16‰ ppt,
329 20°C) was isolated and propagated via clonal reproduction. When a total of 150 new clones was
330 reached, they were split into 15 different culture boxes of 10 animals each. The boxes were put at
331 three different acclimation temperature (AT) (15, 20 and 25°C, 5 boxes each) and the number of
332 animals/box was kept equal to 50. Heat stress experiments (HS) (6h, 40°C) where performed at 40
333 and 132 weeks of acclimation (woa). Sexual reproduction was induced at 60 and 84 woa for the
334 juveniles survival test (Surv_F1) and the bacteria vertical transmission test (F0/F1). At 40, 84 and 132
335 woa samples were collected for 16S sequencing (16S); at 76 woa sampling for RNA sequencing was
336 performed.
337

338 After 40 weeks of acclimation (woa), we tested, for the first time, the heat tolerance of
339 acclimated polyps as a proxy for acclimation. We individually incubated polyps of
340 each acclimated culture in ten replicates for 6 hours at 40°C and recorded their
341 mortality (**Figure 2-A**). Already after 40 woa, significant differences in the mortality
342 rates of clonal animals were detectable. While all animals acclimated to low
343 temperature died after the heat stress, animals acclimated at 20°C and 25°C showed
344 a significantly higher survival rate of 70% and 30%, respectively (**Figure 2-A**). We
345 repeated the measurement of heat tolerance two years later (132 woa). Interestingly,
346 we observed a drastic increase in fitness in animals acclimated at high temperature,
347 while the animals acclimated at 15°C and 20°C showed 100% mortality (**Figure 2-A**).
348

349

350 **Figure 2. Phenotypic plasticity in response to thermal acclimation.** (A) Survival of acclimated
351 polyps after heat stress (40°C, 6 h). Statistical analyses was performed by a Fisher's exact test (n= 10
352 (40 woa), n = 5 (132 woa)). (B) Average of dead polyps per week and box over the course of the
353 experiment (E) Average of clones generated per week per 50 animals over the course of the
354 experiment. (D) Dry weights of acclimated polyps at the end of the experiment (170 woa) (n=10):
355 Statistical analyses in B, C and D were performed by one-way ANOVA followed by Tukey's post-hoc
356 comparisons (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001).

357


358 We also monitored the mortality rate in the acclimated cultures over the course of the
359 experiment (**Figure 2-B**). While the mortality in cultures acclimated at 15°C and 20°C
360 was below 0.5 polyps per week, the mortality rate at 25°C was significantly reduced
361 in cultures acclimated at 25°C. An additional phenotypic difference between the
362 acclimated animals was the clonal growth, as animals acclimated at 25°C propagated
363 asexually nearly seven times more than animals acclimated at 15°C (**Figure 2-C**).
364 This may explain the differences in body size, where animals acclimated at 15°C
365 were more than three times bigger than the animals acclimated at 20 and 25°C
366 (**Figure 2-D**). The different ATs affected also the fecundity of the animals: the polyps
367 acclimated at the high ATs showed a significantly higher number of spontaneous
368 spawning events recorded along the whole course of the experiment, compared with
369 the 15°C acclimated animals that never spawned if not artificially induced (**Figure**
370 **S1**).

371 These results indicate that *N. vectensis* possesses remarkable plasticity at long-term
372 temperature acclimation realized through differences in thermal tolerance, body size,
373 asexual propagation and fecundity. In the following, we analysed the associated
374 microbiota and host transcriptomic responses as a source of thermal acclimation in
375 *N. vectensis*.

376

377 **Thermal acclimation leads to dynamic, but reliable changes in the microbiota**

378 To monitor the dynamic changes in the associated microbiotas of acclimated
379 animals, we sampled single polyps from each of the 15 clonal cultures at 40, 84 and
380 132 woa and compared their associated microbiota by 16S rRNA sequencing
381 (**Figure 1**). To determine the impact of AT and sampling time point on the
382 assemblage of the bacterial community, we performed principal coordinates analysis
383 (PCoA) (**Figure 3-A and B**).

384

385 **Figure 3. Bacterial community changes in response to thermal acclimation.** (A) PCoA (based on
386 binary-pearson metric, sampling depth = 3600) illustrating similarity of bacterial communities based on
387 AT. (B) PCoA (based on binary-pearson metric, sampling depth = 3600) illustrating similarity of
388 bacterial communities based on woa. (C) Relative abundances of principal bacterial groups, the
389 abundances were summarized under the relative higher taxonomic categories (classes and phyla) and
390 reported as percentages of the total. (D) β -diversity distances within each AT (E) β -diversity distances
391 within woa. Statistical analyses were performed using a non-parametric Kruskal-Wallis test followed by
392 Dunn's post hoc comparisons ($p \leq 0.01$ **, $p \leq 0.001$ ***). (F) α -diversity (Chao1) comparison by AT
393 (max rarefaction depth = 3600 (G) α -diversity (Chao1) comparison by woa (max rarefaction depth =
394 3600), statistical analyses was performed by using one-way ANOVA followed by Tukey's post hoc
395 comparisons ($p \leq 0.01$ **, $p \leq 0.001$ ***).
396

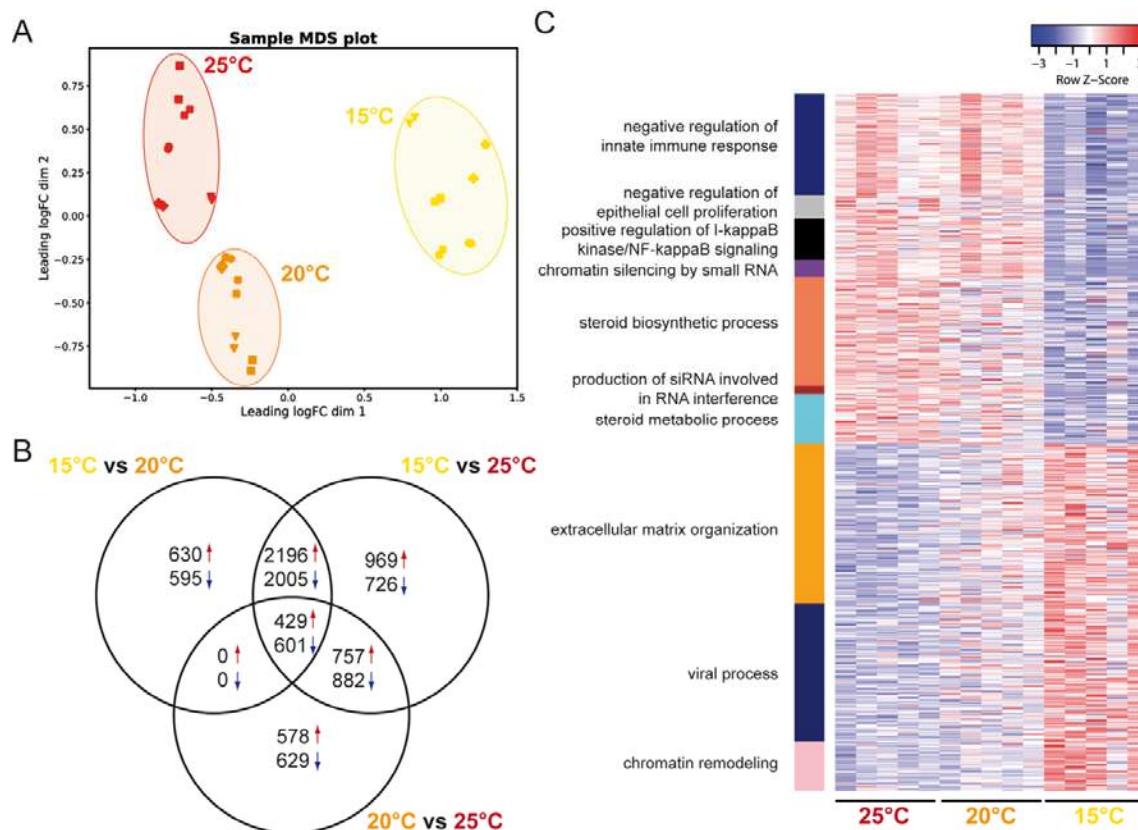
397 While principal component 1 (PC1) mostly separates samples according to the AT
398 (**Figure 3-A**), PC2 correlates with the different sampling time points (**Figure 3-B**).
399 Using five different β -diversity metrics, we found that bacterial colonization is
400 significantly influenced by both AT and sampling time point (**Table 1**).
401

402 **Table 1. Statistical analysis determining influence of AT and woa on the bacterial colonization.**
403 (number of permutations =999).

parameter	beta-diversity metric	Adonis		Anosim	
		R2	P value	R	P value
AT	Binary-Pearson	0.208	0.001	0.544	0.001
	Bray-Curtis	0.219	0.001	0.466	0.001
	Pearson	0.256	0.001	0.360	0.001
	Weighted-Unifrac	0.147	0.001	0.238	0.001
	Unweighted-Unifrac	0.193	0.001	0.521	0.001
woa	Binary-Pearson	0.230	0.001	0.608	0.001
	Bray-Curtis	0.199	0.001	0.372	0.001
	Pearson	0.217	0.001	0.277	0.001
	Weighted-Unifrac	0.149	0.001	0.173	0.001
	Unweighted-Unifrac	0.192	0.001	0.498	0.001

404
405 Assigning the different microbial communities by the sampling time points revealed a
406 shared clustering after 84 and 132 weeks of acclimation (woa) (**Figure 3-B**),
407 suggesting a stabilization within the microbial communities after around 2 years of
408 acclimation. In contrast, assigning the samples by AT revealed a clear clustering of
409 the microbial communities (**Figure 3-A**) with the bacterial communities acclimated at
410 20°C clustering between the two extremes (15°C and 25°C). This indicates that the
411 three different ATs induced differentiation of three distinct microbial communities
412 since the beginning of the acclimation process and that this differentiation is more
413 severe between the extreme ATs. While most bacterial groups maintain a stable
414 association with *N. vectensis* (**Figure 3-C**), bacteria that contribute to the
415 differentiation at the end of the acclimation process, are Alphaproteobacteria, that
416 significantly increase at high temperature (Two-way ANOVA, p<0.01) and
417 Epsilonproteobacteria, that significantly increase at low temperature (two-way
418 ANOVA, p<0.001) (**Figure 3-C**).
419 Using the Binary-Pearson distance matrix, we calculated the distances between
420 samples within all three acclimation regimes (**Figure 3-D**) and sampling time points
421 (**Figure 3-E**). Continuous acclimation under the different temperature regimes
422 revealed no differences in the within-treatment distances (**Figure 3-D**), indicating a
423 similar microbial plasticity at all three ATs. In contrast, Binary-Pearson distances of
424 the different sampling time points significantly increased between 40 and 84 woa
425 (**Figure 3-E**) and stabilized between 84 and 132 woa. Interestingly, the α -diversity of
426 bacteria associated with acclimated polyps was significantly higher at 20 and 25°C,

427 compared to those associated with polyps acclimated at 15°C (**Figure 3-F**). As for
428 the β -diversity, the α -diversity was significantly increasing within the first 84 woa and
429 stabilized between 84 and 132 woa (**Figure 3-G**).


430 Altogether, these results show that the microbiota of *N. vectensis* reacts plastically to
431 environmental changes. The microbial composition changes stabilize within two
432 years of acclimation indicating a new homeostatic bacterial colonization status.

433

434 **Thermal acclimation induces a robust tuning of host transcriptomic profiles**

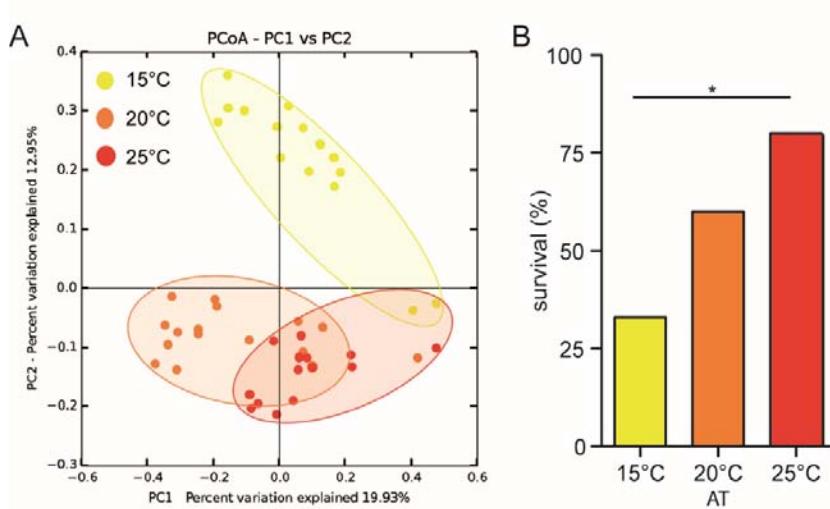
435 To evaluate the contribution of host transcriptional changes to the observed
436 increased thermal tolerance in animals acclimated at high temperature, we analysed
437 gene expression profiles of *N. vectensis* after 75 woa (**Figure 1**). We sampled from
438 each replicate culture one animal, extracted its mRNA and sequenced it by Illumina
439 HiSeq 4000. The constant acclimation at 15, 20 and 25°C induced a robust tuning of
440 the host transcriptomic profiles (**Figure 4-A**).

441

442 **Figure 4. Host transcriptome changes after thermal acclimation.** (A) MDS plot showing the
443 clustering of the transcriptome samples according to the AT of the acclimated animals (samples were
444 sequenced in technical replicates, indicated by the different symbols) (B) Venn diagram showing the
445 differentially expressed genes within the three ATs pairwise comparisons. (C) Heat-map of

446 differentially expressed genes in enriched GO term categories significantly enriched in the comparison
447 between 15 and 25°C acclimated polyps.

448
449 In pairwise comparisons, we determined the differentially expressed (DE) genes
450 (**Figure 4-B**) in all acclimated animals. While the comparison of transcriptomic
451 profiles from polyps acclimated at 15 and 25°C revealed the highest number of DE
452 genes, the comparison of 20 and 25°C acclimated animals revealed the lowest
453 number of DE genes. In all three comparisons, we observed a similar fraction of up-
454 and down-regulated DE genes (**Figure 4-B**).


455 To retrieve potential molecular processes and signalling pathways enriched at the
456 different ATs, we performed a gene ontology (GO) enrichment analysis and
457 concentrated on GO categories significantly enriched in the comparison between 15
458 and 25°C acclimated polyps (**Figure 4-C, Table S3**). Animals acclimated to high
459 temperature significantly increased expression in genes involved in innate immunity,
460 gene regulation, epithelial cells proliferation, steroid biosynthesis and metabolism
461 (**Figure 4-C, Table S5**). While genes associated with enriched GO categories show
462 opposite expression levels at 15°C and 25°C, an intermediate expression level was
463 evident in the animals acclimated at 20°C (**Figure 4-C**). The animals acclimated to
464 low temperature showed upregulation of genes associated with viral processes,
465 which seems to be compatible with their general lower viability.

466
467 **Transplantation of acclimated microbiota induces differences in heat tolerance**

468 To disentangle the effects of transcriptomic and bacterial adjustments on thermal
469 tolerance of acclimated polyps, we performed microbial transplantation experiments.
470 We generated axenic non-acclimated animals and recolonized these animals with the
471 microbiota of long-term acclimated polyps from the same clonal line. We smashed
472 acclimated animals and used these suspensions, containing the acclimated
473 microbiota, for the recolonization of axenic animals. We maintained microbiota-
474 transplanted animals for one month at 20°C to allow the adjustment of a stable
475 colonization.

476 To evaluate the success of bacteria transplantation, we performed 16S rRNA gene
477 sequencing of 45 recolonized animals. PCoA analysis revealed that the transplanted
478 microbiota cluster according to the acclimated source microbiota one month after
479 transplantation (**Figure 5-A, Table 2**).

480

481

482 **Figure 5. Transplantation of acclimated microbiota confers thermal resistance.** (A) PCoA (based
483 on binary-pearson metric, sampling depth = 3600) illustrating similarity of transplanted bacterial
484 communities based on AT of source microbiota (B) Heat stress survival of polyps recolonized with
485 microbiota of acclimated animals. Statistical analyses were performed by pairwise Fisher's exact test
486 ($n = 15$, * $p = 0.025$).

487

488 Subsequently we tested the microbiota-transplanted animals for their heat tolerance
489 as previously performed for the acclimated animals. The recolonized animals showed
490 clear differences in mortality depending on the microbial source used for
491 transplantation. A significant gradient in survival was evident from the animals
492 recolonized with the 15°C-acclimated microbiota (33%) to those recolonized with the
493 25°C-acclimated microbiota (80%) (**Figure 5-B**). The animals transplanted with the
494 20°C-acclimated microbiota showed an intermediate survival (60%).

495 These results indicate that the high thermal tolerance of animals acclimated to high
496 temperature can be transferred to non-acclimated animals by microbiota
497 transplantation alone. Therefore, we conclude, that microbiota-mediated plasticity
498 provides a rapid mechanism for a metaorganism to cope with environmental
499 changes.

500

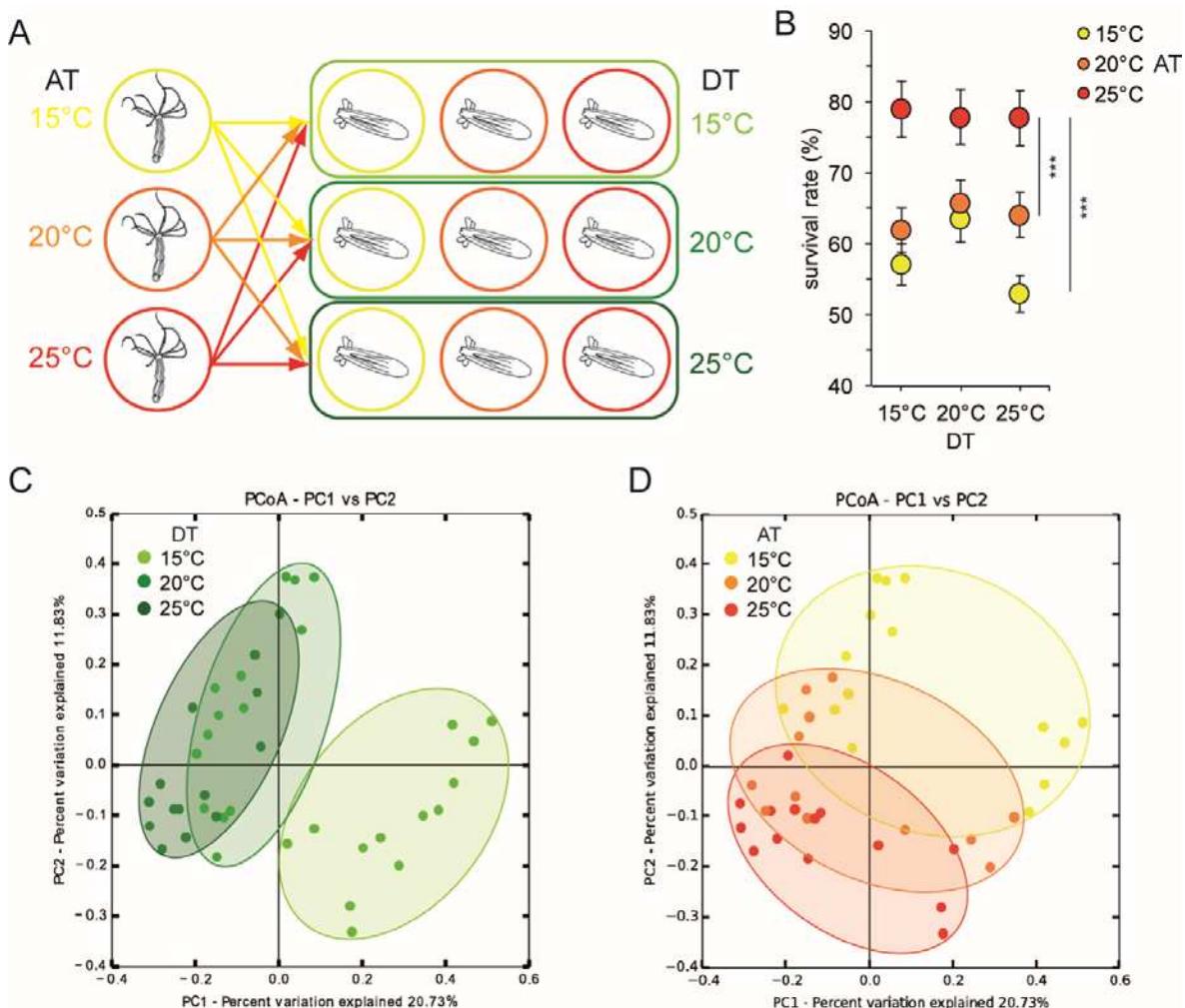
501 **Table 2. Statistical analysis determining influence of AT of source microbiota on bacterial**
502 **colonization** (number of permutations = 999).

parameter	beta-diversity metric	Adonis		Anosim	
		R2	P value	R	P value
AT of source microbiota	Binary-Pearson	0.199	0.001	0.486	0.001
	Bray-Curtis	0.183	0.001	0.346	0.001
	Pearson	0.165	0.001	0.194	0.001
	Weighted-Unifrac	0.161	0.001	0.272	0.001
	Unweighted-Unifrac	0.184	0.001	0.416	0.001

503

504 Through the LEfSe analysis, we were able to detect bacterial OTUs differentially
505 represented between the polyps acclimated at 15 and 25°C, and in the
506 corresponding transplanted animals (**Table S6**). These bacteria belong to the
507 families Phycisphaeraceae, Flavobacteriaceae, Emcibacteraceae,
508 Rhodobacteraceae, Methylophilaceae, Francisellaceae, Oceanospirillaceae and
509 Vibrionaceae, which are known to include various commensals, symbionts and
510 pathogens of marine organisms. Therefore, the OTUs overrepresented in the 25°C
511 microbiota may constitute good candidates for providing thermal resistance to their
512 host.

513


514 **Acclimated microbiota and thermal tolerance are transmitted to next
515 generation**

516 In a next step, we tested if the acclimated microbiota influencing adults' thermal
517 tolerance is also affecting thermal tolerance of the offspring. Therefore, ten female
518 polyps from each long-term acclimated culture and one non-acclimated male polyp
519 were induced separately for spawning. All oocyte packs were fertilized with the
520 sperm of the same male polyp, split into three parts, counted and let develop for one
521 month at the three different temperatures (developing temperature - DT) in a full
522 factorial design (**Figure 6-A**).

523

524

525

526 **Figure 6. Transmission of thermal tolerance to the offspring.** (A) Experimental scheme:
527 acclimated females from each AT were induced for sexual reproduction. All oocyte-packs were
528 fertilized with the sperms from a single male polyp from the standard conditions. After fertilization,
529 each embryo-pack was split in 3 parts and placed at different DT (15, 20 or 25°C). After one month of
530 development, survival rate and bacterial colonisation were analysed. (B) Offspring survival rate (ratio
531 between initial number of oocytes and survived juveniles polyps were calculated), a Kruskal-Wallis test
532 was performed followed by Dunn's post-hoc comparisons (n=10; *** p ≤ 0.001). (C) PCoA (based on
533 Binary-Pearson metric, sampling depth = 24500) illustrating similarity of bacterial communities
534 according with offspring DT, (D) PCoA (based on Binary-Pearson metric, sampling depth = 24500)
535 illustrating similarity of bacterial communities according with mothers' AT.

536
537 After one month of development, the survived juvenile polyps were counted and
538 corresponding survival rates were calculated (**Figure 6-B**). The offspring from the
539 mothers acclimated at 25°C showed a significant higher overall survival rate
540 compared to the offspring from polyps acclimated at medium and low temperature. In
541 contrast, the offspring of polyps acclimated at 15°C showed the lowest survival rate
542 at 25°C DT (**Figure 6-B**). In a second step, the juvenile polyps were subjected to 16S
543 rRNA sequencing to evaluate the transmission of acclimated microbes to the next

544 generation. PCoA revealed a significant clustering of samples according to both DT
545 of the juveniles and AT of mother polyps (**Figure 6-C and D, Table 3**). While, on
546 average, around 50% of bacterial variation can be explained by the DT of the juvenile
547 polyps, around 20% of the bacterial colonization in juveniles can be explained by the
548 acclimation temperature of the mother polyps (**Table 3**).

549

550 **Table 3. Statistical analysis determining influence of mothers' AT and offspring DT on bacterial**
551 **colonization of F1 generation polyps (number of permutations = 999).**

parameter	beta-diversity metric	Adonis		Anosim	
		R2	P value	R	P value
AT of mother polyps	Binary-Pearson	0.170	0.001	0.373	0.001
	Bray-Curtis	0.133	0.001	0.237	0.001
	Pearson	0.139	0.001	0.166	0.002
	Weighted-Unifrac	0.093	0.024	0.091	0.010
	Unweighted-Unifrac	0.116	0.001	0.148	0.005
DT	Binary-Pearson	0.262	0.001	0.696	0.001
	Bray-Curtis	0.260	0.001	0.621	0.001
	Pearson	0.338	0.001	0.542	0.001
	Weighted-Unifrac	0.300	0.001	0.408	0.001
	Unweighted-Unifrac	0.211	0.001	0.413	0.001

552

553 These results demonstrate that the acquired thermal tolerance in the maternal
554 generation is transmitted to the next generation. The fact that also parts of the
555 acclimated microbiota is transmitted and persisting in the juvenile F1 polyps suggests
556 that vertically transmitted acclimated bacteria can be adaptive to high temperature.

557

558 **Discussion**

559

560 **Long-term acclimation promotes heat tolerance in *N. vectensis***

561 The ability for marine animals to adapt to future thermal scenarios is of pivotal
562 importance for the maintenance of biodiversity and ecosystem functioning. Recent
563 studies indicate that sessile marine animals, like corals, sponges or anemones, could
564 adapt more rapidly than expected to climate change ^{2,38–42}. Recent and long-term
565 observations in the field displayed higher heat tolerance of corals pre-exposed to
566 thermal stress compared to unexposed ones and showed that wild populations are
567 slowly becoming less sensitive than they were in the past ^{43–45}. In our study, the
568 host's thermal resistance showed an increase along with the acclimation time. It is
569 important to point out that the standard culture temperature for *N. vectensis* in the lab
570 is 20°C. The animals maintained at 20°C, therefore, have been acclimated to this
571 condition for a long time and this might explain their highest survival at 40 woa.
572 Interestingly, the animals acclimated at 15°C showed at both time points 100%
573 mortality, indicating that these animals would not be able to survive extreme
574 temperature events. Our results are consistent with other studies that investigated
575 the acclimation capacity of corals in lab experiments. Pre-acclimated individuals of
576 *Acropora pruinosa*, a scleractinian coral, did not bleach when exposed to successive
577 heat stress ⁴². Also in the field, *Acropora hyacinthus* showed less mortality after heat
578 stress when acclimated to wide temperature fluctuations, than when acclimated to
579 less variable environments ⁴⁶. These different resistances are correlated to an
580 adaptive plasticity in the expression of environmental stress response (ESR) genes ⁴⁷
581 and the presence of an advantageous microbiota ⁴⁸, but a causative relation was not
582 shown in both cases. In our study, we disentangled the contribution of host gene
583 expression and microbiota to temperature acclimation in cnidarian, by the use of
584 microbial transplantation experiments in a single host genotype background.

585

586 **Microbiota plasticity promotes metaorganism acclimation**

587 Shifts in the composition of bacterial communities associated with marine animals in
588 response to changes in environmental factors (i.e. temperature, salinity, pH, light
589 exposure, oxygen and CO₂ concentrations, etc.), has been demonstrated in
590 numerous studies ^{18,49–55}. In some cases these changes in microbiota composition
591 correlated with a higher fitness of acclimated animals ⁵³, but causal connections are

592 rare. An experimental replacement of a single bacterium and subsequent
593 demonstration of acquired heat tolerance by the host, was only shown in aphids⁵⁶.
594 To infer if and to what extent the acclimated microbiota confers thermal resistance,
595 we performed transplantation experiments of microbiotas from acclimated animals to
596 non-acclimated ones. These experiments proved that polyps transplanted with the
597 microbiota from animals acclimated at 25°C, acquired a higher thermal tolerance
598 than those transplanted with the 15°C acclimated microbiota. It is important to point
599 out that the animals selected as receivers for this experiment were all clones of the
600 same age, size and shared the same life history, since they came from the same
601 culture box and belonged to the same clonal line as the acclimated donors. With this
602 experimental setup, we were able to disentangle host and microbiota contribution to
603 thermal acclimation and proved that acclimated bacteria can act as heat tolerance
604 promoting bacteria (HTPB).

605 The acclimation of the microbial community is a highly dynamic process that started
606 within the first weeks after environmental shift, and most of the bacterial β -diversity
607 adjustments happened until 84 woa. Afterwards the microbial community likely
608 reached a stable and homeostatic state. Previous studies on corals^{57,58} detected the
609 presence of a “core microbiota”, defined as a cluster of microbial species that are
610 persistent either temporally and/or among different environments or locations, are
611 associated with host-constructed niches, and therefore less sensitive to changes in
612 the surrounding environment. Members of the core microbiota may not necessarily
613 represent the most abundant groups of the community but are hypothesized to exert
614 pivotal functions for the maintenance of the holobiont homeostasis. In contrast, a
615 “dynamic microbiota” exists that varies depending on species, habitat and life stage
616 and is likely a product of stochastic events or a response to changing environmental
617 conditions⁵⁸. Also in *N. vectensis* it seems that during the acclimation process, a
618 core microbiota remained stable in all acclimated polyps, while a more dynamic part
619 of the microbiota changed by either increasing or decreasing in punctual
620 abundances.

621 The increase in α -diversity indicates either the acquisition of new bacterial species
622 from the surrounding or a higher evenness in species abundances, where OTUs that
623 were rare at the beginning of the experiment and at lower temperature, became more
624 abundant and therefore detectable. The acquisition of new bacterial species during
625 lab experiments appears unlikely since the polyps are isolated from their natural

626 environment. Nevertheless, the acclimated animals are not maintained under sterile
627 conditions and thus an exchange of microbial species with the culture medium and
628 from the food supply cannot be excluded. As already pointed out in numerous studies
629 ^{59–61}, higher microbial diversity enhances the ability of the host to respond to
630 environmental stress by providing additional genetic variability, and corals exposed to
631 heat stress exhibit increased microbiota β -diversity ⁶².

632 In addition to the changes in species composition and relative abundances, the
633 associated microbial species can evolve much more rapidly than their multicellular
634 host ⁸. Rapidly dividing microbes are predicted to undergo adaptive evolution within
635 weeks to months ⁶³. Therefore, adaptation of the host can also occur via symbiont
636 acquisition of novel genes ⁶⁴, via mutation and/or horizontal gene transfer (HGT) ⁸.
637 Therefore, it is possible that, even if a certain bacterial species didn't significantly
638 change in abundance between the different ATs, it may have acquired new functions
639 and adapted to the new conditions within the course of the experiment.

640 Alphaproteobacteria and Gammaproteobacteria constitute main microbial colonizers
641 of corals ^{57,65} and of *N. vectensis* ^{18,66}. The increased thermal tolerance of animals
642 acclimated at high temperatures is often associated with an increase in abundance of
643 these bacterial classes in the associated microbiota ^{67,68}. In thermally stressed
644 animals, Alphaproteobacteria constitute an important antioxidant army within the
645 coral holobiont ⁶⁹ and together with members of the Gammaproteobacteria class,
646 were found to significantly inhibit the growth of coral pathogens (e.g. *V. corallilyticus*
647 and *V. shilo*) ^{7,70}. They are also known to exert nitrogen fixation in endosymbiosis
648 with marine animals, providing the host with additional nutrient supply ^{71–73}. In our
649 study, Alphaproteobacteria significantly increased in abundance in the animals
650 acclimated at high temperature and most of the bacterial OTUs significantly
651 overrepresented in the animals transplanted with the 25°C acclimated microbiota,
652 belong to the Alpha- and Gammaproteobacteria classes. Among these OTUs, those
653 that could be classified with high confidence, are members of the genera
654 *Sulfitobacter*, *Francisella* and *Vibrio*, and one Flavobacteriia OTU of the genera
655 *Muricauda*. All these bacterial groups are known to comprise pathogens and
656 symbionts of multicellular organisms ⁷⁴. In particular, *Sulfitobacter* is an
657 endosymbiont of vestimentiferans inhabiting hydrothermal vents, where it performs
658 sulfite oxidation ⁷⁵; *Francisella* is an intracellular pathogen of mammals and various
659 invertebrates and it is supposedly capable of ROS scavenging ^{76,77}. Members of the

660 Flavobacteriaceae family are key players in biotransformation and nutrient recycling
661 processes in the marine environment, known intracellular symbionts of insects and
662 intracellular parasites of amoebae ⁷⁸. All these characteristics make them good
663 candidates for providing thermal tolerance to the host.

664

665 **Changes in host gene expression may confer acclimation**

666 Previous studies on *Hydra* showed that the cnidarian innate immune system actively
667 controls the composition and the homeostasis of the associated microbiota, and that
668 such associations are both species-specific and life-stage specific ^{79–82}. In corals, it
669 has been shown that unacclimated individuals expressed stronger immune and
670 cellular apoptotic responses than acclimated ones, and disease-related metabolic
671 pathways were significantly enhanced in the former ⁴². Moreover, the immune system
672 is sensitive to environmental change ⁵⁹ and colonization by beneficial symbionts
673 might lead to the suppression of the host immune response ⁵⁵. Elements of the innate
674 immune system, including several members of the interleukin signaling cascades and
675 the transcription factor NF- κ B, have been characterized in *N. vectensis* and are
676 hypothesised to play similar roles as their vertebrata homologs ^{15,83–85}. We
677 hypothesise that the lower expression of genes involved in the innate immune
678 response, plus a positive regulation of the NF- κ B signaling observed in the animals
679 acclimated to the higher ATs, indicates a general suppression of the host's immune
680 response. Animals challenged by unfavourable environmental conditions (high
681 temperature in this case), may suppress their immune reaction to favour the
682 establishment of new symbionts. Interestingly, a GO term comprising genes
683 implicated in viral processes, were also upregulated in the animals acclimated at
684 15°C, suggesting a possible higher susceptibility of these animals to infections and a
685 possible implication to their lower viability.

686 On the other hand, steroids and secosteroids from gorgonian and soft corals, have
687 been shown to have antimicrobial and antifouling activity ^{86,87} and ⁸⁸ found in, *N. vectensis*, homologs of genes involved in steroids metabolism in other animals. The
688 upregulation of genes involved in steroid biosynthesis and metabolism in the high
689 ATs animals may indicate a role in chemical defence against pathogens. In addition,
690 it might hint to the contribution of steroid signalling in the regulation of phenotypic
691 plasticity^{89,90}, e.g. in body size regulation and reproduction rate in response to
692 different temperatures.

694 The enhanced production of small RNAs (sRNAs) in the high ATs acclimated
695 animals, and the high regulation of processes involved in chromatin remodelling in
696 the 15°C acclimated animals, suggest a general high gene transcription and
697 translation regulations at these two extreme, not optimal, conditions. Chromatin
698 remodelling processes are implicated in epigenetic modifications and thus possibly
699 inheritable by the offspring ⁹¹. A recent publications ⁹² analyzed coral-associated
700 bacteria proteomes and detected potential host epigenome-modifying proteins in the
701 coral microbiota. This, in concert with specific symbionts inheritance, may constitute
702 an additional mechanism for thermal resistance transmission along generations and
703 may explain the significantly higher viability of the 25°C acclimated animals' offspring.
704

705 **Acquired thermal tolerance is transmitted to the next generation**

706 The capacity of a species to survive and adapt to unfavourable environmental
707 conditions does not only rely on the adaptability of the adults but also on the survival
708 of the early life stages. Even if the adults are able to acclimate to periodic heat waves
709 and seasonal temperature increases, their offspring may have a much narrower
710 tolerance range ^{22,93–95}. It is evident that offspring of marine species, including fishes,
711 mussels, echinoderms and corals can acclimatize to warming and acidifying oceans
712 via transgenerational plasticity (TGP) ^{96–103}. Both transmission of epigenetic
713 modifications ^{101,104–108} and microbiota-mediated transgenerational acclimatization
714 (MMTA) ^{8,40} may be involved in the process.

715 Recently, it was shown in *N. vectensis* that animals acclimated to high temperature
716 transmit thermal resistance to their offspring ¹⁰⁹. In our experiments, we moved a
717 step forward by exploring the contribution that the microbiota may have in the
718 inheritability of this plasticity. We fertilized oocytes of acclimated females with sperm
719 of a single male in order to keep the genetic variability as low as possible, and
720 cultured the offspring in a full factorial design at 15°C, 20°C and 25°C. As expected,
721 offspring originated from mothers acclimated at 25°C showed the highest survival
722 rate. These results confirmed that polyps acclimated to high temperatures, transmit
723 their acquired thermal tolerance to their offspring, increasing their fitness at high
724 temperature. The fact that offspring from genetically identical mothers show
725 differences in survival rate, indicates either (i) the vertical transmission of HTPB or (ii)
726 the transmission of epigenetic modifications.

727 For many marine invertebrates, vertical transmission of microbial symbionts are
728 assumed ^{110–113}. In particular, species that undertake internal fertilization and brood
729 larvae, tend to preferably transmit their symbionts vertically, whereas broadcast
730 spawners and species that rely on external fertilization are thought to mainly acquire
731 their symbionts horizontally ^{114–116}. Bacteria may also be transmitted to the gametes
732 by incorporation into the mucus that surrounds oocyte and sperm bundles ^{117–119}.
733 Alternatively, the gametes may acquire bacteria immediately after release by
734 horizontal transmission through water, which contains bacteria released by the
735 parents ⁵⁵. A recent publication showed that *N. vectensis* adopts a mixed mode of
736 symbionts transmission to the next generation, consisting of a differential vertical
737 transmission from male and female parent polyps, plus an horizontal acquisition from
738 the surrounding medium during development ¹⁹. Consistently, the results of this study
739 suggest the vertical transmission of HTPB.

740

741 **Acclimated microbiota-a source for assisted evolution**

742 Microbial engineering (ME) is nowadays regularly applied to agriculture and medicine
743 to improve crop yields and human health ¹²⁰. Pioneering theoretical works, including
744 the Coral Probiotic Hypothesis ⁷ and the Beneficial Microorganisms for Corals (BMC)
745 concept ¹²¹, suggested that artificial selection on the microbiota could improve host
746 fitness over time frames short enough to cope with the actual and future rates of
747 climate changes. Some studies have started ME on corals as a
748 restoration/conservation option for coral reefs subjected to environmental stresses
749 ^{122–124}. Recently, was showed that corals subjected to experimental warming,
750 inoculated with consortia of potentially beneficial bacteria, bleached less compared to
751 corals that received no probiotics ¹²⁵. It needs to be pointed out that MMTA is of
752 pivotal interest because it would be a suitable target for manipulations in perspective
753 of future assisted evolution (AE) programs ^{40,125}.

754 In this study we proved that long-term acclimation induces enormous changes in the
755 physiology, ecology and even morphology of genetically identical animals; that
756 animals exposed to high (sublethal) temperatures can acclimate and resist to heat
757 stress and that this resistance can be transmitted to the next generations and to non-
758 acclimated animals by microbiota transplantation. We have been able to detect
759 specific bacterial groups that could be responsible for providing different thermal

760 tolerances to their host and that may represent good candidates for future assisted-
761 evolution experiments.
762

763 **Acknowledgments**

764 This work was supported by the Human Frontier Science Program (Young
765 Investigators' Grant RGY0079/2016 and the DFG CRC grant 1182 "Origin and
766 Function of Metaorganisms" (Project B1).

767

768 **Conflict of Interest statement**

769 The authors declare no conflict of interest.

770

771 Supporting information file is available online.

772

773 **References**

774

775 1. Bay, R. A. & Palumbi, S. R. Rapid Acclimation Ability Mediated by Transcriptome Changes in
776 Reef-Building Corals. doi:10.1093/gbe/evv085.

777 2. SR Palumbi, D. B., N. Traylor-Knowles, RA Bay, Palumbi, S. R., Barshis, D. J., Traylor-Knowles,
778 N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. *Science* **344**, 895–
779 898 (2014).

780 3. Macklin, M. T. Symbiontism and the Origin of Species. *Can. Med. Assoc. J.* **17**, 498 (1927).

781 4. Bang, C. *et al.* Metaorganisms in extreme environments: do microbes play a role in organismal
782 adaptation? *Zoology* **127**, 1–19 (2018).

783 5. Fraune, S., Forêt, S. & Reitzel, A. M. Using Nematostella vectensis to Study the Interactions
784 between Genome, Epigenome, and Bacteria in a Changing Environment. *Front. Mar. Sci.* **3**, 1–8
785 (2016).

786 6. Kolodny, O. & Schulenburg, H. Opinion piece Microbiome-mediated plasticity directs host
787 evolution along several distinct time scales. (2020) doi:10.1098/rstb.2019.0589.

788 7. Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The Coral Probiotic
789 Hypothesis. *Environ. Microbiol.* **8**, 2068–2073 (2006).

790 8. Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of coral reefs. *ISME J.* **11**, 2167–2174 (2017).

791 9. Totton, A. K. The British Sea Anemones. *Nature* **135**, 977–978 (1935).

792 10. Hand, C. & Uhlinger, K. R. The Unique, Widely Distributed, Estuarine Sea Anemone,
793 Nematostella vectensis Stephenson: A Review, New Facts, and Questions. *Estuaries* **17**, 501–
794 501 (1994).

795 11. Darling, J. A., Reitzel, A. M. & Finnerty, J. R. Regional population structure of a widely
796 introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. *Mol. Ecol.* **13**, 2969–2981 (2004).

797 12. Darling, J. A. *et al.* Rising starlet: The starlet sea anemone, Nematostella vectensis. *BioEssays*
800 **27**, 211–221 (2005).

801 13. Hand, C. & Uhlinger, K. R. The culture, sexual and asexual reproduction, and growth of the sea
802 anemone Nematostella vectensis. *Biol. Bull.* **182**, 169–176 (1992).

803 14. Pearson, C. V. M., Rogers, A. D. & Shearer, M. The genetic structure of the rare lagoonal sea
804 anemone, Nematostella vectensis Stephenson (Cnidaria; Anthozoa) in the United Kingdom
805 based on RAPD analysis. *Mol. Ecol.* **11**, 2285–2293 (2002).

806 15. Reitzel, A. M., Darling, J. A., Sullivan, J. C. & Finnerty, J. R. Global population genetic structure
807 of the starlet anemone Nematostella vectensis: Multiple introductions and implications for
808 conservation policy. *Biol. Invasions* **10**, 1197–1213 (2008).

809 16. Stefanik, D. J., Friedman, L. E. & Finnerty, J. R. Collecting, rearing, spawning and inducing
810 regeneration of the starlet sea anemone, Nematostella vectensis. *Nat. Protoc.* **8**, 916–923
811 (2013).

812 17. Fritzenwanker, J. H. & Technau, U. Induction of gametogenesis in the basal cnidarian
813 Nematostella vectensis (Anthozoa). *Dev. Genes Evol.* **212**, 99–103 (2002).

814 18. Mortzfeld, B. M. *et al.* Response of bacterial colonization in Nematostella vectensis to
815 development, environment and biogeography. *Environ. Microbiol.* **18**, 1764–1781 (2016).

816 19. Baldassarre, L. *et al.* Contribution of maternal and paternal transmission to bacterial colonization
817 in Nematostella vectensis. *Front. Microbiol.* (in press) doi:10.3389/fmicb.2021.726795.

818 20. Domin, H. *et al.* Predicted bacterial interactions affect in vivo microbial colonization dynamics in
819 Nematostella. *Front. Microbiol.* **9**, (2018).

820 21. Fraune, S. *et al.* Bacteria-bacteria interactions within the microbiota of the ancestral metazoan
821 Hydra contribute to fungal resistance. *ISME J.* **9**, 1543–1556 (2015).

822 22. Reitzel, A. M. *et al.* Physiological and developmental responses to temperature by the sea
823 anemone Nematostella vectensis. *Mar. Ecol. Prog. Ser.* **484**, 115–130 (2013).

824 23. Fadrosh, D. W. *et al.* An improved dual-indexing approach for multiplexed 16S rRNA gene
825 sequencing on the Illumina MiSeq platform. *Microbiome* **2**, 6 (2014).

826 24. Rausch, P. *et al.* Analysis of factors contributing to variation in the C57BL/6J fecal microbiota
827 across German animal facilities. *Int. J. Med. Microbiol.* **306**, 343–355 (2016).

828 25. Caporaso, J. G. *et al.* QIIME allows analysis of high-throughput community sequencing data.
829 *Nat. Methods* **7**, 335–336 (2010).

830 26. Faith, J. J. *et al.* The long-term stability of the human gut microbiota. *Science* **341**, 1237439–
831 1237439 (2013).

832 27. Segata, N. *et al.* Metagenomic biomarker discovery and explanation. *Genome Biol.* **12**, R60–R60
833 (2011).

834 28. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence
835 data. *Bioinformatics* **30**, 2114–2120 (2014).

836 29. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory
837 requirements. *Nat. Methods* **12**, 357–360 (2015).

838 30. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq
839 reads. *Nat. Biotechnol.* **33**, 290–295 (2015).

840 31. Shao, M. & Kingsford, C. accurate assembly of transcripts through phase-preserving graph
841 decomposition. *Nat. Biotechnol.* **35**, 1167–1169 (2017).

842 32. Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaian, A. M. & Iyer, M. K. TACO produces robust
843 multisample transcriptome assemblies from RNA-seq. *Nat. Methods* **14**, 68–70 (2016).

844 33. Pertea, M. & Pertea, G. GFF Utilities: GffRead and GffCompare. *F1000Research* **9**, 304–304
845 (2020).

846 34. Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and
847 phylogenomics. *Mol. Biol. Evol.* **35**, 543–548 (2018).

848 35. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for
849 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

850 36. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
851 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550–550 (2014).

852 37. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: Precision weights unlock linear model
853 analysis tools for RNA-seq read counts. *Genome Biol.* **15**, R29–R29 (2014).

854 38. Guest, J. J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an
855 adaptive response to thermal stress. *PLoS ONE* **7**, e33353–e33353 (2012).

856 39. Puisay, A., Pilon, R., Goiran, C. & Hédouin, L. Thermal resistances and acclimation potential
857 during coral larval ontogeny in *Acropora pulchra*. *Mar. Environ. Res.* **135**, 1–10 (2018).

858 40. MJH Oppen, J. O., HM Putnam, RD Gates, Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. &
859 Gates, R. D. Building coral reef resilience through assisted evolution. **112**, 2313 (2015).

860 41. Torda, G. et al. Rapid adaptive responses to climate change in corals. *Nat. Clim. Change* **7**,
861 627–636 (2017).

862 42. Yu, X. et al. Thermal acclimation increases heat tolerance of the scleractinian coral *Acropora*
863 *pruinosa*. **733**, 139319–139319 (2020).

864 43. Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral
865 resilience in warmer, more acidic oceans. *Proc. R. Soc. B Biol. Sci.* **286**, 20190614–20190614
866 (2019).

867 44. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of
868 coral bleaching over the past two decades. *Nat. Commun.* **10**, 5 (2019).

869 45. Thomas, L. et al. Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-
870 Grained Environmental Mosaic: Lessons from Ofu, American Samoa. *Front. Mar. Sci.* **4**, 434
871 (2018).

872 46. Oliver, T. A. & Palumbi, S. R. Many corals host thermally resistant symbionts in high-
873 temperature habitat. *Coral Reefs* **30**, 241–250 (2011).

874 47. Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a
875 variable environment. *Nat. Ecol. Evol.* **1**, (2017).

876 48. Barker, V. Exceptional Thermal Tolerance of Coral Reefs in American Samoa a Review. *Curr.*
877 *Clim. Change Rep.* **4**, 427 (2018).

878 49. Bourne, D. et al. Changes in coral-associated microbial communities during a bleaching event.
879 **2**, 350–363 (2008).

880 50. Carrier, T. J. & Reitzel, A. M. The hologenome across environments and the implications of a
881 host-associated microbial repertoire. *Front. Microbiol.* **8**, (2017).

882 51. Koren, O. & Rosenberg, E. Bacteria associated with mucus and tissues of the coral *Oculina*
883 *patagonica* in summer and winter. *Appl. Environ. Microbiol.* **72**, 5254–5259 (2006).

884 52. Littman, R., Willis, B. L., Bourne, D. G. & R Littman, B. W., DG Bourne. Metagenomic analysis of
885 the coral holobiont during a natural bleaching event on the Great Barrier Reef. **3**, 651–660
886 (2011).

887 53. M Ziegler, F. S., LK Yum, SR Palumbi, CR Voolstra et al. Bacterial community dynamics are
888 linked to patterns of coral heat tolerance. *Nat Commun* **8**, 14213–14213 (2017).

889 54. Thurber, R. V. et al. Metagenomic analysis of stressed coral holobionts. *Environ. Microbiol.* **11**,
890 2148–2163 (2009).

891 55. van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a
892 changing world. *Nat. Rev. Microbiol.* **17**, 557–567 (2019).

893 56. Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. *Proc. Natl.*
894 *Acad. Sci. U. S. A.* **112**, 2093–2096 (2015).

895 57. Ainsworth, T. D. T. *et al.* The coral core microbiome identifies rare bacterial taxa as ubiquitous
896 endosymbionts. *ISME J* **9**, 2261–2274 (2015).

897 58. Hester, E. R., Barott, K. L., Nulton, J., Vermeij, M. J. A. & Rohwer, F. L. Stable and sporadic
898 symbiotic communities of coral and algal holobionts. *ISME J* **10**, 1157–1169 (2016).

899 59. Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the Coral Microbiome: Underpinning
900 the Health and Resilience of Reef Ecosystems. *Annu. Rev. Microbiol.* **70**, 340 (2016).

901 60. Pollock, F. J. *et al.* Reduced diversity and stability of coral-associated bacterial communities and
902 suppressed immune function precedes disease onset in corals. *R. Soc. Open Sci.* **6**, (2019).

903 61. Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and
904 plants: The hologenome theory of evolution. *FEMS Microbiol. Rev.* **32**, 723–735 (2008).

905 62. Zaneveld, J. R., McMinds, R., Thurber, R. V. & JR Zaneveld, R. M., RV Thurber. Stress and
906 stability: Applying the Anna Karenina principle to animal microbiomes. *Nat. Microbiol.* **2**, 17121–
907 17121 (2017).

908 63. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: The dynamics and
909 genetic bases of adaptation. *Nat. Rev. Genet.* **4**, 457–469 (2003).

910 64. Hehemann, J. H. *et al.* Transfer of carbohydrate-active enzymes from marine bacteria to
911 Japanese gut microbiota. *Nature* **464**, 908–912 (2010).

912 65. Bourne, D. G. Microbiological assessment of a disease outbreak on corals from Magnetic Island
913 (Great Barrier Reef, Australia). *Coral Reefs* **24**, 304–312 (2005).

914 66. Leach, W. B., Carrier, T. J. & Reitzel, A. M. Diel patterning in the bacterial community associated
915 with the sea anemone *Nematostella vectensis*. *Ecol. Evol.* **9**, 9935–9947 (2019).

916 67. Pootakham, W. *et al.* Heat-induced shift in coral microbiome reveals several members of the
917 Rhodobacteraceae family as indicator species for thermal stress in *Porites lutea*.
MicrobiologyOpen **8**, (2019).

918 68. Webster, N. Host-associated coral reef microbes respond to the cumulative pressures of ocean
919 warming and ocean acidification. *Sci Rep* **6**, (2016).

920 69. Van, K. L., Ae, A., Schupp, P. & Slattery, M. The distribution of dimethylsulfoniopropionate in
921 tropical Pacific coral reef invertebrates. doi:10.1007/s00338-006-0114-9.

922 70. Rypien, K. L., Ward, J. R. & Azam, F. Antagonistic interactions among coral-associated bacteria.
Environ. Microbiol. **12**, 28–39 (2010).

923 71. Blazejak, A., Erséus, C., Amann, R. & Dubilier, N. Coexistence of bacterial sulfide oxidizers,
924 sulfate reducers, and spirochetes in a gutless worm (oligochaeta) from the Peru margin. *Appl.
Environ. Microbiol.* **71**, 1553–1561 (2005).

925 72. Dubilier, N. *et al.* Phylogenetic diversity of bacterial endosymbionts in the gutless marine
926 oligochete *Olavius loisae* (Annelida). *Mar. Ecol. Prog. Ser.* **178**, 271–280 (1999).

927 73. Rincón-Rosales, R., Lloret, L., Ponce, E. & Martínez-Romero, E. Erratum: Rhizobia with different
928 symbiotic efficiencies nodulate *Acaciella angustissima* in Mexico, including *Sinorhizobium
929 chiapanicum* sp. nov. which has common symbiotic genes with *Sinorhizobium mexicanum*
930 (FEMS Microbiology Ecology (2009) 67 (103–117)). *FEMS Microbiol. Ecol.* **68**, 255–255 (2009).

931 74. Rosenberg, E. & DeLong, E. F., Stackebrandt, E. .. Lory, S. .. Thompson, F. *The Prokaryotes -
932 Prokaryotic Biology and Symbiotic / Eugene Rosenberg / Springer.* (2013).

933 75. Kimura, H., Higashide, Y. & Naganuma, T. Endosymbiotic Microflora of the Vestimentiferan
934 Tubeworm (*Lamellibrachia* sp.) from a Bathyal Cold Seep. *Mar. Biotechnol.* **5**, 593–603 (2003).

935 76. Melillo, A. A., Bakshi, C. S. & Melendez, J. A. *Francisella tularensis* antioxidants harness
936 reactive oxygen species to restrict macrophage signaling and cytokine production. *J. Biol. Chem.*
937 **285**, 27553–27560 (2010).

938 77. Rabadi, S. M. *et al.* Antioxidant defenses of *Francisella tularensis* modulate macrophage
939 function and production of proinflammatory cytokines. *J. Biol. Chem.* **291**, 5009–5021 (2016).

940 78. McBride, M. J. The family flavobacteriaceae. in *The Prokaryotes: Other Major Lineages of
941 Bacteria and The Archaea* vol. 9783642389542 643–676 (Springer-Verlag Berlin Heidelberg,
942 2014).

943 79. Augustin, R., Fraune, S. & Bosch, T. C. G. How *Hydra* senses and destroys microbes. *Semin.
944 Immunol.* **22**, 54–58 (2010).

945 80. Augustin, R. *et al.* A secreted antibacterial neuropeptide shapes the microbiome of *Hydra*. *Nat.
946 Commun.* **8**, (2017).

947 81. Franzenburg, S. *et al.* Distinct antimicrobial peptide expression determines host species-specific
948 bacterial associations. *Proc. Natl. Acad. Sci.* **110**, E3730–E3738 (2013).

949 82. Fraune, S., Abe, Y. & Bosch, T. C. G. Disturbing epithelial homeostasis in the metazoan
950 *Hydra* leads to drastic changes in associated microbiota. *Environ. Microbiol.* **11**, 2361–9 (2009).

951 83. Brennan, J. J. *et al.* Sea anemone model has a single Toll-like receptor that can function in
952 pathogen detection, NF- κ B signal transduction, and development. *114*, E10122–E10131 (2017).

953 954 955

956 84. Sullivan, J. C. *et al.* Two alleles of NF- κ B in the sea anemone *Nematostella vectensis* are widely
957 dispersed in nature and encode proteins with distinct activities. *PLoS ONE* **4**, (2009).
958 85. Wolenski, F. S. *et al.* Characterization of the Core Elements of the NF- B Signaling Pathway of
959 the Sea Anemone *Nematostella vectensis*. *Mol. Cell. Biol.* **31**, 1076–1087 (2011).
960 86. Qi, S. H., Zhang, S., Yang, L. H. & Qian, P. Y. Antifouling and antibacterial compounds from the
961 gorgonians *Subergorgia suberosa* and *Scrippearia gracilis*. *Nat. Prod. Res.* **22**, 154–166 (2008).
962 87. Sica, D. & Musumeci, D. Secosteroids of marine origin. *Steroids* **69**, 743–756 (2004).
963 88. Tarrant, A. M. *et al.* Steroid metabolism in cnidarians: Insights from *Nematostella vectensis*. *Mol.*
964 *Cell. Endocrinol.* **301**, 27–36 (2009).
965 89. Gáliková, M., Klepsatel, P., Senti, G. & Flatt, T. Steroid hormone regulation of *C. elegans* and
966 *Drosophila* aging and life history. *Exp. Gerontol.* **46**, 141–147 (2011).
967 90. Taubenheim, J., Kortmann, C. & Fraune, S. Function and Evolution of Nuclear Receptors in
968 Environmental-Dependent Postembryonic Development. *Front. Cell Dev. Biol.* **9**, 653792 (2021).
969 91. Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. *Cold Spring Harb.*
970 *Perspect. Biol.* **5**, a017905–a017905 (2013).
971 92. Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic
972 control: A novel perspective on the interaction between microorganisms and corals. *BioEssays*
973 **n/a**, 2100068.
974 93. Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history
975 stages of corals more than near future ocean acidification. *Mar. Ecol. Prog. Ser.* **475**, 85–92
976 (2013).
977 94. Ericson, J. A. *et al.* Combined effects of two ocean change stressors, warming and acidification,
978 on fertilization and early development of the Antarctic echinoid *Sterechinus neumayeri*. *Polar*
979 *Biol.* **35**, 1027–1034 (2012).
980 95. Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R. & Byrne, M. Impact of ocean
981 warming and ocean acidification on larval development and calcification in the sea urchin
982 *Tripneustes gratilla*. *PLoS ONE* **5**, (2010).
983 96. Bernal, M. A. *et al.* Phenotypic and molecular consequences of stepwise temperature increase
984 across generations in a coral reef fish. *Mol. Ecol.* **27**, 4516–4528 (2018).
985 97. Clark, M. S. *et al.* Molecular mechanisms underpinning transgenerational plasticity in the green
986 sea urchin *Psammechinus miliaris*. *Sci. Rep.* **9**, 1–12 (2019).
987 98. JM Donelson, P. M., MI McCormick, CR Pitcher, Donelson, J. M., Munday, P. L., McCormick, M.
988 I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. **2**,
989 30–32 (2012).
990 99. Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental
991 environment mediates impacts of increased carbon dioxide on a coral reef fish. *Nat. Clim.*
992 *Change* **2**, 858–861 (2012).
993 100. Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification.
994 *F1000Prime Rep.* **6**, 99–99 (2014).
995 101. Ryu, T. *et al.* An Epigenetic Signature for Within-Generational Plasticity of a Reef Fish to Ocean
996 Warming. *Front. Mar. Sci.* **7**, (2020).
997 102. Veilleux, H. D. H. *et al.* Molecular processes of transgenerational acclimation to a warming
998 ocean. **5**, 1074–1078 (2015).
999 103. Zhao, C. *et al.* Transgenerational effects of ocean warming on the sea urchin *Strongylocentrotus*
1000 *intermedius*. *Ecotoxicol. Environ. Saf.* **151**, 212–219 (2018).
1001 104. Eirin-Lopez, J. M. & Putnam, H. M. Marine Environmental Epigenetics. *Annu. Rev. Mar. Sci.* **11**,
1002 335–368 (2019).
1003 105. Fallet, M., Luquet, E., David, P. & Cosseau, C. Epigenetic inheritance and intergenerational
1004 effects in mollusks. *Gene* **729**, 144166–144166 (2020).
1005 106. HM Putnam, R. G. Preconditioning in the reef-building coral *Pocillopora damicornis* and the
1006 potential for trans-generational acclimatization in coral larvae under future climate change
1007 conditions. *J Exp Biol* **218**, 2365–2372 (2015).
1008 107. L Daxinger, E. W. Transgenerational epigenetic inheritance: more questions than answers.
1009 *Genome Res* **20**, 1623–1628 (2010).
1010 108. Ptashne, M. Epigenetics: core misconception. *Proc Natl Acad Sci USA* **110**, 7101–7103 (2013).
1011 109. Rivera, H. E., Chen, C.-Y., Gibson, M. C. & Tarrant, A. M. Plasticity in parental effects confers
1012 rapid larval thermal tolerance in the estuarine anemone *Nematostella vectensis*. *J. Exp. Biol.*
1013 (2021) doi:10.1242/jeb.236745.
1014 110. Hirose, E. & Fukuda, T. Vertical transmission of photosymbionts in the colonial ascidian
1015 *Didemnum molle*: The larval tunic prevents symbionts from attaching to the anterior part of
1016 larvae. *Zoolog. Sci.* **23**, 669–674 (2006).

1017 111. JL Padilla-Gamiño, X. P., C. Bird, GT Concepcion, RD Gates. From parent to gamete: vertical
1018 transmission of *Symbiodinium* (Dinophyceae) ITS2 sequence assemblages in the reef building
1019 coral *Montipora capitata*. *PLoS One* **7**, e38440–e38440 (2012).

1020 112. Sharp, K. H., Eam, B., John Faulkner, D. & Haygood, M. G. Vertical transmission of diverse
1021 microbes in the tropical sponge *Corticium* sp. *Appl. Environ. Microbiol.* **73**, 622–629 (2007).

1022 113. Sipkema, D. *et al.* Similar sponge-associated bacteria can be acquired via both vertical and
1023 horizontal transmission. *Environ. Microbiol.* **17**, 3807–3821 (2015).

1024 114. Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations
1025 in the coral *Pocillopora meandrina*. *ISME J.* **3**, 685–699 (2009).

1026 115. Sharp, K. H., Distel, D., Paul, V. J. & KH Sharp, D. D., VJ Paul. Diversity and dynamics of
1027 bacterial communities in early life stages of the Caribbean coral *Porites astreoides*. *ISME J.* **6**,
1028 790–801 (2012).

1029 116. Lesser, M. P., Stat, M. & Gates, R. D. The endosymbiotic dinoflagellates (*Symbiodinium* sp.) of
1030 corals are parasites and mutualists. *Coral Reefs* **32**, 603–611 (2013).

1031 117. Ceh, J., Raina, J. B., Soo, R. M., van Keulen, M. & Bourne, D. G. Coral-bacterial communities
1032 before and after a coral mass spawning event on Ningaloo Reef. *PLoS ONE* **7**, (2012).

1033 118. Ricardo, G. F., Jones, R. J., Negri, A. P. & Stocker, R. That sinking feeling: suspended
1034 sediments can prevent the ascent of coral egg bundles. *Sci Rep* **6**, (2016).

1035 119. Leite, D. C. A. D. *et al.* Broadcast spawning coral *Mussismilia Hispida* can vertically transfer its
1036 associated bacterial core. **8**, 176–176 (2017).

1037 120. Epstein, H. E. *et al.* Microbiome engineering: enhancing climate resilience in corals. *Front. Ecol.*
1038 *Environ.* **17**, 108 (2019).

1039 121. Peixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S. & Bourne, D. G. Beneficial
1040 microorganisms for corals (BMC) Proposed mechanisms for coral health and resilience. *Front.*
1041 *Microbiol.* **8**, 341 (2017).

1042 122. Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in
1043 photosymbionts of reef-building corals. *Glob. Change Biol.* **23**, 4675–4688 (2017).

1044 123. Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. H. The contribution of
1045 microbial biotechnology to mitigating coral reef degradation. *Microb. Biotechnol.* **10**, 1236–1243
1046 (2017).

1047 124. Damjanovic, K., Van Oppen, M. J. H., Menéndez, P. & Blackall, L. L. Experimental Inoculation of
1048 Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in *Acropora*
1049 *tenuis* and *Platygyra daedalea*. *Front. Microbiol.* **10**, (2019).

1050 125. Rosado, P. M. *et al.* Marine probiotics: increasing coral resistance to bleaching through
1051 microbiome manipulation. *ISME J.* **13**, 921–936 (2019).

1052