

1 Low heritability and high phenotypic plasticity of salivary cortisol in response to 2 environmental heterogeneity in a wild pinniped

4 Rebecca Nagel¹, Sylvia Kaiser², Claire Stainfield³, Camille Toscani³, Cameron Fox-
5 Clarke³, Anneke J. Paijmans¹, Camila Costa Castro¹, David L. J. Vendrami¹, Jaume
6 Forcada^{3,*}, Joseph I. Hoffman^{1,3,*}

7 1. Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld,
8 Germany
9 2. Department of Behavioural Biology, University of Münster, 48149 Münster,
10 Germany
11 3. British Antarctic Survey, Cambridge CB3 OET, UK

12 * Joint senior authors

14 Corresponding author: Rebecca Nagel, Department of Animal Behaviour, Bielefeld
15 University, 33501 Bielefeld, Germany, rebecca.nagel@uni-bielefeld.de

18 **Abstract**

Individuals are unique in how they interact with and respond to their environment. Correspondingly, unpredictable challenges or environmental stressors often produce an individualized response of the hypothalamic-pituitary-adrenal axis and its downstream effector cortisol. We used a fully crossed, repeated measures design to investigate the factors shaping individual variation in baseline cortisol in Antarctic fur seal pups and their mothers. Saliva samples were collected from focal individuals at two breeding colonies, one with low and the other with high density, during two consecutive years of contrasting food availability. Mothers and pups were sampled concurrently at birth and shortly before weaning, while pups were additionally sampled every 20 days. We found that heritability was low for baseline cortisol, while within-individual repeatability and among-individual variability were high. A substantial proportion of the variation in baseline cortisol could be explained in pups and mothers by a combination of intrinsic and extrinsic factors including sex, weight, day, season, and colony of birth. Our findings provide detailed insights into the individualization of endocrine phenotypes and their genetic and environmental drivers in a wild pinniped. Furthermore, the strong associations between cortisol and life history traits that we report in fur seals could have important implications for understanding the population dynamics of species impacted by environmental change.

37

38 **Keywords**

39 Antarctic fur seal, baseline cortisol, individualization, phenotypic plasticity, pinniped

40

41 **Introduction**

42 Despite similarities in age, sex, or social status, individuals often differ in how
43 they interact with their environment (Réale and Dingemanse 2010; Dall et al. 2012).
44 Once perceived as a statistical nuisance, an ever growing body of evidence now
45 suggests that these individual differences are often consistent and stable across time
46 and contexts, with profound implications for understanding phenotypic variation,
47 niche specialization, and animal personality (Sih et al. 2012; Wolf and Weissing
48 2012). The past decade has thus witnessed an increased awareness of
49 individualization as a fundamentally important and compelling aspect of evolutionary
50 biology, ecology, and animal behavior (Bolnick et al. 2003; Trillmich et al. 2018;
51 Krüger et al. 2021).

52 Consistent differences among individuals are likely to be mediated by a
53 combination of intrinsic and extrinsic factors and can be understood as the interaction
54 between an individual's phenotype, genotype, and its ecological context such that its
55 fitness is maximized (Dingemanse and Réale 2005; Vessey and Drickamer 2010;
56 Lihoreau et al. 2021). At the proximate level, individualized phenotypic adjustments
57 to environmental factors may be governed by, among other things, variation in the
58 concentrations of circulating hormones (Müller et al. 2020). In particular, individual
59 variation in cortisol, an important hormone in the physiological stress response,
60 appears to play a major role in shaping individual responses to environmental
61 conditions (Wingfield and Romero 2011).

62 Cortisol is a steroid hormone that belongs to the class of glucocorticoids. Its
63 release is regulated by the hypothalamic-pituitary-adrenal (HPA) axis.
64 Glucocorticoids play an essential role in maintaining metabolic and homeostatic
65 functions (Kuo et al. 2015). Under predictable conditions, cortisol is released
66 continuously at baseline levels that vary naturally throughout the day and over an
67 individual's lifetime (Lightman and Conway-Campbell 2010). In the face of
68 unpredictable challenges, however, activation of the HPA axis results in increased
69 levels of secreted cortisol for the duration of the stressor, before levels return to
70 baseline (Bellavance and Rivest 2014).

71 While the physiology of the HPA axis is largely conserved across mammals
72 (Romero and Butler 2007; Wingfield and Romero 2011), empirical studies have

73 documented significant differences in cortisol concentrations among species and
74 individuals (Schoenemann and Bonier 2018; Taff et al. 2018), as well as notable
75 variation in the HPA axis response across time and space (Romero and Gormally
76 2019). Such phenotypic variation in response to intrinsic and environmental
77 differences could potentially facilitate adaptation to different habitats and conditions
78 (Sih et al. 2012). For example, cortisol levels have been shown to vary significantly
79 among individuals experiencing different densities (Meise et al. 2016) and levels of
80 nutritional stress (Kitaysky et al. 2007). Variation in cortisol among individuals has
81 also been linked to intrinsic factors such as age (Pavitt et al. 2015), sex (Azevedo et
82 al. 2019), and weight (Jeanniard du Dot et al. 2009). Nonetheless, when such factors
83 are accounted for, empirical studies have shown that cortisol levels are often highly
84 repeatable within individuals (Schoenemann and Bonier 2018; Taff et al. 2018). In
85 guinea pigs, for example, cortisol responsiveness and to a lesser extent baseline
86 cortisol levels are highly repeatable from late adolescence to adulthood (Mutwill et al.
87 2021).

88 Given that cortisol levels often exhibit high among-individual variability and
89 within-individual repeatability, it has been argued that genetic rather than
90 environmental factors could explain much of the observed phenotypic variance, which
91 would imply a high evolvability of this endocrine trait (Boake 1989; Jenkins et al.
92 2014). Correspondingly, several empirical studies have reported moderate to high
93 levels of cortisol heritability in free-living vertebrate populations (Jenkins et al. 2014;
94 Stedman et al. 2017; Bairos-Novak et al. 2018). However, persistent intrinsic and / or
95 extrinsic factors might also produce repeatable phenotypes regardless of the
96 underlying genotype (Taff et al. 2018), a possibility that has often been overlooked in
97 the literature (Bonier and Martin 2016). This is particularly true when genetically
98 similar individuals experience a similar temporal and spatial environment leading to,
99 for example, phenotypic similarity in the endocrine phenotype in response to current
100 internal and environmental stimuli (contextual plasticity) or stimuli encountered in the
101 past (developmental plasticity) (Stamps and Biro 2016). If unaccounted for, such
102 phenotype-environment correlations may upwardly bias the estimated additive genetic
103 variance for phenotypic traits (Kruuk et al. 2003).

104 Pinnipeds, and otariids in particular, are ideally suited to investigate the effects
105 of internal and environmental factors on cortisol levels. First, otariids are colonially
106 breeding, with males competing to establish and maintain harems on densely packed
107 breeding beaches (Forcada and Staniland 2018). Cortisol may play an important role
108 in how individuals adapt to this dynamic environment by restoring homeostasis after
109 unpredictable challenges such as territorial bouts or unwanted mating attempts.
110 Second, while many breeding beaches do not differ appreciably in qualities such as
111 substrate type or topology, the density of individuals often varies from one place to
112 another, setting up a spatial dynamic that tends to remain stable over time (Cassini
113 1999). Consequently, as pups are born on land and remain ashore throughout much of
114 their early ontogeny (Payne 1979; McCafferty et al. 1998), cortisol might play an
115 important role in mediating individual responses to variation in density. Finally,
116 cortisol levels have been investigated in several pinniped species in relation to
117 ontogeny (Ortiz et al. 2003; Atkinson et al. 2011), environmental conditions
118 (DeRango et al. 2019), and handling regimes (Engelhard et al. 2002; Harcourt et al.
119 2010; Bennett et al. 2012; Champagne et al. 2012). Methodologies for collecting and
120 assessing cortisol in pinnipeds are therefore well established in the literature.

121 Our model otariid species, the Antarctic fur seal (*Arctocephalus gazella*), has
122 been extensively studied by the British Antarctic Survey (BAS) on Bird Island, South
123 Georgia since the 1980s. Two breeding colonies on the island provide a unique
124 “natural experiment” for investigating individual responses to population density.
125 Freshwater Beach (FWB) and Special Study Beach (SSB) are situated less than 200
126 meters apart (Figure 1a), meaning they are exposed to comparable climatic
127 conditions. Breeding females from both locations also likely forage in the same areas
128 (Hunt et al. 1992) and do not differ significantly in quality traits such as body size and
129 condition (Nagel et al. 2021). Despite these similarities, the two colonies differ in the
130 density of conspecifics. Direct counts of individuals ashore suggest that the density of
131 breeding females is almost four times higher at SSB than FWB (Meise et al. 2016)
132 and the modal local density of focal pups across the entire breeding season is also
133 higher for pups born at SSB (Nagel et al. 2021).

134 We took advantage of this unique natural setup to investigate the intrinsic and
135 extrinsic factors shaping individual variation in baseline cortisol in Antarctic fur seal

136 pups and their mothers. We used a fully crossed, repeated measures design (Figure 1b,
137 c) comprising longitudinal data from mother-offspring pairs from the two colonies
138 over two consecutive breeding seasons, the first of which was coincidentally one of
139 the worst years on record with respect to food availability (Nagel et al. 2021).
140 Specifically, we collected saliva samples and accompanying biometric data from 25
141 randomly selected focal pairs from each colony in both seasons. To quantify baseline
142 cortisol levels, saliva was collected immediately, within three minutes of capture.
143 Mothers were sampled twice during the breeding season, while pups were sampled
144 every 20 days from birth until just before molting at around 60 days of age.

145 We used animal models to obtain heritability estimates for baseline cortisol
146 using both a simple pedigree and a genomic relatedness matrix obtained from a high
147 density single nucleotide polymorphism (SNP) array (Humble et al. 2020). We then
148 used linear mixed models to evaluate the within- and among-individual variability of
149 cortisol levels in pups and their mothers. Included in each model as explanatory
150 variables were multiple intrinsic (sex, weight, body condition, and days after initial
151 sampling) and extrinsic (density and year) variables. In line with previous studies of
152 wild vertebrate populations, we hypothesized that cortisol levels would be heritable
153 and repeatable within individuals. We further hypothesized that baseline cortisol
154 would be higher in pups and mothers from the high-density colony and in the season
155 of low food availability.

156

157 **Materials and Methods**

158 *Field study*

159 This study was conducted during the Antarctic fur seal breeding seasons
160 (December to March) of 2018–19 (hereafter 2019) and 2019–20 (hereafter 2020) at
161 Bird Island, South Georgia (54°00'24.8"S, 38°03'04.1"W). Each season, we
162 sampled 25 unique mother-pup pairs from two neighboring breeding colonies, one of
163 low (FWB) and the other of high (SSB) density (Figure 1a). Sampling at both
164 locations was randomized with respect to pup sex, resulting in a final sample size of
165 51 male and 49 female pups. Pup mortality was higher at FWB than SSB (32% *versus*
166 12%, respectively), and averaged 25.6% over the two colonies and seasons.

167 Each mother and her pup were captured concurrently on two separate
168 occasions: 2–3 days postpartum (December) and again as the pups began to moult
169 shortly before weaning (March). Pups were additionally recaptured every 20 days. For
170 the capture, restraint, and sampling of individuals, we employed protocols that have
171 been established and refined over 30 consecutive years of the BAS long-term
172 monitoring and survey program. Briefly, adult females were captured with a noosing
173 pole and held on a restraint board during processing. Pups were captured with a slip
174 noose or by hand and were restrained by hand. After sampling, individuals were
175 released as close to their capture site as possible and, when present, pups were
176 reunited with their mothers.

177 At first sampling, focal individuals were fitted with VHF transmitters to the
178 dorsal side of the neck between the shoulder blades with epoxy glue (pups: Sirtrack
179 core marine glue-on V2G 152A; mothers: Sirtrack core marine glue-on V2G 154C).
180 Transmitter signals were monitored throughout the season using a hand-held VHF
181 receiver (AOR LTD., AR8200). Focal individuals were also given cattle ear tags
182 (Dalton Supplies, Henley on Thames, UK) in the trailing edge of each foreflipper
183 (Gentry and Holt 1982) for identification. Tissue plugs were collected and stored in
184 20% dimethyl sulfoxide (DMSO) saturated with salt at -20°C for subsequent genetic
185 analysis.

186 At every capture, weight and length measurements were taken from which a
187 scaled mass index was calculated according to (Peig and Green 2009). This condition
188 metric serves as a reliable indicator of overall fitness as it has been correlated with,

189 among other things, offspring survival (Milenkaya et al. 2015; Gélin et al. 2016) and
190 mating success (Gastón and Vaira 2020). At every capture, the saliva sample was
191 taken within three minutes of capture to provide data on baseline cortisol levels
192 (Bozovic et al. 2013). Saliva was collected by rotating sterile cotton tip applicators
193 fitted in polypropylene tubes (ROTH, Art. No. XC10.2) in the cheek pouch and under
194 the tongue. Samples were centrifuged and stored at -20°C for subsequent cortisol
195 analysis.

196

197 *Hormone quantification*

198 Saliva samples were thawed and centrifuged for ten minutes to separate the
199 mucins. The clear supernatant was then used for the determination of cortisol
200 concentrations. Samples contaminated with blood (reddish supernatant) were
201 discarded ($n = 30$ in 2019 and $n = 31$ in 2020), as cortisol values are often falsely
202 elevated in such samples. Cortisol concentrations were determined in duplicate using
203 enzyme-linked immunosorbent assays (cortisol free in saliva DES6611, Demeditec
204 Diagnostics GmbH, Kiel, Germany). We calculated the average coefficient of
205 variation (CV) resulting from individual CVs for all duplicates in an assay. Mean
206 intra-assay CV for a total of 12 assays was 3.89%. All samples were determined in
207 duplicate and if CV was larger than 10%, determination of the sample was repeated.
208 Furthermore, two samples of different concentrations were run in duplicate on a total
209 of 12 plates to assess inter-assay variation, which was on average 4.36%. The
210 antibody showed the following cross-reactivities: cortisol 100%, 11-desoxycortisol
211 50%, corticosterone 6.2%, 11-desoxycorticosterone 2.6%, 17 α -oh-progesterone 1.3%,
212 cortisone and prednisone < 1%, testosterone, estradiol, and androstendione < 0.1%.
213 For additional information on kit validation as per the linearity and recovery rate, see
214 the respective Supplementary Tables S1 and S2.

215

216 *SNP genotyping and genomic relatedness matrix construction*

217 For the 95 focal individuals sampled in 2019, we extracted total genomic
218 DNA from tissue samples using a standard chloroform-isoamylalcohol protocol (for a
219 description of the full protocol, see the Supplementary Materials). SNP genotyping
220 was performed on these samples using a custom Affymetrix SNP array as described

221 by (Humble et al. 2020). Quality control of the raw output data and genotyping were
222 implemented using the Axiom Analysis Suite (5.0.1.38, Affymetrix) based on
223 parameter thresholds set to their default values for diploid organisms. SNPs initially
224 classified as “off target variants” (OTV) were recovered using the “Run OTV caller”
225 function. Of the 85,359 SNPs tiled on the array, 77,873 were retained for further
226 analysis representing SNPs classified as “PolyHighResolution” (SNPs that passed all
227 of the Axiom Analysis Suite quality controls) and “NoMinorHomozygote” (SNPs that
228 passed all quality controls but no homozygote genotypes for the minor allele were
229 found). An additional 3,423 SNPs with minor allele frequencies below 0.01 and 2,096
230 SNPs that departed significantly from Hardy Weinberg equilibrium (HWE) were
231 removed using PLINK version 1.9 (Purcell et al. 2007). Departures from HWE were
232 identified based on an alpha level of 0.01 after implementing mid-*p* adjustment
233 (Graffelman and Moreno 2013). After filtering, a total of 72,354 SNPs were retained
234 and used to produce a genomic relatedness matrix using the --make-grm option in
235 GCTA version 1.93.1 (Yang et al. 2011).

236

237 *Heritability of cortisol levels*

238 To quantify the proportion of the total variance in baseline cortisol attributable
239 to genetic differences among individuals, we fitted two multivariate generalized linear
240 mixed models (GLMMs) in *MCMCglmm* (Hadfield 2010) with baseline cortisol as the
241 dependent variable and individual ID and relatedness as random effects. For the first
242 model, a simple pedigree (comprising mother-offspring pairs) was built for the full
243 dataset providing an estimate of maternal genetic effects on cortisol concentrations.
244 The second model incorporated the SNP relatedness matrix from individuals sampled
245 only in the first season (2019) and, although smaller in sample size, provides a less
246 biased estimate of genetic relatedness by including not only mother-offspring pairs
247 but also detecting, for example, half-siblings. We used weak but informative priors
248 (0.05 of the observed phenotypic variance) in both models. Markov chains were run
249 for 9,000,000 iterations and we retained every 8,500th value after removing 150,000
250 iterations of burn-in to generate posterior distributions of the random parameters. The
251 posterior distribution of the model intercept and autocorrelation were checked to

252 assess model fit. We obtained estimates of baseline cortisol heritability by dividing
253 the additive genetic variance by the total phenotypic variance ($h^2 = V_A/V_P$) for each
254 sample of the posterior distribution.

255

256 *Estimating intrinsic and extrinsic factors influencing baseline cortisol*

257 To determine whether an individual's weight, body condition, age, sex,
258 season, colony, and an interaction between season and colony explained a significant
259 proportion of the variation in baseline cortisol among pups, we fitted a GLMM with a
260 log-link gamma error distribution in *lme4* (Bates et al. 2015). A second GLMM with
261 maternal cortisol as the dependent variable was used to determine the proportion of
262 variation explained by an individual's weight, body condition, the number of days
263 postpartum, season, colony, and an interaction between season and colony. To
264 account for both structural and data multicollinearity among weight, condition, and
265 age (pups) / days postpartum (mothers), these variables were rescaled and centered by
266 subtracting the mean from all observed values. In preliminary analyses, we tested for
267 the presence of heterogeneous variance by allowing individual slopes to vary by age
268 (pups) or days postpartum (mothers). For both models, random intercepts were
269 included for each individual to account for repeated measures. The residuals of the
270 full models were inspected for linearity and equality of error variances (using plots of
271 residuals versus fits), normality (using Q – Q plots), and homogeneity of variance
272 (using Levene's test). A backward elimination based on the chi-squared statistic was
273 implemented to simplify the full models such that, in each iteration, the fixed effect
274 with the lowest chi-squared value was removed from the model until we only tested
275 the null model. The best fitting models were then taken to be those with the lowest
276 AIC values. We present only the best model from each analysis in the Results, but
277 model reduction and AIC scores for all models are available in the Supporting R
278 Markdown file. The statistical significance of fixed predictors was assessed using
279 Wald tests. We determined the marginal R^2 (variance explained by fixed effects) and
280 conditional R^2 (variance explained by fixed and random effects) according to
281 (Nakagawa and Schielzeth 2013).

282

283 *Animal handling, ethics and permits*

284 Sampling was carried out by the BAS under permits from the Government of
285 South Georgia and the South Sandwich Islands (Wildlife and Protected Areas
286 Ordinance (2011), RAP permit numbers 2018/024 and 2019/032). The samples were
287 imported into the UK under permits from the Department for Environment, Food, and
288 Rural Affairs (Animal Health Act, import license number ITIMP18.1397) and from
289 the Convention on International Trade in Endangered Species of Wild Fauna and
290 Flora (import numbers 578938/01-15 and 590196/01-18). All procedures used were
291 approved by the BAS Animal Welfare and Ethics Review Body (AWERB
292 applications 2018/1050 and 2019/1058).

293

294 **Results**

295 We used a fully crossed, repeated measures design incorporating saliva
296 samples from 96 unique pups and 93 unique mothers from two colonies of contrasting
297 density across two consecutive years of contrasting food availability (Figure 1).
298 Sample sizes were balanced between the colonies ($n = 93$ from FWB and $n = 96$ from
299 SSB) and seasons ($n = 95$ from 2019 and $n = 94$ from 2020). Each season, pups were
300 sampled every 20 days from birth until weaning, amounting to a total of 290 analyzed
301 saliva samples. Mothers were sampled twice each season, once shortly after birth and
302 again shortly before molting, which amounted to a total of 145 analyzed saliva
303 samples .

304

305 *Cortisol heritability estimates*

306 We estimated heritability of baseline cortisol using two animal models, the
307 first incorporating known pedigree relationships (i.e. mother-offspring pairs from both
308 years) and the second incorporating a SNP relatedness matrix, which was only
309 available for the first year of the study. Narrow-sense heritability (h^2) estimates from
310 both models were low with overlapping 95% credible intervals (pedigree model: $h^2 =$
311 0.013, 95% highest posterior density 0.004 – 0.045; SNP relatedness model: $h^2 =$
312 0.018, 95% highest posterior density 0.004 – 0.062) (Figure 2). The additive genetic
313 (V_A) and residual (V_R) variance estimates of the two models were also comparable
314 (pedigree model: 95% highest posterior density of $V_A = 0.1 – 1.6$ and $V_R = 30.6 –$
315 39.9; SNP relatedness model: 95% highest posterior density of $V_A = 0.1 – 2.3$ and V_R
316 = 28.5 – 41.7).

317

318 *Intrinsic and extrinsic factors influencing baseline cortisol*

319 The best supported model of pup baseline cortisol contained individual age (p
320 < 0.001), weight ($p < 0.001$), sex ($p = 0.004$), season ($p = 0.003$), body condition ($p =$
321 0.093), and colony ($p = 0.107$) as fixed effects (Table 1a, Figure 3a). The total amount
322 of variance explained by this model was high (conditional $R^2 = 0.657$), as was the
323 repeatability of baseline cortisol values across individuals (ICC = 0.39). Including ID
324 as a random effect significantly improved the fit of the model, indicating appreciable
325 among-individual variability in baseline cortisol ($p < 0.001$; Supplementary Table

326 S1a). Allowing individual slopes to vary between age groups also significantly
327 improved model fit ($p < 0.001$; Supplementary Table S3) suggesting that individuals
328 responded to the covariates differently depending on their age. Overall, baseline
329 cortisol decreased with increasing pup age (Figure 3b) and was higher among pups
330 born in 2020, the year of higher food availability (Figure 3c). Baseline cortisol
331 decreased significantly as pup weight increased (Figure 3d), although the slope of the
332 regression between cortisol and weight approached zero as pups approached their
333 moult. Finally, baseline cortisol tended to be higher in males than females (Figure 3e).

334 The best-supported model of maternal baseline cortisol contained days
335 postpartum ($p < 0.001$), season ($p = 0.004$), and colony ($p = 0.068$) as fixed effects
336 (Table 1b, Figure 3f). Neither individual weight nor body condition were retained in
337 the model. The total variance explained by the model was again high (conditional R^2
338 = 0.774), as was repeatability of baseline cortisol within individuals (ICC = 0.43).
339 Including ID as a random effect significantly improved model fit, indicating
340 appreciable among-individual variability in baseline cortisol ($p < 0.001$;
341 Supplementary Table S3). The concentration of cortisol in maternal saliva decreased
342 as the season progressed (Figure 3g) and tended to be higher in 2020, the year of
343 higher food availability (Figure 3h).

344

345

346 **Discussion**

347 We used a fully crossed, repeated measures design to characterize individual
348 variation in baseline cortisol levels in a wild population of Antarctic fur seals. We
349 found that baseline cortisol was only marginally explained by genetic factors, while
350 high within-individual repeatability and among-individual variability in both pups and
351 mothers could be largely explained by a combination of intrinsic and extrinsic factors.
352 Our results provide detailed insights into the individualization of an endocrine
353 phenotype in a wild pinniped population.

354

355 *Heritability estimates*

356 We quantified the narrow sense heritability of baseline cortisol using animal
357 models based on a simple pedigree and a SNP array. The former approach assumes
358 that individuals of unknown parentage are unrelated to all other individuals in the
359 population, which can lead to heritability being underestimated (Kruuk 2004). By
360 contrast, genomic approaches are capable of quantifying unbiased relatedness for all
361 sampled individuals, but can be time-consuming and costly to produce (Frentiu et al.
362 2008). Despite these differences, we found that both approaches produced
363 consistently low heritability estimates for baseline cortisol in Antarctic fur seals.
364 Heritability can be low because of low additive genetic variation, high environmental
365 variance, or cross-environment genetic correlations (i.e. the genetic basis of the trait
366 varies between different environments) (Charmantier and Garant 2005). Our low
367 estimates, which stand in contrast to our original expectations and previously
368 published empirical estimates from other species (Jenkins et al. 2014; Stedman et al.
369 2017; Bairos-Novak et al. 2018), might therefore be reflective of the extreme
370 heterogeneity of the environmental conditions encountered by the study population at
371 Bird Island. This explanation would be in line with other empirical studies of wild
372 vertebrate populations showing a decrease in heritability under poor environmental
373 conditions (e.g. (Wilson et al. 2006)). Alternatively, low heritability may reflect the
374 different life stages at which cortisol concentrations were measured (i.e. mothers
375 *verses* pups).

376

377 *Intrinsic and extrinsic factors affecting baseline cortisol*

378 For both pups and mothers, we were able to explain a substantial proportion of
379 the total phenotypic variance in baseline cortisol by including individual-based and
380 environmental variables in our models (conditional $R^2 = 0.66$ for pups and $R^2 = 0.77$
381 for mothers). Similar results have been obtained for a variety of species (e.g. (Joly and
382 Cameron 2018; Uchida et al. 2021), but see (Azevedo et al. 2019)), suggesting that
383 contextual and developmental phenotypic plasticity in response to environmental
384 heterogeneity may be a widespread phenomenon. In addition, we found that baseline
385 cortisol levels were consistent within individuals, suggesting that individualized
386 endocrine phenotypes become established during early ontogeny and persist at least
387 until nutritional independence. Baseline cortisol might therefore represent a stable
388 attribute by which fur seals adapt to spatial or temporal heterogeneity in their
389 environment (Réale and Dingemanse 2010).

390 Our models uncovered a strong influence of age and days postpartum on
391 baseline cortisol levels in pups and mothers, respectively, with salivary cortisol
392 decreasing over time. One explanation for this may be the shifting environmental
393 conditions that individuals experience as the season progresses. Pregnant females
394 arrive ashore in December and give birth on crowded breeding beaches. Mothers
395 continue to suckle their pups on the beach until about 30 days postpartum, when most
396 females transition into the more sheltered and less crowded tussock grass that covers
397 most of the island's interior (Doidge et al. 1984). Also during this time, adult males
398 begin to abandon their territories and migrate to higher latitudes around the Antarctic
399 ice shelf (Forcada and Staniland 2018). Consequently, the frequency of unpredictable
400 challenges for both pups and mothers likely declines as the season progresses. A
401 corresponding reduction in baseline cortisol is therefore in line with previous research
402 suggesting that cortisol levels are lower under stable environmental conditions
403 compared with environments associated with frequent disturbances (Fairbanks et al.
404 2011).

405 We detected significantly higher cortisol concentrations among pups and
406 mothers sampled in 2020, the year of higher food availability. This was surprising
407 given the many empirical studies that have linked elevated cortisol concentrations to
408 food shortages and periods of nutritional stress (e.g. (Kitaysky et al. 2007; Behie et al.
409 2010; Bryan et al. 2013; Garber et al. 2020)). We can think of two possible

410 explanations for this pattern. On the one hand, our results could be explained by
411 higher population densities in the second year of our study, as significantly more
412 females bred in 2020 compared to 2019 (Nagel et al. 2021). This would be in line
413 with the small, albeit non-significant, effect of colony on baseline cortisol, with
414 hormone concentrations being marginally higher in both pups and mothers at SSB
415 compared to FWB. On the other hand, circulating levels of cortisol are essential for
416 the maintenance of metabolic functions (Kuo et al. 2015), and food-induced cortisol
417 secretions have been documented in the literature (Quigley and Yen 1979; Gibson et
418 al. 1999; Stimson et al. 2014). Shorter foraging trip durations (Nagel et al. 2021) and
419 consequently more frequent meals for pups and mothers in 2020 may have resulted in
420 higher average baseline cortisol concentrations, which facilitate protein and
421 carbohydrate metabolism.

422 More indicative of the hypothesized correlation between cortisol and
423 nutritional stress, we found a significant negative relationship between baseline
424 cortisol levels and weight in pups. Elevated cortisol levels provide individuals with a
425 source of energy by stimulating gluconeogenesis, which increases the delivery of
426 glucose into the bloodstream (Wingfield and Romero 2011). Furthermore, cortisol can
427 enhance fat oxidation by other mechanisms, like promoting production of hormone
428 sensitive lipase (Samra et al. 1996). Given that pups must tolerate bouts of fasting
429 lasting up to 11 days while their mothers forage at sea (Forcada and Staniland 2018),
430 our results may reflect a physiological response to prolonged periods of natural food
431 limitation (Ortiz et al. 2001; Jeanniard du Dot et al. 2009). In other words, fasting
432 pups may increase baseline cortisol to release energy, resulting in a reduction of
433 absolute body fat and overall weight. This would also explain why we do not see a
434 similar relationship in mothers, who remain ashore between foraging trips for as little
435 as 24 hours and on average only two days (Boyd et al. 1991). Alternatively, pups may
436 be more susceptible to environmental stressors than adult females, with lighter pups
437 requiring more energy to maintain homeostasis under, for example, unfavorable
438 climatic conditions.

439 In pups, we also uncovered a significant association between baseline cortisol
440 and sex, with hormone concentrations being moderately higher in males than females.
441 Previous studies of the sex-specific secretion of cortisol have produced diverse

442 results, including conflicting evidence from within a single species (Steller sea lion
443 pups: (Keogh et al. 2010; Myers et al. 2010). These contrasting findings highlight the
444 complexity of interactions between cortisol and the sex hormones, which can vary
445 with the reproductive system, phase, and cycle (Levine 2002). In addition, the social
446 and environmental stressors associated with growth and reproduction in each sex are
447 likely to vary among species. For example, male Antarctic fur seal pups engage more
448 often in social interactions and risk prone behaviors (Jones et al. 2020) such that the
449 number of “stressful” events encountered may be higher in males than females.

450 Contrary to our initial expectations, colony only had a marginal, non-
451 significant effect on baseline salivary cortisol in pups and their mothers. This is in
452 contrast to a previous study where cortisol concentrations, measured from hair, were
453 higher in mothers (but not offspring) from the high density colony (Meise et al. 2016).
454 We can think of two non-mutually exclusive explanations for this discrepancy. First,
455 hair cortisol concentrations are thought to reflect events in the recent past (hours or
456 days) (Kallionkoski et al. 2019), whereas salivary cortisol captures circulating hormone
457 levels at the immediate time of sampling (Lewis 2006). Consequently, hair
458 concentrations of baseline cortisol might integrate a larger number of stressful events,
459 allowing density-dependent differences to more readily accumulate. Second, the first
460 study was conducted in 2011 when population densities were much higher at SSB
461 (approximately 568 breeding females were observed at SSB in 2011 compared with
462 282 in 2019 and 409 in 2020, a reduction of 50% and 28%, respectively (Forcada and
463 Hoffman 2014; Nagel et al. 2021), which may have accentuated differences between
464 the two colonies.

465

466 **Strengths, limitations, and future directions**

467 The past decade has witnessed a shift in our understanding of individual
468 differences from a perceived statistical nuisance to a fundamental and compelling
469 aspect of behavioral ecology and evolutionary biology (Bolnick et al. 2003; Trillmich
470 et al. 2018; Krüger et al. 2021). Our study contributes towards this narrative by
471 decomposing individual variation in endocrine phenotypes across different life history
472 stages and environments in Antarctic fur seal pups and their mothers. Our results are
473 indicative of substantial developmental plasticity in the HPA axis of pups, with

474 individualized endocrine phenotypes becoming established during early ontogeny and
475 persisting at least until nutritional independence. Baseline cortisol may therefore help
476 to facilitate the match between an individual's phenotype and the environment. That
477 we find a higher relative contribution of the environment compared to genetic factors
478 to phenotypic variation further suggests that the endocrine phenotype may be highly
479 adaptable to unpredictable environmental conditions. This has implications for our
480 understanding of population dynamics, both in the declining Antarctic fur seal
481 population (Forcada and Hoffman 2014) and other in systems impacted by climate
482 change.

483 However, further research is needed to elucidate both the fitness consequences
484 of endocrine variability and how this may respond to environmental heterogeneity
485 over longer timescales. To meet the strictest definition of phenotypic plasticity,
486 individual variation in the focal trait must be demonstrated in different environments,
487 ideally across multiple years (Boutin and Lane 2014). For developmental plasticity,
488 an individual's phenotype must persist into later life stages, while changing reaction
489 norms over an individual's lifetime would suggest contextual plasticity (Nettle and
490 Bateson 2015; Trillmich et al. 2015). Our conclusions are also limited by the
491 comparison of only two colonies across two seasons. While including additional
492 colonies in the study would be logistically prohibitive given the inaccessibility of
493 most breeding beaches, a continuation of this study across additional breeding seasons
494 would certainly be feasible. Increasing the duration of this study would be particularly
495 relevant given the ever increasing occurrence and intensity of severe weather events
496 in the sub-Antarctic region (Turner et al. 2005).

497 Overall, our work builds upon the existing literature on the heritability and
498 phenotypic plasticity of baseline cortisol in response to environmental heterogeneity.
499 Although our results are framed in the context of the Antarctic fur seal, our study has
500 implications for understanding the importance of endocrine mechanisms in other
501 populations. We can contribute towards a growing body of evidence showing that
502 endocrine phenotypes are ecologically important traits that can potentially affect
503 population dynamics through their influence on life history traits. Expanding our
504 understanding of those extrinsic and intrinsic factors that influence baseline cortisol

505 therefore gives insight into the factors that potentially limit or improve population
506 persistence in a changing environment.

507

508 **References**

509 Atkinson S, Arnould JPY, Mashburn KL. 2011. Plasma cortisol and thyroid hormone
510 concentrations in pre-weaning Australian fur seal pups. *Gen Comp Endocrinol.*
511 172:277–281. doi:10.1016/j.ygcen.2011.03.014.

512 Azevedo A, Bailey L, Bandeira V, Dehnhard M, Fonseca C, Sousa L De, Jewgenow
513 K. 2019. Age, sex and storage time influence hair cortisol levels in a wild mammal
514 population. *PLoS One.* 14(8):e0221124. doi:10.1371/journal.pone.0221124.

515 Bairois-Novak KR, Ryan CP, Freeman AR, Gary Anderson W, Hare JF. 2018. Like
516 mother, like daughter: Heritability of female Richardson's ground squirrel
517 *Urocitellus richardsonii* cortisol stress responses. *Curr Zool.* 64(2):153–163.
518 doi:10.1093/cz/zox014.

519 Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models
520 using lme4. *J Stat Softw.* 67(1):1–48. doi:10.18637/jss.v067.i01.

521 Behie AM, Pavelka MSM, Chapman CA. 2010. Sources of variation in fecal cortisol
522 levels in howler monkeys in Belize. *Am J Primatol.* 72:600–606.
523 doi:10.1002/ajp.20813.

524 Bellavance MA, Rivest S. 2014. The HPA-immune axis and the immunomodulatory
525 actions of glucocorticoids in the brain. *Front Immunol.* 5:1–13.
526 doi:10.3389/fimmu.2014.00136.

527 Bennett KA, Moss SEW, Pomeroy P, Speakman JR, Fedak MA. 2012. Effects of
528 handling regime and sex on changes in cortisol, thyroid hormones and body mass in
529 fasting grey seal pups. *Comp Biochem Physiol Part A.* 161:69–76.
530 doi:10.1016/j.cbpa.2011.09.003. 10.1016/j.cbpa.2011.09.003.

531 Boake CRB. 1989. Repeatability: Its role in evolutionary studies of mating behavior.
532 *Evol Ecol.* 3(2):173–182. doi:10.1007/BF02270919.

533 Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML.
534 2003. The ecology of individuals: Incidence and implications of individual
535 specialization. *Am Nat.* 161(1):1–28. doi:10.1086/343878.

536 Bonier F, Martin PR. 2016. How can we estimate natural selection on endocrine
537 traits? Lessons from evolutionary biology. *Proc R Soc B.* 283:20161887.

538 doi:10.1098/rspb.2016.1887.

539 Boutin S, Lane JE. 2014. Climate change and mammals: Evolutionary versus plastic
540 responses. *Evol Appl.* 7(1):29–41. doi:10.1111/eva.12121.

541 Boyd IL, Lunn NJ, Barton T. 1991. Time budgets and foraging characteristics of
542 lactating Antarctic fur seals. *J Anim Ecol.* 60(2):577–592. doi:10.2307/5299.

543 Bozovic D, Racic M, Ivkovic N. 2013. Salivary cortisol levels as a biological marker
544 of stress reaction. *Med Arch.* 67(5):371–374. doi:10.5455/medarh.2013.67.374-377.

545 Bryan HM, Darimont CT, Paquet PC, Wynne-Edwards KE, Smits JEG. 2013. Stress
546 and reproductive hormones in grizzly bears reflect nutritional benefits and social
547 consequences of a salmon foraging niche. *PLoS One.* 8(11):e80537.
548 doi:10.1371/journal.pone.0080537.

549 Cassini MH. 1999. The evolution of reproductive systems in pinnipeds. *Behav Ecol.*
550 10(5):612–616. doi:10.1093/beheco/10.5.612.

551 Champagne CD, Houser DS, Costa DP, Crocker DE. 2012. The effects of handling
552 and anesthetic agents on the stress response and carbohydrate metabolism in
553 Northern elephant seals. *PLoS One.* 7(5):e38442.
554 doi:10.1371/journal.pone.0038442.

555 Charmantier A, Garant D. 2005. Environmental quality and evolutionary potential:
556 Lessons from wild populations. *Proc R Soc B.* 272(1571):1415–1425.
557 doi:10.1098/rspb.2005.3117.

558 Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW. 2012. An evolutionary ecology of
559 individual differences. *Ecol Lett.* 15(10):1189–1198. doi:10.1111/j.1461-
560 0248.2012.01846.x.

561 DeRango EJ, Prager KC, Greig DJ, Hooper AW, Crocker DE. 2019. Climate
562 variability and life history impact stress, thyroid, and immune markers in California
563 sea lions (*Zalophus californianus*) during El Niño conditions. *Conserv Physiol.* 7:1–
564 15. doi:10.1093/conphys/coz010.

565 Dingemanse NJ, Réale D. 2005. Natural selection and animal personality. *Behaviour.*
566 142(9):1159–1184. doi:10.1163/156853905774539445.

567 Doidge DW, Croxall JP, Baker JR. 1984. Density-dependent pup mortality in the
568 Antarctic fur seal *Arctocephalus gazella* at South Georgia. J Zool London. 202:449–
569 460. doi:10.1111/j.1469-7998.1984.tb05095.x.

570 Engelhard GH, Brasseur SMJM, Hall AJ, Burton HR, Reijnders PJH. 2002.
571 Adrenocortical responsiveness in southern elephant seal mothers and pups during
572 lactation and the effect of scientific handling. J Comp Physiol B. 172:315–328.
573 doi:10.1007/s00360-002-0257-0.

574 Fairbanks LA, Jorgensen MJ, Bailey JN, Breidenthal SE, Grzywa R, Laudenslager
575 ML. 2011. Heritability and genetic correlation of hair cortisol in vervet monkeys in
576 low and higher stress environments. Psychoneuroendocrinology. 36:1201–1208.
577 doi:10.1016/j.psyneuen.2011.02.013.
578 <http://dx.doi.org/10.1016/j.psyneuen.2011.02.013>.

579 Forcada J, Hoffman JI. 2014. Climate change selects for heterozygosity in a declining
580 fur seal population. Nature. 511(7510):462–465. doi:10.1038/nature13542.

581 Forcada J, Staniland IJ. 2018. Antarctic Fur Seal. In: Würsig B, Thewissen JGM,
582 Kovacs KM, editors. Encyclopedia of Marine Mammals. 3rd ed. Academic Press. p.
583 25–27.

584 Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens IPF. 2008. Pedigree-
585 free animal models: The relatedness matrix reloaded. Proc R Soc B. 275(1635):639–
586 647. doi:10.1098/rspb.2007.1032.

587 Garber PA, McKenney A, Bartling-John E, Bicca-Marques JC, De la Fuente MF,
588 Abreu F, Schiel N, Souto A, Phillips KA. 2020. Life in a harsh environment: The
589 effects of age, sex, reproductive condition, and season on hair cortisol concentration
590 in a wild non-human primate. PeerJ. 8:e9365. doi:10.7717/peerj.9365.

591 Gastón MS, Vaira M. 2020. Male mating success is related to body condition and
592 stress-induced leukocyte response in an anuran with scramble competition. Can J
593 Zool. 98(6):391–398. doi:10.1139/cjz-2019-0193.

594 Gélin U, Coulson G, Festa-Bianchet M. 2016. Heterogeneity in reproductive success
595 explained by individual differences in bite rate and mass change. Behav Ecol.
596 27(3):777–783. doi:10.1093/beheco/arv209.

597 Gentry RL, Holt JR. 1982. Equipment and techniques for handling northern fur seals.
598 NOAA Tech Rep NMFS SSRF-758.:1–17.

599 Gibson EL, Checkley S, Papadopoulos A, Poon L, Daley S, Wardle J. 1999. Increased
600 salivary cortisol reliably induced by a protein-rich midday meal. *Psychosom Med.*
601 61(2):214–224. doi:10.1097/00006842-199903000-00014.

602 Graffelman J, Moreno V. 2013. The mid *p*-value in exact tests for Hardy-Weinberg
603 equilibrium. *Stat Appl Genet Mol Biol.* 12(4):433–448. doi:10.1515/sagmb-2012-
604 0039.

605 Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed
606 models: The MCMCglmm R package. *J Stat Softw.* 33(2):1–22.
607 doi:10.1002/ana.22635.

608 Harcourt RG, Turner E, Hall A, Waas JR, Hindell M. 2010. Effects of capture stress
609 on free-ranging, reproductively active male Weddell seals. *J Comp Physiol A.*
610 196:147–154. doi:10.1007/s00359-009-0501-0.

611 Humble E, Paijmans AJ, Forcada J, Hoffman JI. 2020. A 85K SNP array uncovers
612 inbreeding and cryptic relatedness in an Antarctic fur seal breeding colony. *G3.*
613 10:2787–2799. doi:10.1101/2020.04.01.2020123.

614 Hunt GL, Heinemann D, Everson I. 1992. Distributions and predator-prey interactions
615 of macaroni penguins, Antarctic fur seals, and Antarctic krill near Bird Island, South
616 Georgia. *Mar Ecol Prog Ser.* 86(1):15–30. doi:10.3354/meps086015.

617 Jeanniard du Dot T, Rosen DAS, Richmond JP, Kitaysky AS, Zinn SA, Trites AW.
618 2009. Changes in glucocorticoids, IGF-I and thyroid hormones as indicators of
619 nutritional stress and subsequent refeeding in Steller sea lions (*Eumetopias jubatus*).
620 *Comp Biochem Physiol Part A.* 152:524–534. doi:10.1016/j.cbpa.2008.12.010.

621 Jenkins BR, Vitousek MN, Hubbard JK, Safran RJ. 2014. An experimental analysis of
622 the heritability of variation in glucocorticoid concentrations in a wild avian
623 population. *Proc R Soc B.* 281:20141302. doi:10.1098/rspb.2014.1302.

624 Joly K, Cameron MD. 2018. Early fall and late winter diets of migratory caribou in
625 northwest Alaska. *Rangifer.* 38(1):27–38. doi:10.7557/2.38.1.4107.

626 Jones KA, Wood H, Jonathan P, Ratcliffe N, Votier SC, Staniland IJ. 2020. Risk
627 exposure trade-offs in the ontogeny of sexual segregation in Antarctic fur seal pups.
628 Behav Ecol.:1–12. doi:10.1093/beheco/araa018.

629 Kallikoski O, Jellestad FK, Murison R. 2019. A systematic review of studies
630 utilizing hair glucocorticoids as a measure of stress suggests the marker is more
631 appropriate for quantifying short-term stressors. Sci Rep. 9:11997.
632 doi:10.1038/s41598-019-48517-2.

633 Keogh MJ, Maniscalco JM, Atkinson S. 2010. Steller sea lion (*Eumetopias jubatus*)
634 pups undergo a decrease in circulating white blood cells and the ability of T cells to
635 proliferate during early postnatal development. Vet Immunol Immunopathol.
636 137(3–4):298–304. doi:10.1016/j.vetimm.2010.05.008.
637 <http://dx.doi.org/10.1016/j.vetimm.2010.05.008>.

638 Kitaysky AS, Piatt JF, Wingfield JC. 2007. Stress hormones link food availability and
639 population processes in seabirds. Mar Ecol Prog Ser. 352:245–258.
640 doi:10.3354/meps07074.

641 Krüger O, Anaya-Rojas J, Caspers B, Chakarov N, Elliot-Graves A, Fricke C, Gadau
642 J, Gossmann T, Hoffman J, Kaiser MI, et al. 2021. Individualised niches: An
643 integrative conceptual framework across behaviour, ecology, and evolution.
644 EcoEvoRxiv. preprint. doi:10.32942/osf.io/7h5xq.

645 Kruuk LEB. 2004. Estimating genetic parameters in natural populations using the
646 “animal model.” Philos Trans R Soc B. 359(1446):873–890.
647 doi:10.1098/rstb.2003.1437.

648 Kruuk LEB, Merilä J, Sheldon BC. 2003. When environmental variation short-circuits
649 natural selection. Trends Ecol Evol. 18(5):207–209. doi:10.1016/S0169-
650 5347(03)00073-9.

651 Kuo T, McQueen A, Chen T-C, Wang Jen-Chywan. 2015. Regulation of glucose
652 homeostasis by glucocorticoids. In: Wang J.-C., Harris C, editors. Glucocorticoid
653 Signaling. Vol. 872. New York: Springer. p. 99–126.
654 <http://www.ncbi.nlm.nih.gov/pubmed/26215998>.

655 Levine JE. 2002. Editorial: Stressing the importance of sex. Endocrinology.

656 143(12):4502–4504. doi:10.1210/en.2002-221041.

657 Lewis JG. 2006. Steroid analysis in saliva: An overview. *Clin Biochem Rev.* 27:139–

658 146.

659 Lightman SL, Conway-Campbell BL. 2010. The crucial role of pulsatile activity of

660 the HPA axis for continuous dynamic equilibration. *Nat Rev Neurosci.* 11(10):710–

661 718. doi:10.1038/nrn2914.

662 Lihoreau M, Kaiser S, Resende B, Rödel HG, Châline N. 2021. Editorial: Context-

663 dependent plasticity in social species: Feedback loops between individual and social

664 environment. *Front Psychol.* 12:645191. doi:10.3389/fpsyg.2021.645191.

665 McCafferty DJ, Boyd IL, Taylor RI. 1998. Diving behaviour of Antarctic fur seal

666 (*Arctocephalus gazella*) pups. *Can J Zool.* 76(3):513–520. doi:10.1139/z97-219.

667 Meise K, Von Engelhardt N, Forcada J, Hoffman JI. 2016. Offspring hormones reflect

668 the maternal prenatal social environment: Potential for foetal programming? *PLoS*

669 *One.* 11(1):e0145352. doi:10.1371/journal.pone.0145352.

670 Milenkaya O, Catlin DH, Legge S, Walters JR. 2015. Body condition indices predict

671 reproductive success but not survival in a sedentary, tropical bird. *PLoS One.*

672 10(8):e0136582. doi:10.1371/journal.pone.0136582.

673 Müller C, Caspers BA, Gadau J, Kaiser S. 2020. The power of infochemicals in

674 mediating individualized niches. *Trends Ecol Evol.* 35(11):981–989.

675 doi:10.1016/j.tree.2020.07.001.

676 Mutwill AM, Schielzeth H, Zimmermann TD, Richter SH, Kaiser S, Sachser N. 2021.

677 Individuality meets plasticity: Endocrine phenotypes across male dominance rank

678 acquisition in guinea pigs living in a complex social environment. *Horm Behav.*

679 131:104967. doi:10.1016/j.ybeh.2021.104967.

680 Myers MJ, Litz B, Atkinson S. 2010. The effects of age, sex, season and geographic

681 region on circulating serum cortisol concentrations in threatened and endangered

682 Steller sea lions (*Eumetopias jubatus*). *Gen Comp Endocrinol.* 165(1):72–77.

683 doi:10.1016/j.ygcn.2009.06.006. <http://dx.doi.org/10.1016/j.ygcn.2009.06.006>.

684 Nagel R, Stainfield C, Fox-Clarke C, Toscani C, Forcada J, Hoffman J. 2021.

685 Evidence for an Allee effect in a declining fur seal population. Proc R Soc B.
686 288:20202882. doi:<https://doi.org/10.1098/rspb.2020.2882>.

687 Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R² from
688 generalized linear mixed-effects models. Methods Ecol Evol. 4(2):133–142.
689 doi:[10.1111/j.2041-210x.2012.00261.x](https://doi.org/10.1111/j.2041-210x.2012.00261.x).

690 Nettle D, Bateson M. 2015. Adaptive developmental plasticity: what is it, how can we
691 recognize it and when can it evolve? Proc R Soc B. 282:20151005.
692 doi:[10.1098/rspb.2015.1005](https://doi.org/10.1098/rspb.2015.1005).

693 Ortiz RM, Houser DS, Wade CE, Ortiz CL. 2003. Hormonal changes associated with
694 the transition between nursing and natural fasting in northern elephant seals
695 (*Mirounga angustirostris*). Gen Comp Endocrinol. 130:78–83. doi:[10.1016/S0016-6480\(02\)00572-5](https://doi.org/10.1016/S0016-6480(02)00572-5).

697 Ortiz RM, Wade CE, Ortiz CL. 2001. Effects of prolonged fasting on plasma cortisol
698 and TH in postweaned northern elephant seal pups. Am J Physiol - Regul Integr
699 Comp Physiol. 280:R790–R795. doi:[10.1006/gcen.2000.7514](https://doi.org/10.1006/gcen.2000.7514).

700 Pavitt AT, Walling CA, Möstl E, Pemberton JM, Kruuk LEB. 2015. Cortisol but not
701 testosterone is repeatable and varies with reproductive effort in wild red deer stags.
702 Gen Comp Endocrinol. 222:62–68. doi:[10.1016/j.ygcn.2015.07.009](https://doi.org/10.1016/j.ygcn.2015.07.009).

703 Payne MR. 1979. Growth in the Antarctic fur seal *Arctocephalus gazella*. J Zool
704 London. 187:1–20.

705 Peig J, Green AJ. 2009. New perspectives for estimating body condition from
706 mass/length data: The scaled mass index as an alternative method. Oikos.
707 118:1883–1891. doi:[10.1111/j.1600-0706.2009.17643.x](https://doi.org/10.1111/j.1600-0706.2009.17643.x).

708 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J,
709 Sklar P, de Bakker PIW, Daly MJ, et al. 2007. PLINK: A tool set for whole-genome
710 association and population-based linkage analyses. Am J Hum Genet. 81(3):559–
711 575. doi:[10.1086/519795](https://doi.org/10.1086/519795).

712 Quigley ME, Yen SSC. 1979. A mid-day surge in cortisol levels. J Clin Endocrinol
713 Metab. 49(6):945–947. doi:[10.1210/jcem-49-6-945](https://doi.org/10.1210/jcem-49-6-945).

714 Réale D, Dingemanse NJ. 2010. Personality and individual social specialization. In:
715 Székely T, Moore AJ, Komdeur J, editors. *Social Behaviour: Genes, Ecology and*
716 *Evolution*. Cambridge University Press. p. 417–441.

717 Romero LM, Gormally BMG. 2019. How truly conserved is the “well-conserved”
718 vertebrate stress response? *Integr Comp Biol*. 59(2):273–281.
719 doi:10.1093/icb/icz011.

720 Romero ML, Butler LK. 2007. Endocrinology of stress. *Int J Comp Psychol*. 20:89–
721 95. <https://escholarship.org/uc/item/87d2k2xz>.

722 Samra JS, Clark ML, Humphreys SM, Macdonald IA, Matthews DR, Frayn KN.
723 1996. Effects of morning rise in cortisol concentration on regulation of lipolysis in
724 subcutaneous adipose tissue. *Am J Physiol*. 271:E996-1002.
725 doi:10.1152/ajpendo.1996.271.6.E996.

726 Schoenemann KL, Bonier F. 2018. Repeatability of glucocorticoid hormones in
727 vertebrates: A meta-analysis. *PeerJ*. 6:e4398. doi:10.7717/peerj.4398.

728 Sih A, Cote J, Evans M, Fogarty S, Pruitt J. 2012. Ecological implications of
729 behavioural syndromes. *Ecol Lett*. 15(3):278–289. doi:10.1111/j.1461-
730 0248.2011.01731.x.

731 Stamps JA, Biro PA. 2016. Personality and individual differences in plasticity. *Curr*
732 *Opin Behav Sci*. 12:18–23. doi:10.1016/j.cobeha.2016.08.008.
733 <http://dx.doi.org/10.1016/j.cobeha.2016.08.008>.

734 Stedman JM, Hallinger KK, Winkler DW, Vitousek MN. 2017. Heritable variation in
735 circulating glucocorticoids and endocrine flexibility in a free-living songbird. *J Evol*
736 *Biol*. 30:1724–1735. doi:10.1111/jeb.13135.

737 Stimson RH, Mohd-Shukri NA, Bolton JL, Andrew R, Reynolds RM, Walker BR.
738 2014. The postprandial rise in plasma cortisol in men is mediated by macronutrient-
739 specific stimulation of adrenal and extra-adrenal cortisol production. *J Clin*
740 *Endocrinol Metab*. 99(1):160–168. doi:10.1210/jc.2013-2307.

741 Taff CC, Schoenle LA, Vitousek MN. 2018. The repeatability of glucocorticoids: A
742 review and meta-analysis. *Gen Comp Endocrinol*. 260:136–145.
743 doi:10.1016/j.ygcn.2018.01.011.

744 Trillmich F, Günther A, Müller C, Reinhold K, Sachser N. 2015. New perspectives in
745 behavioural development: Adaptive shaping of behaviour over a lifetime? *Front*
746 *Zool.* 12:S1. doi:10.1186/1742-9994-12-S1-S1.

747 Trillmich F, Müller T, Müller C. 2018. Understanding the evolution of personality
748 requires the study of mechanisms behind the development and life history of
749 personality traits. *Biol Lett.* 14(2):20170740. doi:10.1098/rsbl.2017.0740.

750 Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD,
751 Lagun V, Reid PA, Iagovkina S. 2005. Antarctic climate change during the last 50
752 years. *Int J Climatol.* 25(3):279–294. doi:10.1002/joc.1130.

753 Uchida K, Ng R, Vydro SA, Smith JE, Blumstein DT. 2021. The benefits of being
754 dominant: Health correlates of male social rank and age in a marmot. *Curr Zool.*:1–
755 8. doi:10.1093/cz/zoab034.

756 Vessey SH, Drickamer LC. 2010. Integration of proximate and ultimate causes. In:
757 Breed M, Moore J, editors. *Encyclopedia of Animal Behavior*. 1st ed. Academic
758 Press. p. 180–185.

759 Wilson AJ, Pemberton JM, Pilkington JG, Coltman DW, Mifsud D V., Clutton-Brock
760 TH, Kruuk LEB. 2006. Environmental coupling of selection and heritability limits
761 evolution. *PLoS Biol.* 4(7):1270–1275. doi:10.1371/journal.pbio.0040216.

762 Wingfield JC, Romero LM. 2011. Adrenocortical responses to stress and their
763 modulation in free-living vertebrates. In: *Comprehensive Physiology*. Hoboken, NJ,
764 USA: John Wiley & Sons, Inc. p. 211–234.

765 Wolf M, Weissing FJ. 2012. Animal personalities: Consequences for ecology and
766 evolution. *Trends Ecol Evol.* 27(8):452–461. doi:10.1016/j.tree.2012.05.001.

767 Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: A tool for genome-wide
768 complex trait analysis. *Am J Hum Genet.* 88:76–82.
769 doi:10.1016/j.ajhg.2010.11.011.

770

771

772 **Acknowledgements**

773 The authors would like to thank Ana Bertoldi Carneiro, Freya Blockley, Jamie
774 Coleman, Alexandra Dodds, Vicki Foster, Derren Fox, Iain Angus Gordon, Pauline
775 Goulet, Rosie Hall, Cary Jackson, Adam Lowndes, Elizabeth Morgan, Rachael Orben,
776 Jessica Ann Philips, David Reid, and Mark Whiffin for additional help in the field.
777 We kindly thank Sabine Kruse for conducting the endocrine analyses. We are also
778 grateful to Jonas Schwartz for tips on how to collect saliva samples from young pups
779 in the field. A special thanks to Océane Salles for producing the fur seal cartoon in
780 Figure 1c.

781

782 **Conflict of Interest**

783 The authors declare no conflict of interest.

784

785 **Author contributions**

786 RN, CS, CT, and CF-C collected the data. SK advised on field protocols and
787 coordinated cortisol quantification. RN analyzed the data. AJP generated the SNP
788 genotype dataset and DLJV built the genomic relatedness matrix. RN and CC
789 performed the molecular laboratory work. JIH, SK, and JF conceived and developed
790 the project. RN drafted the manuscript. All of the authors commented on and
791 approved the final manuscript.

792

793 **Data Availability Statement**

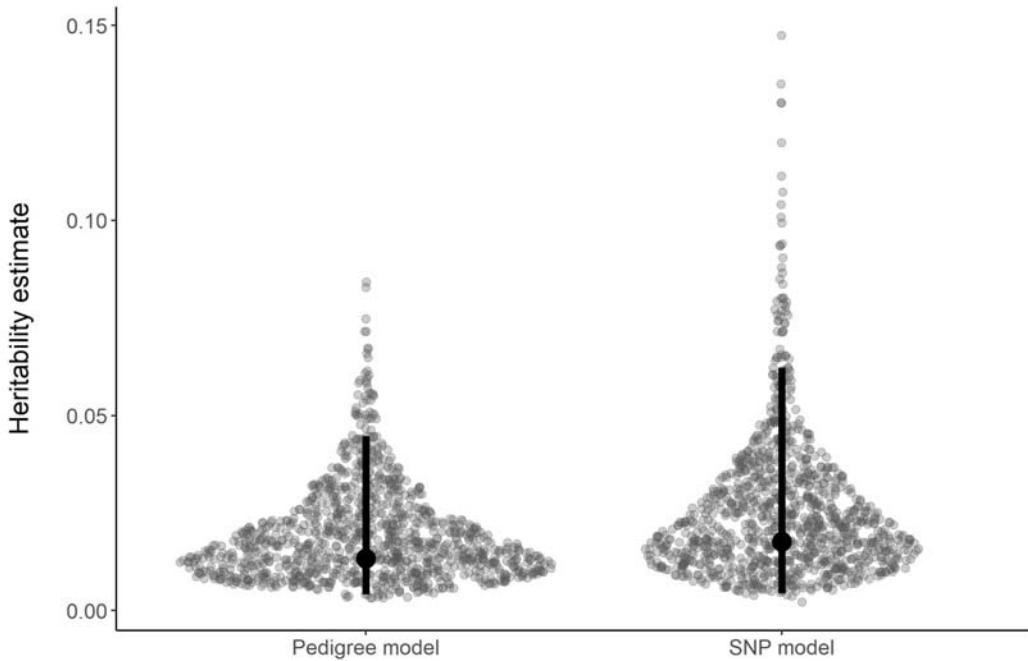
794 Our code and accompanying documentation are provided in the form of an R
795 Markdown file (Supplementary Information). The data used for this study are
796 available via Zenodo, <https://doi.org/10.5281/zenodo.6336716>.

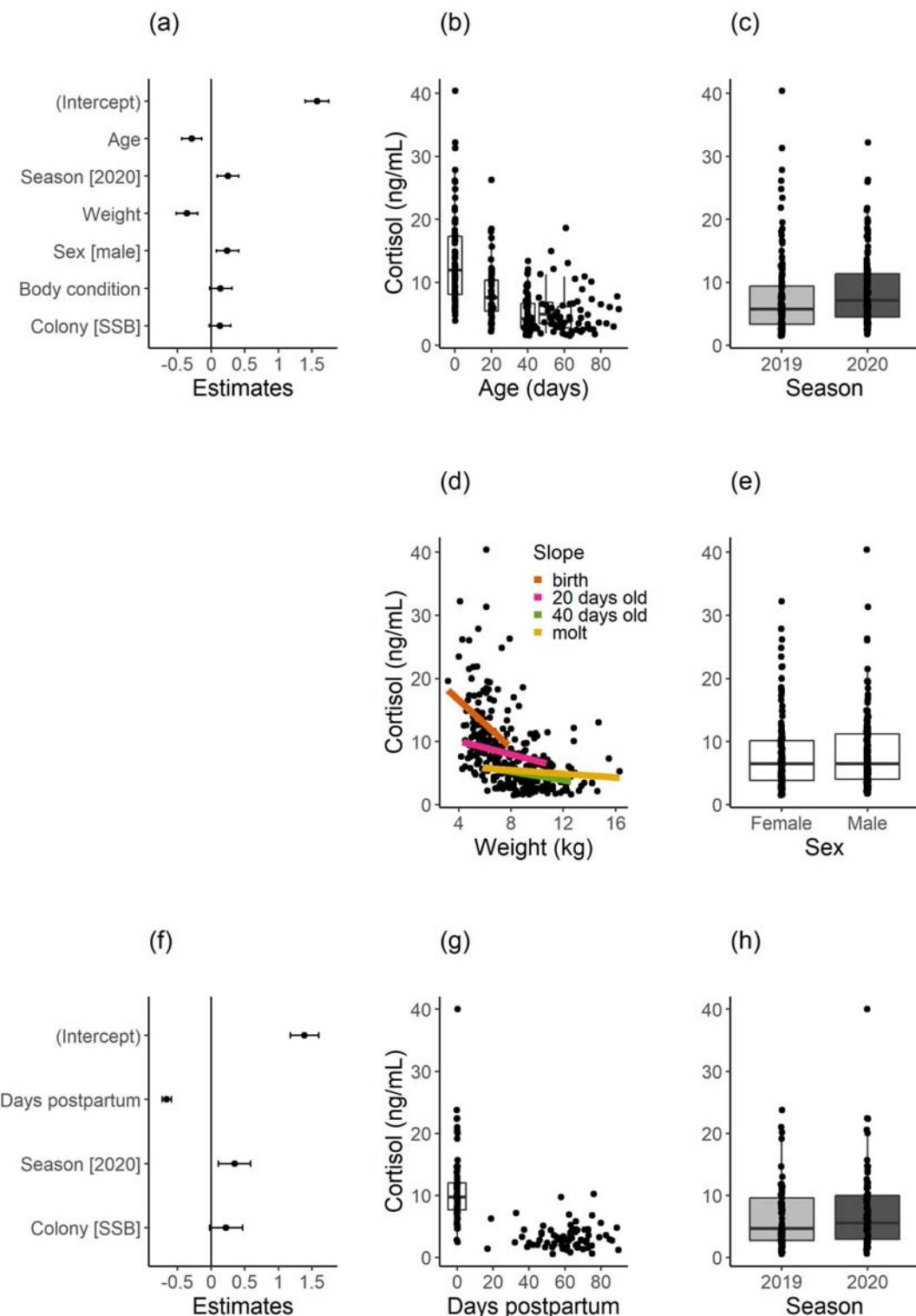
797

798 **Funding**

799 This work was supported by the German Research Foundation (DFG) as part of the
800 SFB TRR 212 (NC³) (project numbers 316099922, 396774617). It was also supported

801 by the priority program “Antarctic Research with Comparative Investigations in
802 Arctic Ice Areas” SPP 1158 (project number 424119118) and core funding from the
803 Natural Environment Research Council to the British Antarctic Survey’s Ecosystems
804 Program.


805 Figures


Figure 1: Location and study design. (a) Map of Bird Island, South Georgia, a sub-Antarctic island in the southern Atlantic Ocean. The

808 inset shows an enlarged view of the two study colonies from which mother-pup pairs were sampled. Freshwater Beach (FWB, shown in
809 blue) and Special Study Beach (SSB, shown in red) are separated by approximately 200 meters. (b) We employed a fully crossed
810 sampling scheme involving the collection of saliva samples from a total of 100 pairs from the two colonies in two successive breeding
811 seasons, the first of which was coincidentally a year of particularly low food availability. (c) Each focal mother was sampled twice in a
812 season while pups were sampled every 20 days from birth until weaning.

813

814
815 Figure 2: Posterior distributions of heritability (h^2) estimates for baseline cortisol. A
816 simple pedigree (mother-offspring pairs) for the entire dataset and a custom 85K SNP
817 array for the 95 individuals sampled in the 2019 season were used to calculate the
818 relatedness matrix. The modes and highest posterior density intervals of the posterior
819 distributions are shown as points and bars, respectively.
820

821
822

Figure 3: Generalized linear mixed models for pup (a – e) and mother (f – h) baseline

823 cortisol values. Estimates \pm 95% confidence intervals for all fixed effects included in
824 the best fit models for pups and mothers are shown in panels a and f, respectively.
825 Significant main effects for both models are shown in panels b – e and panels g – h,
826 respectively. Boxes show median values \pm 75% percentiles with the vertical lines
827 indicating 95% confidence intervals. Further details of the model output can be found
828 in Table 1.

829

830 **Tables**

831 Table 1: Parameter estimates from the best fit generalized linear mixed models of (a) pup and
832 (b) maternal baseline cortisol. Random intercepts were included for each individual to account
833 for repeated measures. Estimates together with their 95% confidence intervals (CI) as well as
834 Wald *t*-values and chi-squared values are presented. Significant *p*-values are in bold. The
835 mean squared error (σ^2), between group variance (τ_{00}), Intraclass Correlation Coefficient
836 (ICC; the consistency within an individual across multiple measurements), the sample size (n)
837 and total number of observations, as well as the variance explained by the fixed effects
838 (marginal R^2) and variance explained by both fixed and random effects (conditional R^2) are
839 given.

840

(a) Pup baseline cortisol					
Fixed effects	Estimates	CI	<i>t</i>	<i>chi-squared</i>	<i>p</i>
(Intercept)	1.58	1.40 – 1.75	17.75		<0.001
Age	-0.29	-0.44 – -0.14	-3.70	13.68	<0.001
Season [2020]	0.25	0.09 – 0.41	3.00	8.99	0.003
Weight	-0.36	-0.52 – -0.20	-4.44	19.71	<0.001
Sex [male]	0.24	0.08 – 0.41	0.09	8.11	0.004
Body condition	0.14	-0.02 – 0.31	1.68	2.83	0.093
Colony [SSB]	0.13	-0.03 – 0.29	0.08	2.60	0.107
Random effect					
σ^2	0.18				
τ_{00} ID	0.05				
ICC	0.39				
n ID	96				
Observations	290				
Marginal R^2 / conditional R^2	0.440 / 0.657				
(b) Maternal baseline cortisol					
Fixed effects	Estimates	CI	<i>t</i>	<i>chi-squared</i>	<i>p</i>
(Intercept)	1.39	1.18 – 1.60	12.93		<0.001
Days postpartum	-0.66	-0.73 – -0.59	-18.62	347.01	<0.001
Season [2020]	0.35	0.11 – 0.59	2.87	8.25	0.004
Colony [SSB]	0.22	-0.02 – 0.47	1.82	3.32	0.068

Random effect	
σ^2	0.16
τ_{00} ID	0.12
ICC	0.43
n ID	92
Observations	145
Marginal R^2 / conditional R^2	0.603 / 0.774

841