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Abstract

Rickettsia are intracellular bacteria originally described as arthropod borne pathogens that are
emerging as a diverse group of often biologically important, non-pathogenic symbionts of
invertebrates and microeukaryotes. However, sparse genomic resources for symbiotic strains and
for the sister genus (Candidatus Megaira) inhibit our understanding of Rickettsia evolution and
biology. Here, we present the first closed genomes of Ca. Megaira from an alga (Mesostigma
viride), and Torix Rickettsia from midge (Culicoides impunctatus) and bed bug (Cimex lectularius)
hosts. Additionally, we sequenced and constructed draft genomes for Ca. Megaira from another
alga (Carteria cerasiformis), Transitional group Rickettsia from tsetse fly (Glossina morsitans
submorsitans), and Torix Rickettsia from a spider mite (Bryobia graminum). We further extract 22
draft genomes from arthropod genome sequencing projects, including 1 Adalia, 4 Transitional, 1
Spotted Fever, 7 Torix, 7 Belli and the first Rhyzobius and Meloidae Rickettsia group genomes. We
used new and existing Rickettsia genomes to estimate the phylogeny and metabolic potential
across groups and reveal transitions in genomic properties. These data reveal Torix as unique
amongst currently described Rickettsia, with highly distinct and diverse accessory genomes. We
confirm the presence of a third subclade of Torix, previously only known from gene marker
sequences. Further, Torix share an intact pentose phosphate pathway with Ca. Megaira, not
observed in other Rickettsia. Considering the distinctness and diversity of Torix, we propose that
the group be named Candidatus Tisiphia. The wide host range of Ca. Tisiphia symbionts
necessitates onward research to understand the biological and physiological bases of Ca. Tisiphia-

host interactions.
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Importance statement

Members of the genus Rickettsia were originally identified as causative agents of mammalian vector-borne
disease. In the last 25 years we have recognised that many Rickettsia are arthropod symbionts, and sit
alongside a sister taxon, Ca. Megaira, which are symbiotic associates of microeukaryotes. The lack of
genomic information for symbiotic strains affects our ability to determine the evolutionary relationships
between strains and understand the biological underpinnings of the different symbioses. We clarify these
relationships by assembling 26 genomes of Rickettsia from understudied groups, and the first two Ca.
Megaira, from various insects and microeukaryotes. Of note, the accessory genome diversity and broad host
range of Torix Rickettsia parallels all other Rickettsia combined. This diversity, alongside the breadth of host
species, make the Torix clade an important hidden player in invertebrate biology and physiology. We argue

this clade should be given its own genus status, for which we propose Ca. Tisiphia.
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Introduction
Symbiotic bacteria are vital to the function of most living eukaryotes, including microeukaryotes,

fungi, plants, and animals (Boettcher et al., 1996; Clay et al., 2005; Douglas, 2011; Fujishima &
Kodama, 2012). The symbioses formed are often functionally important to the host with effects
ranging from mutualistic to detrimental. Mutualistic symbionts may provide benefits through the
biosynthesis of metabolites, or by protecting their hosts against pathogens and parasitoids (Hendry
et al., 2014; Oliver et al., 2010). Meanwhile parasitic symbionts can be detrimental to the host due
to resource exploitation or through reproductive manipulation that favours its own transmission
over the host’s (Engelstadter & Hurst, 2009; Leclair et al., 2017). Across these different symbiotic

relationships, symbionts are often important determinants of host ecology and evolution.

The Rickettsiales (Alphaproteobacteria) represent an order of obligate intracellular bacteria that
form symbioses with a variety of eukaryotes (Weinert et al., 2015). Within Rickettsiales, the family
Rickettsiaceae represent a diverse collection of bacteria that infect a wide range of eukaryotic hosts
and can act as symbionts, parasites, and pathogens. Perhaps the best-known clade of
Rickettsiaceae is the genus Rickettsia, which was initially described as the cause of spotted fever
and other rickettsioses in vertebrates that are transmitted by ticks, lice, fleas and mites (Angelakis

& Raoult, 2017).

Rickettsia have been increasingly recognised as heritable arthropod symbionts. Since the first
description of a maternally inherited male-killer in ladybirds (Werren et al., 1994), we now know
that heritable Rickettsia are common in arthropods (Pilgrim et al., 2021; Weinert et al., 2009).
Further, Rickettsia-host symbioses are diverse, with the symbiont capable of reproductive
manipulation, nutritional and protective symbiosis, as well as influencing thermotolerance and
pesticide susceptibility (Bodnar et al., 2018; Brumin et al., 2011; Chiel et al., 2009; Giorgini et al.,
2010; Hurst et al., 1994; Kontsedalov et al., 2008; tukasik et al., 2013).

Our understanding of the evolution and diversity of the genus Rickettsia and its allies has increased
in recent years. Weinert et al. (2009) defined 13 different groups of Rickettsia with two early
branching clades that appeared genetically distant from other members of the genus. The first of
these was defined from a symbiont of Hydra and was named the Hydra group Rickettsia, which has
since been assigned its own genus status, Candidatus Megaira (Schrallhammer et al., 2013). Ca.
Megaira forms a sister clade to Rickettsia and is common in ciliate protists, amoebae, chlorophyte

and streptophyte algae, and cnidarians (Lanzoni et al., 2019). Members of this clade are found in
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hosts from aquatic, marine and soil habitats which include model organisms (e.g., Paramecium,
Volvox) and economically important vertebrate parasites (e.g., Ichthyophthirius multifiliis, the ciliate
that causes white spot disease in fish) (Lanzoni et al., 2019). Whilst symbioses between Ca. Megaira
and microeukaryotes are pervasive, there is no complete publicly available genome and the impact

of these symbioses on the host are poorly understood.

A second early branching clade was first described from Torix tagoi leeches and is commonly coined
Torix Rickettsia (Kikuchi & Fukatsu, 2005). Symbionts in the Torix clade have since been found in a
wide range of invertebrate hosts from midges to freshwater snails, and in a fish-parasitic amoeba
(Pilgrim et al., 2021). The documented diversity of hosts is wider than other Rickettsia groups,
which are to date only found in arthropods and their associated vertebrate or plant hosts (Weinert
et al., 2009). Torix clade Rickettsia are known to be heritable symbionts, but their impact on host
biology is poorly understood, despite the economic and medical importance of several hosts (inc.
bed bugs, black flies, and biting midges). Rare studies have described the potential effects on the
host, which include: larger body size in leeches (Kikuchi & Fukatsu, 2005); a small negative effect on
growth rate and reproduction in bed bugs (Thongprem et al., 2020); and an association with

parthenogenesis in Empoasca Leafhoppers (Aguin-Pombo et al., 2021).

Current data seems to suggest an emerging macroevolutionary scenario where the members of
Rickettsia-Megaira clade originated as symbionts of microeukaryotes, before diversifying to infect
invertebrate symbionts. The Torix Rickettsia retained a broad range of hosts from microeukaryotes
to arthropods. The remaining members of the genus Rickettsia evolved to be arthropod heritable
symbionts and vector-borne pathogens. However, a lack of genomic and functional information for
symbiotic clades limits our understanding of evolutionary transitions within Rickettsia and its sister
groups. No Ca. Megaira genome sequences are currently publicly available and of the 165 Rickettsia
genome assemblies available on the NCBI (as of 29/04/21), only two derive from the Torix clade
and these are both draft genomes. In addition, dedicated heritable symbiont clades of Rickettsia,
such as the Rhyzobius group, have no available genomic data, and there is a single representative
for the Adalia clade. Despite the likelihood that heritable symbiosis with microeukaryotes and
invertebrates was the ancestral state for this group of intracellular bacteria, available genomic

resources are heavily skewed towards pathogens of vertebrates.

In this study we establish a richer base of genomic information for heritable symbiont Rickettsia

and Ca. Megaira, then use these resources to clarify the evolution of these groups. We broaden
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available genomic data through a combination of targeted sequencing of strains without complete
genomes, and metagenomic assembly of Rickettsia strains from arthropod genome projects. We
report the first closed circular genome of a Ca. Megaira symbiont from a streptophyte alga
(Mesostigma viride) and provide a draft genome for a second Ca. Megaira from a chlorophyte
(Carteria cerasiformis). In addition, we present the first complete genomes of two Torix Rickettsia
from a midge (Culicoides impunctatus) and a bed bug (Cimex lectularius) as well as a draft genome
for Rickettsia from a tsetse fly (Glossina morsitans submorsitans, an important vector species), and
a new strain from a spider mite (Bryobia graminum). A metagenomic approach established a
further 22 draft genomes for insect symbiotic strains, including the first Rhyzobius and Meloidae
group draft genomes. We utilize these to carry out pangenomic, phylogenomic and metabolic

analyses of our extracted genome assemblies, with comparisons to existing Rickettsia.
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Methods

We employed two different workflows to assemble genomes for Ca. Megaira and Rickettsia
symbionts (Figure 1). A) Targeted sequencing and assembly of focal Ca. Megaira and Torix
Rickettsia. B) Assembly from SRA deposits of Ca. Megaira from Mesostigma viride NIES296 and the
29 arthropods identified in Pilgrim et al (2021) that potentially harbour Rickettsia. These were
analysed alongside previously assembled genomes from the genus Rickettsia, and the outgroup

taxon Orientia tsutsugamushi.

Extraction from long read genomes
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Figure 1. Workflow diagram for extraction, assembly and analyses performed in this study. Purple highlights Torix Rickettsia and
orange highlights Ca. Megaira and red highlights Transitional Rickettsia. A full resolution version can be found here:
https.//doi.org/10.6084/m9.figshare.15081975.

DNA preparation, sequencing strategies and symbiont assembly methodologies varied between
species. Methods are summarised in Figure 1 and detailed in supplementary material

https://doi.org/10.6084/m9.figshare.14865582. The exact pipeline used to assemble genomes from

Short Read Archive (SRA) data can be found here: https://figshare.com/s/d1155765b523a6379443.

Sample collection for targeted genome assembly
Cimex lectularius were acquired from the ‘S1’ isofemale colony maintained at the University of

Bayreuth described in Thongprem et al (2020). Culicoides impunctatus females were collected from
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a wild population in Kinlochleven, Scotland (56° 42' 50.7"N 4° 57' 34.9""W) on the evenings of the
2nd and 3rd September 2020 by aspiration. Carteria cerasiformis strain NIES 425 was obtained from
the Microbial Culture Collection at the National Institute for Environmental Studies, Japan. The
Glossinia morsitans submorsitans specimen Gms8 was collected in Burkina Faso in 2010 and
Rickettsia infection was present alongside other symbionts as described in Doudoumis et al. (2017).

The assembly itself is a result of later thesis work (Blow, 2017).

A Bryobia mite community was sampled from herbaceous vegetation in Turku, Finland. The
Moomin isofemale line was established by isolating a single adult female and was maintained on
detached leaves of Phaseolus vulgaris L. cv Speedy at 25 °C, 60 % RH, and a 16:8 light:dark
photoperiod. The Moomin spider mite line was morphologically identified as Bryobia graminum by
Prof Eddie A. Ueckermann (North-West University).

Previously published Rickettsia genomes

A total of 86 published Rickettsia genomes, and one genome from Orientia tsutsugamushi were
retrieved from the European Nucleotide Archive and assessed with CheckM v1.0.13 (Parks et al.,
2015). Inclusion criteria for genomes were high completeness (CheckM > 90%), low contamination
(CheckM < 2%) and low strain heterogeneity (Check M < 50%) except in the case of Adalia for which
there is only one genome (87.6% completeness). Filtering identified 76 high quality Rickettsia
genomes that were used in all subsequent analyses (S1

https://figshare.com/s/198c88c6e3ea5553192e).

Anvi'o 7 (Eren et al., 2021) was used to construct a pangenome for Rickettsia. Included in this were
the 22 MAGs retrieved from SRA data, 2 Ca. Megaira genomes and 4 targeted Torix Rickettsia
genomes, and one transitional group Rickettsia genome acquired in this study. To these were
added the 76 published and 1 Orientia described above, giving a total of 104 genomes. Individual
Anvi’o genome databases were additionally annotated with HMMER, KofamKOALA, and NCBI COG
profiles (Aramaki et al., 2020; Eddy, 2011; Galperin et al., 2021). For the pangenome itself,
orthologs were identified with NCBI blast, mcl inflation was set to 2, and minbit was 0.5. Genomes
were arranged according to cluster presence absence and average nucleotide sequence identity
was calculated using pyANI (Pritchard et al., 2016). See
https://figshare.com/s/d1155765b523a6379443 for the exact code used in this section.
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KofamKOALA annotation (Aramaki et al., 2020) in Anvi-o 7 was used to estimate completeness of
metabolic pathways. Then Pheatmap (Kolde, 2019) in R 3.4.4 (R Core Team, 2020) was used to
produce heatmaps of metabolic potential (figure 7). Annotations for function and Rickettsia group

were added post hoc in Inkscape.

The biotin operon found in the genome Rhyzobius Rickettsia Oopac6é was identified from metabolic
prediction (figure 7). To confirm Oopacé6 carries a complete biotin pathway that shares ancestry
with the existing Rickettsia biotin operon, Oopacé biotin was compared to biotin pathways from
five other related symbionts: Cardinium, Lawsonia, Buchnera aphidicola, Rickettsia buchneri, and
Wolbachia (Seemann, 2014). Clinker (Gilchrist & Chooi, 2021) with default options was used to

compare and visualise the similarity of genes within the biotin operon region of all 6 bacteria.

All generated draft and complete reference genomes were annotated using the NCBI’s Prokaryotic
Genome Annotation Pipeline (PGAP) (Tatusova et al., 2016). Secondary metabolite biosynthetic
gene clusters were identified using AntiSMASH version 6.0 (Blin et al., 2021) along with Norine

(Flissi et al., 2019) which searched for similarities to predicted non-ribosomal peptides.

Functional enrichment analyses between the main Rickettsia clade and the Torix — Ca. Megaira
clades were performed using the Anvi’o program anvi-get-enriched-functions-per-pan-group and
the “COG_FUNCTION” as annotation source. A gene cluster presence - absence table was exported
using the command “anvi-export-tables”. This was used to create an UpSet plot using the R package
ComplexUpset (Krassowski et al., 2020; Lex et al., 2014) to visualize unique and shared gene
clusters between different Rickettsia groups. A gene cluster was considered unique to a specified
Rickettsia group when it was present in at least one genome belonging to that group. Gene cluster
accumulation curves were performed for the pan-, core- and unique-genomes based on the same
presence-absence matrix using a custom-made R script (Siozios, 2021). In each case the cumulative
number of gene clusters were computed based on randomly sampled genomes using 100
permutations. The analysis was performed separately for each of the five major Rickettsia groups as
well as the complete Rickettsia dataset. Curves were plotted using the ggplot2 R package

(Wickham, 2016).

All information on extra genomes can be found at https://doi.org/10.6084/m9.figshare.14865582

and the code pipeline employed can be found at https://figshare.com/s/d1155765b523a6379443.
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The single-copy core of all 104 genomes was identified in Anvi’o 7 and is made up of 74 single-copy
gene (SCG) clusters. Protein alignments from SCG were extracted and concatenated using the
command “anvi-get-sequences-for-gene-clusters”. Maximum likelihood phylogeny was constructed
in IQ-TREE v2.1.2 (Nguyen et al., 2015). Additionally, 43 ribosomal proteins were identified through
Anvi’o 7 to test phylogenomic relationships. These gene clusters were extracted from the
pangenome and used for an independent phylogenetic analysis SUPPLEMENTARY FIG. The best
model according to the Bayesian Information Criterion (BIC) was selected with Model Finder Plus
(MFP) (Kalyaanamoorthy et al., 2017) as implemented in IQ-TREE; this was JTTDCMut+F+R6 for core
gene clusters and JTTDCMut+F+R3 for ribosomal proteins. Both models were run with Ultrafast
Bootstrapping (1000 UF bootstraps) (Hoang et al., 2018) with Orientia tsutsugamushi as the

outgroup.

The taxonomic placement of Oopac6, Ppecl3 and Dallo3 genomes within the Rhyzobius, Meloidae
and Belli groups respectively were confirmed in a smaller phylogenetic analysis, performed as
detailed in (Pilgrim et al. 2021) using reference MLST sequences (g/tA, 16s rRNA, 17kDa, COI) from

other previously identified Rickettsia profiles (S1 https://figshare.com/s/198c88c6e3ea5553192¢). The

selected models used in the concatenated partition scheme were as follows: 16S rRNA:

TIM3e+l+G4; 17KDa: GTR+F+I+G4; COIl: TPM3u+F+I+G4; gltA: K3Pu+F+I+G4a.

A nearest neighbour network was produced for core gene sets with default settings in Splitstree4 to
further assess distances and relationships between Rickettsia, Ca. Megaira and Torix clades. All
annotation was added post hoc in Inkscape. Furthermore, recombination signals were examined by
applying the Pairwise Homoplasy Index (PHI) test to the DNA sequence of each core gene cluster
extracted with Anvio-7. DNA sequences were aligned with MUSCLE (Edgar, 2004) and PHI scores

calculated for each of the 74 core gene cluster with PhiPack (Bruen et al., 2006).

The taxonomic identity for new and newly expanded groups was established with GTDB-Tk
(Chaumeil et al., 2020) to support the designation of new taxa through phylogenetic comparison of

marker genes against an online reference database.

Results and Discussion
We have expanded the available genomic data for several Rickettsia groups through a combination

of draft and complete genome assembly. This includes an eight-fold increase in available Torix-

10


https://figshare.com/s/198c88c6e3ea5553192e
https://doi.org/10.1101/2021.10.06.463315
http://creativecommons.org/licenses/by-nc-nd/4.0/

235

236

237
238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.06.463315; this version posted October 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

group genomes, and the first available genomes for Meloidae and Rhyzobius groups. We further

report the first reference genomes for Ca. Megaira.

The use of long-read sequencing technologies produced the first complete genomes for two
subclades of the Torix group (RiCimp-limoniae, RiClec-leech). Sequencing depth of the Rickettsia
genomes from C. impunctatus (RiCimp) and C. lectularius (RiClec) were 18X and 52X respectively.
The RiCimp genome provides the first evidence of plasmids in the Torix group (pRiCimp001 and
pRiCimp002). In addition, we assembled the first complete closed reference genome of Ca. Megaira

from Mestostigma viride (MegNEIS296) from previously published genome sequencing efforts.

General features of both genomes are consistent with previous genomic studies of the Torix group
(Table 1). A single full set of rRNAs (16S, 5S and 23S) and a GC content of ~¥33% was observed.
Notably, the two complete Torix group genomes show a distinct lack of synteny (see S2

https://doi.org/10.6084/m9.figshare.14866263), a genomic feature that is compatible with our

phylogenetic analyses that placed these two lineages in different subclades (leech/limoniae)
(figures 2 and 3). Of note within the closed reference genomes MegNEIS296 and RiCimp, is the
presence of a putative non-ribosomal peptide synthetase (NRPS) and a hybrid non-ribosomal
peptide/polyketide synthetase (NRPS/PKS) respectively (see S3
https://doi.org/10.6084/m9.figshare.14865570). Although, the exact products of these putative

pathways are uncertain, in silico prediction by Norine suggests close similarity with both cytotoxic
and antimicrobial peptides hinting at a potential defensive role (see S3

https://doi.org/10.6084/m9.figshare.14865570). A hybrid NRPS/PKS cluster has previously been

reported in Rickettsia buchneri on a mobile genetic element, providing potential routes for
horizontal transmission (Hagen et al., 2018). In addition, putative toxin-antitoxin systems similar to
the one associated with cytoplasmic incompatibility in Wolbachia have recently been observed on
the plasmid of Rickettsia felis in a parthenogenetic booklouse (Gillespie et al., 2015, 2018). Toxin-
endotoxin systems are thought to be part of an extensive bacterial mobilome network associated
with reproductive parasitism (Gillespie et al., 2018). A BLAST search found a very similar protein in
Oopacb to the putative large pLbAR toxin found in R. felis (88% aa identity), and a more distantly

related protein in the C. impunctatus plasmid (25% aa identity).
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Table 1. Summary of the complete Ca. Megaira and Torix Rickettsia genomes

Group Ca. Megaira Torix Rickettsia
Sub-group Leech Limoniae
Strain Name MegNIES296 RiCimp RiClec
Symbiont genome accession CP084576-CP084577 CP084573-CP084575 (CP084572
Host Mesostigma viride NIES-296  Culicoides impunctatus  Cimex lectularius
Raw reads accession SRR8439255, SRR16018514, SRR16018512,
SRX5120346 SRR16018513 SRR16018511
Total nucleotides 1,532,409 1,566,468 1,611,726
Chromosome size (bp) 1,448,425 1,469,631 1,611,726
Plasmids 1 (83,984 bp) 2 (77550bp + 19287bp) None
GC content (%) 33.9 32.9 32.8
Number of CDS 1,359 1,397 1,544
Avg. CDS length (bp) 998 900 874
Coding density (%) 88.5 86 84
rRNAs 3 3 3
tRNAs 34 34 35
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S2 Whole genome alignment between the complete Torix limoniae (RiCIMP) and Torix Leech (RiClec) genomes reveals complete lack
of synteny. Magenta represents forward matches and blue reverse matches https://doi.orq/10.6084/m39.figshare.14866263.
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S3. The circular chromosomes of A) a Torix group Rickettsia (RiCimp) and B) a Ca. Megaira sp. (MegNEIS296). From outside to in, the
circles represent: forward CDSs (Red), Reverse CDSs (blue), tRNAs (yellow) rRNAs (black), and GC content (green and magenta).
Highlighted are the predicted modules formed by non-ribosomal peptide synthase genes (domains) that define individual amino acids
in the synthesised peptide and show the catalytic domains within modules https://doi.orq/10.6084/m9.figshare.14865570.

Sequencing and de novo assembly of other Rickettsia and Ca. Megaira genomes.
Our direct sequencing efforts enabled assembly of draft genomes for a second Ca. Megaira strain

from the alga Carteria cerasiformis, and for Rickettsia associated with tsetse flies and Bryobia spider
mites. The Transitional Rickettsia from a wild caught Tsetse fly, RITSETSE, is a potentially chimeric
assembly since we identified an excess of biallelic sites when the raw Illlumina reads were mapped
back to the assembly. It is also likely that RITSETSE is not a heritable symbiont but comes from

transient infection from a recent blood meal.

From the SRA accessions, the metagenomic pipeline extracted 29 full symbiont genomes for
Rickettsiales across 24 host species. Five of 29 were identified as Wolbachia and discarded from
further analysis, one was a Rickettsia discarded for low quality, and another was a previously
assembled Torix Rickettsia, RiCNE (Pilgrim et al., 2017). Thus, 22 high quality Rickettsia
metagenomes were obtained from 21 host species. One beetle (SRR6004191) carried coinfecting
Rickettsia Lappe3 and Lappe4 (Table 2). The high-quality Rickettsia covered the Belli, Torix,
Transitional, Rhyzobius, Meloidae and Spotted Fever Groups (Table 2 and S1
https://figshare.com/s/198c88c6e3ea5553192¢).
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Beetles, particularly rove beetle (Staphylinidae) species, appear in this study as a possible hotspot
of Rickettsia infection. Rickettsia has historically been commonly associated with beetles, including
ladybird beetles (Adalia bipunctata), diving beetles (Deronectes sp.) and bark beetles (Scolytinae)
(Hurst et al., 1994; Kichler et al., 2009; Perlman et al., 2006; Weinert et al., 2009; Zchori-Fein et al.,
2006). Though a plausible and likely hotspot, this observation needs be approached with caution as

this could be an artefact of skewed sampling efforts.

All genome metadata and source information can be found here

https://figshare.com/s/198c88c6e3ea5553192e.
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299  Table 2. Brief summary of draft genomes generated during the current project and their associated hosts. Full metadata can be found
300 in S1 https://figshare.com/s/198c88c6e3ea’5553192e.
Strain Bacteria Group Number Total Host name Order
Biosample of length
Accession contigs (bp)
Blapp1l SAMN21822536 Belli 171 1266633  Bembidion Coleoptera
lapponicum
Btrans1 SAMN21822537 Belli 241 1417452  Bembidion nr. Coleoptera
transversale
OSAC:DRMaddison
DNA3205
Choog2 SAMN21822538 Belli 16 1357829  Columbicola Phthiraptera
hoogstraali
Cmasu2 SAMN21822539 Transitional 196 1295004 Ceroptres masudai Hymenoptera
Dallo3 SAMN21822540 Belli 196 990679 Diachasma alloeum Hymenoptera
Drufal SAMN21822541 Belli 14 1364611 Degeeriella rufa Phthiraptera
Earac4 SAMN21822542 Transitional 96 1350066 Ecitomorpha Coleoptera
arachnoides
Econnl SAMN21822543 Transitional 238 1070326 Eriopis connexa Coleoptera
Gbili3 SAMN21822544 Torix 171 1188102 Gnoriste bilineata Diptera
limoniae
Gdosol SAMN21822545 Belli 34 1420758 Graphium doson Lepidoptera
Lappe3 SAMN21822558 Torix 122 1368980 Labidopullus Coleoptera
limoniae appendiculatus
Lapped SAMN21822559 Torix 154 1332357  Labidopullus Coleoptera
limoniae appendiculatus
MegCarte- SAMN21822546 Ca. 72 1298707 Carteria cerasiformis Chlamydomonadales
ria Megaira
Ofont3 SAMN21822560 Adalia 91 1529137 Omalisus Coleoptera
fontisbellaquei
Oopacb SAMN21822548 Rhyzobius 181 1497231 Oxypoda opaca Coleoptera
Pantel SAMN21822549 Torix 70 1472610 Pseudomimeciton Coleoptera
limoniae antennatum
Pfluc4 SAMN21822550 Spotted 7 1251895 Proechinophthirus Phthiraptera
Fever fluctus
Group
Ppecl3 SAMN21822551 Belli 90 1426047  Pyrocoelia pectoralis Coleoptera
Psono2 SAMN21822552 Torix 163 1492063 Platyusa sonomae Coleoptera
limoniae
RIiTSETSE SAMN21822553 Transitional 172 1451997  Glossina morsitans Diptera
submorsitans
S2 SAMN21822554 Torix 103 1251484  Sericostoma Trichoptera
limoniae
Sanch3 SAMN21822555 Belli 181 1487154  Stiretrus anchorago Hemiptera
Slatil SAMN21822556 Transitional 109 1301763  Sceptobius lativentris Coleoptera
Ssp4 SAMN21822557 Torix 87 1231013  Sericostoma sp. HW- Trichoptera
limoniae 2014
moomin SAMN21822560 Torix 204 1137559  Bryobia graminum Trombidiformes
moomin
301
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302

303 Phylogeny, network, and recombination
304 The network and phylogeny illustrate the distance of Torix from Ca. Megaira and other Rickettsia,

305 along with an extremely high level of within-group diversity in Torix compared to any other group
306 (Figures 2 and 3). The phylogenies generated using core genomes are consistent with previously
307 identified Rickettsia and host associations using more limited genetic markers. For instance, Pflucd
308 from Proechinophthirus fluctus lice is grouped on the same branch as a previously sequenced

309 Rickettsia from a different individual of P. fluctus. Four of 22 genomes from the SRA screen are
310 identified as Transitional, 1 is in Spotted Fever Group, 1 is Adalia, 8 are Belli and 7 are Torix

311 limoniae. Targeted sequences were confirmed as: Torix limoniae (RiCimp), Torix leech (RiClec),

312 Transitional (RiITSETSE), Ca. Megaira (MegCarteria and MegNEIS296), and a new Torix clade,

313  Moomin (Moomin). The new Torix include one double infection giving a total of 10 new genomes
314 across 9 potential host species. The double infection is found within the rove beetle Labidopullus

315 appendiculatus, forming two distinct lineages, Lappe3 and Lappe4 (Fig 2 and 3).

316 In addition, the pre-existing Rickettsia helvetica, which is typically cited as a member of the Spotted
317 Fever group as a result of its first description in 1993 (Beati et al., 1993; Chisu et al., 2017), seems to
318 form its own group in all trees and networks (figure 2, 3 and

319 https://doi.org/10.6084/m9.figshare.14865606 ). We conclude from this that Rickettsia helvetica is

320 most similar to Scapularis group Rickettsia, but because it does not fall into the same clade in any

321 tree or network, it is likely that the strain belongs to a distinct lineage of tick-borne Rickettsia.
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Figure 2. Rickettsia and Ca. Megaira maximum likelihood (ML) phylogeny constructed from 74 core gene clusters extracted from the
pangenome. New genomes are indicated by A and bootstrap values based on 1000 replicates are indicated with coloured circles.
New complete genomes are: RiCimp, RiClec and MegNEIS296. A full resolution version can be found here:
https://doi.org/10.6084/m9.figshare.15081975.
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Figure 3. Nearest Neighbour Network, displaying the distances between the 74 core gene sets across all 104 Rickettsia, Ca. Megaira
genomes, and the outgroup Orientia. New genomes are indicated with bold text. A full resolution version can be found here:

https://doi.orq/10.6084/m39.figshare.15081975.

We also report the first putative Rhyzobius Rickettsia genomes extracted from the staphylinid

beetle Oxypoda opaca (Oopac6) and Meloidae Rickettsia from the firefly Pyrocoelia pectoralis

(Ppec13). They have high completeness (S1 https://figshare.com/s/198c88c6e3ea5553192¢), low

pseudogenisation, and consistently group away from the other draft and completed genomes

(Figures 2 and 3). MLST analyses demonstrate that these bacteria are most like the Rhyzobius and

Meloidae groups described by Weinert et al. (2009) (see S5

https://doi.org/10.6084/m9.figshare.14865600). The pangenome and metabolic profile of this draft

genome suggests that Meloidae is a sister group to Belli and that Rhyzobius Rickettsia is

superficially similar to Belli and Transitional groups. The Rhyzobius-group symbiont is

phylogenetically distant from most Rickettsia and is potentially a sister clade linking Torix and the

main Rickettsia clades. Further genome construction will help clarify this taxon and its relationship

to the rest of Rickettsia.
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346 S5 Phylogram of a maximum likelihood (ML) tree of 90 Rickettsia mutilocus profiles. The tree is based on 4 loci, 165 rRNA, 17KDa,
347  gitA, and COIl, under a partition model (2,781 bp total). https://doi.orq/10.6084/m39.figshare.14865600
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The sequencing data for the wasp, Diachasma alloeum, used here has previously been described to
contain a pseudogenised nuclear insert of Rickettsia material, but not a complete Rickettsia
genome (Tvedte et al., 2019). The construction of a full, non-pseudogenised genome with higher
read depth than the insect contigs, low contamination (0.95%) and high completion (93.13%)
suggests that these reads likely represent a viable Rickettsia infection in D. alloeum. However, these
data do not exclude the presence of an additional nuclear insert. It is possible for a whole symbiont
genome to be incorporated into the host’s DNA (Hotopp et al., 2007), and there are recorded
partial inserts of Ca. Megaira genomes in the Volvox carteri genome (Kawafune et al., 2015). The
presence of both the insert and symbiont need confirmation through appropriate microscopy

methods.

Recombination is low within the core genomes of Rickettsia and Ca. Megaira, but may occur
between closely related clades that are not investigated here. Across all genomes, the PHI score is
significant in 6 of the 74 core gene clusters, suggesting putative recombination events. However, it
is reasonable to assume that most of these may be a result of systematic error due to the divergent
evolutionary processes at work across Rickettsia genomes. Patterns of recombination can occur by
chance rather than driven by evolution which cannot be differentiated by current phylogenetic
methods (Murray et al., 2016). The function of each respective cluster can be found at

https://figshare.com/s/198c88c6e3ea5553192e.

Pangenome
Across all 104 genomes used in the pangenome analysis (figure 2, full data in S6

https://doi.org/10.6084/m9.figshare.14865576), Anvi’o identified 208 core gene clusters of which

74 are represented by single-copy genes. Bacterial strains of the different Rickettsia groups,
especially the neglected symbiotic Rickettsiaceae, seem to have large, open pangenomes an
indication of rapid evolution. As expected, the more genomes that are included in analyses, the

smaller the core genome extracted.

Torix is a distinctly separate clade sharing less than 70% ANI similarity to any Rickettsia or Ca.
Megaira genomes. It contains at least three groups that reflect its highly diverse niche in the
environment (figure 5) (Jain et al., 2018; Pilgrim et al., 2021; Rodriguez-R et al., 2021). Torix has the
most unique genes out of all the clades in this study followed by Ca. Megaira and Belli clades (figure

6). Rarefaction gene accumulation analysis suggest that Torix is the group where each additional
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genome included increases the pangenome repertoire to the greatest extent (figure 7). Torix group
is thus more diverse in terms of genome content and size of the pangenome than other Rickettsia

groups.

Rickettsia lineages group together based on gene presence/absence and produce repeated patterns
of accessory genes that reliably occur within each group (figure 2). ANI scores are also strongest
within groups, while genomes tend to share lower similarity outside of their group (figure 4). This is
particularly apparent in Torix and Ca. Megaira which are divergent from the main Rickettsia clade

(figure 3 and 5).
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Gene content and metabolic analyses
Rickettsial genomes extracted from SRA samples are generally congruent with the metabolic

potential of their respective groups (Figure 8). Torix and Ca. Megaira have complete pentose
phosphate pathways (PPP); a unique marker for these groups which seems to have been lost in the
other Rickettsia clades. The PPP generates NADPH, precursors to amino acids, and is known to
protect against oxidative injury in some bacteria (Christodoulou et al., 2018), as well as conversion
of hexose monosaccharides into pentose used in nucleic acid and exopolysaccharide synthesis. The
PPP has also been associated with establishing symbiosis between the Alphaproteobacteria
Sinorhizobium meliloti and its plant host Medicago sativa (Hawkins et al., 2018). This pathway has
previously been highlighted in Torix (Pilgrim et al., 2017) and its presence in all newly assembled
Torix and Ca. Megaira draft genomes consolidates its importance as an identifying feature for these

groups (Figure 8, S1 https://figshare.com/s/198c88c6e3ea5553192¢). The PPP is likely an ancestral

feature that was lost in the main Rickettsia clade.

Glycolysis, gluconeogenesis and cofactor and vitamin metabolism are absent or incomplete across

all Rickettsia, except the Rhyzobius group member, Oopacé (Figure 8). Oopac6 has a complete
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biotin synthesis pathway that is related to, but distinct from, the Rickettsia biotin pathway first
observed in Rickettsia buchneri (See S7 https://doi.org/10.6084/m9.figshare.14865567) (Gillespie

et al., 2012). Based on the gene cluster comparison plot and an independent blastx search, the GIyA
gene in Rickettsia buchneri appears to be a misidentified bioF gene (see S7

https://doi.org/10.6084/m9.figshare.14865567). Additionally, the insect SRA sample was not

infected with Wolbachia, making it unlikely that the presence of the biotin operon is a result of
misassembly. Animals can’t synthesize B-vitamins, so they either acquire them from diet or from
microorganisms that can synthesize them. Oopac6 has retained or acquired a complete biotin
operon where this operon is absent in other members of the genus. Biotin pathways in insect
symbionts can be an indicator of nutritional symbioses (Douglas, 2017), so Rhyzobius Rickettsia
could contribute to the feeding ecology of the beetle O. opaca. However, like other aleocharine
rove beetles, O. opaca is likely predaceous, omnivorous or fungivorous (analysis of gut contents
from a related species, O. grandipennis, revealed a high prevalence of yeasts: Klimaszewski et al.,
2013). We posit no obvious reason for how these beetles benefit from harbouring a biotin-
producing symbiont. One theory is that this operon could be a ‘hangover’ from a relatively recent
host shift event and may have been functionally important in the original host. Similarly, if the
symbiont is undergoing genome degradation, a once useful biotin pathway may be present but not
functional (Blow et al., 2020). As this is the only member of this group with a complete genome so

far, further research is required to firmly establish the presence and function of this pathway.

Wolbachia str. KTCN
AB934989:1-7721

® bioD
@ bioF
' bioB
bioA
Hypothetical protein

Cardinium str. cEper1
HE983595 (reversed):9585-359

® bioC/tam

Oopacé
€_000000000113nAN667-10480
Rickettsia buchneri
CMOG0772_biotin_extended:505-11038
Lawsonia intracellularis str. LR189
PRODO1000001 (reversed):10801-1
Buchnera aphidicola
AE016826:2508-13777

|

2.5kb 0 Identity (%) 100

S7 Biotin operon of the Rhyzobius Rickettsia, Oopac6, and its surrounding genes compared with other known biotin pathways in other
related symbionts. Similarity scores in the black boxes refer to the percentage identity between the genes of the operon above or
below it, further illustrated by a greyscale bar. Operons are ordered by overall similarity, showing the closest relationships between
all 6. https.//doi.org/10.6084/m9.figshare.14865567

A 75% complete dTDP-L-rhamnose biosynthesis pathway was observed in 4 of the draft belli

assemblies (Gdoso1, Choog2, Drufal, Blapp1) (figure 8). Two host species are bird lice (Columbicola
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hoogstraali, Degeeriella rufa), one is a butterfly (Graphium doson), and one is a ground beetle
(Bembidion lapponicum). dTDP-L-rhamnose is an essential component of human pathogenic
bacteria like Pseudomonas, Streptococcus and Enterococcus, where it is used in cell wall
construction (van der Beek et al., 2019). This pathway has also been utilized in the synthesis of
plant cell walls (Jiang et al., 2021), may be involved in the moulting process of Caenorhabditis
elegans (Feng et al., 2016), and is a precursor to rhamnolipids that are used in quorum sensing

(Daniels et al., 2004). In the root symbiont Azospirillium, disruption of this pathway alters root

colonisation, lipopolysaccharide structure and exopolysaccharide production (Jofré et al., 2004). No

Rickettsia from typically pathogenic groups assessed in figure 8 has this pathway, and the hosts of
these four bacteria are not involved with human or mammalian disease. Presence in feather lice
provides little opportunity for this Rickettsia to be pathogenic as feather lice are chewers rather

than blood feeders, and Belli group Rickettsia more generally are rarely pathogenic. Further, this

association does not explain its presence in a butterfly and ground beetle; it is most likely that this

pathway, if functional, would be involved in establishing infection in the insect host or host-

symbiont recognition.
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Figure 8. Heatmaps of predicted KEGG pathway completion estimated in Anvi’o 7, separated by function and produced with
Pheatmap. Pathways of interest are highlighted: A) The pentose phosphate pathway only present in Torix and Ca. Megaira, B) the
biotin pathway present only in the Rhyzobius Rickettsia Oopac6, C) NAD biosynthesis only present in Moomin Rickettsia, D) dTDP-L-
rhamnose biosynthesis pathway in Gdosol, Choog2, Drufal, and Blapp1. SFG is Spotted Fever. A full resolution version can be found
here: https://doi.orq/10.6084/m9.figshare.15081975.
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In all analyses, Torix consistently cluster away from the rest of Rickettsia as a sister taxon. Despite
the relatively small number of Torix genomes, its within group diversity is greater than any
divergence between previously described Rickettsia in any other group (figures 2, 3 and 5).
Additionally, Torix shares characteristics with both Ca. Megaira and Rickettsia, but with many of its
own unique features (figures 6 and 8). The distance of Torix from other Rickettsia and Ca. Megaira
is confirmed in both the phylogenomic and metabolic function analyses to the extent that Torix
should be separated from Rickettsia and assigned its own genus. This is supported by GTDB-Tk
analysis which places all Torix genomes separate from Rickettsia (S1

https://figshare.com/s/198c88c6e3ea5553192¢) alongside ANI percentage similarity scores less

than 70% in all cases. To this end, we propose the name Candidatus Tisiphia after the fury

Tisiphone, reflecting the genus Ca. Megaira being named after her sister Megaera.

Conclusion
The bioinformatics approach has successfully extracted a substantial number of novel Rickettsia

and Ca. Megaira genes from existing SRA data, including the first putative Rhyzobius Rickettsia and
several Ca. Tisiphia (formerly Torix Rickettsia). Successful completion of two Ca. Megaira and two
Ca. Tisiphia genomes provide solid reference points for the evolution of Rickettsia and its sister
groups. From this, we can confirm the presence of a complete Pentose Phosphate Pathway in Ca.
Tisiphia and Ca. Megaira, suggesting that this pathway was lost during Rickettsia evolution. We
also describe the first Meloidae and Rhyzobius Rickettsia and show that Rhyzobius group Rickettsia
has the potential to be a nutritional symbiont due to the presence of a complete biotin pathway.
These new genomes provide a much-needed expansion of available data for symbiotic Rickettsia

clades and clarification on the evolution of Rickettsia from Ca. Megaira and Ca. Tisiphia.

Supporting information

All original genomes and raw readsets produced in this study can be accessed at Bioproject accession
PRINA763820 and all assemblies produced from previously published third party data can be accessed at
Bioproject PRINA767332.

Supplementary data and full resolution figures can be accessed on figshare here:
https://doi.org/10.6084/m9.figshare.c.5518182.v1
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