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Abstract

Microbial natural products, in particular secondary or specialized metabolites, are an
important source and inspiration for many pharmaceutical and biotechnological products.
However, bioactivity-guided methods widely employed in natural product discovery programs
do not explore the full biosynthetic potential of microorganisms, and they usually miss
metabolites that are produced at low titer. As a complementary method, the use of genome-
based mining in natural products research has facilitated the charting of many novel natural
products in the form of predicted biosynthetic gene clusters that encode for their production.
Linking the biosynthetic potential inferred from genomics to the specialized metabolome
measured by metabolomics would accelerate natural product discovery programs. Here, we
applied a supervised machine learning approach, the K-Nearest Neighbor (KNN) classifier, for
systematically connecting metabolite mass spectrometry data to their biosynthetic gene
clusters. This pipeline offers a method for annotating the biosynthetic genes for known,
analogous to known and cryptic metabolites that are detected via mass spectrometry. We
demonstrate this approach by automated linking of six different natural product mass spectra,
and their analogs, to their corresponding biosynthetic genes. Our approach can be applied to
bacterial, fungal, algal and plant systems where genomes are paired with corresponding MS/MS
spectra. Additionally, an approach that connects known metabolites to their biosynthetic genes
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potentially allows for bulk production via heterologous expression and it is especially useful for
cases where the metabolites are produced at low amounts in the original producer.

Significance

The pace of natural products discovery has remained relatively constant over the last
two decades. At the same time, there is an urgent need to find new therapeutics to fight
antibiotic resistant bacteria, cancer, tropical parasites, pathogenic viruses, and other severe
diseases. To spark the enhanced discovery of structurally novel and bioactive natural products,
we here introduce a supervised learning algorithm (K-Nearest Neighbor) that can connect
known and analogous to known, as well as MS/MS spectra of yet unknowns to their
corresponding biosynthetic gene clusters. Our Natural Products Mixed Omics tool provides
access to genomic information for bioactivity prediction, class prediction, substrate predictions,
and stereochemistry predictions to prioritize relevant metabolite products and facilitate their
structural elucidation.

Introduction

Microbial natural products (NPs), also referred to as secondary or specialized
metabolites, are often made by biosynthetic genes that are physically grouped into clusters
(biosynthetic gene clusters or BGCs). Its been found that algae and plants can also contain
BGCs, to some extent organized in a similar manner (1, 2). One of the challenges in the genome
mining field is to connect microbial metabolites to their BGCs. Even the genome of
Streptomyces coelicolor A3(2), one of the first sequenced microbial genomes, still contains a
number of cryptic BGCs (BGCs without known metabolites)(3). In 2011, the bioinformatics tool
antiSMASH (4) drastically improved the identification and annotation of BGCs based on
automated genome mining. Similarly, since 2018, the program BiG-SCAPE (5) can reliably
calculate the similarity between pairs of BGCs, grouping them into gene cluster families (GCFs).
Recently, a number of approaches and tools have been created to connect NPs to their
biosynthetic gene clusters, such as Pattern-based Genome Mining (6, 7), MetaMiner (8),
CycloNovo (9), and NPLinker (10), recently reviewed by Van der Hooft et al., 2020 (11).
However, most of these tools are not high-throughput or can only be used for a particular class
of BGC (e.g., peptides or BGCs homologous to known BGCs). It has been challenging to create a
systematic tool that can work at a repository scale to connect NP genotypes (BGCs) with their
phenotypes (for example MS/MS spectra from untargeted mass spectrometry fragmentation
profiles, LC-MS/MS). As a result, a large disparity exists between the number of known NPs
versus the number of known BGCs. For example, the recently designated cyanobacterial genus
Moorena has already yielded over 200 new metabolites, yet only a dozen of validated BGCs are
currently deposited for this genus in the expert-annotated Minimum Information about a
Biosynthetic Gene cluster (MIBiG) database (12). Connecting the molecules to the genes would
facilitate research into the ecological role and functions of the specialized metabolome by
studying the regulation of the expression of their biosynthetic gene clusters.

To begin to address this gene cluster annotation gap, we deployed a K-Nearest Neighbor
(KNN) algorithm that uses a similarity/absence BGC fingerprints and analogous
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84  similarity/absence MS/MS fingerprints to classify gene cluster family (GCF, a group of similar
85  BGCs) candidates for each MS/MS spectrum (Fig. 1). We recently sequenced draft
86 metagenomic-assembled genomes (MAGs) for 60 cyanobacteria, mostly from tropical marine
87  environments. The most complete drafts were reported in Leao et al., 2021 (13), and for these
88  we also obtained untargeted metabolomic data via LC-MS/MS (36 deposited in the PoDP
89  platform and 24 not published due to the quality of their paired MAGs). Despite the bad quality
90 of some of these MAGs, we could still annotated BGCs. As a first test for our NPOmix workflow,
91  using this cyanobacterial dataset, we connected curacin A’s MS/MS spectrum with its correct
92  GCF/BGC. The performance of our KNN approach was superior to using a Mantel correlation
93  method (the Jupyter notebook for this correlation is available at the GitHub repository:
94  https://github.com/tiagolbiotech/NPOmix). The major limitation for evaluation of our method
95  was the lack of available test data for structures that are linked to their MS/MS spectra and
96  biosynthetic gene clusters.
97 However, the training and testing set was expanded by the paired omics dataset from
98 the recently built Paired Omics Data Platform (PoDP) (14), and enabled a further evaluation of
99  our KNN tool (named NPOmix). The PoDP is the first community effort to make available
100 validated links between BGCs, structures, and MS/MS spectra. In the present work, we used 36
101  out of the 71 paired metadatasets (listed in Dataset S1, sheet one). We selected genomic
102  samples that contained a valid Genome ID or BioSample ID to aid in downloading them from
103  the National Center for Biotechnology Information (NCBI) database, resulting in 732
104 genomes/MAGs obtained from these 36 PoDP metadatasets. Following the same procedure of
105 the genomes, we also selected and assembled 1,034 metagenomes from part of these PoDP
106  datasets. Additionally, using already linked MS/MS-BGC information from the PoDP and from a
107  NPLinker dataset (10), we obtained validated data for eight metabolite families (major
108 compounds and analogs). These compound families were orfamides, albicidins, bafilomycin,
109 nevaltophin D, jamaicamide, hectochlorin, palmyramide and cryptomaldamide (totaling 15
110 reference MS/MS spectra due to the presence of analogs and sometimes more than one
111 spectrum per metabolite). By training with the BGC fingerprints and testing these 15 validated
112  links, we were able to correctly predict GCFs for 66.66% of the tested MS/MS fingerprints
113  (10/15 reference MS/MS spectra were correctly classified using k = 3). Well-annotated links can
114  be quickly prioritized by comparing substructures to mass differences in the fragmentation
115  spectrum and/or predicted structures. A two-dimensional comparison of both types of
116  fingerprints (BGC and MS/MS) can be a proxy for distinguishing some true positives from false
117  positives. Critically, we filtered for BGC-MS/MS links wherein the query MS/MS spectra were
118  mainly present in the same strains that the query BGCs were found (cutoff of 90% concordance
119  between both BGC and MS/MS fingerprints). Once the PoDP data was filtered, our approach
120  could connect BGCs with three types of mass spectra: known molecules (e.g., links that are
121  validated experimentally), analogs of known molecules (e.g., links not validated but similar to
122  validated reference spectra from the MS/MS database) or cryptic molecules (e.g., links without
123 any library match, absent from the MS/MS database). We exemplify how it is possible to
124  connect known BGCs to cryptic MS/MS spectra, new spectra that can be added to the current
125 MS/MS databases. The same approach can be used for connecting new BGCs to cryptic MS/MS
126  spectra that can be validated experimentally. While our approach uses unique fingerprints and
127  a machine learning approach for connecting metabolites to BGCs, it can be considered a type of
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128  Pattern-based Genome Mining (PBGM) which was previously reported by Doroghazi et al. in
129 2014 and Duncan et al. in 2015 (6, 7). PBGM is based on the idea that the distribution of a given
130 secondary metabolite should be comparable to the distribution of the BGCs responsible for

131  their production.

132 Generally, finding novel metabolites for cryptic BGCs or even known BGCs (e.g., novel
133  analogs) is very useful to accelerate natural products discovery, however, connection of known
134  metabolites to their biosynthetic gene clusters is also important. Newly linked BGCs for known
135 metabolites can lead to the discovery of new enzymatic processes. For example, in the strain
136  Anabaena variabilis ATCC 29413, a NRPS gene is responsible for the attachment of a serine

137  residue to generate the final mycosporine-like amino acids (MAA) product. However, in the

138  strain Nostoc punctiforme ATCC 29133, this same step is performed by an ATP-grasp ligase (15).
139  This highlights that different microbes can generate the same specialized metabolites through
140 different biosynthetic routes, and therefore, we believe that our NPOmix tool will assist with
141  the discovery of both novel metabolites as well as known metabolites with new biosynthesis.

142 Results and Discussion

143

144 The Natural Products Mixed Omics (NPOmix) Approach: Description of the Genomic and
145  Metabolomic Pipelines. To use the NPOmix approach (Fig. 1 shows a conceptual example using
146  only four samples), it is required to have a dataset of paired genomic and MS/MS information.
147  The genomicinformation can be either that of a genome or metagenome, and the MS/MS spectra
148  should be obtained via untargeted LC-MS/MS. Paired datasets have become available at the
149  Paired omics Data Platform (PoDP)(14), one of the first initiatives to gather paired genomic and
150 MS/MS information. Using BiG-SCAPE (5), each biosynthetic gene cluster (BGC) in the genome to
151  be queried undergoes a pairwise similarity comparison (Fig. 1A) to every other BGC in the query
152  set (e.g., the set of genomes used for the training, for example, the genomes downloaded from
153  the PoDP), and similarity scores are computed as “1 minus BiG-SCAPE raw distance” to assign
154  BGCs to Gene Cluster Families (GCFs), if possible. In order to create a BGC fingerprint (Fig. 1C),
155  we identify the similarity between the query BGC and each of the BGCs in each genome in the
156  training dataset. The BGC fingerprint that emerges is a series of columns for each compared
157 genome, the column value of which represents the similarity score between the query BGC and
158 the BGC to which it is maximally similar in a given genome (column). Similarity scores range from
159 0.0 to 1.0; identical BGCs have perfect similarity and are scored as 1.0 whereas a score of 0.8
160  would indicate that a homologous BGC is present in the genome. A score below the similarity
161  cutoff of 0.7 indicates that the queried BGC is likely absent in the genome. A similar process is
162  used to create MS/MS fingerprints (Fig. 1B); a query MS/MS spectrum is compared to all of the
163  MS/MS spectra in the query set. This query spectrum could be either a reference spectrum from
164  GNPS (16, 17) or a cryptic MS/MS spectrum from a new sample that contains a sequenced
165 genome and experimental MS/MS spectra. In the case of MS/MS fingerprints (Fig. 1D), GNPS
166  molecular networking was used to calculate the pairwise modified cosine score and then the
167  maximum similarity was identified between the query MS/MS spectrum and the many MS/MS
168  spectra in each experimental sample. This analysis only used the GNPS functions that are
169  required to calculate a modified cosine similarity score between a pair of MS/MS spectra. The
170  BGC fingerprints were used to create a training matrix (Fig. 1E) where rows are the maximum


https://doi.org/10.1101/2021.10.05.463235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463235; this version posted October 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

171  similarity scores for each BGC. Typically, this results in thousands of rows, and for our first release
172  of NPOmix, we have captured this analysis for 5,421 BGCs that were present in 1,040 networked
173  genomes/metagenomes (DNA samples can be downloaded using code from the GitHub
174  repository, notebook 1), where each column is a genome and each value is the maximum
175  similarity between the query BGC and the BGCs in this given genome. This BGC training matrix
176  can be fed into the K-Nearest Neighbor (KNN) algorithm in order to train it with the genomic
177  data. Additionally, one extra column is required in this BGC data matrix, a column that labels each
178  BGC fingerprint with a GCF so the KNN algorithm will know the fingerprint patterns that belong
179  together. The KNN algorithm plots the BGC fingerprints in the KNN feature space (in Fig. 1G). The
180 KNN feature space is exemplified by only two dimensions as 1,040 dimensional space is not
181 feasible to visualize (one dimension per sample). More details of how this multidimensional
182  plotting occurs are described in the Fig. S1. where 3 BGCs are plotted in the three-dimensional
183  space according to the scores from genomes A-C. The axis represent the genomes and the
184  similarity values are coordinates in three-dimensional space. Next, the MS/MS fingerprints form
185  a testing matrix (Fig. 1F), in this case, the matrix also contains 1,040 columns due to the 1,040
186  sets of paired experimental MS/MS spectra (samples can be downloaded using the ftp links from
187  Dataset S1, sheet two). For example, for our first release, this testing matrix contained 15 MS/MS
188  fingerprints (rows) for MS/MS reference spectra from the GNPS database (also present at the
189  PoDP). Each query MS/MS fingerprint (a row in the testing metabolomic matrix and columns are
190 the experimental MS/MS spectra per sample) are plotted into the same KNN feature space (Fig.
191  1G) so the algorithm can obtain the GCF labels for the nearest neighbors to the query MS/MS
192  fingerprint (e.g., for three most similar BGC neighbors, k = 3). We note that GCF labels can be
193  present more than once in the returned list if two or more BGC nearest neighbors belong to the
194  same GCF. This repetition on the GCF classification is a common behavior of the KNN approach.
195  Our approach is suitable for bacterial, fungal, algal and plant genomes and MS/MS spectra
196  obtained from the same organism. Metagenomes and metagenome-assembled genomes (MAGs)
197 can also be used instead of genomes, however, complete genomes are preferred. This KNN
198  approach also supports LC-MS/MS from fractions or from different culture conditions; multiple
199 LC-MS/MS files for the same genome were merged together into a single set of experimental
200 MS/MS spectra.

201

202

203
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213  Fig. 1. The genomics and metabolomics pipelines to use the proposed KNN approach for a

214  hypothetical dataset with 4 paired genomes-MS/MS samples. Representation of how to

215  calculate the similarity scores between BGCs (A) and between MS/MS spectra (B). Schematic of
216  how to create BGCs (C) and MS/MS (D) fingerprints using a paired genomics-metabolomics

217  dataset of four samples (genomes, metagenomes or MAGs)(samples A-D) and similarity scores
218 from BiG-SCAPE and GNPS. The dashed red line represents the selected cutoff of 0.7. The query
219 BGCiis highly similar to a BGC in sample B (indicating as identical BGC), while it is probably

220 absentin sample A and C. The BGC fingerprints are grouped together in a training matrix (E)
221 and the MS/MS fingerprints compose the testing matrix (F). All fingerprints are plotted in the
222  multi-dimensional KNN space (G, here represented in only 2D for simplification) where each
223  shape represents a BGC fingerprint and each X represents an MS/MS fingerprint. BGCs are

224  labeled according to one of the five GCFs (five different shapes). KNN ranking of neighbors is
225  based in the proximity between the query MS/MS fingerprint and the neighboring BGC

226  fingerprints. In this example, a KNN = 3 (three closest neighbors) is depicted. BGC = biosynthetic
227  gene cluster; MS/MS = mass fragmentation spectrum; KNN = K-Nearest Neighbor; BiG-SCAPE =
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228  software to calculate pairwise BGC-BGC similarity; Cosine score = modified cosine score from
229  GNPS to calculate pairwise spectrum-spectrum similarity.

230

231  Cyanobacterial dataset: connecting a known metabolite (link validated experimentally) with a
232 cyanobacterial BGC. Marine cyanobacteria living on coral reefs have resulted in the discovery
233  of many novel NPs (13, 18). We collected, sequenced and binned 60 cyanobacterial MAGs,

234  mainly from the NP rich genera of Moorena, Okeania, Symploca, Leptolyngbya, Oscillatoria and
235  Spirulina (13). Strains with good quality MAGs and paired LC-MS/MS data were published at
236  PoDP under the ID “864909ec-e716-4c5a-bfe3-ce3a169b8844.2”. We clustered 2,558 BGCs (not
237  including the BGCs from MIBiG) and we obtained high resolution LC-MS/MS for the same set of
238  marine cultures/environmental samples. Previous investigations (19—26) reported the discovery
239  of 8 cyanobacterial metabolites (Fig. 2) and their BGCs from a subset of these 60 marine

240 cyanobacteria. Hence, we used these 8 BGC-MS/MS links, with a total of 39 different MS/MS
241  spectra, to validate our KNN algorithm for a small, uniformly built and not so sparse dataset.
242  There are multiple spectra per compound due to different types of molecular ions (protonated,
243  sodiated, halogenated, etc.). From this relatively small dataset, we were already able to

244  connect one MS/MS spectrum to its correct BGC — curacin A (23), marked in red in Fig. 2 — thus
245  providing a fairly low precision of 1/39 (2.56%). However, the BGC fingerprints had a very small
246  number of similarity scores and it is expected that the fingerprints and the algorithm’s precision
247  would improve with a larger dataset with more complete BGCs (many of the 60 MAGs

248  contained several fragmented BGCs). Despite its low precision, this approach is already an

249  improvement over an earlier attempt that used a presence/absence Mantel correlation, as that
250 effort to connect genomes and metabolomes only yielded false positives for this same small
251  cyanobacterial dataset (Mantel correlation generated 51 GCF-MF links, all false positives).

252  Mantel correlation is an approach that combines two presence/absence matrices (one for

253  genomics and one for experimental MS/MS spectra) into a single output, creating a pairwise
254  association between a given row of the genomics matrix with a second row from the

255  metabolomics matrix. The Mantel correlation code is available in a Jupyter notebook found at
256  the GitHub repository: https://github.com/tiagolbiotech/NPOmix.

257
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259  Fig. 2. Structures of compounds used for validating links between BGC and MS/MS spectra for

260 the 60 cyanobacterial samples. Highlighted in red is curacin A, the one correct link that was
261  predicted via this KNN approach.
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264  PoDP dataset: connecting known metabolites (links validated experimentally) to PoDP BGCs.
265  To further validate our NPOmix approach, we used 36 out of 71 datasets from the PoDP (from
266  February 2021, listed at Dataset S1, sheet one). We selected genomic samples that contained a
267  valid Genome ID or BioSample ID to aid their downloading from the NCBI database and totaling
268 732 genomes/MAGs obtained from these 36 metadatasets. We also selected and assembled
269 1,034 metagenomes from two major metagenomic datasets: 1) MSV000082969 and PoDP ID
270  cd327ceb-f92b-4cd3-a545-39d29¢602b6b.1 - 556 cheetah fecal samples and environmental
271  samples; 2) MSV000080179 and PoDP ID 50f9540c-9c9c-44e6-956¢-87eabc960d7b.3 - The

272  American Gut Project (27) that contains fecal samples from 481 human subjects. These

273  (meta)genomes were automatically downloaded with the code shared at the GitHub repository
274  https://github.com/tiagolbiotech/NPOmix, notebook 1. The LC-MS/MS files can be downloaded
275  using “ftp” from links found at Dataset 1, sheet two. We were able to cluster 1,040

276  (meta)genomes that contained 5,681 BGCs (including 260 BGCs from the MIBiG database)

277  distributed into 997 GCFs. In the untargeted metabolomics data, we matched 3,248 LC-MS/MS
278  files to 15 GNPS (16, 17) reference library spectra in order to create the MS/MS fingerprints for
279  testing the KNN classification (one fingerprint per spectra). In the near future, we envision

280 creating a balanced, diverse and less sparse training dataset. To maximize precision rates in the
281  future, we plan to purchase cultures from collections that have well assembled genomes so we
282  can obtain the paired LC-MS/MS. However, the current dataset produced highly supportive
283  results by testing validated links from the PoDP, links generated by the Gerwick lab dataset, and
284  validated links used in the NPLinker publication (10). We attempted to test all 242 metabolite-
285  BGC links from NPLinker (totaling 2,069 unique MS/MS spectra, Dataset S1, sheet four), 109
286  manually added MS/MS spectra (connected to BGCs, annotated by experts at the PoDP, Dataset
287  S1, sheet three) and 406 MS/MS spectra from metabolites isolated by the Gerwick lab.

288  Although, most of these validated links were not present in the 1,040 paired (meta)genomes-
289  MS/MS samples from the PoDP (as NPLinker used BGCs from MIBiG and not PoDP) or their BGC
290 scores did not co-occur with their MS/MS scores because they were not present in the same
291 sample. Hence, our validation dataset was limited to 8 validated links found in the paired

292  (meta)genomes-MS/MS samples (orfamides, albicidins, bafilomycin, nevaltophin D,

293  jamaicamide, hectochlorin, palmyramide and cryptomaldamide, totaling 15 reference MS/MS
294  spectra that were present in the GNPS database). We stress that a larger training dataset with
295 more complete genomes is likely to increase the size of the validation set by adding more valid
296 BGCs into the analysis. We also combined the NPOmix program with in silico tools like

297  Dereplicator+ (28) to make new links between MS/MS spectra, BGCs and molecular structures.
298  This was accomplished by annotating cryptic MS/MS spectra (without a GNPS library hit and
299 therefore not present in either the GNPS or the PoDP databases) to known BGCs. Such new

300 links could be confirmed experimentally to improve the size of the validation set, as well as to
301 expand MS/MS databases by adding these cryptic spectra to them.
302 A two-dimensional comparison of both types of fingerprints (BGC and MS/MS) can be a

303 proxy for distinguishing some true positives from false positives. As observed in Fig. S2, we can
304  visualize a mismatch between the BGC fingerprints (one GCF) and the MS/MS fingerprint in the
305 “reduced” KNN-space (represented schematically in only two dimensions), indicative of a

306 possible false positive link. This GCF is dereplicated as the known metabolite, pyocyanin, and it
307 was incorrectly associated with the metabolite 2,4-diacetylphloroglucinol, confirming the false
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308 positive (at k = 3). In contrast, Fig. 3 illustrates that 5 metabolites, 2 albicidins and 3 albicidin
309 analogs, could be correctly assigned to their corresponding GCF that contains 2 BGCs. In this
310 case, the BGC fingerprints match the MS/MS fingerprints (Fig. 3C, 3D). Using this second larger
311 dataset comprised of 1,040 samples instead of only 60 yielded a precision of 66.7% as 10 out of
312 15 reference MS/MS spectra were correctly labeled when top-n = 3 (k also equal to 3). Top-n
313  represents how often the correct GCF label was found among the top n labels classified by the
314  KNN approach (see Tables 1 and 2). The observed precision was much higher than with the
315 cyanobacterial dataset because the PoDP dataset has a larger number of samples and it also
316  contains a larger diversity of microbial entries thus providing fingerprint-based approaches
317  more resolution. Lastly, we regard our NPOmix approach as multi-omics enabled dereplication
318 because the 5 MS/MS albicidin labels were automatically assigned to a known GCF that

319 confirmed their metabolite labels, thereby minimizing the necessity to purchase standards, to
320 perform isolation and NMR characterization, gene knockout or heterologous expression.

321
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322
323  Fig. 3. Multi-omics enabled dereplication of albicidin by automatically predicting a true BGC-

324  metabolite link. Structure of the dereplicated metabolite (A) and its corresponding

325 representative MS/MS spectrum (B, spectrum example from GNPS ID CCMSLIBO0000579285
326  and m/z of 843.27), obtained via Metabolite Spectrum Resolver (29). The two BGC fingerprints
327 (1130 and 1131) are represented in a 2D plot (C) and they match the 2D plot for the 5 MS/MS
328 fingerprints obtained from GNPS for albicidin and its analogs (D). BGC = biosynthetic gene

329  cluster; MS/MS = mass fragmentation spectrum; m/z = mass over charge calculated via mass
330 spectrometry.

331
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332  Connecting analogs to BGCs: the example of orfamide C. An NPOmix link can be further

333  confirmed by matching the AA predictions from the BGC with the structure prediction for the
334  query metabolite based on library match or in silico annotations (Fig. 4). For example, the BGC
335 (genes 1-6in Fig. 4) for the metabolite orfamide C (MIBiG ID BGC0000399) was automatically
336 connected by our KNN approach to a GNPS metabolite labeled “putative orfamide C”

337 (CCMSLIBO0004679300). This MS/MS spectrum was obtained from the same strain where the
338 BGC was first identified (Pseudomonas protegens Pf-5, Genbank ID GCA_000012265)(30). The
339 nine amino acid (AA) predictions for this BGC, based on the specificity of adenylation domains,
340 match the structure for orfamide C in the correct order: leu, asp, thr, ile, leu, ser, leu, leu and
341  ser. AntiSMASH was not able to predict the tenth and last in the biosynthetic series, namely
342  valine. The matching between the predicted structures confirmed the multi-omics enabled

343  dereplication of orfamide C (using k = 3, BGC predictions and predicted metabolite structure are
344  represented in Fig. 4). The KNN GCF predictions do not use structures/substructures for linking
345  MS/MS spectra to BGCs; hence, as demonstrated in Fig. 4, these substructure predictions can
346  be an extra dimension for selecting links that are true positives over false positives.

347 We have determined that the use of three neighbors is the optimal performance,

348 providing a good balance between precision and number of links to validate (top-3 = 66.7% and
349 randomness equal to 0, as detailed in Table 1). Randomness is observed by shuffling the testing
350 columns, experimental MS/MS names, and counting how many correct links are present

351 between the top-n GCF candidates. This parameter (n and k = 3) enabled the dereplication of
352  the albidicins, orfamides B-C, jamaicamides A and C and cryptomaldamide, totaling 4 different
353  metabolite families (and analogs) that were correctly predicted by our KNN approach using the
354  PoDP dataset. Noteworthy, the top-10 precision had a maximum score of 73.33% with

355 randomness still equal to 0. However, 10 GCF candidates is practically too large for useful

356 genome mining as all those candidates would need to be tested experimentally. We expect that
357  our approach will improve with a larger training set and with further improvement of the

358 features in the BGC and MS/MS fingerprints (e.g., based on substructure presence/absence).
359 The 15 BGC-MS/MS validated links reported herein and their predictions using k = 3 are found
360 in Table 2 that provides the GCF labels for the three closest BGCs to a given MS/MS fingerprint
361 (the 10 correct GCF predictions are colored red and highlighted in bold). We confirm that all 10
362  correct GCF predictions reported here were found in the original producer of the identified

363 metabolites and they matched the reported masses. With 49 known GCF-MS/MS links were
364 present in the 1,040 samples with paired data, the annotation rate was reasonably high (around
365 30%, 15 out of 49 links were retained after the co-occurrence filter, a filter to keep only the
366 metabolites that are found among the same samples that contain the candidate BGCs).

367
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370  Fig. 4. NPOmix automatically connected an MS/MS spectrum annotated as “putative orfamide
371 C” to the MIBiG BGC annotated as orfamide C. The figure illustrates the matches between the
372  BGC's AA predictions (via antiSMASH) and the predicted metabolite structure (orfamide C,

373  predicted via MS/MS spectral matching). Only one AA (valine, in red) out of 10 AA could not be
374  predicted by the BGC annotation tool (antiSMASH), however, this valine residue was predicted
375 by the MS/MS spectrum. BGC = biosynthetic gene cluster; AA = amino acid; AmT =

376 aminotransferase; TE = thioesterase; A = adenylation domain; ER = enol reductase; “?” in the
377 BGC represents that one AA could not be predicted by antiSMASH.

378
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380 Table 1. Top-n precision scores (how often the correct GCF label was found among the top n
381 labels classified by the KNN approach) for 15 reference GNPS MS/MS spectra connected to a
382 BGC found in the paired 1,040 (meta)genomes-MS/MS downloaded from the PoDP. These links
383  were obtained from the NPLinker dataset, GNPS and PoDP databases. Randomness is observed
384 by shuffling the testing columns, experimental MS/MS names, and counting how many correct
385 links are present between the top-n GCF candidates. Based on this, we believe the best
386 performanceis n = 3 for the examined dataset.
387
Top-1 Top-3 Top-5 Top-10 Top-50 | Top-100
Data 46.66% | 66.66% | 66.66% | 73.33% | 73.33% | 73.33%
Random 0% 0% 0% 0% 0% 20%
388
389 Table 2. 15 links between GNPS MS/MS spectra (with CCMS metabolite ID) and networked gene
390 cluster family (true GCF). The table also includes their KNN predictions (k = 3); the predicted
391 GCFs are ordered according to the value for k, from 1 (nearest) to 3 (furthest), and the first
392  correct family is marked in bold red font. GCF labels can be repeated because multiple BGCs
393 from the same GCF can be predicted as the nearest neighbors. Classification is considered
394  correct if the true GCF is among the top-3 candidates. Annotations are according to each MIBiG
395 BGC(s) found in the true GCFs. The “orphan” label indicates that the BGC was not networked in
396 the current dataset.
397
CCMS metabolite ID True GCF | Predicted GCFs for k=3 Annotation
CCMSLIBO0000479759 GCF320 | GCF122, GCF115, GCF112 Bafilomycin
CCMSLIBO0O000579285 GCF476 | GCF476, GCF180, GCF476 Albicidin
CCMSLIBO0000840594 GCF488 | GCF740, GCF740, GCF739 Nevaltophin D
CCMSLIBO0004679298 GCF450 | GCF465, GCF445, GCF439 Orfamide A
CCMSLIBO0004679299 GCF450 | GCF465, GCF445, GCF450 Orfamide B
CCMSLIBO0004679300 GCF450 | GCF465, GCF445, GCF450 Orfamide C
CCMSLIBO0004681475 GCF476 | GCF476, GCF180, GCF476 Propionyl-albicidin
CCMSLIB0O0004681481 GCF476 | GCF476, GCF180, GCF476 Beta-methoxy-albicidin
CCMSLIBO0004681486 GCF476 | GCF476, GCF180, GCF476 | Carbamoyl-beta-methoxy-albicidin
CCMSLIBO0004681487 GCF476 | GCF476, GCF180, GCF476 Albicidin
CCMSLIBO0O000001706 GCF471 | GCF471, GCF498, GCF471 Jamaicamide A
CCMSLIBO0005724004 GCF498 | GCF471, GCF498, GCF471 Cryptomaldamide
CCMSLIBO0O000001553 Orphan | GCF471, GCF498, GCF471 Hectochlorin
CCMSLIBO0O000001751 Orphan | GCF471, GCF498, GCF471 Palmyramide A
CCMSLIBO0O000001708 GCF471 | GCF471, GCF498, GCF471 Jamaicamide C
398
399
400

401
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402  Connecting cryptic metabolites (without GNPS library matches) to BGCs: the example of

403  brasilicardin A. We used a combination of MS/MS fingerprints (notebook 2), BGC fingerprints
404 (notebook 3), MZmine (31) and Dereplicator+ (28) in order to annotate brasilicardin A. This

405 approach differs from the previous NPOmix analysis because it uses MZmine to select the

406 MS/MS spectra instead of collecting spectra from the GNPS and PoDP databases. After selecting
407 300 MS/MS spectra from the 16 most diverse genomes in the dataset with 1,040 samples,

408 Dereplicator+ had three in silico predictions and one of them was the unique tricyclic

409 glycosylated terpene brasilicardin A. The observed m/z matches the value previously reported
410 inthe literature)(32), identifying an MS/MS spectrum that is currently absent from both the
411  GNPS and the PoDP databases. NPOmix connected the MS/MS spectrum (predicted to be

412  brasilicardin A by Dereplicator+, information not used in the NPOmix training) with the correct
413  BGC (brasilicardin A MIBiG ID BGC0000632 from the strain Nocardia terpenica IFM 0406,

414  GenBank ID GCA_001625105)(33), highlighting how NPOmix can connect cryptic molecules

415  without library matches (absent from MS/MS databases) to their corresponding BGCs.

416  Predicted fragmentation (Fig. S3 and table with deltas in Dataset S1, sheet seven) strongly

417  suggests that the query MS/MS spectrum is indeed brasilicardin A (all differences between

418 exact m/z and observed m/z were extremely low). This pipeline provided additional 70 links
419  between cryptic MS/MS spectra and BGCs from the most diverse strains (links listed at Dataset
420 S1, sheet six) and potentially new BGCs can be explored experimentally (e.g., BGC knock-out,
421  heterologous expression or isolation and NMR structure elucidation), especially if coupled to
422  NMR SMART analysis (34, 35) to confirm their novelty.

423

424  Improving the fingerprint for known metabolites using biosynthetic class. In order to increase
425  the precision of our NPOmix algorithm, we added the biosynthetic classes (PKSs, NRPSs,

426 terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic metabolites,

427  others/unknowns and other minor classes) to the BGC and MS/MS fingerprints as

428 presence/absence in the training set (5,681 BGCs). For example, if a given BGC is a hybrid PKS-
429  NRPS, it was annotated as 1 in the PKS and NRPS columns, and with a 0 in the remaining classes
430 (additional columns). For the MS/MS fingerprints in the validation set (testing set), we manually
431 annotated these same features (biosynthetic classes) because the structures for these testing
432  MS/MS spectra were known. In cases where the structure is unknown, tools like CANOPUS (36)
433  and MolNetEnhancer (37) can provide a similar biosynthetic class prediction, and these

434  predictions can be further confirmed using substructures predicted with unsupervised tools like
435 MS2LDA (38) or dedicated tools like MassQL (based on specific MS/MS fragments found in the
436  spectra, manuscript in preparation) or CSl:FingerID via SIRIUS 4 (39). As observed in the

437  precision curves from Fig. S4 for version 1.0 (fingerprints without biosynthetic classes) and

438  version 2.0 (fingerprints with biosynthetic classes), the precision increased for top-3 and top-5
439  testing results, for top-3 it increased from 66.66% without the biosynthetic class (good score
440  with a lower number of GCF candidates than top-10) to 73.33% with the biosynthetic class

441  added, requiring less GCF candidates to obtain a similar precision as the top-10 without

442  inclusion of the biosynthetic class. Consequently, we observed a better ranking of the predicted
443  GCFs when the new class features were added.

444
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445  Conclusion

446

447 We created a machine learning solution, a K-Nearest Neighbors algorithm named

448 NPOmix, to connect specialized metabolites observed by untargeted mass spectrometry to
449  their biosynthetic gene clusters (BGCs). We demonstrated that the tool performs reasonably
450 well for a small dataset that was sequenced and collected in a uniform fashion; in this case, the
451  dataset was constructed from 60 marine cyanobacterial samples with MAGs and high

452  resolution untargeted LC-MS/MS spectra. These were mostly from tropical marine

453  cyanobacteria, which are known to be rich producers of NPs. Nevertheless, performance was
454  limited by the small size of the dataset of good cyanobacterial genomes. We showed that a
455 larger dataset, deriving from heterogeneous sources such as the ones currently available in the
456  Paired omics Data Platform (PoDP), can create better fingerprints and can thus more

457  successfully connect known metabolites to their corresponding BGCs, such as albicidin and its
458 analogs to a BGC in Xanthomonas albilineans GPE PC73 (GenBank ID GCA_000087965.1),

459  orfamides A-C to a BGC in Pseudomonas protegens Pf-5 (GCA_000012265), and

460 cryptomaldamide and jamaicamide A and C to BGCs in Moorena producens JHB

461 (GCA_001854205). All three of these strains were the original producers of these metabolites.
462 In Fig. 4, we illustrated how the BGC predictions (such as predicted moieties) can help to

463  prioritize true links over false positives via matching of predicted structures between a given
464 MS/MS spectrum and its BGC candidates.

465 In this work we demonstrated the use of machine learning and genome mining to

466  process several thousand LC-MS/MS files and a thousand genomes to connect MS/MS spectra
467  to GCFs. Our approach can systematically connect MS/MS spectra from known metabolites
468 (links validated experimentally), spectra from metabolites analogous to known (links with GNPS
469 library matches) and spectra from cryptic metabolites (links without GNPS library matches and
470 therefore absent from the MS/MS database, as exemplified by brasilicardin A). The advantage
471  of using paired data is that the genomic information represents the full metabolic potential of
472  anorganism, and hence, we can prioritize the discovery of the most diverse BGCs via genome
473  mining. Additionally, the use of genetic information can help in the structure elucidation and
474  prediction of bioactivity (40), highlighting the advantage of using the BGC information in the
475  drug discovery process. Moreover, predicting linked MS/MS spectra for a promising BGC can
476  facilitate their heterologous expression as expression can be difficult if the target molecule is
477  not known. Furthermore, we show how cryptic MS/MS spectra (absent from MS/MS databases
478  like GNPS) can be annotated using NPOmix, MZmine (31) and Dereplicator+ (28), allowing

479  expansion of the current MS/MS databases. We also demonstrated how our methodology is
480 suitable for linking cryptic MS/MS spectra with putative BGC candidates that can assist in the
481 isolation of novel natural product scaffolds. Despite the relatively small size of the training

482  dataset (in comparison to other machine learning approaches, 1,040 paired samples and 5,681
483  BGCs from the PoDP database), we observed good precision scores of top-3 = 66.66% and top-
484 10 =73.33% (both with randomness equal to 0). By including the biosynthetic class in the

485 fingerprints, the best precision score was top-3 = 73.33%. In effect, this latter analysis required
486 less GCF candidates to obtain a similar precision as the top-10 without inclusion of the
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487  biosynthetic class. We observed an annotation rate of around 30%, as 15 out of 49 GCF-MS/MS
488 validated links were retained after the co-occurrence filter.

489 The use of complete genomes over MAGs and metagenomes is preferred to create a
490 more “complete” training set; we predict that this would result in better precision than if the
491 training set is populated with several fragmented BGCs. Our results highlight the importance of
492  making genomics and metabolomics data publicly available with curated metadata, because
493  more available paired data would enable better training of models, and therefore, better tools
494  for the research community. Future plans include the testing of other similarity metrics for

495 networking and fingerprinting such as BiG-SLICE (41) for genomics and Spec2Vec (42) and

496  MS2DeepScore (43) for the metabolomics. We will also look for synergy with correlation scores
497  from NPLinker to better annotate paired datasets. We intend to implement structure and

498  substructure predictions from the MS/MS fragmentation spectra using tools like SIRIUS 4 (39),
499  MS2LDA (44), MolNetEnhancer (37) or CANOPUS (36), prioritizing candidates that have several
500 substructures or predicted chemical compound classes matching between BGCs and MS/MS
501 spectra. The GNPS molecular family information could be used to select a consensus prediction
502 among different MS/MS spectra from the same family. The BGCs assembled from the

503 metagenomic samples could be improved using tools like metaBGC (45) and BiG-Mex (46).

504  Enrichment of the current Paired Omics Data Platform dataset (we could now use 1,040 PoDP
505 samples) with higher quality samples as well as more validated BGC-MS/MS links will further
506 drive the development of tools such as NPOmix, and this will spark the discovery of more novel
507  NPs. Furthermore, machine learning can be used to connect promising BGCs with their

508 biological activities (anticancer, antimicrobial and antifungal)(40). Finally, we would like to

509 stress that all true positive BGC-MS/MS validated links reported here were found in the original
510 producer of the metabolites and they matched the reported masses. We expect that NPOmix is
511 a promising tool to search for new natural products in paired omics data of natural extracts by
512  using links between cryptic MS/MS and putative BGCs. This will, for example, facilitate the use
513  of genome mining in drug discovery pipelines.

514

515 Code and Data Availability

516

517 The code (a collection of Jupyter notebooks) required to reproduce this work and to use
518 the NPOmix tool for new samples can be found in the following GitHub repository page:

519  https://github.com/tiagolbiotech/NPOmix. The repository also includes short video

520 explanations on how the tool works and its importance for natural product discovery. The

521 (meta)genomes used to create the NPOmix training dataset for validation were downloaded
522  from the Paired omics Data Platform (PoDP)(14) using notebook 1 from the GitHub repository.
523  The paired experimental MS/MS files were downloaded using the ftp links (also from the Paired
524  omics Data Platform) found in Dataset S1, sheet two. The testing set included MS/MS spectra
525 from PoDP, spectra from the Global Natural Products Social Molecular Networking database
526  (GNPS)(16) and also spectra used in the NPLinker dataset (10). If the potential users find the
527  tool challenging to run, we have our contact information at the GitHub web page (link above) to
528 submit samples and we expect that promising results will lead to fruitful collaborations. In the
529 near future, we will have a web-based interface for direct submission of samples.
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559 Methods

560

561 Obtaining paired data. Sixty cyanobacterial samples were collected via SCUBA diving or

562  snorkeling along coastal shores around the globe and subjected to processing as described by
563 Leaoetal., 2021, (13). High quality genomes were published at NCBI database and LC-MS/MS
564  data were collected for the same set of samples, also as described by Leao et al., (2021)(13).
565 The paired data is available at the PoDP (ID “864909ec-e716-4c5a-bfe3-ce3a169b8844.2”). We
566 automatically downloaded the paired (meta)genomics-metabolomics data from the samples in
567 the PoDP according to the code in the notebook 1 at the GitHub repository described below.
568  The cyanobacterial high resolution LC-MS/MS data was obtained according to the methods in
569 by Luzzatto-Knaan et al. (47).

570

571 Genome assembly and annotation, BGC and MS/MS similarity calculation. Metagenomic

572  reads were assembled with SPAdes 3.15.2. (48). For BGC annotation, we used antiSMASH 5.0
573  (49) and for gene cluster networking we used BiG-SCAPE 1.0 (similarity cutoff of 0.7) (5). BiG-
574  SCAPE raw distance is measured via the domain sequence similarity (DSS) index, an index that
575 calculates the Pfam domain copy number differences and sequence identity (5). For networking
576  metabolites, we used GNPS classical molecular networking release 27 (similarity cutoff of 0.7).
577  We did not use the full classical molecular networking capabilities in the NPOmix approach, as
578  only the functions required to calculate a modified cosine score between a pair of MS/MS

579  spectra were needed.

580

581 Creating fingerprints. We developed python scripts and we combined with scripts from sklearn
582  (https://scikit-learn.org/stable/index.html) to create both BGC and MS/MS fingerprints and to
583  runthe KNN algorithm. A BGC fingerprint is created by pairwise BiG-SCAPE comparison

584  between the queried BGC and all the BGCs found in the (meta)genomes in the training set,

585  selecting the highest similarity scores for each (meta)genomes. An MS/MS fingerprint (part of
586 the testing set) is created by pairwise modified cosine comparison between the queried MS/MS
587 and all the MS/MS present in the LC-MS/MS files paired with the genomes from the training
588  set, also selecting only the highest similarity scores per set of experimental MS/MS spectra.
589

590 Jupyter notebooks. All scripts used in this research can be found at this GitHub repository:

591  https://github.com/tiagolbiotech/NPOmix. Notebook 1 can be used to download

592 (meta)genomes and metagenome-assembled genomes (MAGs) that contain paired untargeted
593  metabolomics (LC-MS/MS)(metabolomic files will also be downloaded by the notebook). We
594  selected genomic samples that contained a valid Genome ID or BioSample ID, resulting in 732
595 genomes/MAGs. We also selected and assembled 1,034 metagenomes. Notebook 2 can be
596 used to process downloaded metabolomics files and a selected set of “.mgf” reference MS/MS
597  spectra, creating a matrix containing the MS/MS fingerprints for the selected set of reference
598 spectra (reference MS/MS spectra for the validation but for using the tool these reference

599  spectra will be replaced by cryptic MS/MS spectra). If there are more than one LC-MS/MS file
600 per genome (for example different media conditions or different chemical fractions), these files
601  were merged into a single file representing these experimental MS/MS spectra. Notebook 3 can
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602  be used to process the antiSMASH results to create BGC fingerprints and use those to train the
603  KNN algorithm. The MS/MS fingerprints are used to predict a/multiple GCF(s) for each tested
604 reference MS/MS spectra found in the paired genomes-MS/MS data. We filtered the GCF-

605  MS/MS links for cases that the top GCF candidate had co-occurrence (GCF and MS/MS scores
606  were present in the same set of samples, as illustrated in Fig. 3C and 3D). Notebook 3 also

607 performs cross-validation (dividing the data into 5 parts) and the average precision score for
608 the cross-validation was 56.9%. Notebook 4 can be used to generate metadata such as the type
609  of GCF or the count of BGCs per each genus in the database. The code for making the Mantel
610 correlation, an approach that combines two presence/absence matrices, can be found in

611 notebook 5. Notebook 6 presents the code for genome mining that yielded the annotation of
612  brasilicardin A (more details below). Notebook 7 expanded the similarity/absence fingerprints
613 by including the biosynthetic class (NPOmix version 2.0).

614

615 Genome mining for new MS/MS spectra using Dereplicator+ and NPOmix. In order to use the
616  NPOmix approach to find new NPs without any GNPS library matches (absent from the MS/MS
617 database), we developed a pipeline combining NPOmix, MZmine (31) and Dereplicator+ (28).
618  First, a number of strains were selected using MZmine, here exemplified with 16 strains, based
619  on their BGC beta-diversity scores. The Jaccard beta-diversity score metric of the similarity

620 between a pair of strains was calculated as the intersection over the union of the detected gene
621  cluster families. Using MZmine, we select peaks that were above a certain intensity threshold
622 (we used base peak relative abundance of 1E6) in order to prioritize the chromatographic peaks
623  that could reasonably be isolated for structure elucidation. In this example, we detected

624  approximately 3,800 peaks with MS/MS spectra found in the analysis of the 16 most diverse
625  strains. This MZmine list of peaks that have associated MS/MS data was filtered for minimum
626  precursor mass of m/z 500 to promote the presence of multiple moieties (substructures) in the
627  predicted structures, generating 300 “.mgf” files. These mgf files were used by NPOmix to

628  predict the GCFs/BGCs for each of the 300 MS/MS spectra. We filtered for BGC-MS/MS links
629 that the query MS/MS spectra existed in the same strains that the query BGCs were found (e.g.,
630  Fig 3C-D) and not across different strains (e.g., Fig. S2), using the Jaccard index in the

631 presence/absence of fingerprints, essentially a pairwise analysis between the BGC fingerprint
632  and the MS/MS fingerprint. This second filter narrowed down the number of mgf files to 72, as
633 listed in Dataset S1, sheet six. These 72 mgf files were processed by Dereplicator+ for predicting
634  structures for each MS/MS spectrum, leading to the annotation of brasilicardin A. Two other
635 Dereplicator+ hits did not match the predicted GCFs. MZmine parameters were as follows:

636  noise level of 1E6 for MS1 and 1E3 for MS/MS, minimum group size in number of scans of 4,
637  group intensity threshold of 1E6, minimum highest intensity of 3E6, m/z tolerance of 10 ppm,
638 retention time tolerance of 0.2, weight for m/z of 75%, and weight for retention time of 25%.
639

640
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Expanding BGC and MS/MS fingerprints using biosynthetic classes. In notebook 7, the BGC
classes were annotated and included in the BGC fingerprints. To accomplish this, all of the
antiSMASH annotations for a given BGC were added to the presence of all predicted classes.
Each class represented a new column in the fingerprints and the columns were filled with 1 (if
the class was present) and O (if the class was absent). We observed the following classes in our
dataset: PKSs, NRPSs, terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic
metabolites, others/unknowns and other minor classes. In the MS/MS fingerprint, for each one
of the 15 validated MS/MS spectra, we annotated the presence/absence of the biosynthetic
classes based on the known structures. These new fingerprints were used in the machine
learning process, analogously to the notebook 3.
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Fig. S1. Representation of how BGCs can be plotted in the KNN space by using the values in the
training matrix, each column represents a genome in the training set and it also represents a
dimension in the KNN space (1,040 genomes distributed in 1,040 columns). This example has
three dimensions because it uses only three genomes; the actual training matrix used in this
study had 1,040 genomes and therefore 1,040 dimensions.
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660  Fig. S2. Representation of a mismatch linked by the KNN algorithm using k = 3. It is visually clear
661 that the closest neighboring BGC fingerprints for pyocyanine does not properly match the

662  MS/MS fingerprint from the metabolite 2,4- diacetylphloroglucinol, indicating that NPOmix

663  suggested the wrong GCF for the 2,4- diacetylphloroglucinol MS/MS spectrum.

664

665


https://doi.org/10.1101/2021.10.05.463235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463235; this version posted October 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

666
OH
Ol
o HO
0 NH,
(0]
(0] (o) (0]
HN
OHO O _HO
HO
HO HO Exact Mass: 892.45688
OH on
+ +
_| H McLafferrty _‘ H
O rearrangment
(0]
~ H
0 H
0o ° 0) { HO
] NH, o
S Q NH,
H > 02 o 1. HO
HN_ HOH : — > H\4 o) (0]
(0] O_HO HO“'
Dehydration O\HO
HO m/z 893 m/z 690
HO HO McLafferrty
2. rearrangment
-H,0
OH N
+ H
L . g0
H NH,
0 HO S
NH, HO 0] (0]
O +
o HO 0 . O._HO
O O) _ O\HO m/z
H
HN HO
0 m/z 424
"o oH minority ions
HO HO i y R
HO H
m/z 470 o) NH,
HO o)
© O_HO
m/z 267 % N
= -H,0 m/z 424
HO 2 -H;COH
HO _|H+ ¢
NH, HO ]
HO o) NH,
OHO HO e
= HO
m/z 406
/ m/z 392
-H3;COH -H,0
m/z 374
667
668

669


https://doi.org/10.1101/2021.10.05.463235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463235; this version posted October 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

OH
N
i
0
o HO
ot o NH,
(0)8) (o) (0]
HN g O._HO
HO

m/z 893

H
o} ] 0 a)
7 oH S o 0 LG O
HN HN
o -HO Xo" -H0 - HN HN
— o 5 ~0 H_20> , o , o
HO HO o
HO
HO HO HO HO HO HO HO
m/z 222 m/z 204 m/z 186 m/z 168
I | !
OH ° HaN ot
N [ 7
HN _ ’ \o+ =
\QO = HO
670 m/z 126 m/z 138 m/z 126

671

672  Fig. S3. Proposed mechanism for the fragmentation of brasilicardin A by ESI mass spectrometry.
673  The structure was proposed by NPOmix as a possible match for the MS/MS spectrum with

674  protonated m/z 893.4624. Dataset S1, sheet seven, shows the SMILES strings and delta m/z
675  values for the predicted structural fragments and the observed fragments in the MS/MS

676  spectrum. All delta m/z values in the table were extremely small, strongly indicating that

677  brasilicardin A is the correct structure for this MS/MS spectrum and it matches well with the
678 BCG identified in genome of Nocardia terpenica IFM 0406 (BGC known to produce brasilicardin
679 A, ID BGC0000632).

680
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682
683  Fig. S4. Comparison of precision curves before (blue line, version 1.0) and after addition of the

684  biosynthetic class (green line, version 2.0). Best precisions are marked by dots (version 1.0 is
685 top-3 =66.66% and version 2.0 is top-3 = 73.33%). Randomness is represented by the red line.
686
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