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Abstract 23 

 24 

Microbial natural products, in particular secondary or specialized metabolites, are an 25 

important source and inspiration for many pharmaceutical and biotechnological products. 26 

However, bioactivity-guided methods widely employed in natural product discovery programs 27 

do not explore the full biosynthetic potential of microorganisms, and they usually miss 28 

metabolites that are produced at low titer. As a complementary method, the use of genome-29 

based mining in natural products research has facilitated the charting of many novel natural 30 

products in the form of predicted biosynthetic gene clusters that encode for their production. 31 

Linking the biosynthetic potential inferred from genomics to the specialized metabolome 32 

measured by metabolomics would accelerate natural product discovery programs. Here, we 33 

applied a supervised machine learning approach, the K-Nearest Neighbor (KNN) classifier, for 34 

systematically connecting metabolite mass spectrometry data to their biosynthetic gene 35 

clusters. This pipeline offers a method for annotating the biosynthetic genes for known, 36 

analogous to known and cryptic metabolites that are detected via mass spectrometry. We 37 

demonstrate this approach by automated linking of six different natural product mass spectra, 38 

and their analogs, to their corresponding biosynthetic genes. Our approach can be applied to 39 

bacterial, fungal, algal and plant systems where genomes are paired with corresponding MS/MS 40 

spectra. Additionally, an approach that connects known metabolites to their biosynthetic genes 41 
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potentially allows for bulk production via heterologous expression and it is especially useful for 42 

cases where the metabolites are produced at low amounts in the original producer. 43 

Significance 44 

 45 

The pace of natural products discovery has remained relatively constant over the last 46 

two decades. At the same time, there is an urgent need to find new therapeutics to fight 47 

antibiotic resistant bacteria, cancer, tropical parasites, pathogenic viruses, and other severe 48 

diseases. To spark the enhanced discovery of structurally novel and bioactive natural products, 49 

we here introduce a supervised learning algorithm (K-Nearest Neighbor) that can connect 50 

known and analogous to known, as well as MS/MS spectra of yet unknowns to their 51 

corresponding biosynthetic gene clusters. Our Natural Products Mixed Omics tool provides 52 

access to genomic information for bioactivity prediction, class prediction, substrate predictions, 53 

and stereochemistry predictions to prioritize relevant metabolite products and facilitate their 54 

structural elucidation. 55 

Introduction 56 

 57 

Microbial natural products (NPs), also referred to as secondary or specialized 58 

metabolites, are often made by biosynthetic genes that are physically grouped into clusters 59 

(biosynthetic gene clusters or BGCs). Its been found that algae and plants can also contain 60 

BGCs, to some extent organized in a similar manner (1, 2). One of the challenges in the genome 61 

mining field is to connect microbial metabolites to their BGCs. Even the genome of 62 

Streptomyces coelicolor A3(2), one of the first sequenced microbial genomes, still contains a 63 

number of cryptic BGCs (BGCs without known metabolites)(3). In 2011, the bioinformatics tool 64 

antiSMASH (4) drastically improved the identification and annotation of BGCs based on 65 

automated genome mining. Similarly, since 2018, the program BiG-SCAPE (5) can reliably 66 

calculate the similarity between pairs of BGCs, grouping them into gene cluster families (GCFs). 67 

Recently, a number of approaches and tools have been created to connect NPs to their 68 

biosynthetic gene clusters, such as Pattern-based Genome Mining (6, 7), MetaMiner (8), 69 

CycloNovo (9), and NPLinker (10), recently reviewed by Van der Hooft et al., 2020 (11). 70 

However, most of these tools are not high-throughput or can only be used for a particular class 71 

of BGC (e.g., peptides or BGCs homologous to known BGCs). It has been challenging to create a 72 

systematic tool that can work at a repository scale to connect NP genotypes (BGCs) with their 73 

phenotypes (for example MS/MS spectra from untargeted mass spectrometry fragmentation 74 

profiles, LC-MS/MS). As a result, a large disparity exists between the number of known NPs 75 

versus the number of known BGCs. For example, the recently designated cyanobacterial genus 76 

Moorena has already yielded over 200 new metabolites, yet only a dozen of validated BGCs are 77 

currently deposited for this genus in the expert-annotated Minimum Information about a 78 

Biosynthetic Gene cluster (MIBiG) database (12). Connecting the molecules to the genes would 79 

facilitate research into the ecological role and functions of the specialized metabolome by 80 

studying the regulation of the expression of their biosynthetic gene clusters. 81 

To begin to address this gene cluster annotation gap, we deployed a K-Nearest Neighbor 82 

(KNN) algorithm that uses a similarity/absence BGC fingerprints and analogous 83 
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similarity/absence MS/MS fingerprints to classify gene cluster family (GCF, a group of similar 84 

BGCs) candidates for each MS/MS spectrum (Fig. 1). We recently sequenced draft 85 

metagenomic-assembled genomes (MAGs) for 60 cyanobacteria, mostly from tropical marine 86 

environments. The most complete drafts were reported in Leao et al., 2021 (13), and for these 87 

we also obtained untargeted metabolomic data via LC-MS/MS (36 deposited in the PoDP 88 

platform and 24 not published due to the quality of their paired MAGs). Despite the bad quality 89 

of some of these MAGs, we could still annotated BGCs. As a first test for our NPOmix workflow, 90 

using this cyanobacterial dataset, we connected curacin A9s MS/MS spectrum with its correct 91 

GCF/BGC. The performance of our KNN approach was superior to using a Mantel correlation 92 

method (the Jupyter notebook for this correlation is available at the GitHub repository: 93 

https://github.com/tiagolbiotech/NPOmix). The major limitation for evaluation of our method 94 

was the lack of available test data for structures that are linked to their MS/MS spectra and 95 

biosynthetic gene clusters. 96 

However, the training and testing set was expanded by the paired omics dataset from 97 

the recently built Paired Omics Data Platform (PoDP) (14), and enabled a further evaluation of 98 

our KNN tool (named NPOmix). The PoDP is the first community effort to make available 99 

validated links between BGCs, structures, and MS/MS spectra. In the present work, we used 36 100 

out of the 71 paired metadatasets (listed in Dataset S1, sheet one). We selected genomic 101 

samples that contained a valid Genome ID or BioSample ID to aid in downloading them from 102 

the National Center for Biotechnology Information (NCBI) database, resulting in 732 103 

genomes/MAGs obtained from these 36 PoDP metadatasets. Following the same procedure of 104 

the genomes, we also selected and assembled 1,034 metagenomes from part of these PoDP 105 

datasets. Additionally, using already linked MS/MS-BGC information from the PoDP and from a 106 

NPLinker dataset (10), we obtained validated data for eight metabolite families (major 107 

compounds and analogs). These compound families were orfamides, albicidins, bafilomycin, 108 

nevaltophin D, jamaicamide, hectochlorin, palmyramide and cryptomaldamide (totaling 15 109 

reference MS/MS spectra due to the presence of analogs and sometimes more than one 110 

spectrum per metabolite). By training with the BGC fingerprints and testing these 15 validated 111 

links, we were able to correctly predict GCFs for 66.66% of the tested MS/MS fingerprints 112 

(10/15 reference MS/MS spectra were correctly classified using k = 3). Well-annotated links can 113 

be quickly prioritized by comparing substructures to mass differences in the fragmentation 114 

spectrum and/or predicted structures. A two-dimensional comparison of both types of 115 

fingerprints (BGC and MS/MS) can be a proxy for distinguishing some true positives from false 116 

positives. Critically, we filtered for BGC-MS/MS links wherein the query MS/MS spectra were 117 

mainly present in the same strains that the query BGCs were found (cutoff of 90% concordance 118 

between both BGC and MS/MS fingerprints). Once the PoDP data was filtered, our approach 119 

could connect BGCs with three types of mass spectra: known molecules (e.g., links that are 120 

validated experimentally), analogs of known molecules (e.g., links not validated but similar to 121 

validated reference spectra from the MS/MS database) or cryptic molecules (e.g., links without 122 

any library match, absent from the MS/MS database). We exemplify how it is possible to 123 

connect known BGCs to cryptic MS/MS spectra, new spectra that can be added to the current 124 

MS/MS databases. The same approach can be used for connecting new BGCs to cryptic MS/MS 125 

spectra that can be validated experimentally. While our approach uses unique fingerprints and 126 

a machine learning approach for connecting metabolites to BGCs, it can be considered a type of 127 
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Pattern-based Genome Mining (PBGM) which was previously reported by Doroghazi et al. in 128 

2014 and Duncan et al. in 2015 (6, 7). PBGM is based on the idea that the distribution of a given 129 

secondary metabolite should be comparable to the distribution of the BGCs responsible for 130 

their production. 131 

Generally, finding novel metabolites for cryptic BGCs or even known BGCs (e.g., novel 132 

analogs) is very useful to accelerate natural products discovery, however, connection of known 133 

metabolites to their biosynthetic gene clusters is also important. Newly linked BGCs for known 134 

metabolites can lead to the discovery of new enzymatic processes. For example, in the strain 135 

Anabaena variabilis ATCC 29413, a NRPS gene is responsible for the attachment of a serine 136 

residue to generate the final mycosporine-like amino acids (MAA) product. However, in the 137 

strain Nostoc punctiforme ATCC 29133, this same step is performed by an ATP-grasp ligase (15). 138 

This highlights that different microbes can generate the same specialized metabolites through 139 

different biosynthetic routes, and therefore, we believe that our NPOmix tool will assist with 140 

the discovery of both novel metabolites as well as known metabolites with new biosynthesis. 141 

Results and Discussion 142 

 143 

The Natural Products Mixed Omics (NPOmix) Approach: Description of the Genomic and 144 

Metabolomic Pipelines. To use the NPOmix approach (Fig. 1 shows a conceptual example using 145 

only four samples), it is required to have a dataset of paired genomic and MS/MS information. 146 

The genomic information can be either that of a genome or metagenome, and the MS/MS spectra 147 

should be obtained via untargeted LC-MS/MS. Paired datasets have become available at the 148 

Paired omics Data Platform (PoDP)(14), one of the first initiatives to gather paired genomic and 149 

MS/MS information. Using BiG-SCAPE (5), each biosynthetic gene cluster (BGC) in the genome to 150 

be queried undergoes a pairwise similarity comparison (Fig. 1A) to every other BGC in the query 151 

set (e.g., the set of genomes used for the training, for example, the genomes downloaded from 152 

the PoDP), and similarity scores are computed as <1 minus BiG-SCAPE raw distance= to assign 153 

BGCs to Gene Cluster Families (GCFs), if possible. In order to create a BGC fingerprint (Fig. 1C), 154 

we identify the similarity between the query BGC and each of the BGCs in each genome in the 155 

training dataset. The BGC fingerprint that emerges is a series of columns for each compared 156 

genome, the column value of which represents the similarity score between the query BGC and 157 

the BGC to which it is maximally similar in a given genome (column).  Similarity scores range from 158 

0.0 to 1.0; identical BGCs have perfect similarity and are scored as 1.0 whereas a score of 0.8 159 

would indicate that a homologous BGC is present in the genome.  A score below the similarity 160 

cutoff of 0.7 indicates that the queried BGC is likely absent in the genome. A similar process is 161 

used to create MS/MS fingerprints (Fig. 1B); a query MS/MS spectrum is compared to all of the 162 

MS/MS spectra in the query set.  This query spectrum could be either a reference spectrum from 163 

GNPS (16, 17) or a cryptic MS/MS spectrum from a new sample that contains a sequenced 164 

genome and experimental MS/MS spectra. In the case of MS/MS fingerprints (Fig. 1D), GNPS 165 

molecular networking was used to calculate the pairwise modified cosine score and then the 166 

maximum similarity was identified between the query MS/MS spectrum and the many MS/MS 167 

spectra in each experimental sample. This analysis only used the GNPS functions that are 168 

required to calculate a modified cosine similarity score between a pair of MS/MS spectra. The 169 

BGC fingerprints were used to create a training matrix (Fig. 1E) where rows are the maximum 170 
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similarity scores for each BGC.  Typically, this results in thousands of rows, and for our first release 171 

of NPOmix, we have captured this analysis for 5,421 BGCs that were present in 1,040 networked 172 

genomes/metagenomes (DNA samples can be downloaded using code from the GitHub 173 

repository, notebook 1), where each column is a genome and each value is the maximum 174 

similarity between the query BGC and the BGCs in this given genome. This BGC training matrix 175 

can be fed into the K-Nearest Neighbor (KNN) algorithm in order to train it with the genomic 176 

data. Additionally, one extra column is required in this BGC data matrix, a column that labels each 177 

BGC fingerprint with a GCF so the KNN algorithm will know the fingerprint patterns that belong 178 

together. The KNN algorithm plots the BGC fingerprints in the KNN feature space (in Fig. 1G). The 179 

KNN feature space is exemplified by only two dimensions as 1,040 dimensional space is not 180 

feasible to visualize (one dimension per sample). More details of how this multidimensional 181 

plotting occurs are described in the Fig. S1. where 3 BGCs are plotted in the three-dimensional 182 

space according to the scores from genomes A-C. The axis represent the genomes and the 183 

similarity values are coordinates in three-dimensional space. Next, the MS/MS fingerprints form 184 

a testing matrix (Fig. 1F), in this case, the matrix also contains 1,040 columns due to the 1,040 185 

sets of paired experimental MS/MS spectra (samples can be downloaded using the ftp links from 186 

Dataset S1, sheet two). For example, for our first release, this testing matrix contained 15 MS/MS 187 

fingerprints (rows) for MS/MS reference spectra from the GNPS database (also present at the 188 

PoDP). Each query MS/MS fingerprint (a row in the testing metabolomic matrix and columns are 189 

the experimental MS/MS spectra per sample) are plotted into the same KNN feature space (Fig. 190 

1G) so the algorithm can obtain the GCF labels for the nearest neighbors to the query MS/MS 191 

fingerprint (e.g., for three most similar BGC neighbors, k = 3). We note that GCF labels can be 192 

present more than once in the returned list if two or more BGC nearest neighbors belong to the 193 

same GCF. This repetition on the GCF classification is a common behavior of the KNN approach. 194 

Our approach is suitable for bacterial, fungal, algal and plant genomes and MS/MS spectra 195 

obtained from the same organism. Metagenomes and metagenome-assembled genomes (MAGs) 196 

can also be used instead of genomes, however, complete genomes are preferred. This KNN 197 

approach also supports LC-MS/MS from fractions or from different culture conditions; multiple 198 

LC-MS/MS files for the same genome were merged together into a single set of experimental 199 

MS/MS spectra. 200 

 201 

 202 

  203 
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 210 

 211 
 212 

Fig. 1. The genomics and metabolomics pipelines to use the proposed KNN approach for a 213 

hypothetical dataset with 4 paired genomes-MS/MS samples. Representation of how to 214 

calculate the similarity scores between BGCs (A) and between MS/MS spectra (B). Schematic of 215 

how to create BGCs (C) and MS/MS (D) fingerprints using a paired genomics-metabolomics 216 

dataset of four samples (genomes, metagenomes or MAGs)(samples A-D) and similarity scores 217 

from BiG-SCAPE and GNPS. The dashed red line represents the selected cutoff of 0.7. The query 218 

BGC is highly similar to a BGC in sample B (indicating as identical BGC), while it is probably 219 

absent in sample A and C. The BGC fingerprints are grouped together in a training matrix (E) 220 

and the MS/MS fingerprints compose the testing matrix (F). All fingerprints are plotted in the 221 

multi-dimensional KNN space (G, here represented in only 2D for simplification) where each 222 

shape represents a BGC fingerprint and each X represents an MS/MS fingerprint. BGCs are 223 

labeled according to one of the five GCFs (five different shapes). KNN ranking of neighbors is 224 

based in the proximity between the query MS/MS fingerprint and the neighboring BGC 225 

fingerprints. In this example, a KNN = 3 (three closest neighbors) is depicted. BGC = biosynthetic 226 

gene cluster; MS/MS = mass fragmentation spectrum; KNN = K-Nearest Neighbor; BiG-SCAPE = 227 
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software to calculate pairwise BGC-BGC similarity; Cosine score = modified cosine score from 228 

GNPS to calculate pairwise spectrum-spectrum similarity. 229 

 230 

Cyanobacterial dataset: connecting a known metabolite (link validated experimentally) with a 231 

cyanobacterial BGC. Marine cyanobacteria living on coral reefs have resulted in the discovery 232 

of many novel NPs (13, 18). We collected, sequenced and binned 60 cyanobacterial MAGs, 233 

mainly from the NP rich genera of Moorena, Okeania, Symploca, Leptolyngbya, Oscillatoria and 234 

Spirulina (13). Strains with good quality MAGs and paired LC-MS/MS data were published at 235 

PoDP under the ID <864909ec-e716-4c5a-bfe3-ce3a169b8844.2=. We clustered 2,558 BGCs (not 236 

including the BGCs from MIBiG) and we obtained high resolution LC-MS/MS for the same set of 237 

marine cultures/environmental samples. Previous investigations (19326) reported the discovery 238 

of 8 cyanobacterial metabolites (Fig. 2) and their BGCs from a subset of these 60 marine 239 

cyanobacteria. Hence, we used these 8 BGC-MS/MS links, with a total of 39 different MS/MS 240 

spectra, to validate our KNN algorithm for a small, uniformly built and not so sparse dataset. 241 

There are multiple spectra per compound due to different types of molecular ions (protonated, 242 

sodiated, halogenated, etc.). From this relatively small dataset, we were already able to 243 

connect one MS/MS spectrum to its correct BGC 3 curacin A (23), marked in red in Fig. 2 3 thus 244 

providing a fairly low precision of 1/39 (2.56%). However, the BGC fingerprints had a very small 245 

number of similarity scores and it is expected that the fingerprints and the algorithm9s precision 246 

would improve with a larger dataset with more complete BGCs (many of the 60 MAGs 247 

contained several fragmented BGCs). Despite its low precision, this approach is already an 248 

improvement over an earlier attempt that used a presence/absence Mantel correlation, as that 249 

effort to connect genomes and metabolomes only yielded false positives for this same small 250 

cyanobacterial dataset (Mantel correlation generated 51 GCF-MF links, all false positives). 251 

Mantel correlation is an approach that combines two presence/absence matrices (one for 252 

genomics and one for experimental MS/MS spectra) into a single output, creating a pairwise 253 

association between a given row of the genomics matrix with a second row from the 254 

metabolomics matrix. The Mantel correlation code is available in a Jupyter notebook found at 255 

the GitHub repository: https://github.com/tiagolbiotech/NPOmix. 256 

  257 
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 258 
Fig. 2. Structures of compounds used for validating links between BGC and MS/MS spectra for 259 

the 60 cyanobacterial samples. Highlighted in red is curacin A, the one correct link that was 260 

predicted via this KNN approach. 261 

 262 

  263 
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PoDP dataset: connecting known metabolites (links validated experimentally) to PoDP BGCs. 264 

To further validate our NPOmix approach, we used 36 out of 71 datasets from the PoDP (from 265 

February 2021, listed at Dataset S1, sheet one). We selected genomic samples that contained a 266 

valid Genome ID or BioSample ID to aid their downloading from the NCBI database and totaling 267 

732 genomes/MAGs obtained from these 36 metadatasets. We also selected and assembled 268 

1,034 metagenomes from two major metagenomic datasets: 1) MSV000082969 and PoDP ID 269 

cd327ceb-f92b-4cd3-a545-39d29c602b6b.1 - 556 cheetah fecal samples and environmental 270 

samples; 2) MSV000080179 and PoDP ID 50f9540c-9c9c-44e6-956c-87eabc960d7b.3 - The 271 

American Gut Project (27) that contains fecal samples from 481 human subjects. These 272 

(meta)genomes were automatically downloaded with the code shared at the GitHub repository 273 

https://github.com/tiagolbiotech/NPOmix, notebook 1. The LC-MS/MS files can be downloaded 274 

using <ftp= from links found at Dataset 1, sheet two. We were able to cluster 1,040 275 

(meta)genomes that contained 5,681 BGCs (including 260 BGCs from the MIBiG database) 276 

distributed into 997 GCFs. In the untargeted metabolomics data, we matched 3,248 LC-MS/MS 277 

files to 15 GNPS (16, 17) reference library spectra in order to create the MS/MS fingerprints for 278 

testing the KNN classification (one fingerprint per spectra). In the near future, we envision 279 

creating a balanced, diverse and less sparse training dataset. To maximize precision rates in the 280 

future, we plan to purchase cultures from collections that have well assembled genomes so we 281 

can obtain the paired LC-MS/MS. However, the current dataset produced highly supportive 282 

results by testing validated links from the PoDP, links generated by the Gerwick lab dataset, and 283 

validated links used in the NPLinker publication (10). We attempted to test all 242 metabolite-284 

BGC links from NPLinker (totaling 2,069 unique MS/MS spectra, Dataset S1, sheet four), 109 285 

manually added MS/MS spectra (connected to BGCs, annotated by experts at the PoDP, Dataset 286 

S1, sheet three) and 406 MS/MS spectra from metabolites isolated by the Gerwick lab. 287 

Although, most of these validated links were not present in the 1,040 paired (meta)genomes-288 

MS/MS samples from the PoDP (as NPLinker used BGCs from MIBiG and not PoDP) or their BGC 289 

scores did not co-occur with their MS/MS scores because they were not present in the same 290 

sample. Hence, our validation dataset was limited to 8 validated links found in the paired 291 

(meta)genomes-MS/MS samples (orfamides, albicidins, bafilomycin, nevaltophin D, 292 

jamaicamide, hectochlorin, palmyramide and cryptomaldamide, totaling 15 reference MS/MS 293 

spectra that were present in the GNPS database). We stress that a larger training dataset with 294 

more complete genomes is likely to increase the size of the validation set by adding more valid 295 

BGCs into the analysis. We also combined the NPOmix program with in silico tools like 296 

Dereplicator+ (28) to make new links between MS/MS spectra, BGCs and molecular structures.  297 

This was accomplished by annotating cryptic MS/MS spectra (without a GNPS library hit and 298 

therefore not present in either the GNPS or the PoDP databases) to known BGCs. Such new 299 

links could be confirmed experimentally to improve the size of the validation set, as well as to 300 

expand MS/MS databases by adding these cryptic spectra to them. 301 

A two-dimensional comparison of both types of fingerprints (BGC and MS/MS) can be a 302 

proxy for distinguishing some true positives from false positives. As observed in Fig. S2, we can 303 

visualize a mismatch between the BGC fingerprints (one GCF) and the MS/MS fingerprint in the 304 

<reduced= KNN-space (represented schematically in only two dimensions), indicative of a 305 

possible false positive link. This GCF is dereplicated as the known metabolite, pyocyanin, and it 306 

was incorrectly associated with the metabolite 2,4-diacetylphloroglucinol, confirming the false 307 
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positive (at k = 3). In contrast, Fig. 3 illustrates that 5 metabolites, 2 albicidins and 3 albicidin 308 

analogs, could be correctly assigned to their corresponding GCF that contains 2 BGCs.  In this 309 

case, the BGC fingerprints match the MS/MS fingerprints (Fig. 3C, 3D). Using this second larger 310 

dataset comprised of 1,040 samples instead of only 60 yielded a precision of 66.7% as 10 out of 311 

15 reference MS/MS spectra were correctly labeled when top-n = 3 (k also equal to 3). Top-n 312 

represents how often the correct GCF label was found among the top n labels classified by the 313 

KNN approach (see Tables 1 and 2). The observed precision was much higher than with the 314 

cyanobacterial dataset because the PoDP dataset has a larger number of samples and it also 315 

contains a larger diversity of microbial entries thus providing fingerprint-based approaches 316 

more resolution. Lastly, we regard our NPOmix approach as multi-omics enabled dereplication 317 

because the 5 MS/MS albicidin labels were automatically assigned to a known GCF that 318 

confirmed their metabolite labels, thereby minimizing the necessity to purchase standards, to 319 

perform isolation and NMR characterization, gene knockout or heterologous expression. 320 

 321 

 322 
Fig. 3. Multi-omics enabled dereplication of albicidin by automatically predicting a true BGC-323 

metabolite link. Structure of the dereplicated metabolite (A) and its corresponding 324 

representative MS/MS spectrum (B, spectrum example from GNPS ID CCMSLIB00000579285 325 

and m/z of 843.27), obtained via Metabolite Spectrum Resolver (29). The two BGC fingerprints 326 

(1130 and 1131) are represented in a 2D plot (C) and they match the 2D plot for the 5 MS/MS 327 

fingerprints obtained from GNPS for albicidin and its analogs (D). BGC = biosynthetic gene 328 

cluster; MS/MS = mass fragmentation spectrum; m/z = mass over charge calculated via mass 329 

spectrometry. 330 
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Connecting analogs to BGCs: the example of orfamide C. An NPOmix link can be further 332 

confirmed by matching the AA predictions from the BGC with the structure prediction for the 333 

query metabolite based on library match or in silico annotations (Fig. 4). For example, the BGC 334 

(genes 1-6 in Fig. 4) for the metabolite orfamide C (MIBiG ID BGC0000399) was automatically 335 

connected by our KNN approach to a GNPS metabolite labeled <putative orfamide C= 336 

(CCMSLIB00004679300). This MS/MS spectrum was obtained from the same strain where the 337 

BGC was first identified (Pseudomonas protegens Pf-5, Genbank ID GCA_000012265)(30). The 338 

nine amino acid (AA) predictions for this BGC, based on the specificity of adenylation domains, 339 

match the structure for orfamide C in the correct order: leu, asp, thr, ile, leu, ser, leu, leu and 340 

ser. AntiSMASH was not able to predict the tenth and last in the biosynthetic series, namely 341 

valine. The matching between the predicted structures confirmed the multi-omics enabled 342 

dereplication of orfamide C (using k = 3, BGC predictions and predicted metabolite structure are 343 

represented in Fig. 4). The KNN GCF predictions do not use structures/substructures for linking 344 

MS/MS spectra to BGCs; hence, as demonstrated in Fig. 4, these substructure predictions can 345 

be an extra dimension for selecting links that are true positives over false positives. 346 

We have determined that the use of three neighbors is the optimal performance, 347 

providing a good balance between precision and number of links to validate (top-3 = 66.7% and 348 

randomness equal to 0, as detailed in Table 1). Randomness is observed by shuffling the testing 349 

columns, experimental MS/MS names, and counting how many correct links are present 350 

between the top-n GCF candidates. This parameter (n and k = 3) enabled the dereplication of 351 

the albidicins, orfamides B-C, jamaicamides A and C and cryptomaldamide, totaling 4 different 352 

metabolite families (and analogs) that were correctly predicted by our KNN approach using the 353 

PoDP dataset. Noteworthy, the top-10 precision had a maximum score of 73.33% with 354 

randomness still equal to 0.  However, 10 GCF candidates is practically too large for useful 355 

genome mining as all those candidates would need to be tested experimentally. We expect that 356 

our approach will improve with a larger training set and with further improvement of the 357 

features in the BGC and MS/MS fingerprints (e.g., based on substructure presence/absence). 358 

The 15 BGC-MS/MS validated links reported herein and their predictions using k = 3 are found 359 

in Table 2 that provides the GCF labels for the three closest BGCs to a given MS/MS fingerprint 360 

(the 10 correct GCF predictions are colored red and highlighted in bold). We confirm that all 10 361 

correct GCF predictions reported here were found in the original producer of the identified 362 

metabolites and they matched the reported masses. With 49 known GCF-MS/MS links were 363 

present in the 1,040 samples with paired data, the annotation rate was reasonably high (around 364 

30%, 15 out of 49 links were retained after the co-occurrence filter, a filter to keep only the 365 

metabolites that are found among the same samples that contain the candidate BGCs). 366 

  367 
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 368 

 369 
Fig. 4. NPOmix automatically connected an MS/MS spectrum annotated as <putative orfamide 370 

C= to the MIBiG BGC annotated as orfamide C. The figure illustrates the matches between the 371 

BGC9s AA predictions (via antiSMASH) and the predicted metabolite structure (orfamide C, 372 

predicted via MS/MS spectral matching). Only one AA (valine, in red) out of 10 AA could not be 373 

predicted by the BGC annotation tool (antiSMASH), however, this valine residue was predicted 374 

by the MS/MS spectrum. BGC = biosynthetic gene cluster; AA = amino acid; AmT = 375 

aminotransferase; TE = thioesterase; A = adenylation domain; ER = enol reductase; <?= in the 376 

BGC represents that one AA could not be predicted by antiSMASH. 377 

 378 

  379 
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Table 1. Top-n precision scores (how often the correct GCF label was found among the top n 380 

labels classified by the KNN approach) for 15 reference GNPS MS/MS spectra connected to a 381 

BGC found in the paired 1,040 (meta)genomes-MS/MS downloaded from the PoDP. These links 382 

were obtained from the NPLinker dataset, GNPS and PoDP databases. Randomness is observed 383 

by shuffling the testing columns, experimental MS/MS names, and counting how many correct 384 

links are present between the top-n GCF candidates. Based on this, we believe the best 385 

performance is n = 3 for the examined dataset. 386 

 387 

 Top-1 Top-3 Top-5 Top-10 Top-50 Top-100 

Data 46.66% 66.66% 66.66% 73.33% 73.33% 73.33% 

Random 0% 0% 0% 0% 0% 20% 

 388 

Table 2. 15 links between GNPS MS/MS spectra (with CCMS metabolite ID) and networked gene 389 

cluster family (true GCF). The table also includes their KNN predictions (k = 3); the predicted 390 

GCFs are ordered according to the value for k, from 1 (nearest) to 3 (furthest), and the first 391 

correct family is marked in bold red font. GCF labels can be repeated because multiple BGCs 392 

from the same GCF can be predicted as the nearest neighbors. Classification is considered 393 

correct if the true GCF is among the top-3 candidates. Annotations are according to each MIBiG 394 

BGC(s) found in the true GCFs. The <orphan= label indicates that the BGC was not networked in 395 

the current dataset. 396 

 397 

CCMS metabolite ID True GCF Predicted GCFs for k = 3 Annotation 

CCMSLIB00000479759 GCF320 GCF122, GCF115, GCF112 Bafilomycin 

CCMSLIB00000579285 GCF476 GCF476, GCF180, GCF476 Albicidin 

CCMSLIB00000840594 GCF488 GCF740, GCF740, GCF739 Nevaltophin D 

CCMSLIB00004679298 GCF450 GCF465, GCF445, GCF439 Orfamide A 

CCMSLIB00004679299 GCF450 GCF465, GCF445, GCF450 Orfamide B 

CCMSLIB00004679300 GCF450 GCF465, GCF445, GCF450 Orfamide C 

CCMSLIB00004681475 GCF476 GCF476, GCF180, GCF476 Propionyl-albicidin 

CCMSLIB00004681481 GCF476 GCF476, GCF180, GCF476 Beta-methoxy-albicidin 

CCMSLIB00004681486 GCF476 GCF476, GCF180, GCF476 Carbamoyl-beta-methoxy-albicidin 

CCMSLIB00004681487 GCF476 GCF476, GCF180, GCF476 Albicidin 

CCMSLIB00000001706 GCF471 GCF471, GCF498, GCF471 Jamaicamide A 

CCMSLIB00005724004 GCF498 GCF471, GCF498, GCF471 Cryptomaldamide 

CCMSLIB00000001553 Orphan GCF471, GCF498, GCF471 Hectochlorin 

CCMSLIB00000001751 Orphan GCF471, GCF498, GCF471 Palmyramide A 

CCMSLIB00000001708 GCF471 GCF471, GCF498, GCF471 Jamaicamide C 

 398 

 399 

 400 

  401 
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Connecting cryptic metabolites (without GNPS library matches) to BGCs: the example of 402 

brasilicardin A. We used a combination of MS/MS fingerprints (notebook 2), BGC fingerprints 403 

(notebook 3), MZmine (31) and Dereplicator+ (28) in order to annotate brasilicardin A. This 404 

approach differs from the previous NPOmix analysis because it uses MZmine to select the 405 

MS/MS spectra instead of collecting spectra from the GNPS and PoDP databases. After selecting 406 

300 MS/MS spectra from the 16 most diverse genomes in the dataset with 1,040 samples, 407 

Dereplicator+ had three in silico predictions and one of them was the unique tricyclic 408 

glycosylated terpene brasilicardin A. The observed m/z matches the value previously reported 409 

in the literature)(32), identifying an MS/MS spectrum that is currently absent from both the 410 

GNPS and the PoDP databases. NPOmix connected the MS/MS spectrum (predicted to be 411 

brasilicardin A by Dereplicator+, information not used in the NPOmix training) with the correct 412 

BGC (brasilicardin A MIBiG ID BGC0000632 from the strain Nocardia terpenica IFM 0406, 413 

GenBank ID GCA_001625105)(33), highlighting how NPOmix can connect cryptic molecules 414 

without library matches (absent from MS/MS databases) to their corresponding BGCs. 415 

Predicted fragmentation (Fig. S3 and table with deltas in Dataset S1, sheet seven) strongly 416 

suggests that the query MS/MS spectrum is indeed brasilicardin A (all differences between 417 

exact m/z and observed m/z were extremely low). This pipeline provided additional 70 links 418 

between cryptic MS/MS spectra and BGCs from the most diverse strains (links listed at Dataset 419 

S1, sheet six) and potentially new BGCs can be explored experimentally (e.g., BGC knock-out, 420 

heterologous expression or isolation and NMR structure elucidation), especially if coupled to 421 

NMR SMART analysis (34, 35) to confirm their novelty. 422 

 423 

Improving the fingerprint for known metabolites using biosynthetic class. In order to increase 424 

the precision of our NPOmix algorithm, we added the biosynthetic classes (PKSs, NRPSs, 425 

terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic metabolites, 426 

others/unknowns and other minor classes) to the BGC and MS/MS fingerprints as 427 

presence/absence in the training set (5,681 BGCs). For example, if a given BGC is a hybrid PKS-428 

NRPS, it was annotated as 1 in the PKS and NRPS columns, and with a 0 in the remaining classes 429 

(additional columns). For the MS/MS fingerprints in the validation set (testing set), we manually 430 

annotated these same features (biosynthetic classes) because the structures for these testing 431 

MS/MS spectra were known. In cases where the structure is unknown, tools like CANOPUS (36) 432 

and MolNetEnhancer (37) can provide a similar biosynthetic class prediction, and these 433 

predictions can be further confirmed using substructures predicted with unsupervised tools like 434 

MS2LDA (38) or dedicated tools like MassQL (based on specific MS/MS fragments found in the 435 

spectra, manuscript in preparation) or CSI:FingerID via SIRIUS 4 (39). As observed in the 436 

precision curves from Fig. S4 for version 1.0 (fingerprints without biosynthetic classes) and 437 

version 2.0 (fingerprints with biosynthetic classes), the precision increased for top-3 and top-5 438 

testing results, for top-3 it increased from 66.66% without the biosynthetic class (good score 439 

with a lower number of GCF candidates than top-10) to 73.33% with the biosynthetic class 440 

added, requiring less GCF candidates to obtain a similar precision as the top-10 without 441 

inclusion of the biosynthetic class. Consequently, we observed a better ranking of the predicted 442 

GCFs when the new class features were added.  443 

  444 
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Conclusion 445 

 446 

 We created a machine learning solution, a K-Nearest Neighbors algorithm named 447 

NPOmix, to connect specialized metabolites observed by untargeted mass spectrometry to 448 

their biosynthetic gene clusters (BGCs). We demonstrated that the tool performs reasonably 449 

well for a small dataset that was sequenced and collected in a uniform fashion; in this case, the 450 

dataset was constructed from 60 marine cyanobacterial samples with MAGs and high 451 

resolution untargeted LC-MS/MS spectra.  These were mostly from tropical marine 452 

cyanobacteria, which are known to be rich producers of NPs. Nevertheless, performance was 453 

limited by the small size of the dataset of good cyanobacterial genomes. We showed that a 454 

larger dataset, deriving from heterogeneous sources such as the ones currently available in the 455 

Paired omics Data Platform (PoDP), can create better fingerprints and can thus more 456 

successfully connect known metabolites to their corresponding BGCs, such as albicidin and its 457 

analogs to a BGC in Xanthomonas albilineans GPE PC73 (GenBank ID GCA_000087965.1), 458 

orfamides A-C to a BGC in Pseudomonas protegens Pf-5 (GCA_000012265), and 459 

cryptomaldamide and jamaicamide A and C to BGCs in Moorena producens JHB 460 

(GCA_001854205).  All three of these strains were the original producers of these metabolites. 461 

In Fig. 4, we illustrated how the BGC predictions (such as predicted moieties) can help to 462 

prioritize true links over false positives via matching of predicted structures between a given 463 

MS/MS spectrum and its BGC candidates.  464 

In this work we demonstrated the use of machine learning and genome mining to 465 

process several thousand LC-MS/MS files and a thousand genomes to connect MS/MS spectra 466 

to GCFs. Our approach can systematically connect MS/MS spectra from known metabolites 467 

(links validated experimentally), spectra from metabolites analogous to known (links with GNPS 468 

library matches) and spectra from cryptic metabolites (links without GNPS library matches and 469 

therefore absent from the MS/MS database, as exemplified by brasilicardin A). The advantage 470 

of using paired data is that the genomic information represents the full metabolic potential of 471 

an organism, and hence, we can prioritize the discovery of the most diverse BGCs via genome 472 

mining. Additionally, the use of genetic information can help in the structure elucidation and 473 

prediction of bioactivity (40), highlighting the advantage of using the BGC information in the 474 

drug discovery process. Moreover, predicting linked MS/MS spectra for a promising BGC can 475 

facilitate their heterologous expression as expression can be difficult if the target molecule is 476 

not known. Furthermore, we show how cryptic MS/MS spectra (absent from MS/MS databases 477 

like GNPS) can be annotated using NPOmix, MZmine (31) and Dereplicator+ (28), allowing 478 

expansion of the current MS/MS databases. We also demonstrated how our methodology is 479 

suitable for linking cryptic MS/MS spectra with putative BGC candidates that can assist in the 480 

isolation of novel natural product scaffolds. Despite the relatively small size of the training 481 

dataset (in comparison to other machine learning approaches, 1,040 paired samples and 5,681 482 

BGCs from the PoDP database), we observed good precision scores of top-3 = 66.66% and top-483 

10 = 73.33% (both with randomness equal to 0). By including the biosynthetic class in the 484 

fingerprints, the best precision score was top-3 = 73.33%. In effect, this latter analysis required 485 

less GCF candidates to obtain a similar precision as the top-10 without inclusion of the 486 
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biosynthetic class. We observed an annotation rate of around 30%, as 15 out of 49 GCF-MS/MS 487 

validated links were retained after the co-occurrence filter. 488 

The use of complete genomes over MAGs and metagenomes is preferred to create a 489 

more <complete= training set; we predict that this would result in better precision than if the 490 

training set is populated with several fragmented BGCs. Our results highlight the importance of 491 

making genomics and metabolomics data publicly available with curated metadata, because 492 

more available paired data would enable better training of models, and therefore, better tools 493 

for the research community. Future plans include the testing of other similarity metrics for 494 

networking and fingerprinting such as BiG-SLICE (41) for genomics and Spec2Vec (42) and 495 

MS2DeepScore (43) for the metabolomics. We will also look for synergy with correlation scores 496 

from NPLinker to better annotate paired datasets. We intend to implement structure and 497 

substructure predictions from the MS/MS fragmentation spectra using tools like SIRIUS 4 (39), 498 

MS2LDA (44), MolNetEnhancer (37) or CANOPUS (36), prioritizing candidates that have several 499 

substructures or predicted chemical compound classes matching between BGCs and MS/MS 500 

spectra. The GNPS molecular family information could be used to select a consensus prediction 501 

among different MS/MS spectra from the same family. The BGCs assembled from the 502 

metagenomic samples could be improved using tools like metaBGC (45) and BiG-Mex (46). 503 

Enrichment of the current Paired Omics Data Platform dataset (we could now use 1,040 PoDP 504 

samples) with higher quality samples as well as more validated BGC-MS/MS links will further 505 

drive the development of tools such as NPOmix, and this will spark the discovery of more novel 506 

NPs. Furthermore, machine learning can be used to connect promising BGCs with their 507 

biological activities (anticancer, antimicrobial and antifungal)(40). Finally, we would like to 508 

stress that all true positive BGC-MS/MS validated links reported here were found in the original 509 

producer of the metabolites and they matched the reported masses.  We expect that NPOmix is 510 

a promising tool to search for new natural products in paired omics data of natural extracts by 511 

using links between cryptic MS/MS and putative BGCs. This will, for example, facilitate the use 512 

of genome mining in drug discovery pipelines. 513 

 514 

Code and Data Availability  515 

 516 

 The code (a collection of Jupyter notebooks) required to reproduce this work and to use 517 

the NPOmix tool for new samples can be found in the following GitHub repository page: 518 

https://github.com/tiagolbiotech/NPOmix. The repository also includes short video 519 

explanations on how the tool works and its importance for natural product discovery. The 520 

(meta)genomes used to create the NPOmix training dataset for validation were downloaded 521 

from the Paired omics Data Platform (PoDP)(14) using notebook 1 from the GitHub repository. 522 

The paired experimental MS/MS files were downloaded using the ftp links (also from the Paired 523 

omics Data Platform) found in Dataset S1, sheet two. The testing set included MS/MS spectra 524 

from PoDP, spectra from the Global Natural Products Social Molecular Networking database 525 

(GNPS)(16) and also spectra used in the NPLinker dataset (10). If the potential users find the 526 

tool challenging to run, we have our contact information at the GitHub web page (link above) to 527 

submit samples and we expect that promising results will lead to fruitful collaborations. In the 528 

near future, we will have a web-based interface for direct submission of samples.  529 
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Methods 559 

 560 

Obtaining paired data. Sixty cyanobacterial samples were collected via SCUBA diving or 561 

snorkeling along coastal shores around the globe and subjected to processing as described by 562 

Leao et al., 2021, (13). High quality genomes were published at NCBI database and LC-MS/MS 563 

data were collected for the same set of samples, also as described by Leao et al., (2021)(13). 564 

The paired data is available at the PoDP (ID <864909ec-e716-4c5a-bfe3-ce3a169b8844.2=). We 565 

automatically downloaded the paired (meta)genomics-metabolomics data from the samples in 566 

the PoDP according to the code in the notebook 1 at the GitHub repository described below. 567 

The cyanobacterial high resolution LC-MS/MS data was obtained according to the methods in 568 

by Luzzatto-Knaan et al. (47). 569 

 570 

Genome assembly and annotation, BGC and MS/MS similarity calculation. Metagenomic 571 

reads were assembled with SPAdes 3.15.2. (48). For BGC annotation, we used antiSMASH 5.0 572 

(49) and for gene cluster networking we used BiG-SCAPE 1.0 (similarity cutoff of 0.7) (5). BiG-573 

SCAPE raw distance is measured via the domain sequence similarity (DSS) index, an index that 574 

calculates the Pfam domain copy number differences and sequence identity (5). For networking 575 

metabolites, we used GNPS classical molecular networking release 27 (similarity cutoff of 0.7). 576 

We did not use the full classical molecular networking capabilities in the NPOmix approach, as 577 

only the functions required to calculate a modified cosine score between a pair of MS/MS 578 

spectra were needed.  579 

 580 

Creating fingerprints. We developed python scripts and we combined with scripts from sklearn 581 

(https://scikit-learn.org/stable/index.html) to create both BGC and MS/MS fingerprints and to 582 

run the KNN algorithm. A BGC fingerprint is created by pairwise BiG-SCAPE comparison 583 

between the queried BGC and all the BGCs found in the (meta)genomes in the training set, 584 

selecting the highest similarity scores for each (meta)genomes. An MS/MS fingerprint (part of 585 

the testing set) is created by pairwise modified cosine comparison between the queried MS/MS 586 

and all the MS/MS present in the LC-MS/MS files paired with the genomes from the training 587 

set, also selecting only the highest similarity scores per set of experimental MS/MS spectra.  588 

 589 

Jupyter notebooks. All scripts used in this research can be found at this GitHub repository: 590 

https://github.com/tiagolbiotech/NPOmix. Notebook 1 can be used to download 591 

(meta)genomes and metagenome-assembled genomes (MAGs) that contain paired untargeted 592 

metabolomics (LC-MS/MS)(metabolomic files will also be downloaded by the notebook). We 593 

selected genomic samples that contained a valid Genome ID or BioSample ID, resulting in 732 594 

genomes/MAGs. We also selected and assembled 1,034 metagenomes. Notebook 2 can be 595 

used to process downloaded metabolomics files and a selected set of <.mgf= reference MS/MS 596 

spectra, creating a matrix containing the MS/MS fingerprints for the selected set of reference 597 

spectra (reference MS/MS spectra for the validation but for using the tool these reference 598 

spectra will be replaced by cryptic MS/MS spectra). If there are more than one LC-MS/MS file 599 

per genome (for example different media conditions or different chemical fractions), these files 600 

were merged into a single file representing these experimental MS/MS spectra. Notebook 3 can 601 
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be used to process the antiSMASH results to create BGC fingerprints and use those to train the 602 

KNN algorithm. The MS/MS fingerprints are used to predict a/multiple GCF(s) for each tested 603 

reference MS/MS spectra found in the paired genomes-MS/MS data. We filtered the GCF-604 

MS/MS links for cases that the top GCF candidate had co-occurrence (GCF and MS/MS scores 605 

were present in the same set of samples, as illustrated in Fig. 3C and 3D). Notebook 3 also 606 

performs cross-validation (dividing the data into 5 parts) and the average precision score for 607 

the cross-validation was 56.9%. Notebook 4 can be used to generate metadata such as the type 608 

of GCF or the count of BGCs per each genus in the database. The code for making the Mantel 609 

correlation, an approach that combines two presence/absence matrices, can be found in 610 

notebook 5. Notebook 6 presents the code for genome mining that yielded the annotation of 611 

brasilicardin A (more details below). Notebook 7 expanded the similarity/absence fingerprints 612 

by including the biosynthetic class (NPOmix version 2.0). 613 

 614 

Genome mining for new MS/MS spectra using Dereplicator+ and NPOmix. In order to use the 615 

NPOmix approach to find new NPs without any GNPS library matches (absent from the MS/MS 616 

database), we developed a pipeline combining NPOmix, MZmine (31) and Dereplicator+ (28). 617 

First, a number of strains were selected using MZmine, here exemplified with 16 strains, based 618 

on their BGC beta-diversity scores. The Jaccard beta-diversity score metric of the similarity 619 

between a pair of strains was calculated as the intersection over the union of the detected gene 620 

cluster families. Using MZmine, we select peaks that were above a certain intensity threshold 621 

(we used base peak relative abundance of 1E6) in order to prioritize the chromatographic peaks 622 

that could reasonably be isolated for structure elucidation.  In this example, we detected 623 

approximately 3,800 peaks with MS/MS spectra found in the analysis of the 16 most diverse 624 

strains. This MZmine list of peaks that have associated MS/MS data was filtered for minimum 625 

precursor mass of m/z 500 to promote the presence of multiple moieties (substructures) in the 626 

predicted structures, generating 300 <.mgf= files. These mgf files were used by NPOmix to 627 

predict the GCFs/BGCs for each of the 300 MS/MS spectra. We filtered for BGC-MS/MS links 628 

that the query MS/MS spectra existed in the same strains that the query BGCs were found (e.g., 629 

Fig 3C-D) and not across different strains (e.g., Fig. S2), using the Jaccard index in the 630 

presence/absence of fingerprints, essentially a pairwise analysis between the BGC fingerprint 631 

and the MS/MS fingerprint. This second filter narrowed down the number of mgf files to 72, as 632 

listed in Dataset S1, sheet six. These 72 mgf files were processed by Dereplicator+ for predicting 633 

structures for each MS/MS spectrum, leading to the annotation of brasilicardin A. Two other 634 

Dereplicator+ hits did not match the predicted GCFs. MZmine parameters were as follows: 635 

noise level of 1E6 for MS1 and 1E3 for MS/MS, minimum group size in number of scans of 4, 636 

group intensity threshold of 1E6, minimum highest intensity of 3E6, m/z tolerance of 10 ppm, 637 

retention time tolerance of 0.2, weight for m/z of 75%, and weight for retention time of 25%. 638 

 639 
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Expanding BGC and MS/MS fingerprints using biosynthetic classes. In notebook 7, the BGC 641 

classes were annotated and included in the BGC fingerprints.  To accomplish this, all of the 642 

antiSMASH annotations for a given BGC were added to the presence of all predicted classes. 643 

Each class represented a new column in the fingerprints and the columns were filled with 1 (if 644 

the class was present) and 0 (if the class was absent). We observed the following classes in our 645 

dataset: PKSs, NRPSs, terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic 646 

metabolites, others/unknowns and other minor classes. In the MS/MS fingerprint, for each one 647 

of the 15 validated MS/MS spectra, we annotated the presence/absence of the biosynthetic 648 

classes based on the known structures. These new fingerprints were used in the machine 649 

learning process, analogously to the notebook 3.  650 
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 651 
Fig. S1. Representation of how BGCs can be plotted in the KNN space by using the values in the 652 

training matrix, each column represents a genome in the training set and it also represents a 653 

dimension in the KNN space (1,040 genomes distributed in 1,040 columns). This example has 654 

three dimensions because it uses only three genomes; the actual training matrix used in this 655 

study had 1,040 genomes and therefore 1,040 dimensions. 656 

  657 
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 658 
  659 

Fig. S2. Representation of a mismatch linked by the KNN algorithm using k = 3. It is visually clear 660 

that the closest neighboring BGC fingerprints for pyocyanine does not properly match the 661 

MS/MS fingerprint from the metabolite 2,4- diacetylphloroglucinol, indicating that NPOmix 662 

suggested the wrong GCF for the 2,4- diacetylphloroglucinol MS/MS spectrum. 663 

 664 
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 670 
 671 

Fig. S3. Proposed mechanism for the fragmentation of brasilicardin A by ESI mass spectrometry. 672 

The structure was proposed by NPOmix as a possible match for the MS/MS spectrum with 673 

protonated m/z 893.4624. Dataset S1, sheet seven, shows the SMILES strings and delta m/z 674 

values for the predicted structural fragments and the observed fragments in the MS/MS 675 

spectrum. All delta m/z values in the table were extremely small, strongly indicating that 676 

brasilicardin A is the correct structure for this MS/MS spectrum and it matches well with the 677 

BCG identified in genome of Nocardia terpenica IFM 0406 (BGC known to produce brasilicardin 678 

A, ID BGC0000632). 679 
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 682 
Fig. S4. Comparison of precision curves before (blue line, version 1.0) and after addition of the 683 

biosynthetic class (green line, version 2.0). Best precisions are marked by dots (version 1.0 is 684 

top-3 = 66.66% and version 2.0 is top-3 = 73.33%). Randomness is represented by the red line. 685 

 686 

 687 
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