

1 **Tuning DO:DM ratios modulates MHC class II immunopeptidomes**

2 Niclas Olsson^{1,2†}, Wei Jiang^{3,4†}, Lital N. Adler^{3,5}, Elizabeth D. Mellins^{3,4††}, Joshua E. Elias^{6††*}

3 ¹Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford
4 University, Stanford, CA 94025, USA

5 ²Current address: Calico LLC, South San Francisco, CA 94080, USA

6 ³Department of Pediatrics, Program in Immunology, Stanford University School of Medicine,
7 Stanford University, Stanford, CA 94305, USA

8 ⁴Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA

9 ⁵Current address: Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
10 7610001, Israel

11 ⁶Chan Zuckerberg Biohub, Stanford, CA 94025, USA

12 †, ††These authors contributed equally to this work

13 *Corresponding author: Dr. Joshua E. Elias (josh.elias@czbiohub.org)

14

15 **Running title:** DO:DM ratios shape HLA-II immunopeptidomes

16 **Keywords:** antigen presentation, HLA, DO, DM, MHC, mass spectrometry, immunopeptidome,
17 proteome

18 **Abbreviations:**

19 DTT Dithiothreitol

20 FDR False discovery rate

21 HLA-II Human leukocyte antigen class II

22 MHC major histocompatibility complex

23 PBS Phosphate buffered saline

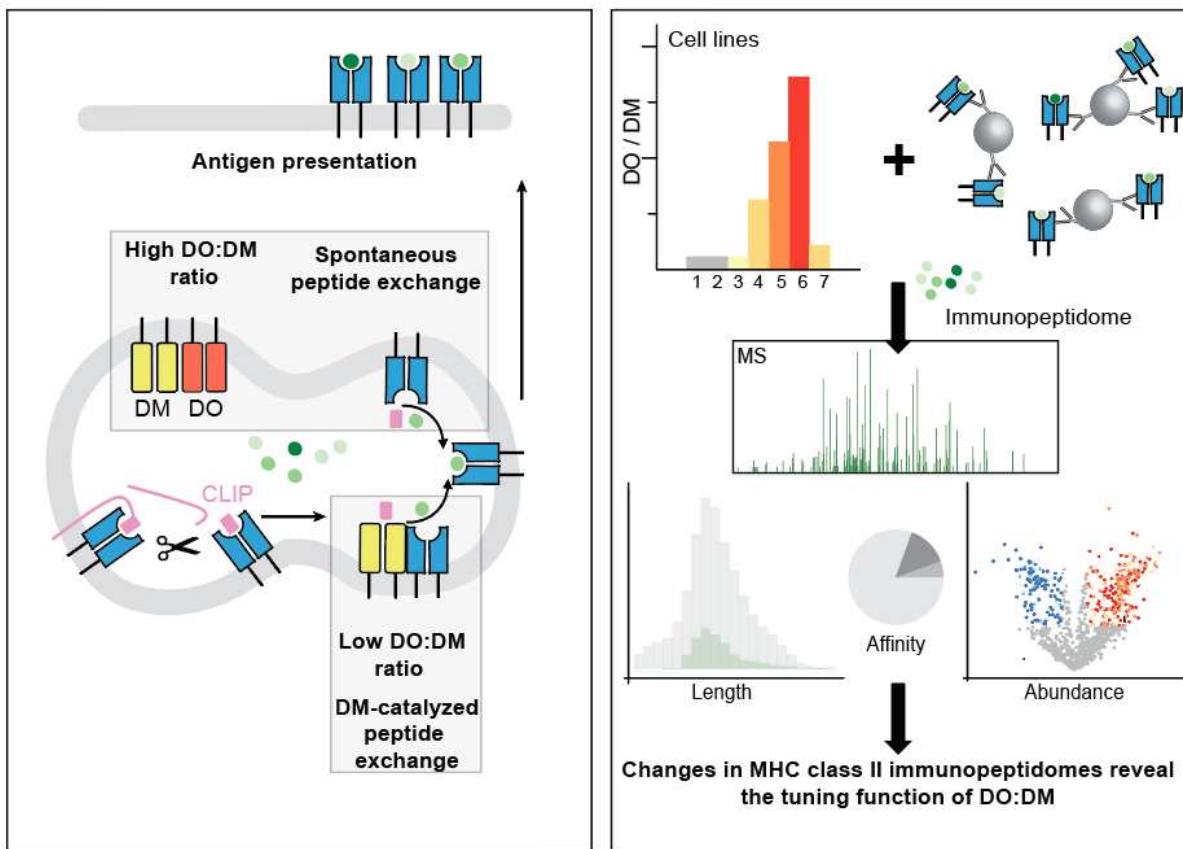
24

DO:DM ratios shape HLA-II immunopeptidomes

25 **IN BRIEF**

26 Peptides presented by MHC-II are critical to adaptive immune function. The non-canonical
27 MHC molecules HLA-DM and HLA-DO cooperatively regulate MHC-II function, but how
28 varied DO-to-DM ratios across different APCs and cellular contexts might influence their
29 immunopeptide repertoires is unclear. We address this by measuring cell lines expressing these
30 two proteins spanning a range of relative abundances. We found that peptides could be
31 categorized according to how robustly they were presented at different DO:DM ratios.
32 Importantly, this presentation was only partially linked to predicted affinity to the MHC-II
33 molecule.

34 **HIGHLIGHTS**


35 • Describe MHC-class II peptide repertoires from a unique HLA-DR4 cell line panel with
36 increasing DO:DM ratios.

37 • Demonstrate striking and divergent changes in MHC-II immunopeptidomes that result
38 from the tuning function of DO:DM.

39 • These findings bridge gap in understanding and predicting MHC-II antigen presentation.

DO:DM ratios shape HLA-II immunopeptidomes

40 GRAPHICAL ABSTRACT

41

42 ABSTRACT

43 Major histocompatibility complex class II (MHC-II) antigen presentation underlies a wide range
44 of immune responses in health and disease. However, how MHC-II antigen presentation is
45 regulated by the peptide-loading catalyst HLA-DM (DM), its associated modulator, HLA-DO
46 (DO), is incompletely understood. This is due largely to technical limitations: model antigen
47 presenting cell (APC) systems that express these MHC-II peptidome regulators at
48 physiologically variable levels have not been described. Likewise, computational prediction
49 tools that account for DO and DM activities are not presently available. To address these gaps,
50 we created a panel of single MHC-II allele, HLA-DR4-expressing APC lines that cover a wide
51 range of DO:DM ratio states. Using a combined immunopeptidomic and proteomic discovery
52 strategy, we measured the effects DO:DM ratios have on peptide presentation by surveying over
53 10,000 unique DR4-presented peptides. The resulting data provide insight into peptide

DO:DM ratios shape HLA-II immunopeptidomes

54 characteristics that influence their presentation with increasing DO:DM ratios. These include
55 DM-sensitivity, peptide abundance, binding affinity and motif, peptide length and register
56 positioning on the source protein. These findings have implications for designing improved
57 HLA-II prediction algorithms and research strategies for dissecting the variety of functions that
58 different APCs serve in the body.

59 INTRODUCTION

60 The immune system develops effector T cell repertoires that are both tolerant of self-proteins and
61 reactive to foreign antigens through selection steps that remove T cell clones bearing high-
62 affinity, self-reactive antigen receptors (1, 2). Professional antigen-presenting cells (APCs)
63 present peptides in complex with major histocompatibility complex class II (pMHC-II), in a
64 process that is essential to CD4+ T cell development and clonal selection. During self-tolerance
65 acquisition in the thymus, medullary thymic epithelia and other APCs present self-pMHC-II
66 where they are encountered by developing CD4+ T, driving their maturation and selection (1).
67 During antigen exposure in the periphery, diverse pMHC-II presented by APCs, like dendritic
68 cells and B cells in the germinal centers (GC) of lymph nodes, expand antigen-reactive mature T
69 cell clones (2). In both circumstances, APCs express a non-classical MHC-II molecule, DO
70 (HLA-DO in human or H2-O in mouse) (3–7). DO is expressed by medullary thymic epithelia, B
71 cells and certain dendritic cell subsets, but not by macrophages (8–10). This restricted expression
72 pattern implies a unique yet critical role for DO in regulating pMHC-II presentation and
73 subsequent CD4+ T-dependent immune responses.

74 Consistent with DO-regulated immune responses, ectopic overexpression of H2-O in H2-O^{neg}
75 dendritic cells diminished the presentation of certain pMHC-II (11) and prevented diabetogenic
76 T cell activation and subsequent type 1 diabetes symptoms in NOD mice (12). Conversely, H2-O
77 knockout mice spontaneously developed increased T-dependent autoantibody titers but showed
78 delayed humoral immunity when immunized with a model antigen (13). These mice also
79 exhibited increased susceptibility to model autoimmune diseases (14). In contrast, other
80 researchers found that H2-O-deficiency promoted virus-neutralizing antibody production (15).
81 These experiments support the idea that the immunologic consequences of DO's effects on
82 pMHC-II repertoires are highly context dependent such that DO knockout animals can exhibit
83 autoreactive or anti-microbial responses compared to DO-sufficient animals. Physiologically,

DO:DM ratios shape HLA-II immunopeptidomes

84 DO expression is downregulated in naïve or memory B cells entering GC to recruit T cell help
85 (5, 6, 16). DO downregulation also occurs in certain dendritic cells following their exposure to
86 maturation stimuli (8, 9). Thus, changes in DO levels influence a wide range of adaptive immune
87 responses.

88 Recently, we proposed a mechanistic model of how DO regulates MHC-II peptide presentation,
89 considering both molecular and cellular assessments of DO function (17). DO functions through
90 its pH-dependent association with DM (18–21), a peptide exchange catalyst that selects for stable
91 pMHC-II (22, 23), although not all high affinity peptides are resistant to DM. The DM selection
92 process is termed editing. We also found that the presented peptidome can be highly sensitive to
93 DO regulation, as small changes in DO:DM stoichiometry (the DO-to-DM ratio is denoted as
94 DO:DM) can create substantial shifts in pMHC-II levels (17). As noted above, several studies
95 have shown that DO knockout or ectopic expression in murine or human cells influences certain
96 pMHC-II or the entire MHC-II peptidome (11, 14, 24–30). However, no study has yet measured
97 how pMHC-II repertoires change between graded DO:DM differences, such as those that exist
98 among APC types, or those that progressively occur upon APC activation (8, 17).

99 Here, we performed a detailed mass-spectrometric (MS) analysis on the peptidomes associated
100 with an MHC-II human leucocyte antigen allele, HLA-DR4 expressed by model B cell lines, by
101 jointly considering the related proteomic information. These cell lines cover a wider range of
102 DO:DM stoichiometry than the previously used DO+ versus DO- states. We demonstrated
103 striking and divergent changes in HLA-II peptidomes that result from the tuning function of
104 DO:DM. We also described a knock-down example that illustrates how DO downregulation
105 would affect such tuning effect on the peptidome. Using these MS analyses, we identified several
106 key characteristics associated with DO:DM-tuned pMHC-II presentation. Our findings thus will
107 advance research in DMDO-regulated antigen presentation, improve computational prediction
108 models of MHC-II antigen presentation, and suggest strategies in management of T-dependent
109 immune disorders.

DO:DM ratios shape HLA-II immunopeptidomes

110 EXPERIMENTAL PROCEDURES

111 *Cell line construction*

112 The previously described cell lines included in this work are T2 (MHC-II^{null}DO^{null}DM^{null} TxB
113 hybrid), T2DR4 (DO^{null}DM^{null}), T2DR4DM and two clonal cell lines, T2DR4DMDO++ (1C3)
114 and T2DR4DMDO+++ (2D7) (17, 21). Cell lines with graded levels of DO:DM were
115 constructed as follows. A T2DR4DMDO parent line was constructed by transfecting the
116 pBudCE4.1-DOA/DOB plasmid into T2DR4DM by nucleofection (21). The T2DR4DMDO++
117 [medium level of DO:DM, or (DO:DM)^M] and T2DR4DMDO+++ [high level of DO:DM, or
118 (DO:DM)^H] clonal lines were constructed by fluorescence-activated cell sorting (FACS) of the
119 parental, polyclonal T2DR4DMDO transfectant for single cells with low (e.g., 1C3) or high (e.g.,
120 2D7) levels of surface CLIP/DR4 complexes (17). FACS-sorted single clones were then
121 expanded in a well of a 96-well plate to establish stable, single clonal lines, including 1C3 and
122 2D7, as described (17). To construct T2DR4DMDO+ [low level of DO:DM, or (DO:DM)^L], a
123 plasmid pBudCE4.1-DOA/DOB_Gly₈-linker_FLAG-tag was constructed similarly to the
124 construction of pBudCE4.1-DOA/DOB. After transfection of T2DR4DM with the plasmid by
125 nucleofection, two independent human promoters in the plasmid drove the expression of DO α
126 and DO β with a C-terminal FLAG-tag, respectively. Amaxa nucleofector kit C (Lonza, Basel,
127 Switzerland) designed for nucleofection of T2 cells was used. Transfected cells were cultured in
128 complete IMDM (IMDM-GlutaMax, 10% HI FBS and 1% P/S) with 50-100 μ g/ml zeocin for 3-
129 5 weeks to eliminate parent non-transfected cells and to construct a stable cell line,
130 T2DR4DMDO-G8. To construct the DOKO cell line, we used the CRISPR gene-editing strategy
131 (31) to knock out DO in T2DR4DMDO-2D7 [(DO:DM)^H] cells. Two single guided RNA
132 (sgRNA) primers, GGCCACCAAGGCTGACCACATGG flanking the DOA exon 1/2 and
133 GGGGAGAAAAGTGCAACCAGAGG flanking the DOB exon 2/3 were designed using the
134 CRISPOR website (<http://crispor.tefor.net/and>) and synthesized from Synthego. The Cas9
135 encoding plasmid was a gift from Dr. Matthew Porteus at Stanford University. sgRNA and Cas9
136 were introduced into T2DR4DMDO-2D7 by nucleofection using Amaxa nucleofector kit C. The
137 nucleofection condition: 10⁶ cells in 100 μ l total nucleofection solution with 8 μ g of each of the
138 two sgRNA primers and 4 μ g of Cas9-encoding plasmid. Transfected cells were further scaled up
139 and analyzed for DO expression by flow cytometry as previously described (17, 21) (see also
140 Supplementary Fig 1 for DO expression levels).

DO:DM ratios shape HLA-II immunopeptidomes

141 *Cell culture*

142 All cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM)-GlutaMAX
143 supplemented with 10% heat inactivated fetal bovine serum (HI FBS) and 1% of penicillin-
144 streptomycin (P/S). All media, supplements, and selection reagents are purchased from Thermo
145 Fisher Scientific (Waltham, MA). The expression of DR4, DM or DO in these T2 transfectants
146 was enforced and maintained by selection with 1 mg/ml G418 (Geneticin), 1 µg/ml puromycin,
147 or 100 µg/ ml zeocin, respectively. All cell cultures in this study were maintained in a 37 °C
148 incubator constantly supplied with 5% CO₂. Cells were harvested by centrifugation for
149 immediate flow cytometric analysis or washed twice with ice-cold PBS and stored at -80 °C for
150 downstream proteomic and peptidomic analyses.

151 *Cell line characterization using flow cytometry*

152 To measure total protein levels by flow cytometry, T2 and its derived cell lines were fixed and
153 permeabilized using the Cytofix/Cytoperm kit (BD Biosciences, Becton, Dickinson and
154 Company, Franklin Lakes, NJ). Washed cells were then resuspended in 1x PermWash buffer
155 (BD Biosciences) at a density of 1 million cells per 100 µl and stained on ice with fluorophore-
156 conjugated mAbs. These mAbs included Fluorescein isothiocyanate (FITC)-conjugated anti-
157 human CLIP mAb (BD Biosciences), PE (R-phycoerythrin)-conjugated anti-HLA-DR mAb
158 (BD Biosciences), Alexa fluor 568-conjugated anti-human DO mAb (MagsDO5), Alexa fluor
159 647- or Alexa fluor 700-conjugated anti-human DM mAb (MapDM1). Alexa fluor 568-
160 MagsDO5, Alexa fluor 647-MapDM1 and Alexa fluor 700-MapDM1 were generated previously
161 (17, 21). To stain DR4-associated non-CLIP peptides on the cell surface, cells were pelleted by
162 centrifugation and resuspended in phosphate buffered saline (PBS) + 1 % bovine serum albumin
163 (BSA) at a density of 1 million cells per 100 µl, and stained on ice firstly with hybridoma
164 supernatant containing NFLD.D11, a mouse IgM mAb known to recognize non-CLIP
165 peptide/DR4 complexes (32), and secondly, with Alexa Fluor 647 goat anti-mouse IgM
166 (Invitrogen, Thermo Fisher Scientific). Labeled cells were washed with corresponding staining
167 buffer (1x PermWash buffer for intracellular staining and PBS + 1% BSA for surface staining)
168 and resuspended in PBS + 1% BSA and analyzed on the BD LSRII flow cytometer at Stanford
169 shared FACS Facility. Flow cytometric data were analyzed using FlowJo software (BD
170 Biosciences).

DO:DM ratios shape HLA-II immunopeptidomes

171 *Protein extraction, TMT labelling and Hp-RP fractionation for proteomic analysis*

172 Each T2-derived cell line was cultured as described above, from which three aliquots of 1×10^7
173 cells were collected (three replicate aliquots per T2-derived cell line). To extract total protein
174 contents for MS analysis, each replicate was lysed in 8M urea, 150 mM NaCl, 5 mM DTT, 50
175 mM Tris-Cl (pH 8) supplemented with Complete Protease Inhibitor Cocktail tablet (Roche,
176 Mannheim, Germany) and 1x HaltTM Protease and Phosphatase Inhibitor Cocktail (Thermo
177 Fisher Scientific). The lysate was then centrifuged at 13,200 rpm for 15 min, and the supernatant
178 was transferred to a fresh test tube for a second round of centrifugation. The resulting clarified
179 supernatant was reduced with 5 mM DTT for 30 min at 37 °C, then alkylated with 14 mM
180 iodoacetamide for 45 minutes at room temperature in the dark and then quenched with 5 mM
181 DTT for 20 min at room temperature. In order to clean the proteins extracted from the lysate, a
182 methanol-chloroform precipitation was performed, and the protein pellet was washed twice with
183 acetone. The pellet was re-suspended in 300 μ l of 8M urea, 50 mM Tris-Cl (pH 8) and the
184 concentration of total proteins extracted from a cell line was determined using the PierceTM BCA
185 Protein Assay Kit (Pierce, Rockford, IL).

186 Extracted proteins from each sample or replicate were diluted to 1 M urea, 50 mM Tris-Cl (pH 8)
187 prior to digestion with Trypsin/Lys-C Mix (Promega, Madison, WI) at a ratio of 1:25 (enzyme:
188 substrate; 16 hours at 37 °C). The reaction was quenched with the addition of formic acid to a
189 final concentration of 5%. Digested peptides were desalted using a Sep-Pak C18 1 cc Vac
190 Cartridge, 50 mg (Waters, Milford, MA). Peptides were further labeled using Tandem Mass Tag
191 (TMT) reagents (Pierce) as previously described (33). In brief, each TMT reagent (0.8 mg per
192 vial) was reconstituted in 40 μ l of acetonitrile and incubated with the corresponding peptide
193 sample for 1 hour. The reaction was then quenched with a final concentration of 0.3% (v/v)
194 hydroxylamine for 15 min at room temperature. TMT-labeled peptides were acidified with 25%
195 formic acid to pH ~ 2. To assess labelling efficiency, a ratio-check was performed: 5 μ l of TMT-
196 labeled peptides from each cell sample or replicate were combined, desalted by StageTip (34)
197 and then analyzed on the liquid chromatography–mass spectrometry (LC/MS)-instrument
198 (detailed methods described below). Based on the result from the ratio-check, equal amounts of
199 each individually labeled sample were then combined into a master pool to deliver a comparable
200 average signal across all three TMT-labeling sets (see Fig. 1C).

DO:DM ratios shape HLA-II immunopeptidomes

201 TMT-labeled peptides were further desalted using a Sep-Pak C18 1 cc Vac Cartridge, 50 mg
202 (Waters), resuspended in 10 mM ammonium formate (pH 10), and fractionated using the high-
203 pH reverse phase (Hp-RP) fractionation approach as previously described (35, 36). For two of
204 the TMT labeling sets, fractionation was performed using a 65 min + 15 min step-gradient buffer
205 A (10 mM ammonium formate, pH 10) and buffer B (10 mM ammonium formate, 90% ACN,
206 10% H₂O, pH 10) using an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, USA). In
207 total, 84 fractions were collected, concatenated and combined (36) into a total of 12 fractions and
208 they were dried down. All fractions were desalted using a C18 based StageTip, dried down and
209 stored at -80°C until final LC-MS/MS measurement. In the case of the third TMT-labeling set
210 (containing the DOKO line) a manual Hp-RP fractionation procedure was performed using a
211 C18 based StageTip: A total of 7 fractions were collected with sequential increases in
212 [ammonium formate, pH = 10] concentration. The first and last fractions were combined into
213 one fraction, while the remaining fractions remained distinct. This resulted in six final fractions.
214 All fractions were desalted using a C18 based StageTip, dried down and stored at -80°C until
215 final LC-MS/MS measurement.

216 *Mass spectrometry-facilitated proteomic analysis*

217 Proteome-wide MS analyses were carried out as follows: TMT-labeled and Hp-RP-fractionated
218 peptides described above were resuspended in 20 µl 0.1% formic acid, of which 10 % of the
219 material was injected onto the Dionex Ultimate 3000 autosampler and LC-system (Thermo
220 Fisher Scientific). Peptides were separated on a 20 cm reversed phase column (100 µm inner
221 diameter, packed in-house with ReproSil-Pur C18-AQ 3.0 m resin by Dr. Maisch GmbH) over
222 120 min using a four-step linear gradient: 97% A (and 3% B) to 96% A for 15 min, to 75% A for
223 135 min, to 55% A for 15 min, and then to 5% A for 15 min (buffer A is 0.1% formic acid in
224 water and buffer B is 0.1% formic acid in acetonitrile). Mass spectra acquisition was performed
225 in a data-dependent mode on a Lumos Orbitrap mass spectrometer (Thermo Fischer Scientific,
226 Bremen, Germany) with precursor (MS1) scans acquired in the Orbitrap mass analyzer with a
227 resolution of 120,000 and m/z scan range 400–1,500. The automatic gain control (AGC) targets
228 were 4 x 10⁵, and the maximum injection time was 50 ms. The most intense ions were then
229 selected in top speed mode for sequencing using collision-induced dissociation (CID) and the
230 fragments were analyzed in the ion trap. The normalized collision energy for CID was 35% at
231 0.25 activation Q. For tandem mass (MS2) scans, the AGC targets were 1 x 10⁴ and the

DO:DM ratios shape HLA-II immunopeptidomes

maximum injection time was 30 ms. Monoisotopic precursor selection and charge state rejection were enabled. Singly charged ion species and ions with no unassigned charge states were excluded from MS2 analysis. Ions within ± 10 ppm m/z window around ions selected for MS2 were excluded from further selection for fragmentation for 90 s. Following each MS2 analysis, five most intense fragment ions were selected simultaneously for higher energy collisional dissociation (HCD) MS3 analysis with isolation width of 1.2 m/z, normalized collision energy of 65 % at resolution of 60,000, AGC target were 1×10^5 and maximum injection time of 90 ms.

Computational interpretation of proteomic data

Mass spectra were initially interpreted with Proteome Discover v2.1 (Thermo Fischer Scientific, San Jose, CA). The parent mass error tolerance was set to 20 ppm and the fragment mass error tolerance to 0.6 Da. Strict trypsin specificity was required allowing for up to two missed cleavages. Carbamidomethylation of cysteine (+57.021 Da), TMT-labeled N-terminus and lysine (+229.163) were set as static modifications. Methionine oxidation (+15.995), phosphorylation (+79.966) on serine, tyrosine and threonine, and N-terminal acetylation (+42.011), were set as variable modifications. The minimum required peptide length was set to seven amino acids. Spectra were queried against a “target-decoy” protein sequence database consisting of human proteins (downloaded from the Uniprot resource, June, 2016), common contaminants, and reversed decoys of the above (37) using the SEQUEST algorithm (38). The Percolator algorithm (39) was used to estimate and remove false positive identifications to achieve a strict false discovery rate of 1% at both peptide and protein levels. Known false positives (i.e., decoys) and contaminants were excluded from further analysis steps. Differentially expressed proteins were identified, statistically evaluated, and visualized from log-transformed quantitative data using R, Rstudio, and Qlucore Omics Explorer v3.2 (Qlucore AB, Lund, Sweden). Unless otherwise noted in the text, differentially expressed proteins were selected based on a q-value threshold < 0.05 following correction for multiple hypothesis testing was applied using Benjamini-Hochberg (40).

Purification of HLA-DR4 associated peptides

HLA-DR4 proteins were immunoprecipitated from T2-derived cells and their associated peptide cargo was eluted as previously described (41, 42), with some modifications. Briefly, each cell line was grown as two independent biological replicates, independent of cells prepared for full

DO:DM ratios shape HLA-II immunopeptidomes

262 proteome analysis described above, and 2×10^8 cells per replicate were harvested. Cells were
263 then lysed for 20 min on ice in 20 mM Tris-HCl (pH 8), 150 mM NaCl, 1 % (w/v) CHAPS, 0.2
264 mM PMSF, supplemented with 1x Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo
265 Fisher Scientific) and Complete Protease Inhibitor Cocktail (Roche). The lysate was centrifuged
266 (2 x 30 min, 13,200 rpm at 4°C) and the resulting supernatant was precleared for 30 min using
267 rProtein A Sepharose fast-flow beads (GE Healthcare). The precleared lysate was incubated with
268 HLA-DR specific antibody L243 (43) (produced and purified by Genentech from hybridoma)
269 coupled to rProtein A Sepharose fast-flow beads for 5h at 4°C. Following the immune-captures
270 of DR4, the beads were washed with TBS (pH 7.4) and peptides were eluted from the purified
271 DR4 molecules using 10% acetic acid. Eluted peptides were passed through a 10 kDa MWCO
272 filter, followed by a concentration step using vacuum centrifugation, before being desalted on
273 C18 based StageTips and stored at -80°C until LC-MS/MS analysis.

274 *Mass spectrometry-facilitated analysis of DR4 peptidome*

275 Peptides eluted from DR4 proteins as described above were reconstituted in 12 μ l 0.1 % FA and
276 analyzed on an LTQ Orbitrap Elite mass spectrometer (Thermo Fischer Scientific). Samples
277 were then injected onto the Eksigent ekspert nanoLC-425 system (SCIEX, Framingham, USA)
278 and peptides were separated by capillary reverse phase chromatography on a 20 cm reversed
279 phase column (100 μ m inner diameter, packed in-house with ReproSil-Pur C18-AQ 3.0 m resin
280 by Dr. Maisch GmbH) over a total run time of 160 min, including a two-step linear gradient with
281 4–25 % buffer B (0.2% (v/v) formic acid, 5% DMSO, and 94.8% (v/v) acetonitrile) for 120 min
282 followed by 25–40 % buffer B for 30 min. Each cell condition was prepared in parallel as two
283 biological replicates and each biological replicate was injected three times, each using a different
284 complementary instrumental method, resulting in 6 raw data files per cell condition. The three
285 instrumental methods are higher energy collisional dissociation (HCD), collision induced
286 dissociation (CID) including single-charged species, and CID excluding single-charged species
287 (41). Acquisition was executed in data-dependent mode with full MS scans acquired in the
288 Orbitrap mass analyzer with a resolution of 60,000 (FWHM) and a m/z scan range 340-1600.
289 The top ten most intense ions with masses ranging from 700-2750 Da were then selected for
290 fragmentation then measured in the Orbitrap mass analyzer at a resolution of 15,000 (FWHM).
291 The ions were fragmented with a normalized collision energy of 35% and an activation time of 5
292 ms for CID and 30 ms for HCD. Dynamic exclusion was enabled with repeat count of 2, repeat

DO:DM ratios shape HLA-II immunopeptidomes

293 duration of 30s and exclusion duration of 30s. The minimal signal threshold was set to 500
294 counts.

295 *Identification and quantification of DR4 binding peptides from mass spectra*

296 All tandem mass spectra were queried against the same “target-decoy” sequence database
297 described above for the proteome analysis. All spectra were searched using both SEQUEST (38)
298 and PEAKS DB (Studio 8, Bioinformatics Solutions Inc) (44) search engines. The MSConvert
299 program (version 3.0.45) was used to generate peak lists from the RAW data files, and spectra
300 were then assigned to peptides using the SEQUEST (version 28.12) algorithm. Spectra were also
301 interpreted by the PEAKS algorithm’s de novo sequencing function to improve peptide
302 identification confidence (41). The parent mass error tolerance was set to +/-10 ppm and the
303 fragment mass error tolerance to 0.02 Da. Enzyme specificity was set to none and oxidation (M),
304 deamidation (N,Q), cysteinylation (C), and phosphorylation (S, T, Y) were considered as
305 variable modifications. High-confidence peptide identifications were selected at a 1% false
306 discovery rate with a version of the Percolator algorithm (39) which we modified for
307 immunopeptide analysis (41). Unlike conventional proteome analysis, false discovery rates were
308 not evaluated at the level of assembled proteins, as this would unnecessarily penalize proteins
309 identified by just one peptide. Quantitative abundance values (MS1 peak areas) were extracted
310 from raw data as previously described (45). All peptide data and mass spec raw data files have
311 been deposited in the PRIDE Archive at www.ebi.ac.uk/pride/archive (46) under accession
312 number PXD024392.

313 *Characterization of DR4 binding cores and prediction of binding affinity*

314 Immunopeptidome datasets were evaluated with the PLAtEAU script (47) to identify DR4
315 binding cores. Only peptides reported in both biological replicates (with the criteria of at least
316 observed in one of the three technical replicate injections) were considered for further PLAtEAU
317 analysis. The minimum core length was set to 13 residues (default) and the immunopeptidome
318 data from each T2-derived cell line were analyzed individually as well as all lines and data
319 together. The default option, “impute with lowest measured value in each run” was enabled. The
320 quantitative cut-off criteria for being reported as differentially presented were: a p-value of less
321 than 0.01 (corrected for multiple hypothesis testing using Benjamini-Hochberg (40)) and a log2
322 fold change either >2 or <-2. Both the entire set of peptides from the peptidome analysis and the

DO:DM ratios shape HLA-II immunopeptidomes

323 subsequently defined core output from PLAtEAU were used as input for affinity prediction using
324 NetMHCIIpan version 4.0 (48, 49). NetMHCIIpan-4.0 scores how well a given peptide sequence
325 can bind a HLA-DR allele in question (e.g., DRB1*04:01). Its scoring models apply Artificial
326 Neural Networks (ANNs) trained on multiple extensive datasets that measured in vitro binding
327 affinity (BA), and MS-derived eluted ligands (EL). Optionally, NetMHCIIpan-4.0 can score
328 binding against a model trained only on BA and not EL data. As MS data were drawn from
329 untargeted MS studies rather than from discrete binding measurements, the two models should
330 be expected to produce different results in some cases. We therefore designate the former
331 prediction approach “EL”, and the latter prediction approach “BA”. For both EL and BA
332 prediction approaches, we applied rank-based thresholds of 2% and 10% to separate strong,
333 weak and non- binders. See main texts and figures for details. To evaluate prevalent motifs
334 among peptides in a more untargeted fashion we applied Gibbs cluster analyses (GibbsCluster-
335 2.0 Server (50) with the MHC-class II parameter settings) followed by visualization by
336 Seq2Logo.

337 *Experimental Design and Statistical Rationale*

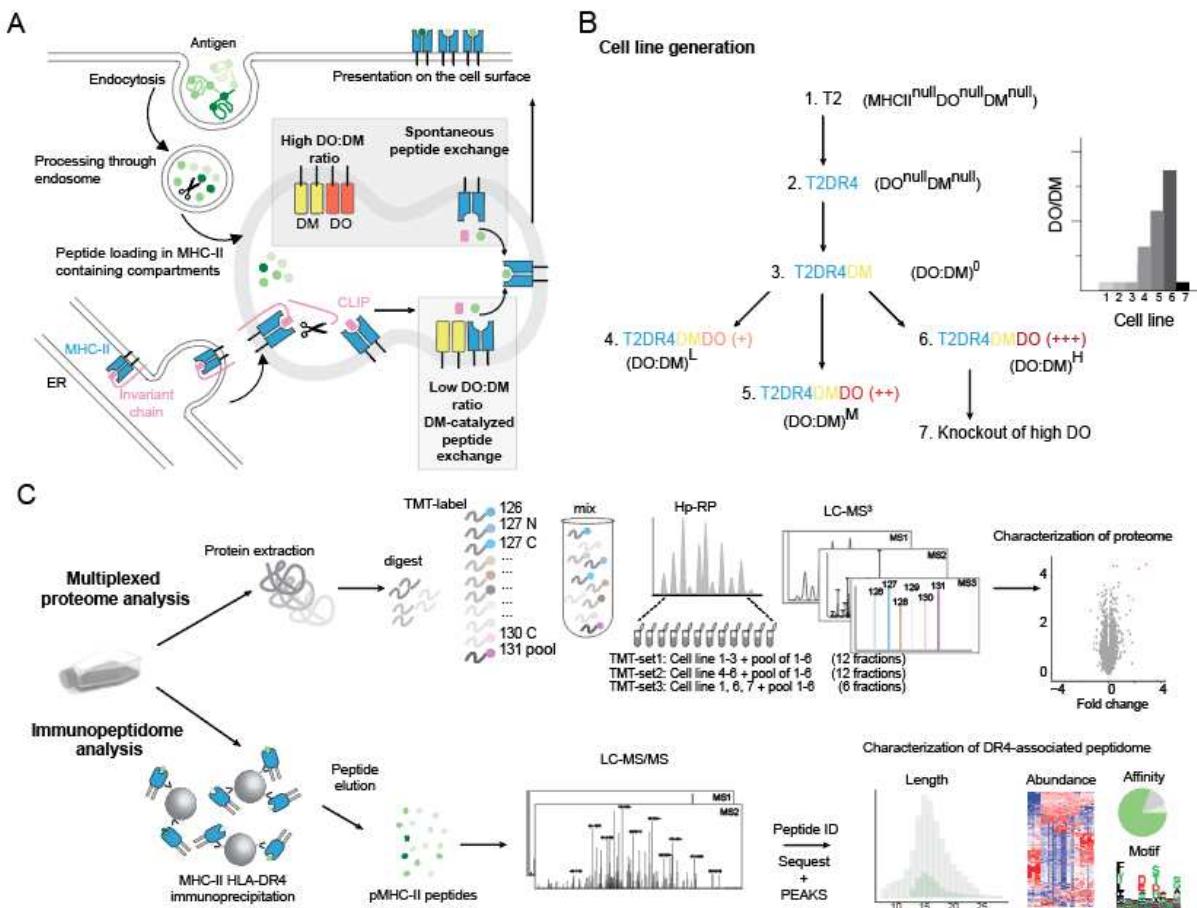
338 This study was designed to include proteomic and immunopeptidomic components, which
339 differed in the numbers of replicates and data collection modalities. Differences between these
340 experiments were due to technical considerations, since cell input for immunopeptidome assays
341 needed to be approximately 100-fold more than proteomic assays. Proteomic data were measured
342 as preparative triplicates, such that each cell culture was divided into three aliquots, and each
343 was lysed, digested, and labeled with TMT reagents in parallel as described above. Within each
344 replicate set, all samples were processed in a single batch. LC-MS/MS analysis of HPRP-
345 fractionated peptides proceeded according to the sequential order of the concatenated fractions,
346 as this was not deemed to be a significant source of potentially confounding variation. LC-MS
347 analyses were collected as single injections.

348 Immunopeptidomic data were collected from biological duplicates, which were processed from
349 lysis, immunoprecipitation, and desalting at different times and in a randomized order. LC-MS
350 analyses proceeded in a sequential order based on the nomenclature of the cell lines, one
351 replicate set at a time. Technical triplicate LC-MS analyses were acquired per sample to increase

DO:DM ratios shape HLA-II immunopeptidomes

352 coverage and overall signal using different experimental methods as described above. Carry-
353 over between different samples was minimized by acquiring blank analyses between each.

354 RESULTS


355 *Strategy for investigating the influence DO:DM has on pMHC-II repertoires*

356 Typically, antigens undergo endocytosis and intracellular processing by specialized APCs (e.g.,
357 B cells) prior to pMHC-II presentation for CD4+ T cell scanning (7). Necessary steps in this
358 process include proteolysis of the MHC-II chaperone invariant chain (Ii) to generate CLIP (Class
359 II associated Ii peptide) that remains in the binding cleft of MHC-II and the spontaneous or DM-
360 catalyzed CLIP removal and antigenic peptide loading (Fig. 1A). In B cells and several other
361 APCs described above, this process is further modulated by DO, likely via the competition
362 between DO and MHC-II for binding to DM (19). As only certain APC types express DO (8) and
363 DO knockout models have yielded apparently contradictory immune consequences (11–15), the
364 contribution of DO is puzzling. DO influences pMHC-II repertoires by controlling the level of
365 free, active DM (17, 21, 24). High DO levels, as observed in naïve or memory B cells, limit free
366 DM activity and permit loading of lower-affinity peptides (Fig. 1A). Acid-driven DO
367 denaturation from DMDO complexes elevates free DM levels, thereby promoting the formation
368 of stable pMHC-II (21). For instance, when the B cell receptor (BCR) binds antigen, B cell
369 activation leads to acidification of late endosomes and denatures DO (17, 51). This process is
370 BCR-antigen affinity dependent (17).

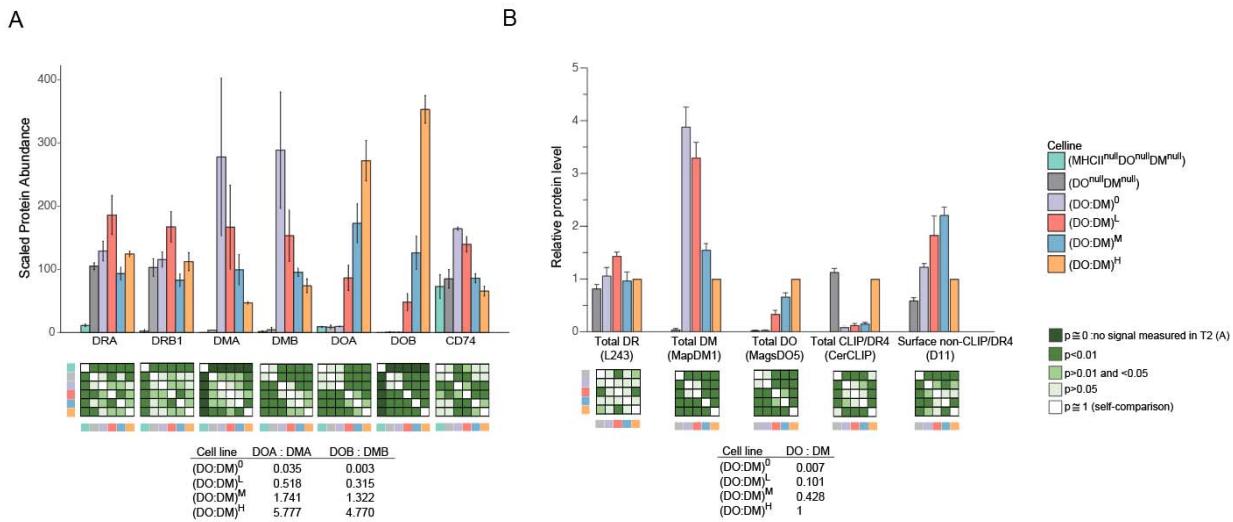
371 In this study, we sought to establish a tractable system to explore the peptide repertoires under
372 varied DO:DM conditions and to elucidate the impact of DO:DM on MHC-II peptidomic
373 landscapes. We used a series of human TxB hybrid cell lines (T2 derivatives, see Methods), each
374 differing by only one type of protein i.e., HLA-DR4, DM and DO, or by DO:DM levels (Fig.
375 1B). To generate the cell lines with varied DO:DM, we used a polyclonal DO transfectant of
376 T2.DR4.DM cells and two clonal lines expanded from FACS-sorted single cells, based on levels
377 of surface CLIP/DR4 complexes (Fig. 1B, see also Methods). We extracted all protein content
378 from the full panel of cell lines for mass spectrometry (MS)-facilitated proteomic analysis; in
379 parallel, we eluted DR4-associated peptides for MS peptidomic analysis (Fig. 1C). This strategy
380 allowed us to measure how DO:DM influences DR4 peptidomes, while accounting for the role

DO:DM ratios shape HLA-II immunopeptidomes

381 protein abundance may have in peptide selection, and any subtle proteome-wide alterations that
382 might exist between each cell line.

383

384 **Figure 1. Schematic of DO-involved antigen presentation and rational for experimental**
385 **design. (A)** Model to be tested: DO association limits the abundance of free DM that catalyzes
386 loading of peptides derived from endocytosed antigen onto nascent MHC-II thus influences the
387 MHC-II peptidome. CLIP: class II associated invariant peptide. **(B)** Experimental design: T2-
388 derived model cell lines expressing single MHC-II allele HLA-DR4 and different ratios of DO to
389 DM (DO:DM)⁰, (DO:DM)^L, (DO:DM)^M and (DO:DM)^H refer to the
390 four DM+ cell lines with zero, low, medium and high DO:DM. **(C)** Cell lines constructed in (B)
391 were compared with their parental cell lines by MS-facilitated multiplexed quantitative
392 proteomic analyses and label-free peptidomic analyses of ligands eluted from MHC-II (HLA-
393 DR4) with respect to their identities, lengths, abundances, and predicted binding properties.


DO:DM ratios shape HLA-II immunopeptidomes

394 *pMHC-II-specific mAbs reflect DO:DM influence on DR4 peptide presentation*

395 We assessed the expression levels of MHC-II and accessory molecules in the full panel of T2-
396 derived stable cell lines. MS-facilitated proteomic analysis validated the expression of α and β
397 chains of DR, DM, and DO (Fig. 2A, Supplementary Dataset 1). Their levels were consistent
398 with those of the corresponding total $\alpha\beta$ heterodimeric protein detected by flow cytometry (Fig.
399 2B). Flow cytometry analysis further showed that DM⁺ lines have comparable levels of total DR
400 and a hierarchy of total DM or DO (Fig. 2B and Supplementary Fig. 1). The concurrent decrease
401 of DM levels as DO levels increased was a consequence of how (DO:DM)^M and (DO:DM)^H lines
402 were selected based on CLIP/DR4 at the cell surface. This resulted in a step-wise increase of
403 DO:DM across these cell lines. As we observed previously (19, 21), DM expression, unopposed
404 by DO in the (DO:DM)⁰ line, catalyzed the removal of almost all CLIP bound by DR4. In
405 contrast, CLIP/DR4 persisted in T2DR4, which lacks DM and DO. DO expression rescued
406 CLIP/DR4 in (DO:DM)^H, whereas CLIP level was only slightly increased in (DO:DM)^L and
407 (DO:DM)^M compared to (DO:DM)⁰. Using NFLD.D11, an antibody specific for non-CLIP/DR4
408 (32), we further determined that (DO:DM)^H displayed significantly lower levels of non-
409 CLIP/DR4 than the levels in the other DM⁺ lines. The high level of invariant chain protein
410 (CD74, see Fig. 2A) found in (DO:DM)^L and (DO:DM)^M concurrent with low levels of
411 CLIP/DR4 (Fig. 2B) suggests that CLIP/DR4 levels do not depend on CD74 protein abundance.
412 Instead, these data suggest CLIP/DR4 levels directly depend on DO:DM stoichiometry.
413 Interestingly, non-CLIP/DR4 levels, as detected by NFLD.D11, were increased in (DO:DM)^L
414 and (DO:DM)^M compared to (DO:DM)⁰, indicating the dependence of some non-CLIP peptides
415 on expression of some DO, in addition to DM.

416 Overall, these results indicate a substantial and nuanced influence DO:DM can have on pMHC-II
417 presentation, an effect which varies with DO:DM. Thus, the T2-derived lines described here
418 represent the first system for directly measuring DO:DM impact on HLA class II peptidomes.
419 Of note, DO:DM can be directly measured, whereas its functional consequence – free, active
420 DM – cannot. Thus, we have designated cell lines by this ratio. Across the full panel of cell
421 lines, free DM is highest in the (DO:DM)⁰ cells, and decreases as the DO:DM ratio increases. It
422 is fully absent in the DO^{null}DM^{null} cells. While this last configuration of DO, DM and DR
423 expression is unlikely to be found under physiological conditions, it could nevertheless reflect
424 DM-resistant MHC-II alleles (52, 53).

DO:DM ratios shape HLA-II immunopeptidomes

425

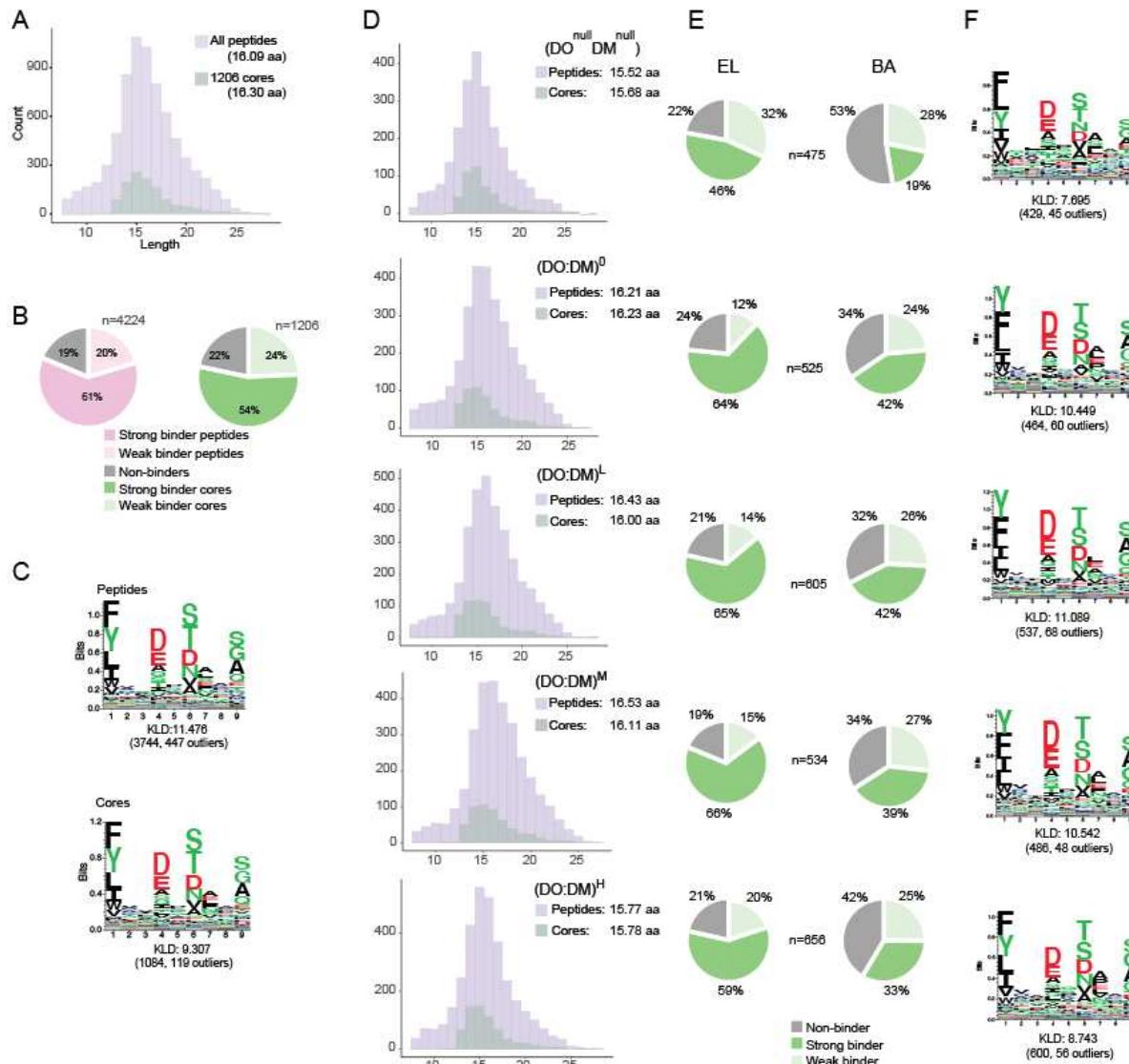
426 **Figure 2. T2-derived cell lines demonstrate anticipated abundances of HLA-DR and**
 427 **associated chaperones or peptides. (A)** Mass spectrometric analysis of the protein abundance
 428 for the α or β chains of DR, DM or DO, and for CD74 (the invariant chain). Data represent
 429 scaled TMT-labeled peptide signals from the corresponding protein \pm SD. DMA and DOB were
 430 not detected in parental T2 ($DR^{null}DO^{null}DM^{null}$) cells. **(B)** Flow cytometric analysis showing the
 431 relative protein level for total DR, DM, DO or CLIP/DR4 complexes, and the surface level of
 432 non-CLIP/DR4 complexes. Monoclonal antibodies (mAb) used for staining are L243, MapDM1,
 433 MagsDO5, CerCLIP, and NFLD.D11 as indicated. Data represent mean fluorescence intensities
 434 of the corresponding staining in each cell line normalized by the $(DO:DM)^H$ line + SEM. See
 435 Supplementary Fig. 1 for representative flow histograms. In both (A) and (B), a two sample t-test
 436 was used to compare each pair of the indicated cell lines for the indicated protein level. The
 437 calculated ratios of DO, DOA, or DOB to DM, DMA or DMB, respectively, reflect the relative
 438 abundance differences rather than the absolute number in the four DM-expressing lines.

439 *DR4 peptidomic differences between cell lines corroborate synergistic DO:DM tuning*

440 To evaluate how DO:DM affects DR4-presented peptide repertoires, we eluted peptide ligands
 441 from DR4 in each cell line and analyzed them by mass spectrometry (Supplementary Dataset 2).
 442 We identified an average of 3,072 unique peptides per biological replicate analysis per cell line,
 443 and 10,587 unique peptides from the entire data set (Supplementary Table 1, Supplementary
 444 Dataset 2). These peptides had an average length of 16.6 amino acids (aa) (Fig. 3A), an

DO:DM ratios shape HLA-II immunopeptidomes

445 appropriate average length for MHC-II associated peptides. Peptides with no quantified signal
446 were excluded from further consideration, resulting in 7,390 quantified unique sequences. Of
447 these, 4,224 (4,528 if considering different residue modifications) were quantified in both bio-
448 replicates.


449 Most MHC-II-eluted peptides we identified could be grouped into nested sets of overlapping
450 peptides. This is a common observation, resulting from the MHC-II open-ended binding groove
451 that permits peptides of multiple lengths to bind (54). This peptide sequence heterogeneity can
452 complicate subsequent computational procedures, such as sequence motif determination and
453 ligand quantification. We implemented the PLAtEAU algorithm (47), which addresses this
454 challenge by condensing overlapping peptides to single DR4-binding peptide cores. These cores
455 represent consensus sequences shared by nested sets of peptides, each of which should contain
456 the same binding register with the expected P1, P4, P6 and P9 anchor positions that directly
457 interface with the MHC-II binding groove. Applying this approach effectively simplified our
458 subsequent analyses, while aggregating analyte signals that were sometimes distributed across
459 multiple peptides (Supplementary Figure 2). PLAtEAU determined 1,206 unique peptide binding
460 cores with an average length of 16.30 aa (Fig. 3A, Supplementary Table 2). Each of these cores,
461 which mapped to 782 self-proteins (Supplementary Fig. 2), contained at least one 9-aa register
462 expected to occupy the DR4 peptide-binding groove. The NetMHCIIpan-4.0 algorithm (48, 49)
463 predicted that 81% of these peptides and 78% of these cores ranked among the top 10% of
464 sequences able to bind DR4 (Fig. 3B). The DR4 binding motifs generated from the entire
465 peptidomic dataset and from the condensed cores (Fig. 3C) corresponded well with the reference
466 motifs generated using the NetMHCIIpan-4.0 motif viewer (Supplementary Fig. 3). Collectively,
467 the core dataset and the MS-derived peptide dataset from which it is derived, both cover
468 informative DR4-presented peptides with expected lengths, motifs, and predicted binding
469 features, and both are therefore appropriate for further analysis.

470 We next compared the condensed core pMHC-II repertoires derived from each individual cell
471 line. Compared to $DO^{null}DM^{null}$ or $(DO:DM)^H$, DM^+ lines with zero to medium DO:DM showed
472 a tendency towards longer peptides or cores (Fig. 3D, Supplementary Fig. 4B). These lines,
473 which have modest DO:DM, also yielded a greater proportion of predicted strong DR4-binding
474 cores (Fig. 3E), and similar motifs to one another (Fig. 3F). The amino acid residue preference at

DO:DM ratios shape HLA-II immunopeptidomes

475 the four dominant anchor positions (P1, P4, P6, P9) were most similar among the $(DO:DM)^{0-M}$
476 lines, suggesting a DM-mediated preference for Y over F at P1. We note, however, that the top
477 two most frequent residues at each of the anchor positions were conserved among all five lines
478 (Fig. 3F). Interestingly, the $(DO:DM)^H$ line generated the greatest number of cores (656),
479 compared to $(DO:DM)^{0-M}$ (Fig. 3E, F); this indicates that the presence of DO enables a larger
480 number and an increased diversity of peptides to be presented by DR4, as also observed by
481 Nanaware et al, for DR1 (30). These differences are consistent with greater free DM levels in
482 $(DO:DM)^{0-M}$ than $(DO:DM)^H$, with consequent selection for high affinity, stable pMHC-II
483 complexes with decreased sequence diversity. Equivalent results between peptide and binding
484 core sequences (Supplementary Fig. 4 and 5) support the non-redundant core analysis as an
485 appropriate data simplification tool.

DO:DM ratios shape HLA-II immunopeptidomes

486

487 **Figure 3. Characterization of the combined DR4 peptidome from 5 cell lines or peptidomes**
488 **from each individual line. (A)** Length distribution for MS-identified unique peptides from all 5
489 lines and their consensus cores determined using the PLAtEAU algorithm. The mean lengths of
490 each are indicated in parentheses. **(B)** Percent of peptides or cores predicted to be strong (top
491 2% rank), weak (2-10% rank) or non- (bottom 90% rank) DR4-binders as predicted by
492 NetMHCIIpan-4.0 (EL approach, see Methods). **(C)** DR4 motifs generated with Seq2Logo. All
493 peptides (top) or all cores (bottom) described in (B) were first clustered with GibbsCluster.
494 Motifs indicate frequencies of particular residues at each of the nine positions of the DR4
495 binding register, with increased aa specificity at anchor residue positions (P1, P4, P6, P9). The
496 top-ranked cluster for each condition is presented. The Kullback-Leibler Distance (KLD) score is

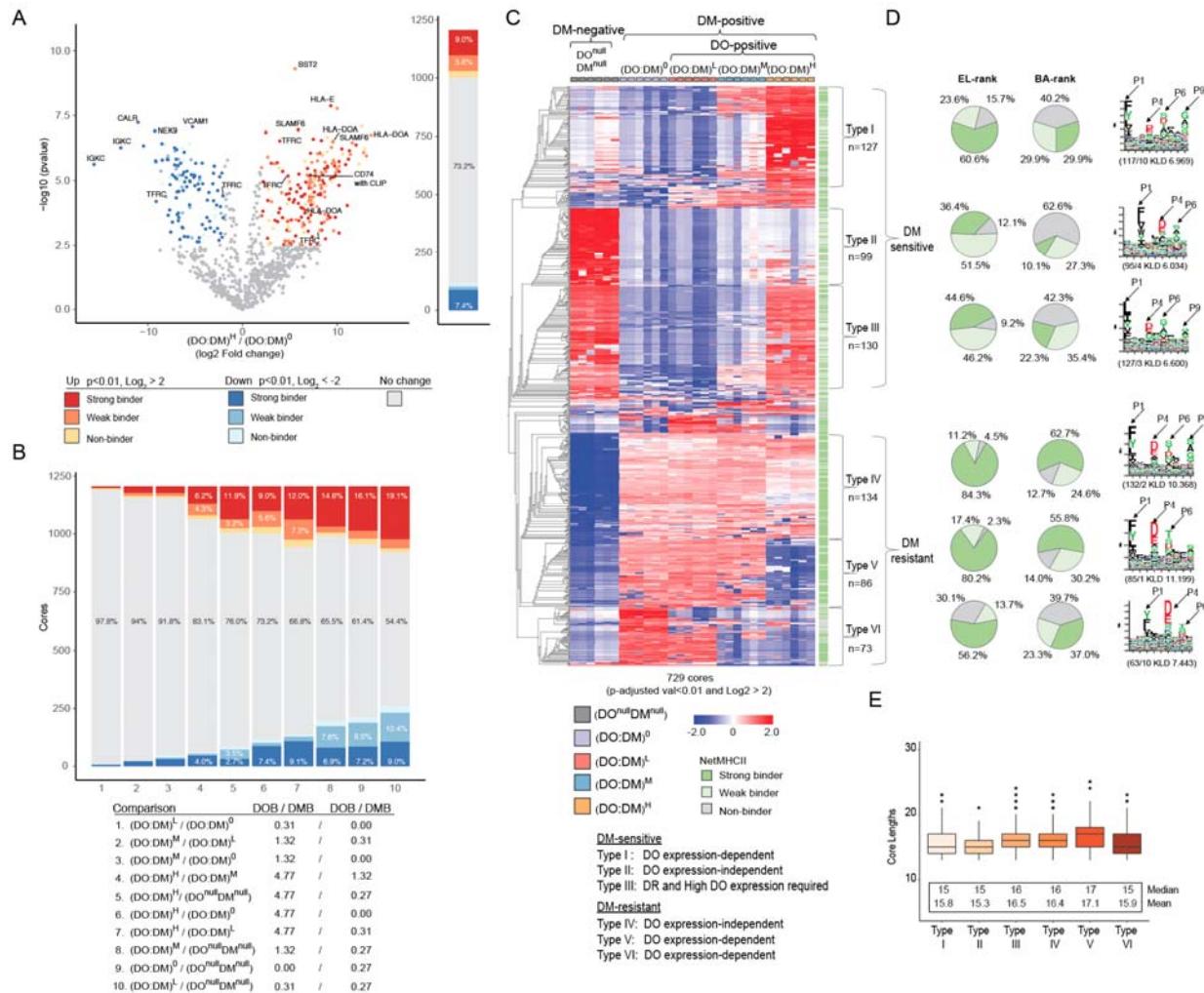
DO:DM ratios shape HLA-II immunopeptidomes

497 listed and the size of the cluster and number of outliers is listed in brackets. **(D-F)** Analyses of
498 length distributions (D), percent of cores predicted to be strong or weak binders using the eluted
499 ligand (EL) and in vitro binding affinity (BA) models implemented by NetMHCpan-4.0 (see
500 Methods) (E), and motifs deduced from DR4-binding cores (F) identified from each individual
501 cell line.

502 *Restricted DO:DM ratios tune distinct subsets of peptides for DR4 presentation.*

503 From a global perspective, differences between each cell line were most apparent relative to
504 $DO^{\text{null}}DM^{\text{null}}$ or comparing $(DO:DM)^H$ to $(DO:DM)^{0-M}$ (Fig. 3). Within any of these comparisons
505 however, specific peptide cores could demonstrate a range of abundance profiles. To develop a
506 more granular understanding of DO:DM influence on antigen presentation, we directly compared
507 the abundances of each peptide core between all cell line pairs (Fig. 4A,B). We found smaller
508 differences between each of the three $(DO:DM)^{0-M}$ cell line pairings and larger differences
509 between $(DO:DM)^{0-M}$ and $DO^{\text{null}}DM^{\text{null}}$, as compared to the differences observed between the
510 other pairs of cell lines (Fig. 4B, comparisons 1-3 or 8-10 versus comparisons 4-7). This analysis
511 confirmed the greater similarity between DR4 peptidomes derived from the three $(DO:DM)^{0-M}$
512 lines, as mentioned above (Fig. 2A and 3E,F). This grouping is surprising considering that
513 $(DO:DM)^L$ and $(DO:DM)^M$ expressed DO whereas $(DO:DM)^0$ did not. This suggests that many
514 peptide cores did not simply increase or decrease monotonically with tuning the DO level itself;
515 rather different peptides might be dependent on a synergistic tuning of DO:DM. Particular
516 DO:DM thresholds might therefore promote some peptides' efficient loading onto DR4 while
517 inhibiting others.

518 To explore DO:DM tunable profiles further, we clustered cores based on their relative abundance
519 across cell lines (Fig. 4C). Consistent with our finding that most (729 of 1,206, Supplementary
520 Table 3) peptide cores were presented with significantly different abundances in at least two of
521 the five cell lines, this clustering analysis revealed 6 major core types: Type I: $[DO^{\text{null}}DM^{\text{null}},$
522 $(DO:DM)^{0-L}] < (DO:DM)^H$; Type II: $(DO:DM)^{0-H} < DO^{\text{null}}DM^{\text{null}}$; Type III: $(DO:DM)^{0-M} <$
523 $[(DO:DM)^H \text{ and } DO^{\text{null}}DM^{\text{null}}]$; Type IV: $DO^{\text{null}}DM^{\text{null}} < (DO:DM)^{0-H}$; Type V: $[DO^{\text{null}}DM^{\text{null}},$
524 $(DO:DM)^H] < (DO:DM)^{0-M}$; Type VI: $[DO^{\text{null}}DM^{\text{null}}, (DO:DM)^{M-H}] < (DO:DM)^{0-L}$. The
525 majorities of Types II and III (up to 51.5%) were predicted weak binders, whereas the majorities
526 of Types IV and V (up to 84.3%) were predicted strong binders, regardless of prediction


DO:DM ratios shape HLA-II immunopeptidomes

527 approaches used (Fig. 4D). The deduced motif types associated with these peptide core types
528 were related to the canonical DR4 binding motifs (Supplementary Fig. 3).

529 These DR4-binding and abundance characteristics (Fig. 4C and Supplementary Fig. 2A) suggest
530 these binding cores fall into two primary categories: DM-sensitive (Types I-III) and DM-
531 resistant (Types IV-VI). DM-sensitive cores may spontaneously bind DR in the absence of DM
532 notably in $DO^{null}DM^{null}$ cells. These cores may be readily displaced or competed off by DM-
533 resistant cores in DM's presence. This appears to be the case particularly for Types II and III,
534 half of which are predicted to be weak binders (EL-rank, Fig. 4C, D). For others such as Types I
535 and III, binding to DR in the presence of DM can be protected with high DO:DM, which
536 effectively opposes when DM activity. In contrast, DM-resistant cores are presented almost only
537 in the presence of DM, and many are predicted to be strong DR4-binders (Fig. 4C, D). Some like
538 Type IV can be selected for DR4 presentation at higher DO:DM condition when there is less, but
539 apparently adequate, free DM activity. In contrast, others like Type VI are not presented until
540 DO:DM reaches very low levels.

541 Of note, cores of Types II and V showed the shortest and longest average core lengths,
542 respectively (Fig. 4E), in accordance with their predominantly weak and strong binding affinities
543 as predicted using NetMHCpan-4.0's BA model. This trend was less apparent from the EL
544 model's binding predictions (Fig. 4D). The longer peptide lengths associated with significant
545 free DM may also reflect DM-mediated peptide selection in earlier, less acidic endosomal
546 compartments with reduced exopeptidase activity; these are compartments where DO, if present,
547 would effectively inhibit DM. The dominant affinity group for Types I or VI also showed some
548 discrepancies when using EL versus BA prediction approaches. Both observations reflect
549 limitations, perhaps related to NetMHCII-4.0 prediction methods (see discussion). In addition,
550 Types II and VI showed an unusual shift of the anticipated dominant anchors (Fig. 4D; P1 is
551 located at the 3rd position in these cores whereas it is in the 1st position in the other Types). This
552 shift, which implies longer N-terminal extensions among the underlying peptides, could reflect
553 algorithmic limitations (see also Discussion) due to suboptimal input (<100 core peptide
554 sequences) for motif generation.

DO:DM ratios shape HLA-II immunopeptidomes

555

556 **Figure 4. Classification of distinct binding core types.** (A) A representative volcano plot
557 illustrating abundance differences of cores between two cell lines, $(DO:DM)^H$ and $(DO:DM)^0$.
558 Significance cutoff: $p<0.01$ of t-test after being adjusted for multiple hypothesis testing (BH) and
559 a Log2 fold change >2 (in red color scale) or <-2 (in blue color scale). Strong, weak, or non-
560 binders predicted using the NetMHCIIpan-4.0 EL model are indicated by different color
561 intensities. The source proteins of a selected subset of cores are indicated. The stacked bar to the
562 right aggregates the seven types of data points displayed in the volcano plot. (B) Summary of all
563 pair-wise comparisons between five cell lines. Stacked bar chart based on differential
564 presentation, similar to that described in (A). Cell line details with the MS-determined DO:DM
565 are indicated. (C) Heatmap (z-score normalized and hierarchically clustered) showing cores with
566 significantly different abundances between at least two cell lines using criteria described in panel
567 (A) and classification of six core types. Green scales to the right indicate the corresponding

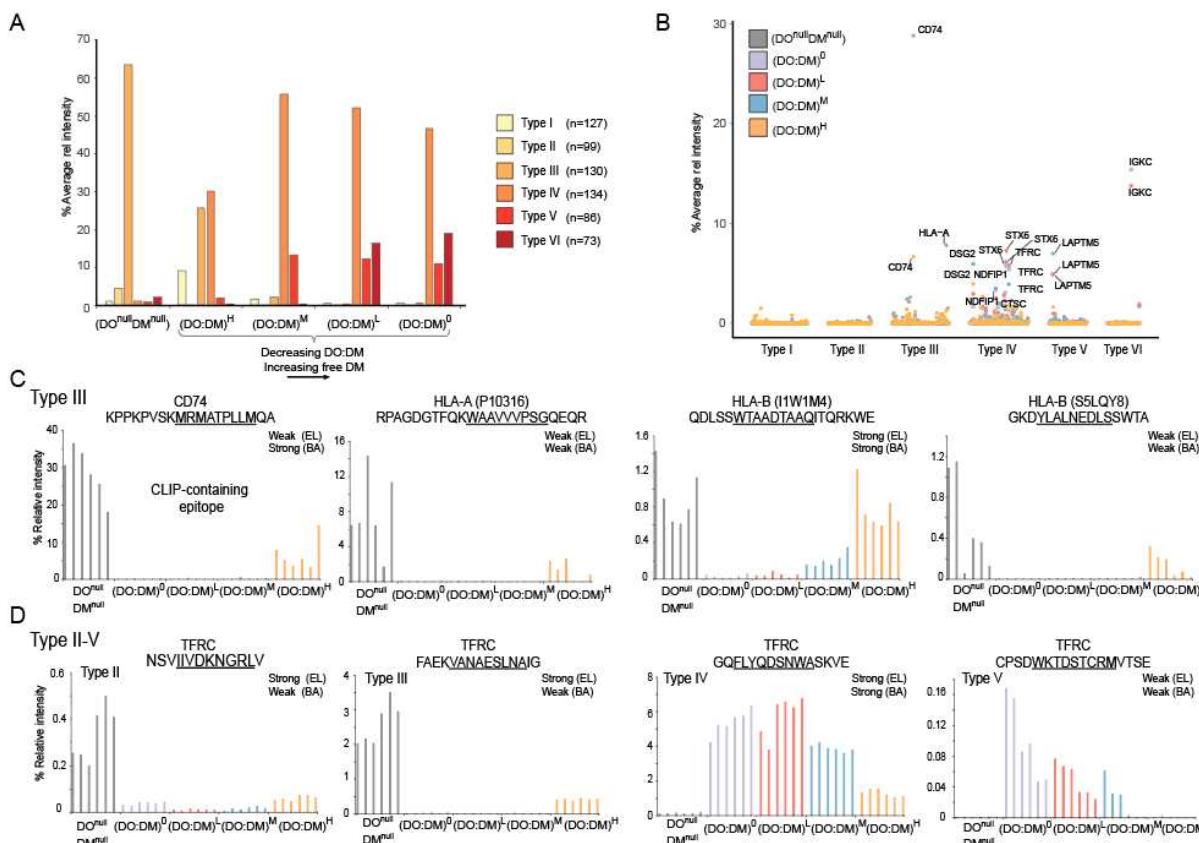
DO:DM ratios shape HLA-II immunopeptidomes

568 core's binding prediction using NetMHCIIpan-4.0's EL model. The six columns per cell line
569 represent two biological replicates, each with three technical replicate LS-MS analyses. **(D)**
570 Percent of Type I-VI cores predicted to be strong-, weak-, or non-binders using EL or BA
571 approaches (see Methods), and the corresponding sequence motif extracted from each, as
572 described in Fig. 3. **(E)** Length distribution for the six types of cores.

573 *pMHC-II characteristics contribute to DO:DM-tuned peptide presentation*

574 The intra-binding core Z-score normalization we used to generate Figure 4C effectively showed
575 relative abundance changes between each cell line for a given core, but could mask gross
576 abundance differences between the various binding cores we measured. To further examine how
577 tuning DO:DM can affect different subsets of peptides presented by DR4, we compared the
578 relative abundances of each peptide core type across all cell lines (Fig. 5A). Despite the similar
579 numbers of cores clustered into each of the three DM-sensitive core types (Fig. 4C), Types I and
580 II showed substantially lower abundances than Type III (Fig. 5A). Thus, types I and II account
581 for a small contribution to the overall peptidome in any of the cell lines. In contrast, the
582 abundances associated with the DM-resistant cores of types IV-VI appeared to scale
583 approximately with the number of cores represented in each group (Fig. 5A and 4C). Of these,
584 type IV was the most abundant peptide type in the 3 cell lines with substantial DM activity
585 $[(DO:DM)^{0-M}]$ (Fig. 5A and 4C), but notably a strong binding Type IV subset was enriched when
586 DM activity was most limited by DO (Fig. 4C).

587 To better understand how DO:DM effects might differentially apply to specific DM-sensitive or
588 -resistant peptides, we evaluated how cores' abundances (Supplementary Table 2) contributed to
589 these Type-specific observations (Supplementary Fig. 6). Among the DM-sensitive Type III core
590 sequences, the CLIP (CD74) sequence, KPPKPVSKMRMATPLLMQA (binding register
591 underlined), was dominant, with 28.8% normalized intensity in $DO^{null}DM^{null}$ and 6.66% in
592 $(DO:DM)^H$ (Fig. 5B). This core represents the most abundant overlapping peptide sequences in
593 our entire dataset (Supplementary Dataset 2). The CLIP core demonstrated greatly reduced
594 abundance in $(DO:DM)^{0-M}$ cells (0.05%, 0.14% and 0.20%, respectively; Fig. 5C). The trend was
595 consistent with the flow cytometric measurements of CLIP/DR4 (Fig. 2B), and confirms the
596 known role DO and DM have on catalyzing peptide exchange for CLIP. The second most
597 abundant DM-sensitive Type III core (RPAGDGTFQKWAAVVVPSGQEQR), with 7.8%


DO:DM ratios shape HLA-II immunopeptidomes

598 normalized intensity in DO^{null}DM^{null} (Fig. 5B, 5C) was derived from the HLA-A class I protein.
599 It also followed a similar decrease in abundance (normalized intensities of 0.02%, 0.01%,
600 0.03%) across the (DO:DM)^{0-M} gradient with a substantial increase in (DO:DM)^H (1.2%, Fig.
601 5C). Two HLA-B-derived cores demonstrated similar DM-sensitive profiles across the five cell
602 lines, albeit with ten-fold lower intensities (Fig. 5C). A majority of DO:DM-dependent
603 reductions in peptide abundance did not reflect any underlying protein abundance differences
604 and proteins were consistent across the five cell lines (Supplementary Fig. 7). Exceptions were
605 expected, such as a core derived from HLA-DOA, which was undetectable in the DO^{null}DM^{null}
606 cell line. Overall, these results support the notion that DM selects against subsets of weak-
607 binding peptides in a DO-dependent fashion.

608 In Type III DM-sensitive cores, large overall abundance swings (Fig. 5A) were dominated by a
609 small number of cores (e.g., CLIP/CD74) in DO^{null}DM^{null} and (DO:DM)^H cells (Fig. 5B). In
610 contrast, the greater abundance of DM-resistant cores of Types IV-VI among (DO:DM)^{0-M} cells
611 (Fig. 5A) can be attributed to a more diverse set of cores, each with moderately high abundance
612 – for example, binding cores derived from DSG2, IGKC, LAPT M5, NDFIP1, STX6, and TFRC
613 (Fig. 5B). These were mostly concentrated among Type IV cores, whereas types V and VI core
614 abundances were more restricted to single protein sources (LAPT M5 and IGKC, respectively).
615 As with the DM-resistant cores, these patterns relative to DO^{null}DM^{null} cells cannot simply be
616 attributed to abundance differences at the protein level (Supplementary Fig. 7). Instead, these
617 three DM-resistant core types appear to have distinct DO:DM thresholds that govern their
618 presentation by DR. We attributed this differential peptide presentation to the graded DO:DM
619 effects on DM selection for high affinity, stable peptide/DR4 complexes, as most related cores
620 were predicted by NetMHCIIpan-4.0 to be strong binders.

621 These data further demonstrate that single proteins could harbor cores of multiple Types. For
622 example, we identified multiple cores across the length of TFRC with moderate to high
623 abundance belonging to four core types (II-V) (Fig. 5D): In agreement with the aggregated
624 quantifications in Fig. 5A of DM-sensitive peptides, the Type III peptide FAEKVANAESNAIG
625 was approximately ten-fold more abundant than the Type II peptide NSVIIVDKNGRLV in
626 DO^{null}DM^{null} and (DO:DM)^H cells, but neither were robustly presented in (DO:DM)^{0-M} (Fig. 5D).
627 In contrast, the Type IV and Type V DM-resistant cores, GQFLYQDSNWASKVE and

628 CPSDWKTDSTCRMVTSE, decreased to different extents with increasing (DO:DM)^{0-H} (Fig.
 629 5D). Of these peptides, the most abundant (DM-resistant Type IV, GQFLYQDSNWASKVE, up
 630 to 6% relative intensity in (DM:DO)^{0-L}) was predicted to be a strong binder by both EL and BA
 631 models (Fig. 5D). The other DM-resistant peptide (Type V, CPSDWKTDSTCRMVTSE) had
 632 more than 30-fold lower intensity in (DM:DO)^{0-H} than the above peptide. In agreement with this
 633 abundance difference, it was predicted to be a weak binder by both EL and BA models (Fig. 5D).
 634 In contrast, both DM-sensitive peptides above were predicted to be strong binders by the EL
 635 model, and weak binders by the BA model, despite differing by approximately 10-fold in their
 636 abundances. These observations underscore the notion that tuning DO:DM ratios can
 637 asynchronously shift the abundances of cores derived from a particular protein.

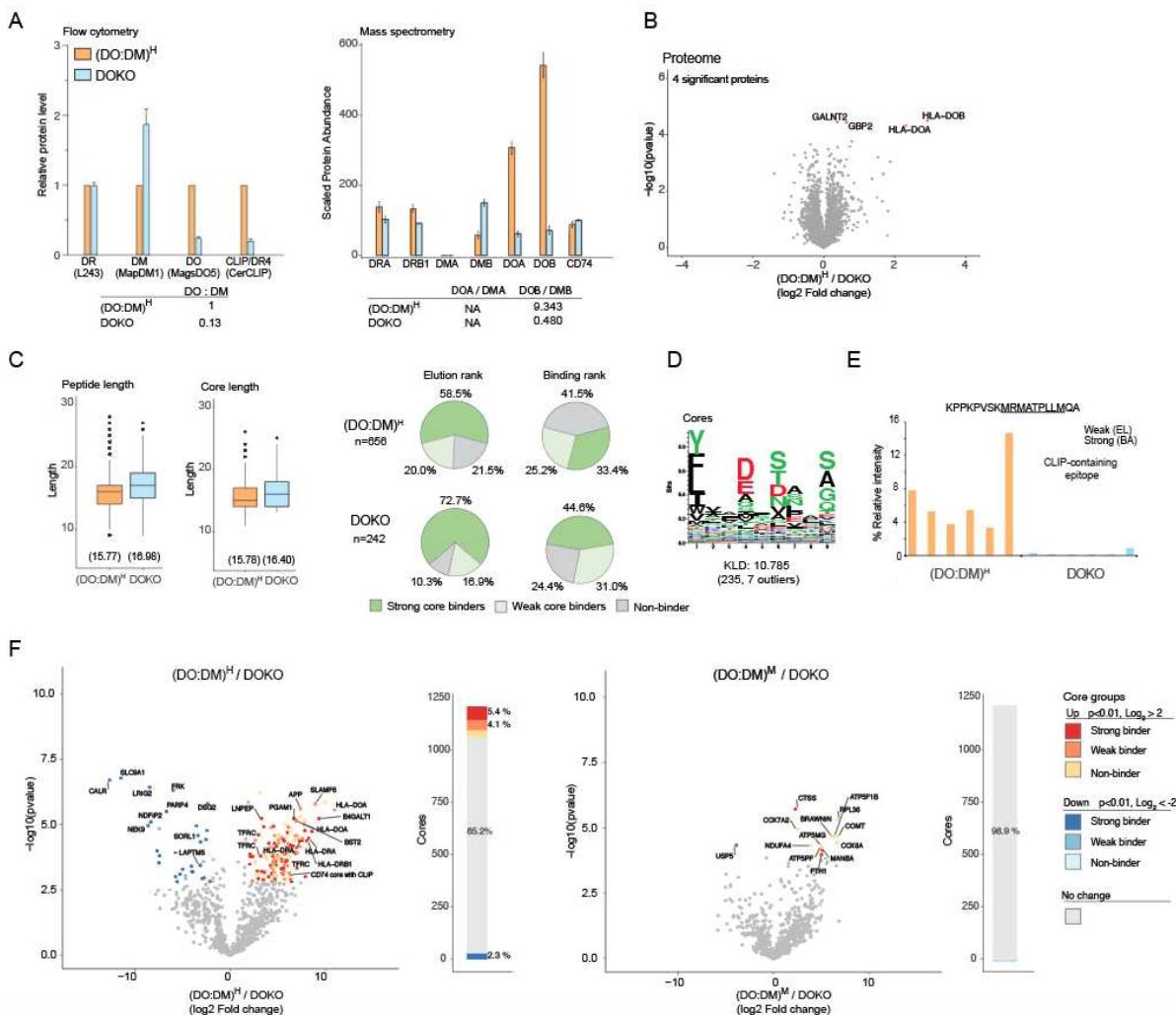
638

639 **Figure 5. Abundance comparisons between each core type across the DM:DO gradient. (A)**
640 Percentage abundance subtotal of each type of cores (clustered in Fig. 4C). Percentage relative
641 average intensity spanning the two biological replicates displayed for the six types. In addition,
642 the residual % relative intensity covering all the six subtypes (I-V) is also displayed. **(B)**

DO:DM ratios shape HLA-II immunopeptidomes

643 Percentage abundance subtotal of each core (clustered in Fig. 4C). **(C)** Four examples of type III
644 cores from CD74, HLA-A and HLA-B. **(D)** Example of cores for Type II-VI for the transferrin
645 receptor protein 1 (TFRC).

646


647 *DO knock-down supports DO:DM tuning of DR4-presented peptides*

648 DO is downregulated in naïve and memory B cells that enter GC for antigen presentation and
649 affinity maturation of their antigen receptors. To mimic this regulation and to verify our model,
650 we used CRISPR (31) to knock down DO levels in (DO:DM)^H cells (DOKO) and measured the
651 corresponding DR4 peptidomes and proteomes using the aforementioned strategy (Figure 1C,
652 Supplementary Fig. 8). Flow cytometric assays indicated lower levels of the DO heterodimer in
653 the DOKO cell line compared to (DO:DM)^H cells (Fig. 6A, Supplementary Fig. 8). This was
654 confirmed by MS-based proteomic measurements of the DO α and β chains (Fig. 6A). Notably,
655 using CRISPR to edit the DO gene preserved a similar degree of cell heterogeneity for DO
656 expression (Supplementary Fig. 9). This should also reflect a similar scope of DO
657 downregulation as might be observed in physiologic contexts. We further confirmed that 99.9%
658 (4,060 of 4,064) quantified proteins (TMT-label set 3) demonstrated consistent expression
659 between the DOKO and (DO:DM)^H cell lines (Fig. 6B). Notable exceptions included the DO α
660 and β chains (both $p < 0.01$ and \log_2 fold change > 2) that we specifically targeted by CRISPR.

661 Consistent with the aforementioned difference between cores presented in (DO:DM)^H and
662 (DO:DM)^{0-M}, increased free DM in the DOKO resulted in longer peptides and longer cores, a
663 larger proportion of which were predicted strong binders (Fig. 6C). The sequence motif
664 generated from the DOKO peptidomic data (Fig. 6D) was more homologous to that generated
665 using the (DO:DM)^{0-M} peptidomic data (Fig. 3F) than either DO^{null}DM^{null} or (DO:DM)^H cells,
666 consistent with free DM activity. As expected, a drastic reduction in the dominant CLIP
667 containing core was observed in the knockout. (Fig. 6E). In keeping with their lower DO:DM
668 ratio, pair-wise volcano plot comparisons indicated that DR4-presented peptides in DOKO cells
669 were qualitatively more similar to those presented in (DO:DM)^M cells than (DO:DM)^H cells (Fig.
670 6F), consistent with the overall expected peptidomic outcome after DO:DM was reduced
671 (Supplementary Fig. 9A). Considering all cores mentioned earlier (Fig. 5C,D), abundances in

DO:DM ratios shape HLA-II immunopeptidomes

672 DOKO changed from the level in $(DO:DM)^H$ to a level that was similar to $(DO:DM)^{0-M}$
 673 (Supplementary Fig. 9B,C, Supplementary Fig. 10). These changes were dependent on decreased
 674 DO expression and the corresponding tuning of DO:DM, not the differential expression of the
 675 proteins from which these cores were derived (Supplementary Fig. 7). Collectively, the knock-
 676 down study demonstrates that a major function of DO expression in specialized APCs is to
 677 maintain an appropriate DO:DM ratio, the tuning of which controls DM editing and the resulting
 678 DR4-presented peptide repertoires.

679

680 **Figure 6. CRISPR-mediated transformation of high DO:DM to low replicates (DM:DO)^L**
 681 **cell phenotype.** (A) Flow cytometric analysis and mass spectrometry quantification of DR, DM,
 682 DO and CLIP. Relative protein expression levels between the cell lines for DR, DM, DO and
 683 CD74 based on total cell lysate mass spectrometry-based TMT-proteomics data. No peptides

DO:DM ratios shape HLA-II immunopeptidomes

were sequenced from the DM α (DMA) gene in this TMT-labeling set, resulting in undefined ratios involving this protein. **(B)** Minimal differential proteome expression differences were observed between the (DO:DM)^H line and its knockout. Differentially upregulated expressed proteins with a q-value of <0.05 in the (DO:DM)^H line are indicated in red. **(C)** Peptide length, core epitope length and binding prediction. **(D)** DOKO motif generated as in Fig. 2C. The Kullback-Leibler Distance (KLD) score is listed and the size of the cluster and number of outliers is listed in brackets. **(E)** DOKO demonstrated markedly reduced levels of the dominant CLIP containing core. **(F)** Differential presentation between DOKO cells and its parental (DO:DM)^H line or the lower DO:DM cell line (DO:DM)^M. As in Figure 4A, data are presented both as volcano plots and stacked bar charts based on differential presentation (t-test, with a p<0.01 after being adjusted for multiple hypothesis testing (BH) and a Log₂ fold change larger than 2 or smaller than -2. Cores with different binding affinities (predicted by NetMHCIIpan-4.0) using elution rank are indicated by different color intensities. Proteins which gave rise to a selected subset of relevant cores are indicated.

DISCUSSION

In previous studies, we measured correlations between DO:DM and DM-catalyzed peptide exchange using soluble proteins (21) B cell lines, and *ex vivo* human tonsillar B cells (17) as three model systems. Our findings suggested that the tunable DO:DM is a crucial factor governing free DM levels and the consequent spectrum of presented peptides. This kind of regulation could help explain how different APCs expressing the same complement of MHC-II alleles and exposed to the same antigens, might present different peptides in different contexts: as naïve and memory B cells enter the GC, and as certain DC mature, they downregulate DO from otherwise high expression levels. Accordingly, these APCs can experience widely ranging DO:DM states, and consequently, pMHC-II repertoires bearing markedly different DM editing signatures. If one were to simply consider DO expression as either on or off, many antigen-specific outcomes – particularly when measured as T-dependent immune responses – would not be explained (11, 14, 24–30).

Considering the limitations of only examining two DO expression states (DO+ versus DO-), we developed a model system to reevaluate DO regulation by creating three DO+ states and two DO- states, covering “infinitely” opposed (No DM function in DO^{null}DM^{null} cells), high, medium,

DO:DM ratios shape HLA-II immunopeptidomes

714 low and zero levels of DO:DM. MS-facilitated peptidomic and proteomic measurements
715 demonstrated the critical tuning function DO:DM can have in modulating HLA-DR4-presented
716 peptidomes. Evidence from DO knockdown relative to (DO:DM)^H cells (highest DO level)
717 supports the idea that DO downregulation could create multiple DO:DM states. Although each
718 DO:DM cell state yielded a different spectrum of peptides with restricted DM sensitivity ranges,
719 we found that decreasing DO:DM increasingly favored peptides predicted to be DM-resistant.
720 This trend predicts that upon antigen exposure, DO downregulation in DO-expressing APCs
721 would promote increased loading of DM-resistant antigenic peptides onto DR.

722 From many self or foreign peptides with the potential to bind DR with high affinity, those that
723 survive DO:DM-tuned DM editing can be selected based on multiple factors. These include the
724 abundance of source proteins and their sequence-susceptibility to proteolysis; inherent allelic
725 characteristics and intracellular modifications of MHC-II that influences binding specificities;
726 intracellular modifications of source proteins or their peptide derivatives; and endolysosomal
727 locations where proteins are degraded or protected in a pH-dependent fashion. Our MS-based
728 peptidomic and proteomic analyses across seven DO:DM cell states reveals several pMHC-II
729 presentation characteristics relate to these factors in addition to DO:DM tuning, as discussed
730 below.

731 First, distinct DO:DM thresholds correspond to different free DM activity levels, and therefore
732 the different types of peptides that survive DM editing. Although DO can block DM-catalyzed
733 CLIP removal from DR4 (55), our model demonstrated that CLIP can be effectively replaced by
734 other peptides when DO:DM is reduced to moderate levels (i.e., (DO:DM)^M or even (DO:DM)^H,
735 Fig. 4,5). For example, Type IV peptides with high predicted binding affinity (both BA and EL
736 models) like TFRC GQFLYQDSNWASKVE (Fig. 5D, Supplementary Fig. 10) were presented
737 by all cells with any DM activity, including (DO:DM)^H. In contrast, other peptides with low
738 predicted binding affinities (BA model) were either included (TFRC FAEKVANAESLNAIG) or
739 excluded (TFRC CPSDWKTDSCTCRMVTSE) among peptides presented by (DO:DM)^H cells.
740 Overall, nuanced DO:DM specificity patterns were apparent from our data set (Fig. 4C). In
741 addition, it seems likely that an allelic specificity component to determining the DO:DM
742 thresholds or free DM levels that effectively evacuate the peptide-binding groove to
743 accommodate new peptides. To an extreme extent, some HLA-DQ2 alleles have evolved to

DO:DM ratios shape HLA-II immunopeptidomes

744 require very high DM expression to overcome their intrinsically low DM-susceptibility (52). The
745 DRB1*04:01 allele studied in our model has lower affinity for CLIP than many other MHC-II
746 alleles (56). As a result, spontaneous exchange of other peptides was observed across all DO:DM
747 states in these cells.

748 Second, in addition to the underlying DO:DM context, a peptide's DM-sensitivity, binding
749 affinity and abundance influence the likelihood it will contribute to pMHC-II repertoires.
750 Although our assessment of binding strength was based on scoring with predictive algorithms
751 (BA and EL models) rather than direct measurement, it is likely true that eluted peptides from
752 each DO:DM cell state and across all six types of cores include both strong and weak binders.
753 However, a large proportion of Types I-III cores from $DO^{null}DM^{null}$ and $(DO:DM)^H$ cells were
754 predicted to be weak binders and were more abundant (particularly CLIP peptides from CD74
755 and HLA class I) than strong predicted binders from the same core Type. A large proportion of
756 cores among DM-resistant Types IV-VI from $(DO:DM)^{0-M}$ were strong binders (e.g., cores
757 derived from STX6, LAPTMs, and TFRC (Fig 5) and had relatively higher abundance than weak
758 binders from the same categories. Therefore, we propose that APCs are regulated by DO:DM
759 tuning to present substantial amounts of peptides with binding strengths reflecting the degree of
760 DM editing, while allowing peptides with wider affinity ranges to be presented at lower
761 abundances. One caveat is that our analysis was based on isolating total DR4 rather than surface-
762 expressed molecules; thus in $(DO:DM)^{0-M}$ cells, pMHC-II with weaker binding peptides might
763 represent intermediates along the presentation pathway.

764 An implication of this model is that when building MHC-II binding prediction models that
765 incorporate MS eluted peptide (EL) data, it could be useful to account for DO:DM and its
766 correlation with abundant peptides that might otherwise be deemed weak binders. Such a model
767 could, for example, be appropriately applied to naïve or memory B cells' repertoires as opposed
768 to activated B cells, which have high and low DO:DM, respectively. Relatedly, motif prediction,
769 which is integral to binding prediction, also needs to consider the possible contribution of high
770 DO:DM versus low DO:DM. We observed a swap of P1 dominant residue (F->Y) when DO:DM
771 changes from infinity-high to medium-low-zero. A similar P1 residue swap was also found when
772 comparing the EL-data-based motif versus BA-data-based motif. It is possible that DM editing
773 selects for alternative high abundant registers between states.

DO:DM ratios shape HLA-II immunopeptidomes

774 Third, DO:DM tuning in APCs likely affects the length of presented peptides and generates
775 longer peptide repertoires as the free DM levels increase. This hypothesis stems from the
776 observation that longer peptides were presented in $(DO:DM)^{0-M}$ as compared to $DO^{null}DM^{null}$ and
777 $(DO:DM)^H$ (Fig. 4E). More flanking residues can enhance MHC-II binding and increase DM-
778 resistance (57, 58). For example, once a long peptide sits in MHC-II binding groove using a
779 register biased towards the peptide's C-terminus, additional N-terminal amino acids extending
780 beyond the binding groove can create steric interference for DM access: DM associates with
781 MHC-II from the N-terminal end of the loaded peptide (23, 59). Longer peptides could also
782 provide more alternative binding registers. In addition, increased free DM likely allows peptide
783 exchange in earlier, less acidic endosomal compartments where different/reduced processing
784 capacity may result in longer peptides; these are compartments where DO, when present,
785 effectively inhibits DM (17). The length changes mediated by DO:DM can also affect T cell
786 recognition and peptide immunogenicity (60–62).

787 Last, DO:DM tuning in APCs may affect immunodominant T cell epitope selection from across
788 a given protein's sequence. One such source protein, TFRC, generated multiple DR4-binding
789 core peptides belonging to 4 different major types (II–V). When free DM was expected to be low
790 ($DO^{null}DM^{null}$ and $(DO:DM)^H$) cells, we observed increased abundances of DM-sensitive cores
791 and concomitant decreased abundances of DM-resistant cores all derived from the TFRC protein.
792 The converse was true for DM-resistant cores with strong predicted binding affinity, when free
793 DM was expected to be high in $(DO:DM)^{0-M}$ cells. These changes are independent of TFRC
794 abundance across these states and mostly consistent with the second pMHC-II presentation
795 characteristic mentioned above. This observation leads us to speculate that upon antigen
796 stimulation, DO-expressing APCs could experience similar DO:DM tuning state progressions
797 until conditions are met for stable epitope presentation. As a result, a range of pMHC-II could
798 be made available for T cell inspection over the course of APC maturation.

799 In conclusion, our study points to DO:DM tuning as an important factor that modulates pMHC-II
800 presentation. Our observations were made possible by a model system designed to recapitulate
801 the variable levels of DO and DM seen in different kinds of APCs with different differentiation
802 states – states that regulate the balance between vigilance against pathogens versus tolerance of
803 self. Accounting for multiple DO:DM states in the context of DO regulation will guide future

DO:DM ratios shape HLA-II immunopeptidomes

804 investigations, such as comparing pMHC-II repertoires derived from multiple HLA-II alleles'
805 respect to varying DO:DM, and from primary cells that are sorted into different DO:DM states.
806 In addition, further exploration of scenarios in which DO expression is limited (e.g., when
807 macrophages or DO^{null} DCs present antigen to T cells) is warranted, because it is likely that we
808 have also underestimated the graded effects of varied levels of DM can have on pMHC-II
809 presentation. Experiments like these stand to promote improved models of MHC-II antigen
810 presentation that can be generalized to a wider array of APCs with important relevance to human
811 health.

812

813 FUNDING

814 This work was supported by a Damon Runyon-Rachleff Innovation Award from the Damon
815 Runyon Cancer Research Foundation (DRR-13-11; J.E.E), the W.M. Keck Foundation Medical
816 Research Program (J.E.E.), and the Chan Zuckerberg Biohub (J.E.E.), a Knut and Alice
817 Wallenberg Foundation Postdoctoral Fellowship (to N.O.), as well as the NIH (AI-095813; EDM
818 and LNA) and the Lucile Packard Foundation for Children's health (E.D.M).

819 ACKNOWLEDGEMENTS

820 We wish to acknowledge all members of the Elias and Mellins Labs for helpful discussions
821 during the preparation of this manuscript.

822 DATA AVAILABILITY

823 In addition, all peptide data and mass spec raw data files have been deposited in the PRIDE
824 Archive at www.ebi.ac.uk/pride/archive under accession number PXD024392.

825 REFERENCES

- 826 1. Klein, L., Kyewski, B., Allen, P. M., and Hogquist, K. A. (2014) Positive and negative
827 selection of the T cell repertoire: What thymocytes see (and don't see). *Nat. Rev.
828 Immunol.* 14, 377–391
- 829 2. Mesin, L., Ersching, J., and Victora, G. D. (2016) Germinal Center B Cell Dynamics.

DO:DM ratios shape HLA-II immunopeptidomes

830 *Immunity* 45, 471–482

831 3. Karlsson, L., Surh, C. D., Sprent, J., and Peterson, P. A. (1991) A novel class II MHC
832 molecule with unusual tissue distribution. *Nature*,

833 4. Douek, D. C., and Altmann, D. M. (1997) HLA-DO is an intracellular class II molecule
834 with distinctive thymic expression. *Int. Immunol.* 9, 355–364

835 5. Chen, X., Laur, O., Kambayashi, T., Li, S., Bray, R. A., Weber, D. A., Karlsson, L., and
836 Jensen, P. E. (2002) Regulated expression of human histocompatibility leukocyte antigen
837 (HLA)-DO during antigen-dependent and antigen-independent phases of B cell
838 development. *J. Exp. Med.* 195, 1053–1062

839 6. Glazier, K. S., Hake, S. B., Tobin, H. M., Chadburn, A., Schattner, E. J., and Denzin, L.
840 K. (2002) Germinal center B cells regulate their capability to present antigen by
841 modulation of HLA-DO. *J. Exp. Med.* 195, 1063–1069

842 7. Adler, L. N., Jiang, W., Bhamidipati, K., Millican, M., Macaubas, C., Hung, S., and
843 Mellins, E. D. (2017) The Other Function: Class II-Restricted Antigen Presentation by B
844 Cells. *Front. Immunol.* 8, 1–14

845 8. Hornell, T. M. C., Burster, T., Jahnsen, F. L., Pashine, A., Ochoa, M. T., Harding, J. J.,
846 Macaubas, C., Lee, A. W., Modlin, R. L., and Mellins, E. D. (2006) Human Dendritic Cell
847 Expression of HLA-DO Is Subset Specific and Regulated by Maturation. *J. Immunol.* 176,
848 3536–3547

849 9. Chen, X., Reed-Loisel, L. M., Karlsson, L., and Jensen, P. E. (2006) H2-O Expression in
850 Primary Dendritic Cells. *J. Immunol.* 176, 3548–3556

851 10. Fallas, J. L., Yi, W., Draghi, N. A., O'Rourke, H. M., and Denzin, L. K. (2007)
852 Expression Patterns of H2-O in Mouse B Cells and Dendritic Cells Correlate with Cell
853 Function. *J. Immunol.* 178, 1488–1497

854 11. Fallas, J. L., Tobin, H. M., Lou, O., Guo, D., Sant'Angelo, D. B., and Denzin, L. K.
855 (2004) Ectopic Expression of HLA-DO in Mouse Dendritic Cells Diminishes MHC Class
856 II Antigen Presentation. *J. Immunol.* 173, 1549–1560

DO:DM ratios shape HLA-II immunopeptidomes

857 12. Yi, W., Seth, N. P., Martillotti, T., Wucherpfennig, K. W., Sant'Angelo, D. B., and
858 Denzin, L. K. (2010) Targeted regulation of self-peptide presentation prevents type I
859 diabetes in mice without disrupting general immunocompetence. *J. Clin. Invest.* 120,
860 1324–1336

861 13. Gu, Y., Jensen, P. E., and Chen, X. (2013) Immunodeficiency and Autoimmunity in H2-
862 O-Deficient Mice. *J. Immunol.* 190, 126–137

863 14. Welsh, R. A., Song, N., Foss, C. A., Boronina, T., Cole, R. N., and Sadegh-Nasseri, S.
864 (2020) Lack of the MHC class II chaperone H2-O causes susceptibility to autoimmune
865 diseases. *PLoS Biol.* 18, e3000590

866 15. Denzin, L. K., Khan, A. A., Virdis, F., Wilks, J., Kane, M., Beilinson, H. A., Dikiy, S.,
867 Case, L. K., Roopenian, D., Witkowski, M., Chervonsky, A. V., and Golovkina, T. V.
868 (2017) Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-
869 classical MHC Class II Gene H2-Ob. *Immunity* 47, 310-322.e7

870 16. Draghi, N. A., and Denzin, L. K. (2010) H2-O, a MHC class II-like protein, sets a
871 threshold for B-cell entry into germinal centers. *Proc. Natl. Acad. Sci. U. S. A.* 107,
872 16607–16612

873 17. Jiang, W., Adler, L. N., Macmillan, H., and Mellins, E. D. (2019) Synergy between B cell
874 receptor/antigen uptake and MHCII peptide editing relies on HLA-DO tuning. *Sci. Rep.* 9,
875 1–17

876 18. Yoon, T., Macmillan, H., Mortimer, S. E., Jiang, W., Rinderknecht, C. H., Stern, L. J., and
877 Mellins, E. D. (2012) Mapping the HLA-DO/HLA-DM complex by FRET and
878 mutagenesis. *Proc. Natl. Acad. Sci. U. S. A.* 109, 11276–11281

879 19. Guce, A. I., Mortimer, S. E., Yoon, T., Painter, C. A., Jiang, W., Mellins, E. D., and Stern,
880 L. J. (2013) HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive
881 mechanism. *Nat. Struct. Mol. Biol.* 20, 90–98

882 20. Mellins, E. D., and Stern, L. J. (2014) HLA-DM and HLA-DO, key regulators of MHC-II
883 processing and presentation. *Curr. Opin. Immunol.* 26, 115–122

DO:DM ratios shape HLA-II immunopeptidomes

884 21. Jiang, W., Strohman, M. J., Somasundaram, S., Ayyangar, S., Hou, T., Wang, N., and
885 Mellins, E. D. (2015) PH-susceptibility of HLA-DO tunes DO/DM ratios to regulate
886 HLA-DM catalytic activity. *Sci. Rep.* 5, 1–13

887 22. Busch, R., Rinderknecht, C. H., Roh, S., Lee, A. W., Harding, J. J., Burster, T., Hornell,
888 T. M. C., and Mellins, E. D. (2005) Achieving stability through editing and chaperoning:
889 Regulation of MHC class II peptide binding and expression. *Immunol. Rev.*,
890 23. Pos, W., Sethi, D. K., Call, M. J., Schulze, M. S. E. D., Anders, A. K., Pyrdol, J., and
891 Wucherpfennig, K. W. (2012) Crystal structure of the HLA-DM-HLA-DR1 complex
892 defines mechanisms for rapid peptide selection. *Cell* 151, 1557–1568

893 24. Liljedahl, M., Winqvist, O., Surh, C. D., Wong, P., Ngo, K., Teyton, L., Peterson, P. A.,
894 Brunmark, A., Rudensky, A. Y., Fung-Leung, W. P., and Karlsson, L. (1998) Altered
895 antigen presentation in mice lacking H2-O. *Immunity* 8, 233–243

896 25. Perraudeau, M., Taylor, P. R., Stauss, H. J., Lindstedt, R., Bygrave, A. E., Pappin, D. J.
897 C., Ellmerich, S., Whitten, A., Rahman, D., Canas, B., Walport, M. J., Botto, M., and
898 Altmann, D. M. (2000) Altered major histocompatibility complex class II peptide loading
899 in H2-O-deficient mice. *Eur. J. Immunol.* 30, 2871–2880

900 26. Alfonso, C., Williams, G. S., and Karlsson, L. (2003) H2-O influence on antigen
901 presentation in H2-E-expressing mice. *Eur. J. Immunol.* 33, 2014–2021

902 27. Alfonso, C., Williams, G. S., Han, J.-O., Westberg, J. A., Winqvist, O., and Karlsson, L.
903 (2003) Analysis of H2-O Influence on Antigen Presentation by B Cells. *J. Immunol.* 171,
904 2331–2337

905 28. Bellemare-Pelletier, A. (2005) HLA-DO transduced in human monocyte-derived dendritic
906 cells modulates MHC class II antigen processing. *J. Leukoc. Biol.* 78, 95–105

907 29. Pezeshki, A. M., Azar, G. A., Mourad, W., Routy, J.-P., Boulassel, M.-R., Denzin, L. K.,
908 and Thibodeau, J. (2013) HLA-DO increases bacterial superantigen binding to human
909 MHC molecules by inhibiting dissociation of class II-associated invariant chain peptides.
910 *Hum. Immunol.* 74, 1280–1287

DO:DM ratios shape HLA-II immunopeptidomes

911 30. Nanaware, P. P., Jurewicz, M. M., Leszyk, J. D., Shaffer, S. A., and Stern, L. J. (2019)
912 HLA-do modulates the diversity of the MHC-ii self-peptidome. *Mol. Cell. Proteomics* 18,
913 490–503

914 31. Hendel, A., Bak, R. O., Clark, J. T., Kennedy, A. B., Ryan, D. E., Roy, S., Steinfeld, I.,
915 Lunstad, B. D., Kaiser, R. J., Wilkens, A. B., Bacchetta, R., Tselenko, A., Dellinger, D.,
916 Bruhn, L., and Porteus, M. H. (2015) Chemically modified guide RNAs enhance CRISPR-
917 Cas genome editing in human primary cells. *Nat. Biotechnol.*,

918 32. Patil, N. S., Hall, F. C., Drover, S., Spurrell, D. R., Bos, E., Cope, A. P., Sonderstrup, G.,
919 and Mellins, E. D. (2001) Autoantigenic HCgp39 Epitopes Are Presented by the HLA-
920 DM-Dependent Presentation Pathway in Human B Cells. *J. Immunol.* 166, 33–41

921 33. Zhang, L., and Elias, J. E. (2017) in *Proteomics: Methods and Protocols*, eds Comai L,
922 Katz JE, Mallick P (Springer New York, New York, NY), pp 185–198.

923 34. Rappaport, J., Ishihama, Y., and Mann, M. (2003) Stop and go extraction tips for matrix-
924 assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in
925 proteomics. *Anal Chem* 75, 663–670

926 35. Gilar, M., Olivova, P., Daly, A. E., and Gebler, J. C. (2005) Orthogonality of separation in
927 two-dimensional liquid chromatography. *Anal Chem* 77, 6426–6434

928 36. Wang, Y., Yang, F., Gritsenko, M. A., Wang, Y., Clauss, T., Liu, T., Shen, Y., Monroe,
929 M. E., Lopez-Ferrer, D., Reno, T., Moore, R. J., Klemke, R. L., Camp 2nd, D. G., and
930 Smith, R. D. (2011) Reversed-phase chromatography with multiple fraction concatenation
931 strategy for proteome profiling of human MCF10A cells. *Proteomics* 11, 2019–2026

932 37. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for increased confidence
933 in large-scale protein identifications by mass spectrometry. *Nat Methods* 4, 207–214

934 38. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem
935 mass spectral data of peptides with amino acid sequences in a protein database. *J Am Soc
936 Mass Spectrom* 5, 976–989

937 39. Kall, L., Canterbury, J. D., Weston, J., Noble, W. S., and MacCoss, M. J. (2007) Semi-

DO:DM ratios shape HLA-II immunopeptidomes

938 supervised learning for peptide identification from shotgun proteomics datasets. *Nat*
939 *Methods* 4, 923–925

940 40. Benjamini, Y., and Hochberg, Y. (1995) Controlling the False Discovery Rate: A
941 Practical and Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* 57, 289–300

942 41. Khodadoust, M. S., Olsson, N., Wagar, L. E., Haabeth, O. A. W., Chen, B., Swaminathan,
943 K., Rawson, K., Liu, C. L., Steiner, D., Lund, P., Rao, S., Zhang, L., Marceau, C., Stehr,
944 H., Newman, A. M., Czerwinski, D. K., Carlton, V. E. H., Moorhead, M., Faham, M.,
945 Kohrt, H. E., Carette, J., Green, M. R., Davis, M. M., Levy, R., Elias, J. E., and Alizadeh,
946 A. A. (2017) Antigen presentation profiling reveals recognition of lymphoma
947 immunoglobulin neoantigens. *Nature* 543, 723–727

948 42. Narayan, R., Olsson, N., Wagar, L. E., Medeiros, B. C., Meyer, E., Czerwinski, D.,
949 Khodadoust, M. S., Zhang, L., Schultz, L., Davis, M. M., Elias, J. E., and Levy, R. (2019)
950 Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated
951 nucleophosmin. *PLoS One* 14, e0219547

952 43. Lampson, L. A., and Levy, R. (1980) Two populations of Ia-like molecules on a human B
953 cell line. *J Immunol* 125, 293–299

954 44. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie,
955 G. A., and Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for
956 sensitive and accurate peptide identification. *Mol Cell Proteomics* 11, M111 010587

957 45. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad,
958 R., Rush, J., Comb, M. J., Harper, J. W., and Gygi, S. P. (2011) Systematic and
959 quantitative assessment of the ubiquitin-modified proteome. *Mol. Cell* 44, 325–340

960 46. Vizcaíno, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., Mayer, G.,
961 Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q. W., Wang, R., and Hermjakob, H.
962 (2016) 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res.*,
963 47. Álvaro-Benito, M., Morrison, E., Abualrous, E. T., Kuropka, B., and Freund, C. (2018)
964 Quantification of HLA-DM-dependent major histocompatibility complex of class II

DO:DM ratios shape HLA-II immunopeptidomes

965 immunopeptidomes by the peptide landscape antigenic epitope alignment utility. *Front.*
966 *Immunol.* 9,

967 48. Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020) NetMHCpan-4.1
968 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent
969 motif deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res.*
970 48, W449–W454

971 49. Reynisson, B., Barra, C., Kaabinejadian, S., Hildebrand, W. H., Peters, B., Peters, B.,
972 Nielsen, M., and Nielsen, M. (2020) Improved Prediction of MHC II Antigen Presentation
973 through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand
974 Data. *J. Proteome Res.* 19, 2304–2315

975 50. Andreatta, M., Alvarez, B., and Nielsen, M. (2017) GibbsCluster: Unsupervised clustering
976 and alignment of peptide sequences. *Nucleic Acids Res.* 45, W458–W463

977 51. Roucard, C., Thomas, C., Pasquier, M.-A., Trowsdale, J., Sotto, J.-J., Neefjes, J., and van
978 Ham, M. (2001) In Vivo and In Vitro Modulation of HLA-DM and HLA-DO Is Induced
979 by B Lymphocyte Activation. *J. Immunol.* 167, 6849–6858

980 52. Hou, T., Macmillan, H., Chen, Z., Keech, C. L., Jin, X., Sidney, J., Strohman, M., Yoon,
981 T., and Mellins, E. D. (2011) An insertion mutant in DQA1*0501 restores susceptibility to
982 HLA-DM: implications for disease associations. *J. Immunol.* 187, 2442–52

983 53. Zhou, Z., Reyes-Vargas, E., Escobar, H., Chang, K. Y., Barker, A. P., Rockwood, A. L.,
984 Delgado, J. C., He, X., and Jensen, P. E. (2017) Peptidomic analysis of type 1 diabetes
985 associated HLA-DQ molecules and the impact of HLA-DM on peptide repertoire editing.
986 *Eur. J. Immunol.* 47, 314–326

987 54. Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L.,
988 and Wiley, D. C. (1993) Three-dimensional structure of the human class II
989 histocompatibility antigen HLA-DR1. *Nature* 364, 33–39

990 55. Denzin, L. K., Sant'Angelo, D. B., Hammond, C., Surman, M. J., and Cresswell, P. (1997)
991 Negative Regulation by HLA-DO of MHC Class II-Restricted Antigen Processing.

DO:DM ratios shape HLA-II immunopeptidomes

992 *Science* (80-). 278, 106–109

993 56. Patil, N. S., Pashine, A., Belmares, M. P., Liu, W., Kaneshiro, B., Rabinowitz, J.,
994 McConnell, H., and Mellins, E. D. (2001) Rheumatoid Arthritis (RA)-Associated HLA-
995 DR Alleles Form Less Stable Complexes with Class II-Associated Invariant Chain Peptide
996 Than Non-RA-Associated HLA-DR Alleles. *J. Immunol.* 167, 7157–7168

997 57. Zavala-Ruiz, Z., Strug, I., Anderson, M. W., Gorski, J., and Stern, L. J. (2004) A
998 Polymorphic Pocket at the P10 Position Contributes to Peptide Binding Specificity in
999 Class II MHC Proteins. *Chem. Biol.* 11, 1395–1402

1000 58. Belmares, M. P., Busch, R., Wucherpfennig, K. W., McConnell, H. M., and Mellins, E. D.
1001 (2002) Structural Factors Contributing to DM Susceptibility of MHC Class II/Peptide
1002 Complexes. *J. Immunol.* 169, 5109–5117

1003 59. Pashine, A., Busch, R., Belmares, M. P., Munning, J. N., Doebele, R. C., Buckingham,
1004 M., Nolan, G. P., and Mellins, E. D. (2003) Interaction of HLA-DR with an acidic face of
1005 HLA-DM disrupts sequence-dependent interactions with peptides. *Immunity* 19, 183–92

1006 60. Arnold, P. Y., La Gruta, N. L., Miller, T., Vignali, K. M., Adams, P. S., Woodland, D. L.,
1007 and Vignali, D. A. A. (2002) The majority of immunogenic epitopes generate CD4+ T
1008 cells that are dependent on MHC class II-bound peptide-flanking residues. *J. Immunol.*
1009 169, 739–49

1010 61. Sant'Angelo, D. B., Robinson, E., Janeway, Jr., C. A., and Denzin, L. K. (2002)
1011 Recognition of core and flanking amino acids of MHC class II-bound peptides by the T
1012 cell receptor. *Eur. J. Immunol.* 32, 2510–2520

1013 62. Sercarz, E. E., and Maverakis, E. (2003) Mhc-guided processing: binding of large antigen
1014 fragments. *Nat. Rev. Immunol.* 3, 621–9

1015

1016