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ABSTRACT

BACKGROUND: Neuroimaging studies have reported functional connectome aberrancies in
autism spectrum disorder (ASD). However, the time-varying patterns of connectome topology in
ASD individuals and the connection between these patterns and gene expression profiles remain
unknown.

METHODS: To investigate case-control differences in dynamic connectome topology, we
conducted mega- and meta-analyses of resting-state functional magnetic resonance imaging data
of 939 participants (440 ASD patients and 499 healthy controls, all males) from 18 independent
sites, selected from the ABIDE (Autism Brain Imaging Data Exchange) dataset. Functional data
was preprocessed and analyzed using harmonized protocols, and brain module dynamics was
assessed using a multilayer network model. We further leveraged postmortem brain-wide gene
expression data to identify transcriptomic signatures associated with ASD-related alterations in
brain dynamics.

RESULTS: Compared to healthy controls, ASD individuals exhibited a higher global mean and
lower standard deviation of whole-brain module dynamics, indicating an unstable and less
regionally differentiated pattern. More specifically, ASD individuals showed higher module
switching, primarily in the medial prefrontal cortex, posterior cingulate gyrus, and angular gyrus,
and lower switching in the visual regions. These alterations in brain dynamics were predictive of
social impairments in ASD individuals and were linked with expression profiles of genes
primarily involved in the regulation of neurotransmitter transport and secretion, as well as with
previously identified autism-related genes.

CONCLUSIONS: This study is the first to identify consistent alterations in brain network
dynamics in ASD and the transcriptomic signatures related to those alterations, furthering
insights into the biological basis behind this disorder.

KEYWORDS: Brain dynamics, Connectomics, Default-mode network, Gene expression, Graph
theory, Resting-state fMRI
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INTRODUCTION

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized
by persistent impairments in social communication and the presence of restricted and repetitive
patterns of behavior (1, 2). Contemporary views of ASD conceptualize it as a connectome
dysfunction syndrome (3, 4), manifesting as aberrant functional connectivity in the brain,
especially in the default-mode network (DMN) (5-8). ASD-related aberrancies in the brain
connectome are linked with individual clinical symptoms (8-10) and impairments in cognitive
ability (11, 12). These studies have provided insights into understanding the biological
underpinnings of ASD from a network perspective.

However, despite its importance for understanding the disorder, previous functional connectome
studies on ASD have focused primarily on the static (i.e., time-invariant) connectivity patterns,
largely ignoring the temporal characteristic of brain networks. The human brain can be thought
of as a highly dynamic networked system that exhibits connectivity reconfigurations over time
(13, 14). These dynamic reconfigurations are essential for efficient inter-module communication
(15), flexible cognitive functions (16, 17), and rapid response to external environment (18).
Although several prior studies have reported alterations in brain connectome dynamics in ASD,
such as increased connectivity variability (19-22) and fewer transitions between connectivity
states (23-25), the topological features of dynamic brain networks in ASD remain understudied.
Investigating the temporally fluctuating patterns in ASD brain network topology, in particular
the properties of modular switching, will advance our understanding of how dynamic
interactions of different network components underpin cognitive dysfunction and clinical
symptoms in patients (26). Thus, the time-varying pattern of functional connectome topology in
ASD is a pertinent area that warrants further research.

Genetic factors are considered to be a predominant cause of ASD (1). Former twin and family
studies have confirmed the prominent heritability of ASD and ASD-associated traits (27). An
increasing number of susceptibility genes have been identified, such as common variants (28)
and rare, de novo variants (29). Recently, a large-scale exome sequencing study of ASD
identified over 100 putative ASD-associated risk genes, the majority of which are neuronally
expressed (30). RNA microarray and sequencing studies of post-mortem ASD brain samples also
demonstrated transcriptionally altered genes and affected pathways (31). A very recent study
suggests that the spatial layout of network module dynamics in healthy brains is linked to the
expression level of genes associated with potassium ion channel activity regulation and
mitochondria (32). Thus, we speculate that the alteration of brain network dynamics in ASD is
related to the expression profile of previously identified autism-related genes.

To address these questions, we conducted the first mega- and meta-analyses for the identification
of significant alterations in connectome dynamics in ASD. We used resting-state functional MRI
data (rsfMRI) from 939 participants selected from 18 independent sites (33, 34) and employed a
multilayer network model (35) to characterize the topological dynamics of the functional
connectome. The mega- and meta-analyses were performed separately, using harmonized image
processing and network analysis protocols. Finally, we conducted a partial least squares
regression analysis to determine the link between abnormal network dynamics and
transcriptional profiles. We hypothesized that: 1) ASD patients would show significant alterations
in brain connectome dynamics as compared to healthy controls (HCs), in particular in the DMN
regions; and ii) these alterations in brain dynamics would be associated with individual social
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impairments in patients and the expression profiles of genes that were enriched for previously
published ASD-related gene sets.

METHODS AND MATERIALS
Data Sets

We selected rsfMRI data from 440 ASD individuals and 499 HCs (all males, age range: 5-35
years old, collected at 18 independent sites) (Figure S1) from the publicly available Autism
Brain Imaging Data Exchange (ABIDE) I and ABIDE II datasets (33, 34)
(http://fcon_1000.projects.nitrc.org/indi/abide/) after screening against strict criteria (see
Supplement).

Data Preprocessing

All rsfMRI data were preprocessed with a standardized and harmonized pipeline using the
GRETNA package (36). This process involved removing the first 10-second volumes, slice
timing correction, realignment, spatial normalization to standard space, spatial smoothing with a
Gaussian kernel (full width at half maximum = 6 mm), linear detrending, nuisance regression
(for the following nuisance regressors: Friston’s 24 head-motion parameters, cerebrospinal fluid,
white matter, and global signals), and temporal filtering (0.01-0.1 Hz). Given that rstMRI
scanning duration has been different between sites, we took data from a fixed scanning length
(i.e., the first 5-minute time course) for connectome construction.

Constructing Dynamic Brain Connectomes

For each individual, dynamic brain connectomes were generated using a sliding window
approach (14, 37). Specifically, network nodes were defined as 512 regions of interest with
uniform areas obtained from a random parcellation (38). Within each time window, we estimated
the inter-node functional connections by calculating the Pearson’s correlation coefficient
between nodal time courses. Here, the window length was set as 60 seconds and the sliding step
was set as one repetition time. Finally, we obtained weighted dynamic connectomes by applying
a network threshold with a fixed density (density = 15%) to reduce the influence of weak or
spurious connectivities (16).

Tracking Dynamic Modular Structures

We utilized a multilayer network model (35) to identify the time-varying features of connectome
topology (Figure 1A). This model incorporates connectivity information from adjacent windows
and assumes temporal continuity of modular configurations. Specifically, we conducted a
multilayer-variant Louvain algorithm (http://netwiki.amath.unc.edu/GenLouvain) to identify the
optimal modular architecture by maximizing the modularity index, Q (range: 0-1), which denotes
the extent of segregation between network modules. Then, we computed the modular variability
(16) of each brain node to quantify how individual nodes dynamically switched their modular
affiliations over time (see Supplement). The larger the modular variability, the more flexibly a
brain node switches between modules.
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Case-Control Comparison Analysis

Mega-Analysis. To examine case-control differences in module dynamics, we performed a mega-
analysis by pooling individual modular variability maps across all sites. Prior to performing the
analysis, we applied a ComBat harmonization (39-41) to the modular variability maps to correct
for site effects. We then estimated group differences in modular variability at both global
(whole-brain mean and standard deviation) and nodal levels using a semi-parametric Generalized
Additive Model (GAM) (42) with restricted maximum likelihood as the smoothing parameter:

Y = fo + p1 x group + f1 (age) + f> (age, group) + f2x mFD + ¢, (1)

where Y denotes the measure of modular variability. The age and age-by-group interaction
effects were controlled for by introducing two smooth functions (i.e., fi, f2) as non-parametric
terms. This allows for flexible assessment of the nonlinear relationship without pre-emptively
assigning a prior shape. Mean framewise displacement (43) was also included as a covariate to
control for head motion. Multiple comparisons were corrected for by applying the false
discovery rate (FDR) method (44). Cohen’s d values, representing the effect size of the group
comparisons, were computed from the ¢ statistic of the group term. The GAM was computed
using the mgev package (https://cran.rproject.org/web/packages/mgcv/index.html). To further
decode the cognitive implications of the brain nodes exhibiting ASD-related alterations in
connectome dynamics, we performed a functional meta-analysis using the Neurosynth database
(45) (see Supplement).

Meta-Analysis. To assess the robustness of the observed case-control differences in the mega-
analysis, we also undertook a harmonized meta-analysis. Briefly, for each site we conducted the
GAM (Eq. (1)) to examine site-specific group differences in modular dynamics at both global
and nodal levels. Then, we obtained the meta-analytic Cohen’s d values of these measures using
an inverse variance-weighted random effect meta-analysis model in the metafor package (version
3.0.2; https://cran.r-project.org/web/packages/metafor/index.html).

Prediction of Social Impairments Using Connectome Dynamics

We further evaluated whether brain module dynamics were predictive of individual social
impairments observed in ASD. To quantify the degree of social impairments, we referred to
scoring against the Social Responsiveness Scale (SRS), which provides a dimensional
characterization of the severity of social impairments related to ASD. We trained a support
vector regression model to estimate each participant’s SRS score based on the whole-brain
modular variability maps. The leave-one-out cross validation (LOOCYV) was used to estimate the
accuracy of our predictions. In each LOOCYV fold, we included the feature selection, model
learning, and testing. Nodal contribution to the prediction was defined as the frequency that each
node was selected as a feature during the LOOCYV (see Supplement). This analysis was
performed using the LIBSVM toolbox (46).

Association between Alterations in Connectome Dynamics and Gene Expression Profiles

Estimation of Gene Expression in Brain Nodes. We utilized the genome expression data from
five male post-mortem human brains from the Allen Human Brain Atlas dataset (47) to identify
genes associated with ASD-related alternations in connectome dynamics. Gene expression levels
from the left hemisphere was used here, since right hemisphere data was available from only two
donors. The microarray data was preprocessed using a state-of-the-art analysis pipeline (48) and
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spatially matched with 222 brain nodes (see Supplement). This resulted in a 222 x 10,145
matrix, denoting the expression of 10,145 genes across 222 nodes.

Spatial Correlation with Gene Expression Profiles. Given the high similarity of results obtained
from both the mega- and meta-analyses in respect of ASD-related alterations in brain module
dynamics (see Results), we performed the connectome-transcriptome association analysis based
on the group difference map (i.e., Cohen’s d values) from the mega-analysis. Specifically, we
used a partial least squares (PLS) regression to identify the weighted linear combinations (i.e.,
components) of expression patterns for all 10,145 genes, which were correlated with ASD-
related alterations in connectome dynamics. The statistical significance of the variance explained
by the PLS components were tested using a permutation analysis (n = 10,000) in which spatial
autocorrelation was corrected for (49). For each PLS component map, we calculated the spatial
similarity between the weighted gene expressions and the Cohen’s d values in the group
difference map using the Pearson’s correlation. The significance of the correlation was tested
again using a permutation analysis (n = 10,000) in which spatial autocorrelation was corrected
for (49). Finally, the PLS weight of each gene was transformed into a Z-score value by dividing
the weight by the standard deviation of the corresponding weights derived from 1,000 instances
of bootstrapping (resampling with replacement of 222 nodes). We then ranked all genes
according to their Z-score weights to the PLS components.

Enrichment Analysis. To explore the functional significance of the associated genes, we first
conducted separate searches for Gene Ontology terms that were enriched at the top (strong
positive correlation) and bottom (strong negative correlation) of the ranked gene list, by
employing the widely used online tool GOrilla (50) (http://cbl-gorilla.cs.technion.ac.il/) (see
Supplement). All three ontology classes, including biological process, cellular component, and
molecular function, were considered.

Next, we performed a gene set enrichment analysis (51) on the whole gene list (i.e., the ordered
set of 10,145 genes) to assess whether ASD-related gene sets identified in previous studies were
overrepresented in the most strongly correlated genes identified in our ordered list. Specifically,
we considered six different classes of ASD-related gene sets (Table S1), including i) gene set 1,
ASD-related genes from a summary of multiple datasets (52); i1) gene set 2, ASD risk genes
from a large-scale exome sequencing study (30); ii1) gene set 3, ASD-associated common genetic
variants from a genome-wide association meta-analysis study (28); iv) gene set 4, ASD
associated rare, de novo variants from a study integrating copy number variants and sequencing
data (29); v) gene set 5, genes upregulated in the ASD cortex from a post-mortem genome-wide
transcriptome study (31); and vi) gene set 6, genes downregulated in the ASD cortex from a post-
mortem genome-wide transcriptome study (31). For the purposes of comparison, we also
included one gene set that was associated with non-mental health diseases (i.e., gene set 7) (52).
The enrichment analysis was performed using the clusterProfiler package, version 3.14.3 (53)
(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html).

Power Estimation

We estimated the minimal effect size (i.e., Cohen’s d) observable for case-control differences
between 440 ASD individuals and 499 HCs using G*Power, version 3.1.9.4. At a significant
threshold of .05 (two-tailed) and a minimum desired power level of .8, we have the statistical
power to observe Cohen’s d greater than .18.
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Validation Analysis

We validated our main findings by considering five potential confounding factors, including
head motion, window length, intelligence quotient, imaging sites, and age range (see
Supplement).

RESULTS
Demographic Characteristics

Table 1 summarizes the demographic and clinical information of the participants. No significant
difference in age was found between the ASD and HC groups (p = .84). The ASD group showed
lower IQ scores (p = 4.1 x 10”) and higher SRS scores than the HC group (p = 4.5 x 10713?).

Alterations of Module Dynamics in ASD Connectomes

Mega-Analysis. At the global level, no significant group difference was found in brain network
modularity (p = .32). However, the ASD group showed a higher mean value (Cohen’s d = .18, p
=.007) and a lower standard deviation (Cohen’s d =-.19, p = .004) in whole-brain modular
variability than the HC group (Figure 1B). This suggests that global brain dynamics in ASD
tends to be more unstable and regionally undifferentiated as compared to that in HCs.

At the nodal level, for both the ASD and HC groups, we observed higher modular variability
primarily in the bilateral prefrontal regions and the medial temporal lobe, and lower variability
mainly in the medial prefrontal and parietal regions, angular gyrus, and visual cortex (Figure 1C,
upper and middle panels). This pattern is highly comparable to that shown in previous studies in
healthy brains (16, 32). In comparison to the HC group, the ASD group showed higher modular
variability mainly in several default-mode regions, including the medial prefrontal cortex,
posterior cingulate gyrus, and angular gyrus (Cohen’s d ranging from .19 to .33), and lower
variability primarily in the visual cortex (Cohen’s d ranging from -.24 to -.19) (FDR corrected p
<.05) (Figure 1C, lower panel; age and age-by-group interaction effects are described in Figure
S2 and Figure S3 of the Supplement).

Using the NeuroSynth meta-analytic database (45), we found that the regions showing higher
modular dynamics in ASD were mainly associated with social function and internally oriented
processes, while those showing lower modular dynamics were involved in visual-related tasks
(Figure 1D).

Meta-Analysis. At the global level, our harmonized meta-analysis revealed that, compared to the
control group, the ASD group showed a higher global mean (Cohen’s d =.15, p =.01) and a
lower standard deviation (Cohen’s d = -.23, p = .001) in whole-brain modular variability (Figure
2A and 2B). At the nodal level, the case-control difference pattern was remarkably similar to that
derived from the mega-analysis (spatial similarity: r = .96, p < .0001 after correcting for spatial
autocorrelation) (Figure 2C and Figure S4). The meta-analysis also revealed significant group
differences in default-mode (Cohen’s d ranging from .19 to .34) and visual regions (Cohen’s d
ranging from -.34 to -.17) (FDR corrected p < .05) (Figure 2D).
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Predicting the Severity of Social Impairments Based on Brain Module Dynamics

Using individual modular dynamics patterns as the feature in the support vector regression
model, we found that brain dynamics was a significant predictor of SRS scores (r = .16, pperm
=.002) (Figure 1E). Brain nodes making the largest contribution to SRS score prediction were
mainly located in the medial prefrontal cortex and the visual cortex (Figure 1E). These regions
largely overlapped with those showing case-control differences in brain modular dynamics.

Association between Alterations in Connectome Dynamics and Gene Expression Profiles
Partial Least Squares Regression Analysis. We assessed the spatial association between ASD-
related dynamics alterations and nodal gene expression profiles (Figure 3A). The weighted gene
expression pattern of the first PLS component (PLS1) accounted for the greatest spatial variance
(20.5%, Figure 3B) in modular dynamics in the case-control difference map (p = .05, corrected
for spatial autocorrelation). The PLS1 score map was spatially correlated with the group
difference map (r = .45, p=.0043, corrected for spatial autocorrelation) (Figure 3C and 3D).

Enrichment Analysis. We identified three biological process terms significantly enriched at the
top of the gene list, including the regulation of secretion by cell, the regulation of
neurotransmitter transport, and the regulation of secretion (FDR corrected p < .01) (Figure 3E).
Interestingly, all three of these terms were related to the regulation of transport. We did not find
any significant enrichment of Gene Ontology terms at the bottom of the gene list. Moreover, no
significant enrichment of molecular function and cellular components was observed.

We further conducted a gene set enrichment analysis to examine whether six classes of
previously reported ASD-related genes were significantly enriched at the top or bottom of our
ordered gene list (Figure 4A). We found that ASD-related genes from a summary of multiple
databases (i.e., gene set 1) were significantly enriched at the top of our gene list (normalized
enrichment score (NVES) = 1.27, padgjust = .035, FDR corrected, hereafter the same) (Figure 4B).
The ASD risk genes identified from a large-scale exome sequencing study (i.e., gene set 2)
exhibited a significant enrichment at the bottom of our gene list (VES = -1.48, pagjus: = .035)
(Figure 4C). We also observed that ASD-related common genetic variants (i.e., gene set 3) were
significantly enriched at the bottom of our gene list (NES = -1.70, padgjus: = .028) (Figure 4D),
while ASD-related rare, de novo variants (i.e., gene set 4) exhibited only marginally significant
enrichment (NES = -1.39, pagjus: = .069) at the bottom of our gene list (Figure 4E). Moreover,
genes upregulated and downregulated in the post-mortem ASD cortex (i.e., gene sets 5 and 6)
were significantly enriched at the top and bottom of our gene list, respectively (upregulated: NES
= 1.41, padjus: = .009; downregulated: NES = -1.67, padjus: = .002) (Figure 4F and Figure 4G ). As a
control dataset, the gene set comprising genes associated with non-mental-health diseases (i.e.,
gene set 7) was not significantly enriched at the gene list (NES = -.99, pugjuse = .51) (Figure 4H).

Validation Results

When assessing the potential influence of five confounding factors, we found that ASD-related,
significant alterations in brain modular dynamics remained highly similar to our main results
(Dice index ranging from .77 to .95) (Table S2 and Figure S5, see Supplement). This suggests
that our results were robust and not affected by methodological variations.
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DISCUSSION

Using a harmonized mega- and meta-analysis, this study provides the first robust demonstration
of ASD-related alterations in brain modular dynamics. Our study reveals that these alterations
occur primarily in the default-mode and visual regions and are associated with social
impairments in patients and with the expression profiles of genes enriched for the regulation of
neurotransmitter transport and secretion, as well as with previously reported autism-related
genes. Together, these findings provide evidence for altered macroscopic connectome dynamics
and illustrate its linkage with microscopic transcriptional profiles, advancing our knowledge of
the biological mechanisms behind ASD.

Aberrant Configuration of Dynamic Modular Architecture in ASD

Previous studies have reported on the existence of temporal modular switching in healthy brain
networks (16, 37, 54, 55), which is critical for efficient integration between different functional
systems (56) and for cognitive flexibility (16). Here, we demonstrate that patients with ASD
exhibited abnormal, higher levels of modular switching in several default-mode regions (in
particular the medial prefrontal cortex) but lower modular switching in visual areas. This reflects
more frequent switching and excessive functional integration between the default-mode network
and other networks over time, but reduced functional integration between the visual network and
other networks. Prior studies have also reported altered dynamic connectivity in the default-
mode (19, 24, 57) and visual regions (23, 58, 59) in ASD. Compared with these studies, our
findings extend the existing knowledge of ASD-related abnormalities in brain dynamics from the
connectivity-level to the system-level, advancing our understanding of ASD psychopathology
from a dynamic connectome topology perspective.

Mounting evidence has suggested an association between social functions and the default-mode
and visual regions. For instance, default-mode regions (especially the medial prefrontal cortex)
have been demonstrated to be involved in social inference (60). At the same time, visual
perception impairments significantly contribute to early social-emotional deficits (61) and have
cascading effects on learning and social development in ASD (62). These findings hint that the
alterations in connectome dynamics in the default-mode and visual regions identified here may
underlie social impairments in ASD. Indeed, we observed that brain module dynamics patterns
significantly predicted individual social impairments, suggesting that temporal characteristics in
connectome topology may be a promising neuroimaging biomarker for ASD symptoms.

Transcriptional Profiling of Aberrant Brain Module Dynamics

Leveraging postmortem brain-wide gene expression data from the AHBA (47), we found that
ASD-related alterations in brain dynamics were closely associated with the transcriptional
profiles of genes involved in the regulation of neurotransmitter transport and secretion. Extensive
studies have indicated that aberrant neurotransmitter transport is a significant feature of ASD,
especially aberrancies in the transport of the excitatory neurotransmitter glutamate and the
inhibitory neurotransmitter gamma-aminobutyric acid (63). This suggests that brain regions with
abnormal dynamics in ASD, e.g. the medial prefrontal and visual cortices, may have failed to
maintain balanced excitatory-inhibitory neurotransmitter transport. Such speculations are
supported by prior studies that have reported imbalanced excitatory-inhibitory synaptic
transmission in these regions (64-66). Accordingly, our findings may provide support for the
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existing excitation/inhibition imbalance theory in ASD (66-68) by revealing a transport
regulation-specific connectome-transcriptome association.

We also demonstrated that previously reported autism-related genes were significantly enriched
among the genes that we found to be most strongly correlated (both positively and negatively)
with alterations in modular dynamics, indicating that different classes of genes contribute to the
alterations in module dynamics in ASD. Specifically, compared with rare, de novo variants (gene
set 4) (29), ASD-related common genetic variants showed a more substantial influence on
module dynamics, which was manifested as a significant enrichment of the gene set. This finding
is consistent with a recent study regarding cortical volume and transcriptome association in ASD
(69), and could be due to common variants explaining a larger proportion of heritable variance in
ASD compared to rare, de novo variants (70). Moreover, we found that genes upregulated and
downregulated in the post-mortem ASD cortex were respectively overrepresented at either end of
our gene list. As the top and bottom weighted genes in the ranked list showed different
correlations (i.e., positive and negative) with ASD-related alterations in module dynamics, we
speculate that these two categories of dysregulated genes in ASD are likely to affect brain
network dynamics in different ways. Several previous studies have also shown the association
between abnormal brain morphology (e.g., cortical thickness and volume) and the downregulated
genes in ASD, but the same association was not found for the upregulated genes (69, 71).
Combining these findings, the implication is that different imaging phenotypes in ASD may
show common and specific genetic factors.

Notably, we did not find any significant overrepresentation of genes in the gene set associated
with non-mental health diseases (gene set 7) (52), suggesting that the genes identified as being
strongly correlated were mental disorder-specific. Together, the results from our connectome-
transcriptome association analysis provides a meaningful link between the ASD-related
alterations in macroscopic brain dynamics and microscopic molecular signatures.

Limitations and Future Work

Several issues should be taken into consideration when interpreting these results. First, only male
participants were included in this study, given the high prevalence of ASD in males and the
small sample of female participants in the ABIDE database. Whether the findings can be
generalized to the female population still needs further investigation. Second, gene expression
data used here was derived from five healthy brains. It will therefore be promising to explore the
connectome-transcriptome association using ASD gene expression data when the relevant data
becomes available. Third, we did not exclude medicated ASD individuals, given the limited
medication information available from the ABIDE database. Whether and how medication
affects the alterations in module dynamics remains for further exploration. Finally, as a
psychiatric disorder, ASD often features high comorbidity and may exhibit alterations in brain
function and genetic factors that are also present in other brain disorders (72, 73). Revealing
ASD-specific genes and dynamic connectome alterations will be important for understanding the
biological basis of this disorder.
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Table 1. Demographics and clinical characteristics of participants

ASD (n =440) HC (n=499) p value
Age (Years) 5.3-34.5 (143 £ 5.4) 5.9-34.1(144+54) 84
FIQ 71-149 (107.1 £ 16.6)  73-148 (112.8 £12.9) 4.1 x 10?
ADOS-2 Total (n = 208) 2-26 (11.7 £ 4.2) NA
ADOS-2 Severity (n =208)  1-10 (6.7 + 2.0) NA
ADOS-2 Social (n = 206) 1-20 (8.7 + 3.6) NA
ADOS-2 RRB (n = 209) 0-7 (3.0 £ 1.6) NA
ADI-R Social (n = 322) 4-30 (19.3 £ 5.4) NA
ADI-R Verbal (n = 322) 4-25 (15.6 + 4.4) NA
ADI-R RRB (n = 322) 0-12 (5.7 £ 2.6) NA
SRS (ASD/HC: 220/253) 16-171 (90.5 + 28.7) 0-85 (19.8 £ 13.5) 4.5 x 107133

Note: Male participants were selected from 18 of the sites that contributed to the ABIDE I and
ABIDE II datasets using stringent quality control criteria. For each clinical measure, we only
considered the module/version with the largest sample of participants available. The p value was
obtained using a two-sample two-tailed #-test. ASD, autism spectrum disorder; HC, healthy
control; FIQ, full-scale 1Q; ADOS-2, Autism Diagnostic Observation Schedule, Second Edition;
RRB, restricted and repetitive behavior; ADI-R, Autism Diagnostic Interview—Revised; SRS,
Social Responsiveness Scale; NA, not applicable.
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Figure Legend

Figure 1. Mega-analysis of case-control differences in module dynamics. (A) Schematic
overview of brain module switching within a multilayer network model. Each node not only
connects to nodes in the same window but also connects to itself in the two temporally adjacent
windows. Node colors denote nodal module affiliations. Modular switching is determined by
modular variability, which reflects the module dynamics. Node 1 shows a high modular
variability while node 2 shows a low modular variability. (B) Mega-analysis of case-control
differences in the mean value and the standard deviation of modular variability at the global
level. (C) Mega-analysis of case-control differences in module dynamics at the nodal level. The
upper and middle panels show the group-level modular variability maps for each population. The
lower panel shows regions with significant case-control differences in modular variability,
corrected for multiple comparisons (FDR-corrected p < .05, corresponding to puncorr < .004). (D)
Cognitive terms associated with the regions showing significant case-control differences. The red
and blue word clouds respectively represent cognitive terms associated with regions showing
significantly higher and lower module dynamics in the ASD group. Font size has been scaled to
reflect the correlation value for each cognitive term. (E) Prediction of individual SRS scores
based on modular variability maps using support vector regression. The scatterplot displays the
correlation between actual and predicted SRS scores. Each dot corresponds to one instance of
leave-one-out cross-validation. The brain map displays regional contribution to the prediction,
which was defined as the frequency that each region was selected as a feature in the leave-one-
out cross-validation. SD, standard deviation; ASD, autism spectrum disorder; SRS, Social
Responsive Scale.

Figure 2. Meta-analysis of case-control differences in module dynamics. (A) Forest plot of
Cohen’s d effect sizes for case-control differences in the global mean of modular variability.
Each row shows the Cohen’s d effect size and the confidence intervals for each site. The meta-
analysis results are displayed at the bottom with the combined effect and the confidence interval
plotted as a diamond. (B) Forest plot of Cohen’s d effect sizes for case-control differences in the
standard deviation of modular variability. (C) Spatial similarity between case-control difference
maps obtained from the mega- and meta-analyses. Each dot represents a brain node. The
significance level of the spatial association was corrected for spatial autocorrelation (49). (D)
Meta-analysis of case-control differences at the nodal level. Significance levels of case-control
differences in modular variability have been corrected for multiple comparisons (FDR-corrected
p < .05, corresponding to puncorr < .0056). SD, standard deviation; FDR, false discovery rate.

Figure 3. Association between ASD-related alterations in module dynamics and gene expression
profiles. (A) Gene expression profiles across brain nodes. Each row denotes the gene expression
for each gene at a given brain node. (B) Explained ratios for the first 15 components obtained
from the partial least squares (PLS) regression analysis. Each component denotes a weighted
linear combination of the expressions of all genes. (C) Spatial patterns showing the mega-
analysis case-control differences in modular variability and the PLS1 scores in the left
hemisphere (unthresholded). (D) Spatial association between case-control differences in modular
variability and PLS1 scores. Each dot represents a brain node. The significance level of the
spatial association has been corrected for spatial autocorrelation (49). (E) Significant enrichment
of Gene Ontology terms associated with biological processes was observed for PLS1. Color
denotes the g-values for the significantly enriched Gene Ontology terms. PLS, partial least
squares.
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Figure 4. Gene set enrichment analysis of genes associated with ASD-related alterations in
module dynamics. (A) An overview of the gene set enrichment analysis. The solid line denotes
the running enrichment score (ES) along the ordered gene list, which increases when a gene is
included in the gene set of interest and decreases when a gene is not included. The vertical lines
in the middle display the locations at which the members of the gene set appear in the ordered
gene list. The shaded curve at the bottom denotes the value of the ranking metric (i.e., Z value
for each gene’s PLS1 weights) for the genes in the ordered gene list. The ES captures the degree
to which the gene set is overrepresented at the top or bottom of the ordered gene list, which is
defined as the maximum deviation from zero of the running ES. Significance of the ES was
estimated by a gene set-based permutation (10,000 times). (B) Significant enrichment of ASD-
related genes from a summary of multiple databases (52). (C) Significant enrichment of ASD
risk genes (30). (D) Significant enrichment of common genetic variants of ASD derived from a
GWAS study (28). (E) Marginally significant enrichment of ASD-related rare, de novo variants.
(F) Significant enrichment of genes upregulated in the post-mortem ASD cortex (31). (G)
Significant enrichment of genes downregulated in the post-mortem ASD cortex (31). (H) Non-
significant enrichment of the gene set associated with non-mental health diseases (52). After the
gene set enrichment analysis was performed for all gene sets, the ES for each gene set was
normalized to the NES to account for the gene set size, and multiple comparisons with the seven
gene sets were corrected for using the false discovery rate method. ASD, autism spectrum
disorder; PLS, partial least squares; ES, enrichment score; NES: normalized enrichment score;
GWAS, genome-wide association study.
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Figure 1. Mega-analysis of case-control differences in module dynamics.
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Figure 2. Meta-analysis of case-control differences in module dynamics.
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Figure 3. Association between ASD-related alterations in module dynamics and gene expression
profiles.
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Figure 4. Gene set enrichment analysis of genes associated with ASD-related alterations in
module dynamics.
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Supplementary Methods
Data Sets

Resting-state functional MRI (rsfMRI) data covering 2,156 participants was initially obtained
from the ABIDE I (17 sites, ASD/HC: 539/573, 7-64 years) and ABIDE II (19 sites, ASD/HC:
487/557, 5-64 years) databases (http://fcon_1000.projects.nitrc.org/indi/abide/). We screened this
initial dataset using strict inclusive criteria and only included scans that: i) were taken from male
participants, as 94% of participants were male; ii) were from participants who did not show any
severe structure damage in the T1 images; iii) consisted of single-band fMRI data, as only two
sites used multiband scanning profiles; iv) had a scan length of at least 5 minutes; v) had
maximal head motion of less than 5 mm and 5 degrees, and mean framewise displacement (FD)
(1) of less than 0.5 mm; vi) had nearly full-brain coverage and successful spatial normalization;
vii) were taken from participants with a full scale IQ higher than 70. Finally, we included only
scans from participants under 35 years old, due to the limited number of participants older than
35. We also excluded data from sites that had fewer than 10 participants remained in either ASD
or control group after the above screening had been applied. Thus, after all selection criteria had
been applied, we obtained a dataset consisting of scans from 939 participants (ASD/HC,
440/499) taken from 18 different sites (Figure S1).

Tracking Dynamic Modular Structures

We utilized a multilayer network model (2) to identify the window dependent (i.e., time-varying)
modular architecture. This algorithm incorporates connectivity information from temporally
adjacent two windows and assumes temporal continuity of the modular architecture across
windows. Specifically, the window-dependent functional network was treated as a multilayer
network, in which each node not only connected to nodes within the same layer (i.e., window)
but also connected to the identical nodes in two temporally adjacent layers (i.e., one back and
one forward). The optimal modular architecture was identified by maximizing the multilayer
modular index, Q, which is defined as (2)

Qmultilayer (y,w) = iZijsr [(Aijs -7 Sisks ) 5(s,1) + 5(irj)szr] 8 (M, ]VIjr); (1)

S 2mg
where i and j are node labels and s and r are layer labels.

Specifically, u denotes the total degree of the multilayer network, A;;; denotes the connectivity
strength between nodes i and j in layer s, kis denotes the degree of node i in layer s, ms denotes
the total degree of layer s, k;sk;s/2mg denotes probability expected by chance of a connection
between node i and node j in layer s. The function §(x, y) equals 1 if x equals y, and equals O
otherwise. The variable y; is the topological resolution parameter in layer s, which determines
the detected module size. The larger the value of y; , the smaller the detected module size.
Parameter wj, is a temporal coupling parameter, denoting the strength of inter-layer coupling
for node j between layers r and s. Here, we used the commonly used default values of y = 1 and
w=1G,4).

Due to the heuristic nature of modularity optimization based on the multilayer-variant Louvain
algorithm (5), we repeated the multilayer modular detection process 100 times. All module-
relevant measures (i.e., modularity and modular variability) were calculated as the averaged

25


https://doi.org/10.1101/2021.10.03.462909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462909; this version posted October 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

value across the 100 runs. The Genlouvain MATLAB package was used to perform multilayer
community detection (http://netwiki.amath.unc.edu/GenLouvain).

Given the time-varying nature of the modular architecture, we employed a measure of modular
variability (6) to quantify how each brain region switched between modules over time. For
example, given a node k, its modular variability between two sliding windows i and j is defined
as

sy o4 XK@ n X (DI 1Xk (@) 0 X ()
MV(L)) =1 =50 XDl @

where X (i) and Xk (j) denote the module labels to which node k belongs in window i and j
respectively, X (i) N X;(j) denotes the set of common nodes between modules Xx (i) and Xk (j),
and |X| denotes the node number in the node set X. For node £, its total modular variability across
all windows is calculated as

MV, = i, wi MV, (i), 3)

where MV), (i) = X2 MV, (i,j)/(n — 1) denotes the modular variability of node k between
windows i and all other windows. In Eq. (3), we used a normalized weighed coefficient w; to
reduce the bias of potential outlier time windows. The coefficient w; denotes the spatial similarity
in the modular architecture between window i and all other windows, and is estimated using
adjusted mutual information (7). The larger the modular variability, the more frequently a brain
node switches between modules. For each node, we estimated its modular variability across all
windows, and thus obtained a modular variability map for each participant.

Site Effect Correction in the Mega-Analysis

To reduce the influence of different sites, we applied a ComBat harmonization (8-12) to the
individual modular variability maps to correct for site effects before subsequent statistical
analysis. The Combat approach removes unwanted inter-site variability in imaging acquisition
while preserving inter-site variability in biologically meaningful metrics. We retained age, group,
mean FD, and IQ as regressors in the ComBat process to preserve biologically meaningful
variability. Of note, for the nodal-level analysis, we transformed the harmonized modular
variability values into z-score values to further enhance the comparability between sites. The
nodal z-score values were obtained by subtracting the mean modular variability across the brain
and then dividing by the corresponding standard deviation.

Case-Control Comparison Analysis in the Mega-Analysis

We assessed differences in module dynamics between the ASD and HC groups using a semi-
parametric Generalized Additive Model (GAM) (13) with restricted maximum likelihood as the
smoothing parameter. The age and age-by-group interaction effects were controlled by
introducing two smooth functions for these non-parametric terms. The significance level of all
three terms (i.e., group, age, and age-by-group) at the nodal level was corrected for using a false
discovery rate (FDR) method (14) in which the p values of all three effects were pooled together
(15). In the main analysis, we reported only results on the group effect of interest (i.e. case-
control differences in module dynamics). The age and age-by-group effects on module dynamics
are provided here as a supplement (see Figures S2 and S3).
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Correlation between ASD-related Alterations and Cognitive Terms

To decode the cognitive implications of the divergences observed between the ASD and HC
groups, we performed a functional meta-analysis using the Neurosynth database (16). We first
generated a 7-value map from the mega-analysis for ASD-related alterations, showing the brain
nodes exhibiting significant differences in modular variability. Using this map, we then
generated two separate t-value maps for ASD-related increases in modular variability and ASD-
related decreases in modular variability, respectively. Next, for each map, we decoded the
associated cognitive terms and retained the top 35 as having substantial relevance.

Prediction of Social Impairments Using Connectome Dynamics

We further evaluated whether the spatial pattern of nodal modular variability was predictive of
individual social impairments. To quantify the degree of social impairments, we referred to
scoring against the Social Responsiveness Scale (SRS), which provides a dimensional
characterization of the severity of ASD-related social impairments, and which was available for
the largest number of participants (i.e., 220 ASD individuals and 253 HCs).

We used a support vector regression (SVR) model to estimate each participant’s SRS score based
on the whole-brain nodal modular variability values. The leave-one-out cross-validation
(LOOCV) was used to estimate prediction accuracy. Specifically, in each LOOCYV fold, one
participant was designated as the test set, and the remaining participants were set as the training
set. We first generated a general linear model for the training set to reduce the effects of age and
mean FD, and applied the estimated parameters to the test set. The resulting residuals in nodal
modular variability were used for subsequent analysis. Next, we selected the features using the
training set by calculating the across-participant Pearson’s correlation between the modular
variability of each node and the SRS score. Brain nodes showing significant correlation
coefficients (i.e., p <.01) were retained. Thirdly, we built an SVR model to fit the relationship
between the features (i.e., modular variability of selected nodes) and the SRS scores in the
training set. Finally, we used the trained SVR model to predict the SRS score of the unseen
participant (i.e., the test set).

After all LOOCYV folds were completed, we assessed the performance of the prediction model by
calculating the correlation between predicted and actual SRS scores. Then, we performed a
permutation test (n = 10,000) by shuffling individual SRS scores to assess the statistical
significance of the estimated prediction accuracy. Regional contribution to the prediction was
defined as the frequency that each region was selected as a feature in the leave-one-out cross-
validation. The SVR model was computed using the LIBSVM toolbox for MATLAB, with
default settings (17) (https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Association between Alterations in Connectome Dynamics and Gene Expression Profiles

Estimation of Gene Expression in Brain Nodes. We utilized a brain-wide transcriptomic dataset
of the adult human brain from the Allen Human Brain Atlas (AHBA) (18, 19)
(http://human.brain-map.org), which includes post-mortem brain samples from six donors (i.e.,
five males and one female) aged 24-57 years. This dataset provides expression data for more
than 20,000 genes in 3,702 spatially distributed tissue samples. Tissue samples from two donors
cover the whole brain, while tissue samples from the other four donors cover only the left
hemisphere. This dataset has been widely used to explore the genetic underpinnings of brain
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network properties in both typical development (20-23) and neuropsychiatric disorders (24, 25)
due to the fact that canonical genetic signature of the adult human brain is highly consistent
across individuals (19). Considering that rsfMRI data used here were obtained from only male
subjects, we employed gene expression data of the five male donors to explore the genetic
underpinnings of altered brain network dynamics in ASD.

AHBA gene expression data was preprocessed using the default procedures of a state-of-the-art
pipeline (26) (https://github.com/BMHLab/AHBAprocessing). This included probe-to-gene re-
annotation, filtering of probes that did not exceed background noise, selecting the representative
probe for each gene, assigning each sample to its nearest node in the random-512 parcellation,
and correcting for both inter-sample and inter-subject variability. Several details in relation to the
preprocessing should be noted. First, we performed probe-to-gene re-annotation based on the
latest data from the National Center for Biotechnology Information (NCBI) using Re-annotator
(27). Secondly, we performed the spatial assignment of tissue samples to brain parcellation nodes
in native space. Specifically, we first segmented T1 images of each donor brain using tissue
probability maps in MNI space as the reference for segmentation. We then spatially transformed
the random-512 parcellation from MNI space to the native space by applying the inverse
deformation field obtained from the T1 segmentation procedure. Tissue samples for each donor
were then matched to the spatially nearest node based on donor-specific parcellation. Third, only
gene expression data from the left hemisphere was used to ensure the reliability of results, since
gene expression data for the right hemisphere was available from only two male donors. In the
left hemisphere, 222 out of 236 nodes were spatially matched with expression data, resulting in a
222 x10,145 matrix, which denoted the expression of 10,145 genes across 222 nodes.

Enrichment Analysis. After performing the partial least squares regression (PLS) analysis, we
ranked the 10,145 genes according to their weights to the PLS1 component. Genes ranked at the
top of this ordered gene list exhibited the strongest positive associations with the ASD-related
alterations in modular variability, which were overexpressed in regions showing higher modular
switching in ASD. Genes ranked at the bottom of this ordered gene list exhibited the strongest
negative associations with ASD-related alterations in modular variability, which were
overexpressed in regions showing lower modular switching in ASD.

To gain further understanding of the biological implications of the genes identified as being
associated with case-control differences in modular variability, we undertook two different
enrichment analyses. First, we used the Gorilla tool (28) (http://cbl-gorilla.cs.technion.ac.il/) to
perform Gene Ontology(GO) enrichment analyses to explore functional implications of the
identified genes. Gorilla is a widely used online tool that identifies GO terms that are
significantly enriched at the top of the ordered gene list, without pre-assigning thresholded target
gene sets and background sets (28). To identify the GO terms that were enriched at the bottom of
our ordered gene list, we reversed the ordered gene list and performed the GO enrichment
analyses again. Second, we carried out a gene set enrichment analysis (GSEA) (29) on the whole
gene list (i.e., the 10,145 ordered genes) to assess whether previously identified ASD-related
gene sets were enriched at the top or bottom of our ordered gene list. The GSEA analysis does
not require thresholding of the ordered gene list, which may reduce the effects of arbitrary
thresholding and capture genes that may not show significant correlation with modular
variability but nonetheless have important biomedical significance (29). Six classes of ASD-
related gene sets and one gene set that was associated with non-mental health diseases were used
in the GSEA. The six ASD-related gene sets are listed below:
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i) Gene set 1: ASD-related gene set from a summary of multiple datasets (n = 594) (30). This
gene set was curated by Krishnan et al, and was collected from both publicly available databases
(e.g., SFARI Gene, http://gene.sfari.org) and automatically text-mined ASD-gene co-occurrences
in published abstracts (e.g., Gene2Mesh, http://gene2mesh.ncibi.org/).

ii) Gene set 2: ASD risk genes identified from a large-scale exome sequencing study (n = 102)
(31). Of these genes, 53 show higher frequency in individuals ascertained to have ASD, and the
remainder show higher frequencies of disruptive de novo variants in individuals ascertained to
have severe neurodevelopmental delay.

iii) Gene set 3: ASD-associated common genetic variants identified from a genome-wide
association study (GWAS) meta-analysis study (n = 88) (32). We extracted this gene set from the
summary statistical results of the GWAS meta-analysis study (32). Specifically, SNP-based p
values were converted to gene-based p values using H-MAGMA (33). We selected genes with an
FDR corrected p < .1 (33), which included 88 genes.

iv) Gene set 4: ASD associated rare, de novo variants identified from a study integrating copy
number variants and sequencing data (n = 65) (34). A total of 65 ASD risk genes (FDR corrected
p <.1) were identified by Sanders et al (34)

v) Gene set 5: genes upregulated in the ASD cortex, identified from a post-mortem genome-wide
transcriptome study (n = 584) (35). We selected differential expression genes with FDR
corrected p < .05. Upregulated genes were identified as those with logz(Fold-change) > 0 (36).

vi) Gene set 6: genes downregulated in the ASD cortex, identified from a post-mortem genome-
wide transcriptome study (n = 558) (35). We selected differential expression genes with FDR
corrected p < .05. Downregulated genes were identified as those with logz>(Fold-change) < 0 (36).

vii) Gene set 7: a gene set associated with non-mental health diseases includes 1,189 genes (30),
and was used to assess whether the PLS-derived genes were mental disease-specific.

GSEA was performed using the GSEA function in clusterProfiler package version 3.14.3
(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) (37). The results were
visualized using the gseaplot2 function in enrichplot package version 1.6.1
(https://bioconductor.org/packages/release/bioc/html/enrichplot.html) in R language.

Validation Analysis

We validated our main findings by considering five potential confounding factors. (i) Head
motion. During image preprocessing for the validation analysis, an additional spike regression-
based scrubbing strategy was employed during the nuisance regression procedure to further
control the influence of head motion (38). “Bad” volumes were defined as those with framewise
displacement above 0.5 mm and their adjacent volumes (one forward and two backward). (ii)
Window length. In addition to the window length of 60 seconds used in the main analysis, we
also reconstructed the dynamic functional networks with a longer window length of 100 seconds
to assess the effect of the window length on our results. (iii) Intelligence quotient (I1Q). As part of
the validation analysis, we included the intelligence quotient in the GAM as an additional
covariate to reduce its influence on group differences. (iv) Imaging sites. We utilized a leave-
one-site-out cross validation strategy to estimate whether group differences were biased by
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specific sites. (v) Age range. We reexamined the case-control differences by excluding
participants aged over 21 years (39) to assess whether group differences were observable for the
children and adolescents.

Supplementary Results
Age and Interaction Effects in the Mega-Analysis

At global level, the GAM-based analysis revealed a significant nonlinear age effect (i.e., a slight
increase followed by a persistent decline) on modularity (p = .0009) (Figure S2A), but no group
and age-by-group interaction effects (both ps > .05). In addition to the significant group effects
on the mean and standard deviation of whole brain modular variability, we also observed a
nonlinear age effect (i.e., a slight decline followed by a slight increase) on mean modular
variability (p = .037) (Figure S2B), but not on standard deviation (p > .05). No interaction effect
was observed for either metric.

At nodal level, in addition to the significant group effect on the modular variability at several
default-mode and visual areas, we also identified significant age effects on modular variability,
primarily in several frontal and temporal areas (p < .05, FDR corrected) (Figure S3A) such as the
medial superior frontal cortex, supplementary motor area, superior temporal gyrus, and insular
cortex. Only a few nodes showed significant age-by-group interaction effects, including the
bilateral superior temporal gyrus and the right fusiform (p < .05, FDR corrected) (Figure S3B).

Validation Results

When assessing the potential influence of head motion, window length, IQ, data collection sites,
and age range, we found that the resultant maps of significant ASD-related alterations in modular
variability remained highly similar to those in our main findings (Dice index range: .77 to .95)
(Table S2 and Figure S5). This suggests that the spatial distribution of case-control differences
identified in our main findings was highly robust and weakly affected by methodological
variations. It is also worth noting that significant age-by-group interaction effects varied
substantially between different validation strategies (Dice index range: O to 1), suggesting
limitations in robustness. Thus, the findings regarding the interaction effects should be
interpreted with caution.
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Supplementary Tables

Table S1. Number of overlapped genes between six ASD-related gene sets

Geneset1l Geneset2 Geneset3 Geneset4 GenesetS5S Gene setb
Gene set 1 594

Gene set 2 26 102

Gene set 3 2 1 88

Gene set 4 20 38 1 65

Gene set 5 21 0 0 0 584

Gene set 6 21 3 0 1 0 558

Diagonal elements denote the total number of genes in each gene set and the lower trigangular
elements dennote the number of genes that overlap between each pair of gene sets. The gene sets
were obtained from the following sources: 1) gene set 1, ASD-related genes from a summary of
multiple datasets (30); ii) gene set 2, ASD risk genes from a large-scale exome sequencing study
(31); iii) gene set 3, ASD-associated common genetic variants from a GWAS meta-analysis
study (32); iv) gene set 4, ASD associated rare, de novo variants from a study integrating copy
number variants and sequencing data (34); v) gene set 5, genes upregulated in the ASD cortex
from a post-mortem genome-wide transcriptome study (35); vi) gene set 6, genes downregulated
in the ASD cortex from a post-mortem genome-wide transcriptome study. GWAS, genome-wide
association study.
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Table S2. Dice indices of thresholded statistical maps between the main results and different
validations

Validation Strategy Group effect Age effect Interaction effect
IQ regression 0.94 1 1

Head motion 0.77 0.77 0.33

Window length 0.80 0.75 0.67

Age range 0.87 0.58 0

Here, we assessed the robustness of the group, age and age-by-group interaction effects at the
nodal level under four different validation conditions. “IQ regression” denotes the inclusion of
the IQ term in the GAM to mitigate its influence. “Head motion” denotes the use of a spike
regression-based scrubbing strategy in nuisance regression during image preprocessing to further
control the influence of head motion, “Window length” denotes the reconstruction of the
dynamic functional networks using a window length of 100 seconds, and “Age range” denotes
excluding adult participants with ages over 21 years. Each value in the table represents the Dice
index between the original thresholded modular variability map in the main findings and that
obtained under a validation condition. GAM, generalized additive model; 1Q, intelligence
quotient.

32


https://doi.org/10.1101/2021.10.03.462909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.03.462909; this version posted October 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figures

TCD-1 00 +EHQaGH+ + GHBt-

SDSU-1|  G+8a@o 0me ©Om
OHSU-1| OG®e®e88®0 + HC
NYU-1 OBEEEsERpE@hOo O (@) 00
KKI-1 -
GU-1 AR
YALE | @+ EHO-H# GEEHO +8003
USM + O -+ +HOOBEDE 60 EHDCEHOH 8BGED + + A0
9 Um-2 BB + 4+
%) UM-1 + OPHHHICEEDED GEDEH-HEH
UCLA-1 - O + (HEEEEHEES- W00
TCD | GH-HBHER 810 @BHOD +6
STANFORD D PO
SDSU BEHD-MEIED
PITT | O @EoH @ @He0 + +H  + 00+0
OLIN | 00 +8660086 +
NYU  +EHEESSISEREROBIO+OSI365+ 18 +0 0+ +
LEUVEN-1 - BO00BBBO+ ++@ o
5 10 15 20 25 30 35

Age (years)

Figure S1. Distribution of participants across the 18 sites. For each site, both ASD and HC
groups contained at least 10 participants. Red circles denote ASD individuals and black crosses
denote HCs. ASD, autism spectrum disorder; HC, healthy control; TCD-1, Trinity Centre for
Health Sciences: Sample 1; SDSU-1, San Diego State University: Sample 1; NYU-1, NYU
Langone Medical Center: Sample 1; KKI-1, Kennedy Krieger Institute; Sample 1; GU-1,
Georgetown University: Sample 1; Yale, Yale School of Medicine; USM, Utah School of
Medicine; UM-1, University of Michigan: Sample 1; UM-2, University of Michigan: Sample 2;
UCLA-1, University of California, Los Angeles; TCD, Trinity Center for Health Sciences;
STANFORD, Stanford University; SDSU, San Diego State University; PITT, University of
Pittsburgh; OLIN, Olin, Institute of Living at Hartford Hospital; NYU, NYU Langone Medical
Center; LEUVEN-1, University of Leven: Sample 1.
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Figure S2. Age-related changes in global modular dynamics. (A) Significant nonlinear age
effects on modularity. (B) Significant nonlinear age effects on the mean modular variability of
the brain. We used a GAM to estimate age effects for the whole population, including both ASD
individuals and HCs. ASD, autism spectrum disorder; HC, healthy control; MV, modular

variability; GAM, generalized additive model.
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Figure S3. Age and age-by-group effects on regional module dynamics. (A) Age effects on
nodal modular variability. (B) Age-by-group interaction effects on nodal modular variability. We
used a GAM to estimate the age effects and the group-by-age interaction effects on nodal
modular variability. Significance levels were corrected for multiple comparisons by pooling the

p values of all three effects (i.e., group, age, and interaction) across all nodes. GAM, generalized
additive model.
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Figure S4. Spatial similarity between case-control difference maps obtained from the mega- and
meta-analyses. The left and middle panels respectively represent the spatial pattern of case-
control differences obtained from the mega- and meta-analysis. In the right-hand panel, each dot
in the scatterplot represents a brain node. The significance level of the spatial association was
corrected for spatial autocorrelation (40). SA-corr denotes correction for the spatial
autocorrelation.
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Figure SS. Dice indices between thresholded statistical maps in the main results and the leave-
one-site-out cross-validations. We performed a leave-one-site-out cross-validation to assess
whether our main findings were biased by site specific sites. Each label on the left represents the
site being leaved out. Each column represents the effect of interest (i.e., group, age, and group-
by-age interaction). Each number denotes the Dice index between the main results and the
validation. TCD-1, Trinity Centre for Health Sciences: Sample 1; SDSU-1, San Diego State
University: Sample 1; NYU-1, NYU Langone Medical Center: Sample 1; KKI-1, Kennedy
Krieger Institute; Sample 1; GU-1, Georgetown University: Sample 1; Yale, Yale School of
Medicine; USM, Utah School of Medicine; UM-1, University of Michigan: Sample 1; UM-2,
University of Michigan: Sample 2; UCLA-1, University of California, Los Angeles; TCD,
Trinity Center for Health Sciences; STANFORD, Stanford University; SDSU, San Diego State
University; PITT, University of Pittsburgh; OLIN, Olin, Institute of Living at Hartford Hospital;
NYU, NYU Langone Medical Center; LEUVEN-1, University of Leven: Sample 1.
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