

1 Distinct signatures of loss of consciousness during Focal 2 Impaired Awareness versus Focal to Bilateral Tonic Clonic 3 seizures.

4 Elsa Juan^{1,2,†}, Urszula Górska^{1,3,†}, Csaba Kozma^{1,4,†}, Cynthia Papantonatos⁵, Tom Bugnon¹, Colin
5 Denis⁵, Vaclav Kremen^{6,7}, Greg Worrell⁶, Aaron F. Struck^{5,8}, Lisa M. Bateman⁹, Edward M.
6 Merricks¹⁰, Hal Blumenfeld¹¹, Giulio Tononi¹, Catherine Schevon¹⁰, Melanie Boly^{1,5}

7 [†]These authors contributed equally to this work.

8

9 Abstract

10 Loss of consciousness (LOC) is a hallmark of many epileptic seizures and carries risks of serious
11 injury and sudden death. While cortical sleep-like activities accompany LOC during focal impaired
12 awareness (FIA) seizures, the mechanisms of LOC during focal to bilateral tonic-clonic (FBTC)
13 seizures remain unclear. Quantifying differences in markers of cortical activation and ictal
14 recruitment between FIA and FBTC seizures may also help to understand their different consequences
15 for clinical outcomes and to optimize neuromodulation therapies.

16 We quantified clinical signs of LOC and intracranial EEG (iEEG) activity during 129 FIA and 50
17 FBTC from 41 patients. We characterized iEEG changes both in the seizure onset zone (SOZ) and in
18 areas remote from SOZ with a total of 3386 electrodes distributed across brain areas. First, we
19 compared the dynamics of iEEG sleep-like activities: slow-wave activity (SWA; 1-4 Hz) and
20 beta/delta ratio (B/D; a validated marker of cortical activation) during FIA vs. FBTC. Second, we
21 quantified differences between FBTC and FIA for a marker validated to detect ictal cross-frequency
22 coupling: phase-locked high-gamma (PLHG; high gamma phased locked to low frequencies) and a
23 marker of ictal recruitment: the epileptogenicity index (i.e. the number of channels crossing an energy
24 ratio threshold for high vs. low frequency power). Third, we assessed changes in iEEG activity
25 preceding and accompanying behavioral generalization onset and their correlation with
26 electromyogram (EMG) channels. In addition, we analyzed human cortical multi-unit activity
27 recorded with Utah arrays during three FBTC.

28 Compared to FIA, FBTC seizures were characterized by deeper LOC and by stronger increases in
29 SWA in parieto-occipital cortex. FBTC also displayed more widespread increases in cortical

30 activation (B/D), ictal cross-frequency coupling (PLHG) and ictal recruitment (epileptogenicity
31 index). Even before generalization, FBTC displayed deeper LOC; this early LOC was accompanied
32 by a paradoxical increase in B/D in fronto-parietal cortex. Behavioral generalization coincided with
33 complete loss of responsiveness and a subsequent increase in high-gamma in the whole brain, which
34 was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-
35 unit activity analysis of FBTC revealed sustained increases in cortical firing rates during and after
36 generalization onset in areas remote from the SOZ.

37 Unlike during FIA, LOC during FBTC is characterized by a paradoxical increase in cortical activation
38 and neuronal firing. These findings suggest differences in the mechanisms of ictal LOC between FIA
39 and FBTC and may account for the more negative prognostic consequences of FBTC.

40

41 **Author affiliations:**

42 ¹ Department of Psychiatry, University of Wisconsin-Madison, 53719 USA

43 ² Department of Psychology, University of Amsterdam, 1018WS The Netherlands

44 ³ Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland.

45 ⁴ Institute for Interdisciplinary Studies, University of Amsterdam, 1012WX The Netherlands

46 ⁵ Department of Neurology, University of Wisconsin-Madison, 53705 USA

47 ⁶ Department of Neurology, Mayo Clinic, 55905 USA

48 ⁷ Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague,
49 16000 Czech Republic

50 ⁸ William S. Middleton Memorial Veterans Hospital, 53705 USA

51 ⁹ Department of Neurology, Cedars-Sinai Medical Center, 90048 USA

52 ¹⁰ Department of Neurology, Columbia University, 10032 USA

53 ¹¹ Department of Neurology, Yale School of Medicine, 06519 USA

54

55 Correspondence to:

56 Melanie Boly

57 Department of Neurology, 600 Highland Avenue, Madison WI 53792, USA.

58 boly@neurology.wisc.edu

59 **Running title:** Ictal rhythms of loss of consciousness

60 **Keywords:** ictal rhythms, epileptic seizures, generalization, consciousness, responsiveness.

61 **Abbreviations:** B/D = B/D; FBTC = Focal to Bilateral Tonic Clonic; FIA = Focal Impaired
62 Awareness; HG = High Gamma; iEEG = intracranial EEG; PLHG = Phased-Locked High Gamma;
63 SWA = Slow Wave Activity.

64

65 **Introduction**

66 Epilepsy is a frequent and disabling disease. In the US, 5% of the population will have at least one
67 seizure in their lifetime, while chronic epilepsy affects approximately 3 million adults and 470,000
68 children.¹ About one third of chronic epilepsies are refractory to pharmacological treatment,² and
69 surgery to achieve seizure freedom can only be performed in a minority of these cases.³ Seizures that
70 are accompanied by loss of consciousness (LOC) have especially detrimental consequences on
71 quality of life, partly through their impact on driving limitations and on social stigmatization.^{4,5}
72 Among all seizure types, focal to bilateral tonic-clonic (FBTC; previously called ‘secondary
73 generalized’) seizures are the most disabling, due to a complete inability to control behavior and an
74 increased risk of sudden death.^{6–8} Although focal impaired awareness (FIA; previously called
75 ‘complex partial’) seizures can also lead to serious injuries – for example if they occur while driving
76 – they are usually characterized by a partial impairment of responsiveness.^{9,10} Unlike FBTC, a partial
77 recall of subjective experiences is often observed after FIA.^{11,12} Importantly, frequent FBTC also
78 predict poorer cognitive and surgical outcomes compared to frequent FIA.¹³

79 In recent years, direct intracranial electroencephalography (iEEG) studies in humans showed that
80 during FIA of temporal lobe onset, sleep-like slow-wave activity (SWA; 1-4 Hz) is seen in
81 widespread bilateral cortical networks, while ictal activity itself is restricted to a small area
82 surrounding the seizure onset zone (SOZ).¹⁴ This discovery led to the development of promising
83 neuromodulation therapies targeting arousal centers to reverse LOC during FIA.^{15,16} While it was
84 reported that FIA and FBTC share similar electrographic ictal onset patterns,¹⁷ the
85 electrophysiological correlates of behavioral generalization and LOC during FBTC have not yet been

86 quantified. A better understanding of the cortical dynamics driving the evolution of focal seizures
87 towards generalization could have broad implications for preventive approaches to FBTC.

88 Previous studies suggested that ictal activity is limited to a small cortical area during FIA.¹⁴ However,
89 the occurrence of high-frequency oscillations (HFO, >80 Hz) beyond SOZ was reported during FIA
90 in other studies.¹⁸ While increased HFO has also been reported during FBTC,¹⁹ previous studies in
91 small samples suggested that they may not invade the whole cortex.^{17,20,21} Importantly, increased
92 HFO do not per se signal ictal recruitment; they can increase during deep non-REM sleep²² and in
93 the ictal penumbra (cortical areas that are not actively seizing).²³ Recently, delayed-onset ictal high
94 gamma activity (80-150 Hz) phase-locked to lower frequencies (4-30 Hz) (“phase-locked high-
95 gamma”, PLHG)¹⁸ has been shown to constitute a reliable proxy for synchronized multi-unit firing
96 bursts in the actively seizing cortex (ictal core)^{24,25}. PLHG applied to clinical iEEG recordings²⁶ has
97 also been shown to predict surgical outcomes – the current gold standard to assess localization
98 accuracy for the epileptogenic zone – more accurately than HFOs alone.^{18,27} Thus, we here sought to
99 quantify differences in ictal cross-frequency coupling between FIA and FBTC using PLHG. As a
100 marker of spatial ictal recruitment, we also compared the number of channels passing a threshold of
101 energy ratio (ER) between high and low frequencies - which is at the basis of the computation of the
102 epileptogenicity index (EI)²⁸ – between FIA and FBTC. The EI detects the ordering through which
103 each channel crosses the threshold for ictal recruitment to define SOZ; it can successfully predict
104 surgical outcome.²⁹

105 Here we aimed to address four main questions: (1) whether LOC during FBTC (as compared to FIA)
106 is accompanied by sleep-like activities, (2) whether ictal recruitment is widespread during FBTC, (3)
107 what are the iEEG signatures of behavioral generalization, and (4) how does neuronal firing change
108 during FBTC in areas remote from the SOZ.

109 By comparing the temporal and spatial evolution of iEEG sleep-like activities and ictal rhythms in
110 FBTC and FIA across 179 seizures from several academic centers, our results provide new insights
111 about the electrocortical and neuronal firing patterns involved in secondary generalization and
112 suggest different mechanisms for LOC during FBTC compared to FIA. The current results may have
113 implications to understand mechanisms of LOC and differences in clinical outcomes and could have
114 implication for preventive treatments and neuromodulation strategies.

115

116

117 Material and Methods

118 Datasets

119 Seizures were retrospectively collected from University of Wisconsin-Madison (UW-Madison)
120 Hospital and Clinics (UWHC) medical records, from the iEEG.org online database,³⁰ and from the
121 European Epilepsy Database (EED³¹). Only seizures acquired at 400 Hz sampling rate or higher, with
122 good quality iEEG recording, with pre- and post- electrodes implantation CT and MRI scans (or that
123 included electrodes' MNI coordinates) and with a reliable seizure type scoring (FBTC vs. FIA) were
124 considered. A total of 179 seizures (50 FBTC, 129 FIA) from 41 epilepsy patients (19 female, median
125 age 33 years old, range 14-63) implanted with intracranial electrodes were eventually included: 55
126 seizures from UWHC, 34 seizures from iEEG.org (mostly from the Mayo Clinic) and 90 seizures
127 from the EED. The number of seizures per patient was lower for FBTC than for FIA (resp. 1.1 ± 1.5
128 and 3 ± 3.8 ; $t_{(178)}=2$, $p=0.006$; see Table 1). Most seizures originated from the temporal lobe (80%
129 FBTC and 87% FIA; $p=0.3$ Fisher; see Table 1 for an exhaustive breakdown). Most seizures
130 originated from the left hemisphere, but this was more often the case for FBTC than for FIA (57% of
131 the FIA and 76% of the FBTC; $p=0.02$ Fisher). A comparable number of seizures arose from sleep in
132 both seizure types (see Table 1). Considering electrographic onset patterns, most FTBC originated
133 from rhythmic activity (48% of FBTC), while FIA often arose from low amplitude fast activity
134 (LAFA; 40% of FIA); spiking activity was the least common onset pattern in both seizure type (20%
135 of FBTC, 23% of FIA). No difference in electrographic onset pattern were found between FBTC and
136 FIA ($p=0.4$, $\chi^2 = 2.04$). Stereo-EEG (SEEG) and subdural grids and depth electrodes (SGDE) were
137 used to a similar extent in FIA and FBTC (see Table 1). FBTC lasted on average 121 ± 77 seconds
138 and FIA 107 ± 69 seconds ($t_{(178)}=-1.23$, $p=0.2$).

139 Three additional FBTC from Columbia University from two patients with left temporal focus (two
140 males, 28 and 29 years old) containing both iEEG and Utah microelectrodes arrays recordings were
141 included for firing rate analysis. All procedures were approved by the institutional review board for
142 human studies at the University of Wisconsin-Madison and at Columbia University. Informed consent
143 was collected for the two patients prospectively enrolled at Columbia University.

144

145

146

147 **Table 1.** Patient's clinical characteristics split by seizure type.
148

	FBTC	FIA	<i>p</i> value (<i>t</i> value)
Patients, n	20	32 [§]	-
Seizures, n	50	129	-
Seizures per patient, n	1.1 ± 1.5	3 ± 3.8	0.006 (2)
Seizure duration, s.	121 ± 77	107 ± 69	0.2 (-1.23)
Primary seizure focus, n (%)			
Temporal	40 (80)	112 (87)	0.3 (Fisher) [¶]
Frontal	5 (10)	16 (12)	
Parieto-occipital	5 (10)	1 (1)	
Left hemisphere onset, n (%)	38 (76)	73 (57)	0.02 (Fisher)
Electrographic onset pattern, n LAFA / rhythmic / spiking	16 / 24 / 10	52 / 47 / 30	0.4 (χ^2 = 2.04)
Seizure arising from sleep, n (%)	25 (50)	49 (38)	0.2 (Fisher)
SEEG electrodes per seizure, n	32 ± 37	35 ± 38	0.7 (0.4)
SGDE electrodes per seizure, n	47 ± 37	47 ± 36	1 (0.04)
Abnormal MRI findings, n (%)	34 (68)	89 (69)	1 (Fisher)

149 Percentages are calculated relative to the total number of seizures of each type.

150 LAFA low amplitude fast activity; SEEG stereo-electroencephalography ; SGDE subdural grid and standard
151 depth electrodes.

152 [§]Nine patients had both FBTC and FIA seizures and two patients were recorded twice. [¶]Comparing seizures
153 of temporal vs. extra-temporal origin.

154 Values are expressed as mean ± std unless otherwise specified. Bold text indicates significant values (*p*<0.05).

155

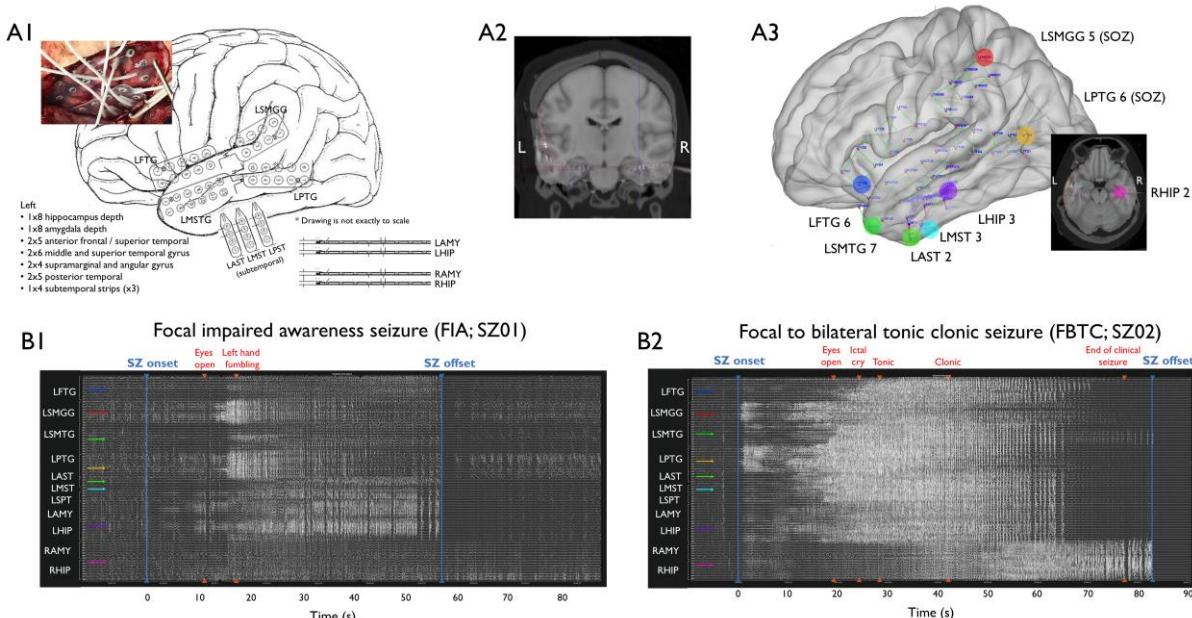
156

157 **Electrographic timing, seizure categorization and behavioral scoring**

158 The timing of seizure onset and offset was determined electrographically by a certified epileptologist
159 (MB) for each seizure. Seizure onset time was established at the first sign of epileptic activity (e.g.
160 heralding spike) on any channel. Seizure offset time was established when epileptic activity had
161 ceased on all channels. The seizure onset zone was determined based on the first channels to show
162 epileptiform activity.

163 Seizure classification was determined based on behavioral manifestations occurring in the ictal
164 period. According to the 2017 ILAE guidelines,³² we categorized seizures as 'focal impaired
165 awareness' (FIA) when response to commands or to questions was impaired or when there was
166 amnesia at any point during the seizure (as in ¹⁴). 'Focal to bilateral tonic-clonic' seizures were
167 recognized based on the additional occurrence of bilateral stiffening (tonic phase) followed by
168 bilateral convulsions (clonic phase). We considered the start of the tonic phase as the onset of
169 behavioral generalization.

170 When simultaneous audio and video recordings were available (e.g. in UWHC, iEEG.org and
171 Columbia datasets), the timing of behavioral manifestations in relation to the iEEG signal was also
172 recorded. Two main dimensions were considered: ability to follow simple commands (with scores
173 split between verbal responsiveness and motor responsiveness), and amnesia.¹⁴ We also classified
174 patient's behavior on some of the dimensions of the Consciousness in Seizures Scale³³ that could be
175 consistently assessed: whether the patient was able to interact with an examiner (CSS 3), and whether
176 the patient was aware of having a seizure while it occurred (CSS 4). Behavior was further quantified
177 separately for the first and second half of FIA, and for the pre-generalization and the post-
178 generalization periods of FBTC.


179 For seizures without video recordings (e.g. all EED seizures and some iEEG.org seizures), we relied
180 on information provided by the database for seizures classification. These seizures were not included
181 in analyses focusing on temporal evolution of behavior.

182

183 **Intracranial data preprocessing**

184 Electrode localization was done semi-automatically using the iElectrodes toolbox³⁴ and the FMRIB
185 Software Library (FSL³⁵). The post-implantation CT scan was aligned to the pre-implantation MRI
186 and registered to standard MNI space. Corresponding electrodes' voxels were then manually selected,
187 automatically clustered and accordingly labelled (Fig.1 A1-A3). Based on the MNI coordinates
188 identified for each electrode, probabilistic assignment to brain regions were obtained using the
189 Talairach client.^{36,37} Contacts were then grouped in temporal, frontal and parieto-occipital areas.
190 Following Lundstrom et al. (2019) approach,³⁸ electrodes within 2.5 cm distance from the clinically
191 identified seizure onset zone (SOZ) were further separated from other electrodes and grouped as
192 'SOZ' area. It is important to note that although most seizures originated from the temporal lobe,
193 some seizures were of extra-temporal origin; therefore SOZ electrodes include extra-temporal
194 locations.

195

196

197 **Fig. 1. Exemplar 3D localization of intracranial electrodes (A) and iEEG signal for one FIA and one**
198 **FBTC seizures (B) originating from a representative patient. (A)** The surgical implantation and clinical
199 electrode map (A1) are used to locate electrodes positions in the post-implantation CT and pre-implantation
200 MRI images, aligned in MNI standard space using the iElectrodes software (A2); eventually, final electrodes
201 localizations are displayed on a standard MRI template (A3). **(B)** Time courses of raw iEEG signals for a FIA
202 (B1) and a FBTC (B2) seizure, along with marked behavioral events. Arrow colors indicate the colored
203 electrodes displayed in A3. Contacts LSMGG 5 (in red) and LPTG 6 (in orange) were identified as belonging
204 to the SOZ.

205

206 All iEEG data were acquired using either a subgaleal electrode (for SGDE) or a scalp electrode (for
207 SEEG) as reference. This scalp electrode was placed in a fronto-central position (i.e. between Cz and
208 Fz) for iEEG.org and EED, and to the right or left mastoid for UWHC. IEEG signal was preprocessed
209 with customized scripts using routines from the EEGLAB toolbox version 14.1³⁹ running on
210 MATLAB 2016b (Mathworks Inc., Natick, MA, USA). A baseline consisting of minimum of 2
211 minutes (maximum 5 min) of pre-ictal iEEG signal was included (see Fig.1 B1-B2 for exemplar FIA
212 and FBTC seizures). The raw signal was down-sampled to 400 Hz (including anti-aliasing filter) and
213 band-pass filtered around 0.5 – 199 Hz using Hamming windowed sinc FIR filter. Line noise was
214 removed when appropriate using the CleanLine algorithm (part of EEGLAB) on selected frequencies
215 (mostly 60, 120 and 180 Hz). Channels and epochs with important artifacts (e.g. muscle activity)
216 were rejected based on visual inspection.

217

218 Power spectrum analyses and considered time periods

219 Power spectrum density was calculated for each contact using the ‘pwelch’ function with a 10 s
220 window with 1 s overlapping window. Power spectrum values were then averaged over frequency
221 bands of interest: SWA (1-4 Hz), beta (15-25 Hz) and high-gamma (HG; 80-150 Hz). In addition,
222 B/D (B/D) was calculated as the quotient of beta power over SWA power.

223 SWA was used as a marker of sleep-like activities, as previously shown during FIA.¹⁴ Because B/D
224 has been shown to differentiate sleep from wakefulness better than SWA within iEEG recordings,^{40,41}
225 we considered B/D as an indicator of cortical activation. Considering that 80-150 Hz HG synchrony
226 more specifically increases in actively seizing areas,^{42,43} we used this range of HG activity to quantify
227 ictal activation.

228 Finally, we computed phase-locked high-gamma (PLHG; i.e. HG phased-locked to low 4-30 Hz
229 oscillations) to obtain a marker of ictal activation validated to selectively increase in recruited areas.¹⁸
230 For each electrode, we obtained instantaneous phase and amplitude for high- and low-frequency
231 components from the Hilbert transform of the respectively high- (80–150 Hz) and low-pass (4–30
232 Hz) filtered signals (windowed sinc FIR filter with Hamming window). The PLHG index was then
233 computed within non-overlapping 1 s sliding windows as:

$$234 \quad PLHG = \frac{1}{N} \left| \sum_{n=1}^N a_{\text{norm}(80-150 \text{ Hz})}[n] \exp \left(i(\phi_{4-30 \text{ Hz}}[n] - \phi_{a(80-150 \text{ Hz})}[n]) \right) \right| \quad (1)$$

235 where N is the number of samples within the window, $a_{\text{norm}(80-150 \text{ Hz})}$ is the instantaneous HG amplitude
236 normalized by the average HG amplitude during baseline, $\phi_{4-30 \text{ Hz}}$ is the phase of the low frequency
237 component, and $\phi_{a(80-150 \text{ Hz})}$ is the instantaneous phase obtained from a second Hilbert transform
238 applied to instantaneous HG amplitudes.^{18,44}

239 To characterize the temporal evolution of different EEG features during seizures, the ictal period was
240 split in two equal parts: the “first seizure half” corresponding to the seizure onset up to the midpoint
241 of the seizure, and the “second seizure half” corresponding to the midpoint to the ictal offset. Note
242 that a separate analysis described below looked at EEG correlates of behavioral generalization itself.
243 Ictal values were normalized by pre-ictal baseline values for each seizure separately.

244 We performed group statistics using a linear mixed-effect (LME) model on normalized power values,
245 with separate models fitting for each above-mentioned frequency band. Patient and seizure were
246 entered as random effects, and seizure type, brain region and ictal period as fixed effects. The use of
247 Restricted Maximum Likelihood (REML) estimates of the LME parameters allowed to account for

248 the lack of independence between subjects and between seizures inherent to this dataset. The
249 assumptions of the model were satisfied as the residuals showed Gaussian distribution. Statistical
250 significance was evaluated at level $p<0.05$ and corrected for multiple comparisons using false
251 discovery rate (FDR⁴⁵). All analyses were performed in R (R Core Team, 2015), using the lme4
252 package⁴⁶.

253

254 **Epileptogenicity index and SWA synchrony**

255 To detect the spread of ictal recruitment, we quantified the number of channels crossing the energy
256 ratio (ER) threshold between high and low frequencies used to compute the Epileptogenicity Index
257 (EI).²⁸ The EI is a validated measure of difference in timing of ictal recruitment between intracranial
258 channels. It is typically used to determine the most likely SOZ by ranking channels according to the
259 delay of their ictal involvement. We used ER threshold crossing to compute a proxy of the number
260 of recruited channels during each seizure and compare the proportion of recruited channels across the
261 whole brain and in each brain region between FIA vs. FBTC.

262 We also used timing information of ER threshold crossing to compare the (a)synchrony in ictal onset
263 across iEEG channels during FIA vs. FBTC. Specifically, we defined the asynchrony parameter for
264 a given seizure as the proportion of channels showing ictal recruitment (assessed with ER) more than
265 1 s apart from each other. To do so we computed for each seizure how many recruited channel units
266 were more than 1 s apart then divided that number by the total number of channels (ratio in TableS3).
267 As another marker of (a)synchrony, we quantified differences in the timing of peaks in SWA power
268 (window size of 10 s and windows step of 1 s), and of high-gamma power (same parameters) for
269 comparison. For each seizure, we assessed the proportion of channels that were more than 1 s apart
270 regarding the timing of their SWA peak power. Finally, we also computed differences in timing of
271 the peak amplitude of slow waves (SWs). SWs were detected within each channel using the procedure
272 described by⁴⁷ (1-4 Hz bandpass, third-order Chebyshev filter). We then assessed averaged SWs
273 amplitude using sliding windows with window size of 10 s and windows step of 1 s and mark the
274 position in time with maximal negative peak for each channel. For each seizure, we then calculated
275 the proportion of channels presenting negative peaks that were at least 1 s apart from each other. We
276 then computed group statistics for those measures of SWA asynchrony to compare FIA and FBTC
277 (Table S3).

278

279 Characterize the iEEG signatures of behavioral generalization

280 To characterize the electrographic changes accompanying generalization, we quantified iEEG brain
281 activity changes preceding and coinciding with the onset of bilateral tonic phase. We selected a subset
282 of 25 FBTC for which the onset of behavioral generalization (i.e. the start of the tonic phase) was
283 known (from both UWHC and iEEG.org), and split the ictal period in pre- or post-generalization
284 periods. To differentiate the markers of generalization vs. seizure onset, we contrasted SWA, B/D,
285 HG and PLHG indices during the pre-ictal period, the pre-generalization period and the post-
286 generalization periods.

287 To assess which iEEG indices were predictive of evolution of a seizure towards generalization, we
288 compared SWA, B/D, HG and PLHG indices between the pre-generalization phase of FBTC and the
289 first half of a subset of 57 FIA (coming from the same source as FBTC). FBTC pre-generalization
290 period lasted on average 26 ± 43 s and FIA first half 39 ± 51 s (median \pm IQR), resulting in similar
291 durations ($U=837$, $p=0.2$).

292 Although our analysis included exclusively iEEG signals from intracranial sources - thus limiting the
293 contribution of muscle artifacts to high-frequency activity - we further wished to ensure that our
294 results were not contaminated by extra-cerebral signals such as electromyogram activity (EMG).⁴⁸⁻⁵⁰
295 To investigate this point, we computed the contribution of EMG signals to iEEG channels filtered in
296 HG band using linear regression in five FBTC recordings (including depth and surface iEEG channels
297 from both left and right hemispheres) where EMG data was available (two from UW, three from
298 EED). Because time-resolved behavioral data was not available in FBTC coming from EED, a proxy
299 of generalization time was defined using timing of changes in PLHG. We first validated this measure
300 in the 25 FBTC seizures for which behavior timing was available by calculating the average delay
301 between the highest slope of increase in PLHG power and the behavioral generalization timepoint.
302 On average, behavioral generalization occurred 12.87 ± 2.11 s (mean \pm SEM) after PLHG highest
303 increase slope (see Fig. 4D). To take into account global differences in amplitude, linear regression
304 was preferred over bipolar contact subtraction; however bipolar montages between EMG and EEG
305 led to similar results. We computed EEG/EMG synchrony for the whole ictal period and reported
306 results separately for the pre-ictal, the pre-generalization and the post-generalization periods.

307 In order to examine the possible contribution of intra- vs extracranial sources and the possible
308 presence of a subcortical third-driver, we also computed the contribution of deep vs. superficial iEEG
309 signals in the HG band using linear regression. We included 17 FBTC for which both deep and
310 superficial contacts were available (seven FBTC from UWHC, one FBTC from iEEG.org and nine

311 FBTC from EED). In particular, we contrasted changes in synchrony in deep
312 (amygdala/hippocampus) vs. superficial (neocortical) iEEG contacts between pre- and post-
313 generalization periods. Deep and superficial iEEG contacts were normalized by their distance to avoid
314 any bias on synchrony that could be attributed to different distance between contacts. The above-
315 mentioned proxy for generalization time was applied for FBTC for which the point of behavioral
316 generalization was unknown.

317

318 Quantification of neuronal firing rates

319 To assess whether high frequency power changes at the macro-level in intracranial recordings of
320 FBTC could indicate micro-level changes in neuronal firing, we used a unique dataset combining
321 macro- and microelectrode recordings. We analyzed three additional FBTC seizures recorded in
322 human epileptic subjects, where both iEEG and multi-unit activity were recorded, with Utah arrays
323 located in areas remote from the SOZ (in the ictal penumbra, not recruited by the focal ictal process).
324 We quantified local increases in firing rates compared to baseline, and their correspondence to
325 sustained HG increases and behavioral generalization during FBTC.

326 Spike waveforms were detected on 30 kHz signal, filtered using a 1024th-order FIR bandpass filter
327 from 300 to 5000 Hz, using a detection threshold of 4.5σ , where $\sigma = \text{median}\left(\frac{|\text{signal}|}{0.6745}\right)$ estimates the
328 standard deviation of the background noise.⁵¹

329 From here, spike waveforms from the peri-ictal and ictal periods were examined separately, since
330 traditional spike sorting methods have been shown to fail in ictal recordings.⁵² Waveforms from the
331 peri-ictal period were sorted visually after *k*-means clustering using the UltraMegaSort2000
332 MATLAB toolbox,⁵³ and noise artifacts were removed. Ictal unit firing was then analyzed using
333 methods of Merricks *et al.*⁵⁴ Spike waveforms from the ictal period were template-matched to sorted
334 peri-ictal putative units if the principal component vector of the ictal spike fell within the convex hull
335 of the peri-ictal unit's spikes in principal component space. Further, a match confidence score from
336 0 to 1 was assigned to each matched ictal spike. For each peri-ictal unit, a Gaussian curve was fit to
337 the distribution of voltages at each sampling point, then rescaled to a maximum height of one. Then,
338 for each ictal spike matched to that unit, the spike's voltages were mapped to a point on each
339 Gaussian, and the average of these values over each sampling point resulted in the match confidence
340 score.

341 We used probabilistic multi-unit firing rates based on putative neurons recorded by Utah
342 microelectrode array⁵⁴. The instantaneous probabilistic firing rate was calculated by convolving a
343 discrete Gaussian kernel of standard deviation of 200 ms with the detected spike train, where each
344 detection is scaled to its match confidence. Therefore, the probabilistic firing rate could not be
345 artificially increased by an increase in background noise or by a single spike waveform matching with
346 multiple putative units. The average probabilistic firing rate over a period of time was calculated by
347 dividing the sum of all match confidence scores for detected units in that period by the length of the
348 period. This average firing rate was used to quantify multi-unit activity in the pre-ictal (20 s. before
349 onset to seizure onset), pre-generalization (seizure onset to behavioral generalization), and post-
350 generalization (behavioral generalization to seizure offset) periods. In addition, for each putative
351 single unit, spike times of waveforms with >50% match confidence were displayed across the seizure
352 epoch in a raster plot. Units were ranked for display based on overall firing rate during the seizure
353 epoch. Code for firing rate calculation and raster plots can be found at
354 <https://github.com/edmerix/NeuroClass>.

355 Additionally, to compare local neuronal firing in the Utah array region with global dynamics during
356 seizure, the PLHG metric was computed on both macro- and microelectrodes for these subjects as
357 above. After removing faulty electrodes and those near lobar/SOZ boundaries, macroelectrodes were
358 partitioned by region into frontal, temporal, parietal, and SOZ groups, along with a single electrode
359 nearest the Utah array. Mean PLHG values over the seizure epoch were then calculated for each
360 electrode group, including the group of Utah array microelectrodes.

361

362 **Data availability**

363 Data supporting the findings of this study are available from the corresponding author upon
364 reasonable request. Data from iEEG.org and EED are available online.

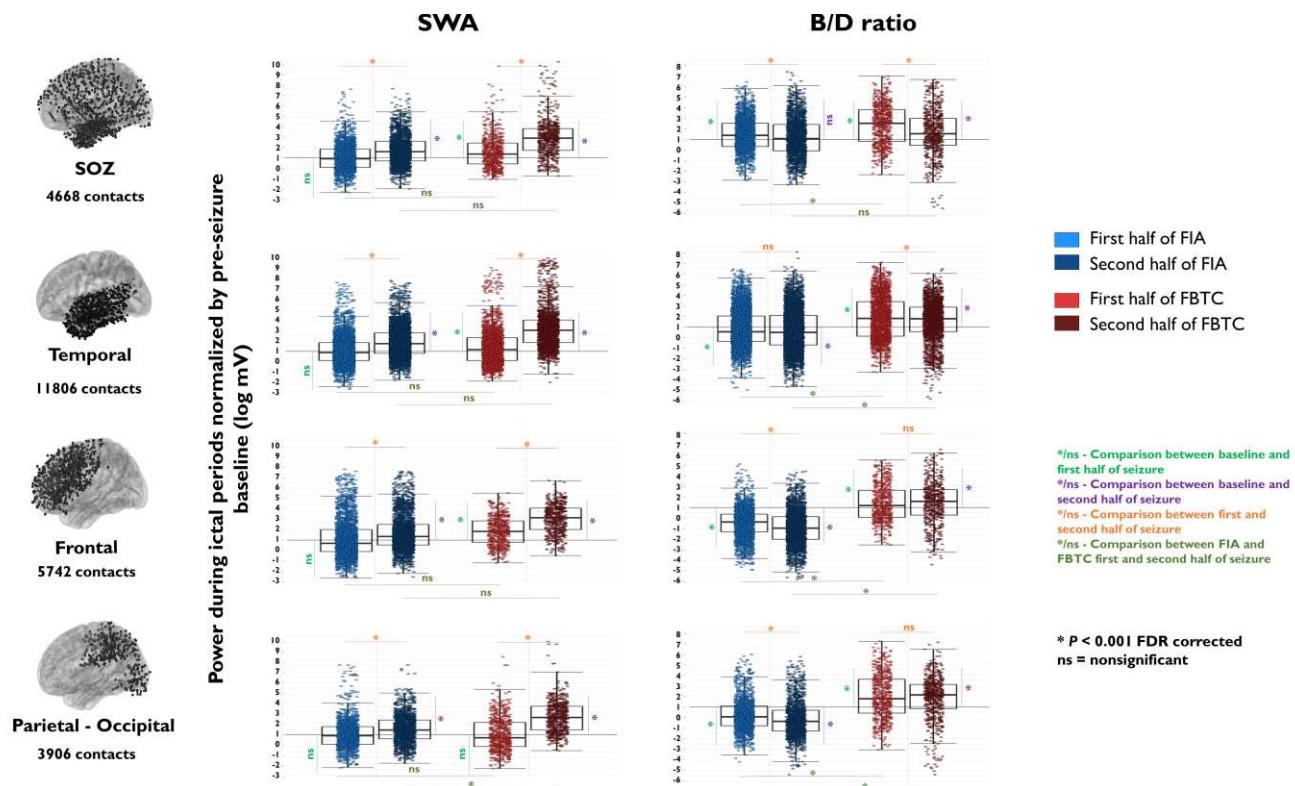
365

366 **Results**

367 **Markers of LOC distinguish FBTC from FIA**

368 Behavioral assessment of 42 FIA where video was available (from UWHC and Mayo Clinic) revealed
369 verbal unresponsiveness in 80% of tested seizures, motor unresponsiveness in 79% and amnesia of
370 seizure events in 84%. In 46% of tested FIA, patients failed to interact with examiner in any way
371 (CSS 3) and in 79% they were not aware of having a seizure during the event (CSS 4).

372 Splitting LOC scoring in two equal halves in FIA (30 ± 18 s) revealed signs of a progression across
373 time. Specifically, while 73% patients were not aware of having a seizure in the first half of FIA, this
374 significantly increased to 97% in the second half (Fisher's exact test: $P=0.007$). Verbal
375 unresponsiveness, motor unresponsiveness and interaction with examiner also seemed to become
376 more impaired in the second half (from 68% to 70%, from 54% to 74% and from 45% to 50%
377 respectively), but these variables did not reach statistical significance.


378 In the 22 FBTC for which the behavior before generalization could be scored (duration of pre-
379 generalization phase: 58 ± 67 s), pre-generalization behavior was characterized by verbal
380 unresponsiveness in 89% and motor unresponsiveness in 93%. Interaction with examiner was
381 impaired in 90% (CSS 3) and patients were not aware of having a seizure (CSS 4) in 91% of seizures.
382 Contrasting these outcomes with the first half of FIA, we found significantly more patients with motor
383 unresponsiveness ($P=0.01$; Fisher) and impaired interaction with examiner ($P=0.001$; Fisher). Post-
384 generalization, all FBTC patients were unresponsive and unable to sustain any interaction, which was
385 the case in respectively 74% ($P=0.008$; Fisher) and 50% ($P<0.001$; Fisher) of patients in the second
386 half of FIA.

387

388 **FBTC are accompanied by more widespread increases in sleep-like 389 activities and in cortical activation**

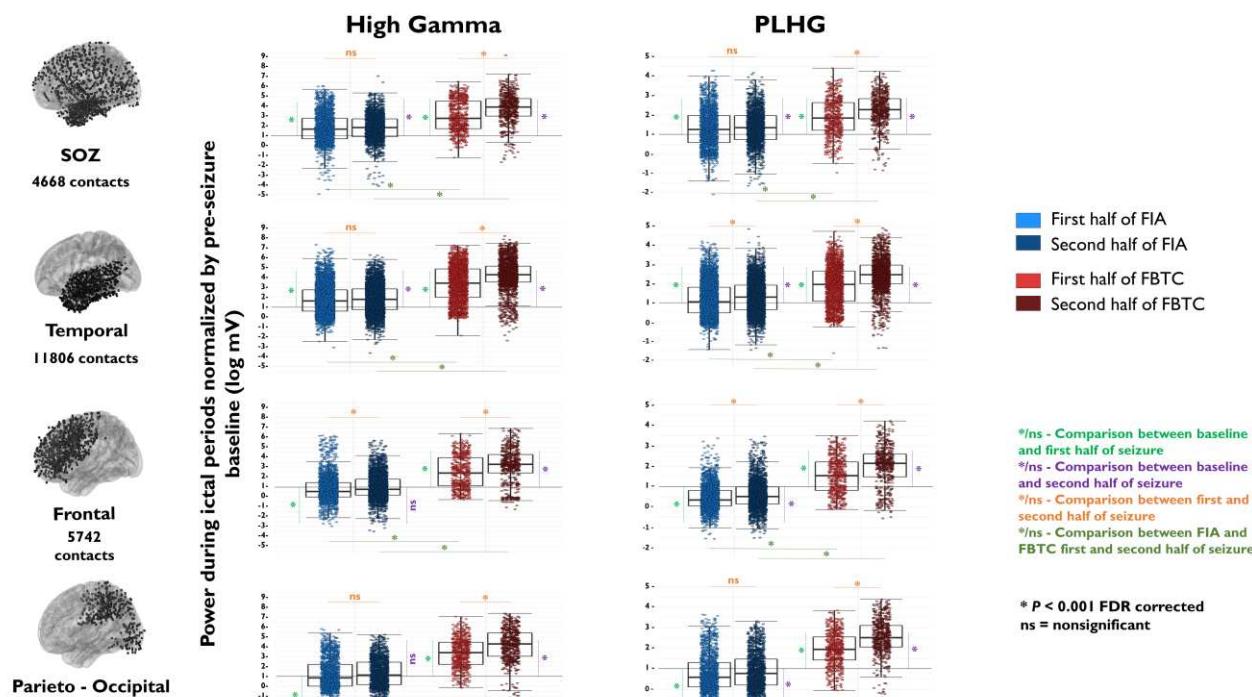
390 The linear mixed-effects model for SWA revealed no initial change from baseline during the first half
391 of FIA (Fig. 2 left panel; see Table S1 for all Z and P values). A significant SWA power increase was
392 subsequently seen in all brain areas during the second half (e.g. increase from 1.01 ± 0.03 to 1.67 ± 0.03
393 in SOZ; $Z=-22.35$, $P<0.001$). In contrast, in FBTC, a significant SWA power increase was already
394 seen in SOZ, temporal and frontal regions during the first half ($P<0.001$; see Table S1 for all Z and p

395 values). SWA further increased during the second half of FBTC in all brain areas (e.g. increase from
396 1.30±0.05 to 2.77±0.06 in SOZ; $Z=-32.5$, $P<0.001$). While between-seizure contrasts were not
397 significant for the first seizure half, significantly more SWA in parieto-occipital regions was seen
398 during the second half of FBTC compared to the second half of FIA ($P=0.001$).

400 **Fig. 2. Group results for SWA power and B/D during both FIA and FBTC, split by brain region and**
401 **ictal period.** Each dot represents the log of normalized power value (normalized by baseline activity) for an
402 electrode contact. FIA are displayed in blue and FBTC in red, with lighter colors indicating the first ictal
403 period, and darker colors indicating the second ictal period. Black horizontal lines indicate values of pre-ictal
404 baseline activity. These results suggest that SWA increases and B/D decreases are prominent during the second
405 ictal period during FIA. In contrast, both SWA and B/D increase in the whole brain starting at the onset of
406 FBTC.

407
408 During the first half of FIA, B/D decreased in all brain regions compared to baseline except in SOZ,
409 where it was increased (Fig. 2 right panel; see Table S1 for all Z and P values). A significant B/D
410 decrease was further seen between first and second half of FIA in frontal and parieto-occipital regions
411 (-0.16±0.05 in parieto-occipital areas, $P<0.001$; -0.93±0.03 in frontal areas, $P<0.001$). In sharp
412 contrast, B/D showed widespread and consistent increases during FBTC. Indeed, during the first half
413 of FBTC, B/D increased in all brain regions, and most prominently in SOZ (e.g. 2.37±0.07 in SOZ,
414 $P<0.001$; 1.84±0.05 in temporal areas, $P<0.001$). B/D then remained elevated in frontal and parieto-

415 occipital regions, while it decreased in SOZ and temporal areas. Between-seizure contrasts showed
416 increased B/D for FBTC compared to FIA during both halves of the seizures and in all brain regions.


417
418

419 **FBTC are accompanied by higher HG activity and cross-frequency 420 coupling in many cortical areas**

421 During FIA, HG power initially increased in SOZ, parieto-occipital and temporal regions, while it
422 decreased in frontal areas (Fig. 3 left panel; see Table S2). HG power remained increased in SOZ,
423 temporal and parieto-occipital areas during the second half of FIA, while it returned to baseline in
424 frontal areas. In contrast, during the first half of FBTC, HG power showed more than two-fold
425 increase in all brain regions as compared to baseline, which then further increased more than three-
426 fold from baseline in all areas in the second seizure half ($P<0.001$; Table S2). Between-seizure
427 contrasts revealed significantly higher HG power in FBTC compared to FIA during both seizure
428 halves and in all brain regions.

429 During the first half of FIA, PLHG increased from baseline in SOZ and temporal areas ($P<0.001$;
430 Fig. 3 right panel; Table S2) while it decreased in frontal and parieto-occipital areas ($P<0.001$).
431 During the second half, PLHG continued to show a mild increase compared to baseline in temporal
432 areas, remained decreased in frontal and parieto-occipital areas, while was more variable in the SOZ
433 (1.35 ± 0.02 , $p=0.195$ for SOZ, 1.30 ± 0.01 , $P<0.001$ for temporal, 0.60 ± 0.01 , $P<0.001$ for frontal, and
434 0.86 ± 0.02 , $P=0.024$ for parieto-occipital). In contrast, during the first half of FBTC, PLHG increased
435 by 1.5 times from baseline for all brain areas (Table S2b). During the second half, PLHG was further
436 increased ($P<0.001$ for all brain areas when comparing to baseline values, e.g. 2.52 fold increase in
437 the parieto-occipital area). Between-seizure contrasts revealed significantly higher PLHG in FBTC
438 compared to FIA for both seizure halves in all brain areas (Table S2).

439

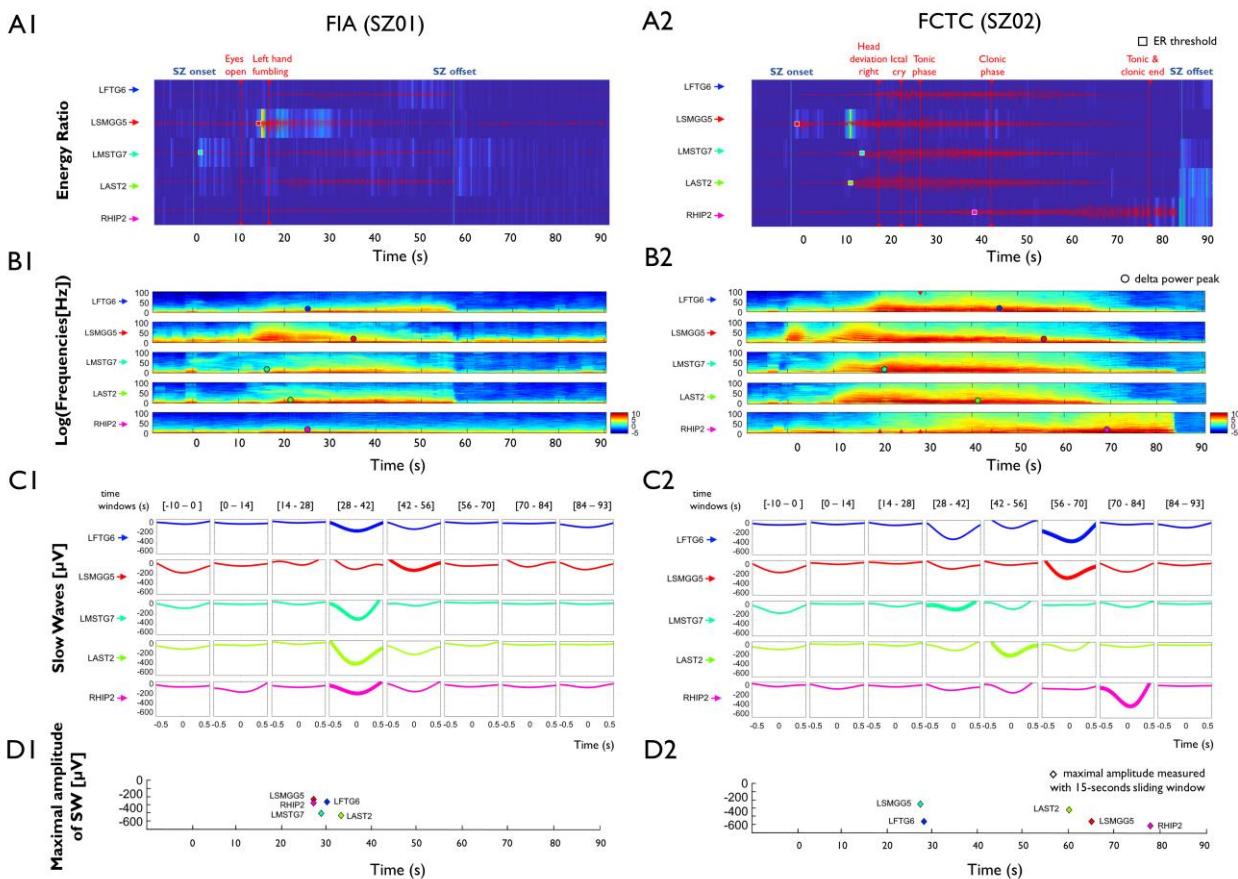
440

441 **Fig. 3. Group results for High Gamma (HG) power and Phase Locked High Gamma (PLHG) during**
442 **both FIA and FBTC, split by brain region (SOZ, temporal, frontal and parieto-occipital) and ictal period**
443 **(first and second half of seizures).** Each dot represents the log of normalized power value (normalized by
444 baseline activity) for an electrode contact. FIA are displayed in blue and FBTC in red, with lighter colors
445 indicating the first ictal period, and darker colors indicating the second ictal period. Black horizontal lines
446 indicate values of pre-ictal baseline activity. These results suggest that HG and PLHG increase in SOZ and
447 temporal lobe but decreases in the rest of the brain during FIA. In contrast, both HG and PLHG diffusely
448 increase starting at the onset of FBTC, and further build up as FBTC progress. HG and PLHG were
449 significantly higher during FBTC than during FIA for all brain areas and all ictal periods.

450

451 **Widespread but asynchronous ictal recruitment during FBTC**

452 The energy ratio (ER) analysis also showed that more channels were recruited in the ictal process
453 during FBTC compared to FIA ($69 \pm 4\%$ and $45 \pm 6\%$ respectively, $P < 0.001$; Table S3). Overall,
454 channels that least frequently passed ER during FIA were located in the parietal lobe (29% vs 39-
455 60% in other lobes, $P < 0.001$) and during FBTC, in the limbic network (58% vs 62-78% in other
456 lobes, $P < 0.01$).


457 The analysis of the timing of ER threshold crossing revealed that the recruitment of channels into the
458 ictal process was asynchronous both during FIA (example in Fig.4A1) and FBTC (example in

459 Fig.4A2). Interestingly, we found that while more channels were recruited during FBTC, significantly
460 more clusters of channels were also recruited more asynchronously (with a higher proportion of
461 channels crossing ER threshold more than 1s apart: 23±13% in FBTC vs. 10±7% in FIA, $P<0.001$,
462 Table S3).

463 To compare differences in synchrony of ictal patterns during FIA vs FBTC, we examined the
464 dynamics of time-frequency activity across channels (Fig. 4B). During both seizure types, we
465 observed asynchronous increases in SWA power across different channels, with most channels
466 presenting SWA power peak during the second half of the seizure. SWA power peaks were more
467 asynchronous during FBTC than during FIA (34±16% and 28±16%, $P=0.025$, Table S3). Similar to
468 SWA, the timing of the most negative amplitude of individually detected slow waves (SW) most
469 often occurred during the second half of the seizures (mean time of 75±12 s for FBTC, and 63±17 for
470 FIA). The timing of occurrence of most negative SW amplitude was again more asynchronous during
471 FBTC as compared to FIA (42±18% vs. 35±16% of SW amplitude peaks crossing threshold more
472 than 1 sec apart, $P=0.012$, Table S3).

473 In contrast, during both seizure types we observed synchrony of high-gamma power peaks across
474 channels (Fig. S4), which was specifically prominent during FBTC. Interestingly, during FBTC HG
475 power also increased across the ictal period in channels that were not recruited by the seizures (did
476 not pass the ER threshold; Tables S11 and Fig. S4).

477

478

479 **Fig. 4. Asynchrony of channel recruitment, SWA power and slow wave (SW) amplitude peaks during**
 480 **FIA vs FBTC.** Five representative channels are displayed for the same representative FIA (left panel) and the
 481 FBTC (right panel) used in previous figures. Panel A displays the time points where the Energy Ratio (ER)
 482 threshold was exceeded as dots with different colors corresponding to each channel. Channels were recruited
 483 asynchronously in both cases, but with less channels recruited during FIA than during FBTC. At the time of
 484 the behavioral generalization (red line), only a partial recruitment could be observed. Panel B displays the
 485 time-frequency representation for the same seizures, with asynchronous peaks in SWA power marked with
 486 dots of colors corresponding to each channel (see Fig. S1 for the timing of high gamma power peaks). Panel
 487 C displays average slow waves (SWs) detected at specific time intervals, with windows with maximal SW
 488 amplitude highlighted in BOLD. Panel D displays the timing of negative SW amplitude peaks with dots in
 489 colors corresponding to the same channels than in other panels. Note that the timing of occurrence of SW
 490 amplitude peaks is especially asynchronous during FBTC.

491

492 **Extra-temporal beta/delta ratio and PLHG increases distinguish FBTC**
 493 **pre-generalization from the first half of FIA**

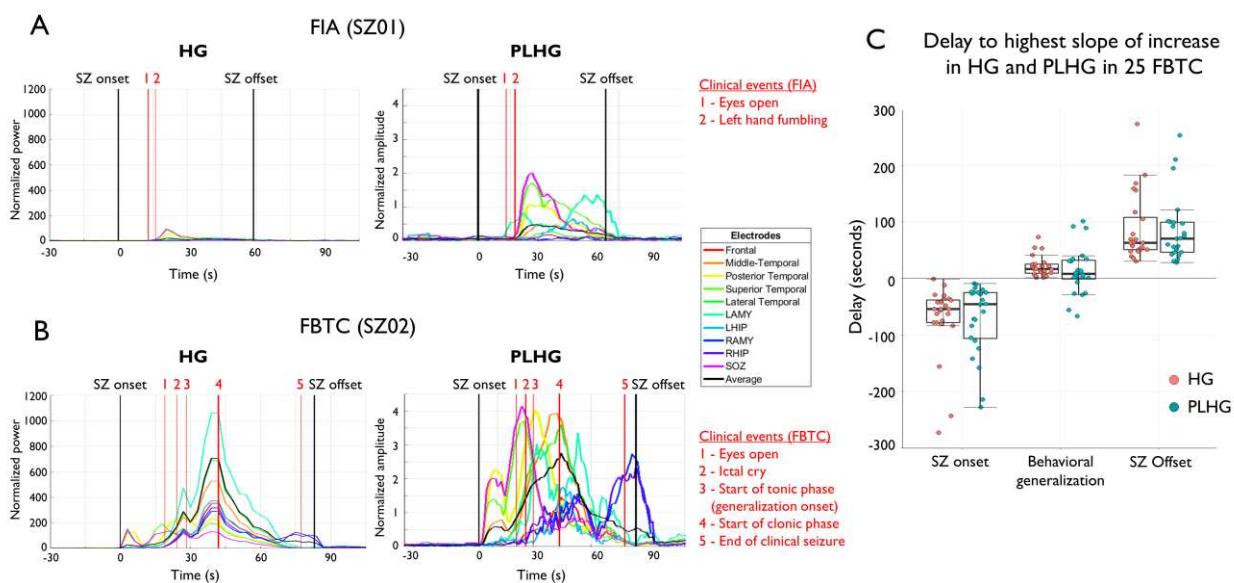
494 Comparing FBTC pre-ictal period (baseline) to FBTC pre-generalization period revealed a significant
495 SWA power decrease in SOZ and temporal areas ($P<0.001$; see Table S7 and Fig. S2). Additionally,
496 B/D increased in SOZ and decreased in parieto-occipital and temporal areas ($P<0.001$ for SOZ and
497 parieto-occipital areas, $p=0.023$ for temporal areas; see Table S7 and Fig. S2). SOZ and temporal
498 areas also showed a significant increase in HG power in the pre-generalization period ($P<0.001$),
499 while parieto-occipital and frontal areas remained at baseline level (Table S8a). Finally, PLHG
500 showed significant increase in SOZ and decrease in parieto-occipital and frontal areas (see Table
501 S8b).

502 In comparison to the first half of FIA, B/D was significantly increased during pre-generalization in
503 FBTC in SOZ, frontal and parieto-occipital areas ($P<0.01$; Table S9b). Interestingly, PLHG was also
504 significantly higher in FBTC pre-generalization as compared to FIA first half, both in SOZ and in
505 parieto-occipital areas ($P<0.001$ and $P=0.007$ respectively; Table S10b). In contrast, there was no
506 difference between the early phase of both seizure types in any brain area for SWA (Table S9a) or
507 HG (Table S10a).

508

509 **Extra-temporal B/D and PLHG increases distinguish FBTC (pre- 510 generalization) and FIA (first half)**

511 In comparison to the first half of FIA, B/D was significantly increased pre-generalization in FBTC in
512 SOZ, frontal and parieto-occipital areas ($P<0.01$; Table S9b). Interestingly, PLHG was also
513 significantly higher in FBTC pre-generalization as compared to FIA first half in SOZ and in parieto-
514 occipital areas ($P<0.001$ and $P=0.007$ respectively; Table S10b).

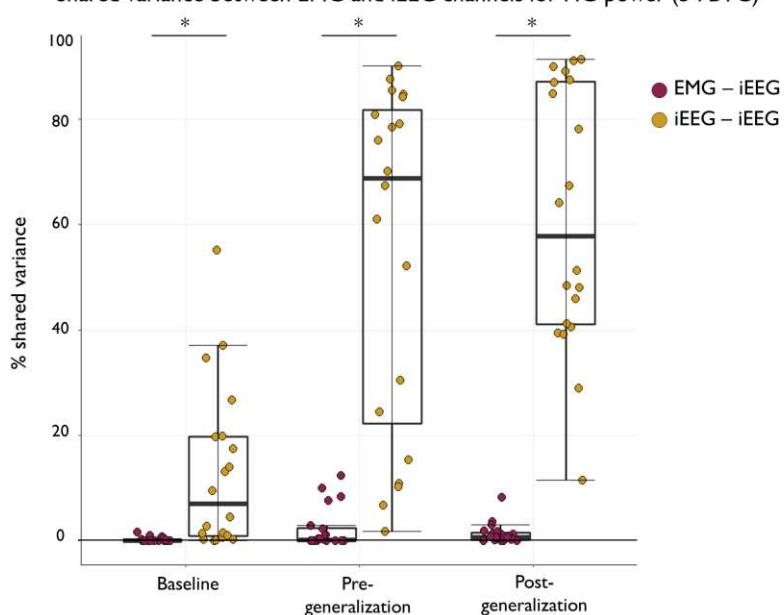

515 In contrast, there was no difference between the early phase of both seizure types in any brain area
516 for SWA (Table S9a) or HG (Table S10a).

517

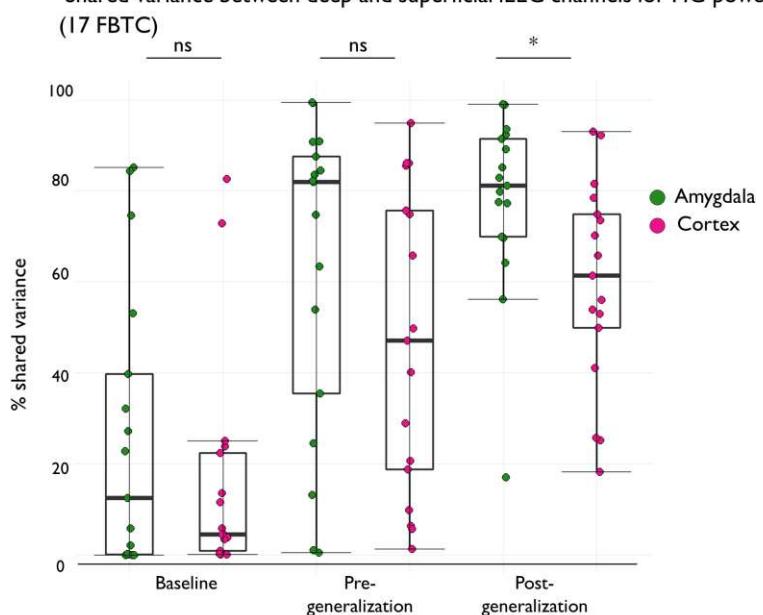
518 **A whole-brain increase in high-gamma activity coincides with 519 behavioral generalization**

520 The above-mentioned group analysis performed on all seizures suggested a widespread increase in
521 HG power and PLHG during FBTC compared to FIA, which built up from the first to the second half
522 of the seizures. To further characterize if such a late build-up in high-frequency activity was related

523 to the occurrence of behavioral generalization itself, we examined the correspondence between
524 spectral power time courses and ictal behavior. During FIA, a minimal increase in HG power could
525 be seen in the SOZ, peaking in the middle of the seizure (example in Fig. 5, right panel). During
526 FBTC, stronger increases in HG power and PLHG were consistently seen in the SOZ from the seizure
527 onset (example Fig. 5, left panel), which further invaded all channels, with the sharpest slope for a
528 whole-brain increase closely matching the time of behavioral generalization onset (see example in
529 Fig. 5B). Proof-of-principle analyses of the 25 FBTC with behavioral scoring showed that there was
530 a significantly higher time concordance between the point with maximum slope of HG increase and
531 behavioral generalization (21 ± 3.7 s from behavioral generalization; Table S8c) compared to seizure
532 onset or offset. Interestingly, the temporal concordance with behavioral generalization was higher
533 with PLHG (12.9 ± 8 s) than for SWA (37 ± 40 s; Table S6c).


534

535 **Fig. 5. Temporal evolution of high frequency rhythms (HG and PLHG) in two exemplar FBTC and FIA**
536 **from the same patient (same as in Fig. 1), displayed along relevant behavioral events.** In FBTC (panel B),
537 the widespread increase in HG and PLHG peaking at generalization point (event 3) can be clearly seen. Panel
538 D displays group results (from 25 FBTC) for the average delay between seizure start, generalization point and
539 seizure end to the highest slope increase in HG power and PLHG.


540

541 **Increase in HG is not a muscular artifact**

A Shared variance between EMG and iEEG channels for HG power (5 FBTC)

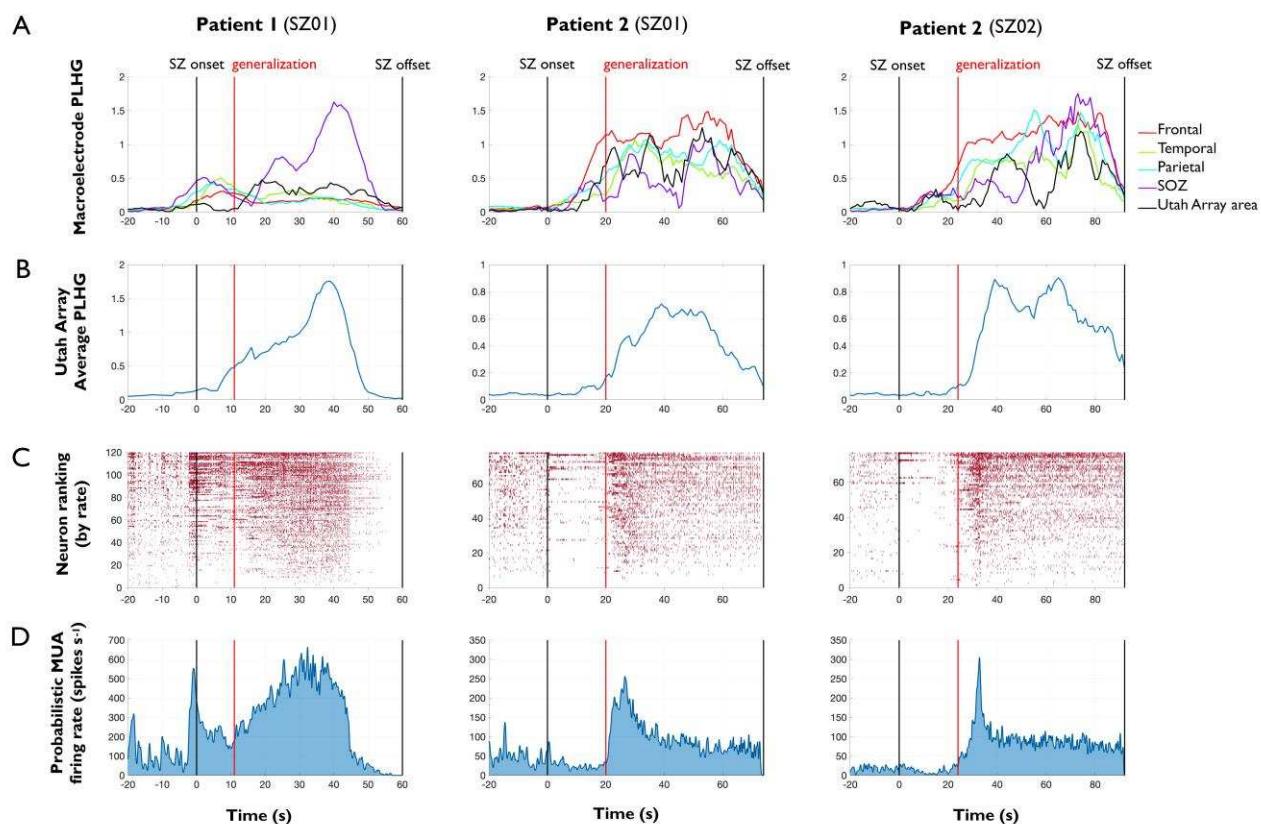
B Shared variance between deep and superficial iEEG channels for HG power (17 FBTC)

542

543 **Fig. 6: Shared variance in HG power between EMG and iEEG electrodes, and between deep versus**
 544 **superficial iEEG electrodes during FBTC.** (A) The portion of HG signal in iEEG electrodes that is explained
 545 by EMG activity is negligible compared to the variance explained by other iEEG electrodes across all FBTC
 546 periods (baseline, pre-generalization and post-generalization). (B) Deep electrodes – especially in the
 547 amygdala and hippocampus – share more common variance in their HG signals than superficial cortical
 548 electrodes during the post-generalization period. This finding suggests a potential deep source as HG power
 549 generator during this period.

550

551 A linear regression between EMG and iEEG channels revealed that EMG accounted for only on
552 average $1.31\% \pm 0.34\%$ (range 0.01-12%) of explained variance in the iEEG across the whole ictal
553 period (Fig. 6A; Tables S6). In contrast, iEEG channels on average showed a shared variance of $43\% \pm 4\%$
554 (range 12-91%). In fact, iEEG channels shared significantly higher variance after generalization
555 than before generalization or during baseline compared to iEEG vs EMG ($t_{(19)}=2.28$, $P=0.351$ for
556 baseline; $t_{(19)}=9.4$, $P<0.001$ for pre-generalization; $t_{(19)}=10.71$, $P<0.001$ for post-generalization). This
557 suggests a minimal or non-existent contribution of muscle activity. Linear regression between deep
558 vs. superficial contacts revealed higher synchrony between deep contacts (amygdala, hippocampus)
559 than between superficial contacts, especially during the post-generalization period ($47\% \pm 33\%$ then
560 $61\% \pm 23\%$ for superficial contacts, $82\% \pm 35\%$ then $81\% \pm 20\%$ for deep contacts; Fig. 6B, Table S6).


561

562 **Increased neuronal firing rates accompany HG increases in non-SOZ 563 areas during FBTC**

564 To obtain a direct demonstration of the neuronal basis for high-frequency signal changes during
565 FBTC, we used simultaneous iEEG and single-unit recordings in three FBTC recorded with Utah
566 microelectrode arrays in areas located in the ictal penumbra (>2 cm from the SOZ) (see Fig. 7). Before
567 generalization time, probabilistic multi-unit firing rate changes compared to baseline were variable:
568 the average increased in one FBTC and decreased in two others (+51.5%, -43.4% and -48.5% change,
569 respectively). In contrast, probabilistic multi-unit firing rates showed a sustained and consistent
570 increase after the point of behavioral generalization compared to baseline (+215.8%, +83.4%, and
571 +234.6% change, respectively). Increases in firing rates at generalization onset were accompanied by
572 increases in HG within the whole brain (as observed in the other FBTC studied).

573 These unit firing rate increases occur alongside PLHG increases both in the iEEG channels close to
574 the Utah array and in Utah array micro-electrode channels (see Fig. 7). MUA and PLHG appeared
575 linked - except during brief peaks of multi-unit firing that do not show corresponding peaks of PLHG.
576 This is sensible, as PLHG is predicted to especially increase due to highly synchronous firing, but not
577 all firing.⁴² Therefore, PLHG may not track multi-unit firing when firing is asynchronous, or when
578 highly synchronous firing increases in frequency without increasing synchrony. Nevertheless, the
579 tendency of these values to match over sustained periods supports the hypothesis that widespread
580 PLHG increases are neuronal in origin.

581

582

583 **Fig. 7. Temporal evolution of PLHG and neuronal firing during three FBTC from two patients**
584 **implanted with Utah microelectrode arrays in areas remote from the SOZ.** (A) PLHG for macroelectrodes
585 in various locations across the brain. PLHG values in the SOZ and near the Utah array come from single
586 distinct contacts, while PLHG values from frontal, temporal, and parietal areas were averaged over several
587 contacts in the corresponding lobe (see Fig. S3). (B) Average PLHG calculated across all good Utah array
588 channels. (C) Raster plot of single unit firing times ordered by firing rate. Only spikes with match confidence
589 of 50% or higher are plotted. (D) Probabilistic firing rate for the population were calculated over the seizure
590 epoch. These results show similar high frequency increase at the macro level - with increased PLHG - and at
591 the micro level - with increased neuronal firing - and this both for ictal onset and behavioral generalization.

592

593

594

595

596

597

598 Discussion

599 We found that unlike during FIA, the temporal evolution of seizures during FBTC is accompanied
600 by a diffuse increase in markers of cortical activation (B/D, HG, PLHG) and ictal recruitment (number
601 of channels crossing ictal ER threshold). Specifically, a whole-brain increase in HG power
602 accompanied behavioral generalization onset, which was most synchronous in deep iEEG channels,
603 could not be accounted for by EMG, and was accompanied by increased multi-unit firing rates in
604 areas remote from SOZ. Overall, these findings suggest different mechanisms for LOC during FBTC
605 compared to FIA, with an increase in cortical activation and ictal recruitment rather than sleep-like
606 activities. Interestingly, the maximum of synchrony in deep iEEG sources at the time of
607 generalization (especially strong in amygdala) suggests a potential contribution of a subcortical
608 source.

609 Both FBTC and FIA were associated with increased SWA during the second half of the seizures,
610 when consciousness is most impaired.^{10,55} During the second half of the seizures, SWA power was
611 found to be higher in FBTC than in FIA in parieto-occipital cortex. This finding is in line with recent
612 studies on the neural correlates of sleep dreams⁵⁶ and with clinical and neuroimaging evidence⁵⁷
613 suggesting an important role of parieto-occipital cortex in human consciousness.

614 Our behavioral results revealed a severe LOC during FBTC seizures, and a milder alteration in FIA.
615 It is worth noting that while during a majority of FIA, patients were not aware of having a seizure
616 and were not responding to verbal and motor commands, they could often still interact with the
617 examiner in a minimal way. Interestingly, even in the pre-generalization period of FBTC,
618 responsiveness was more strongly impaired. These results confirm previous reports showing a
619 moderate consciousness impairment in FIA and a more complete one in FBTC.^{10–12,33,58}

620 Our results confirm and extend in a larger dataset the previous observation of widespread increases
621 in cortical SWA during FIA of temporal lobe onset.¹⁴ During FIA, increased SWA in frontal and
622 parieto-occipital areas was indeed sleep-like: it was accompanied with a decrease in B/D – which
623 reliably differentiates physiological sleep from wakefulness in iEEG recordings.^{40,41} During FBTC,
624 in contrast, B/D increased within the whole brain. The finding of widespread cortical activation fits
625 with previous studies using electroconvulsive therapy in humans and with animal models showing
626 diffusely increased brain metabolism and fMRI BOLD signal during FBTC.^{14,21,59} The fact that some
627 individual channels showed B/D increases before they were actively recruited into ictal rhythms, and
628 that this phenomenon occurs specifically in FBTC and not in FIA suggest that increased beta-delta
629 ratio may at least in part be related to the activation of a third-driver source, potentially of subcortical

630 origin. Furthermore, our synchrony analyses revealed that while SWA power developed
631 asynchronously throughout seizures, HG was very synchronous, suggesting once again a possible
632 subcortical main driver for whole-brain increases in high frequency activity during FBTC.

633 We also found a more widespread ictal activation during FBTC than during FIA. Indeed, FIA
634 displayed PLHG increases which were mostly restricted to SOZ, while PLHG decreased in extra-
635 SOZ brain regions. In contrast, PLHG increased early and diffusely in the whole brain during FBTC
636 and further built up with FBTC progression. Because PLHG increases reliably indicate areas that are
637 recruited into ictal firing,^{24,25} its progressive evolution during FBTC provides strong support for a
638 more widespread ictal involvement than during FIA. Additionally, we found significantly more
639 channels passing a validated ER threshold for ictal involvement during FBTC than during FIA. The
640 higher cortical recruitment during FBTC evidenced here using two independent quantitative markers
641 of ictal recruitment is in line with previous studies in smaller samples using less specific markers such
642 as the visual detection of HFOs.¹⁹ This finding may explain longer-lasting cognitive consequences of
643 FBTC and through the induction of plastic changes, its association with poorer surgical outcomes.

644 Interestingly, while more channels were recruited into the ictal process during FBTC than during FIA,
645 we also found more asynchrony between clusters of channels. This was found using both the
646 quantification of each channel's ictal onset by crossing of the ER threshold,²⁸ and the inspection of
647 later ictal dynamics for SWA and SW amplitude peaks. This observation questions the fact that LOC
648 during FBTC may be related to an increase in synchrony within cortical signals, as suggested in.⁶⁰ It
649 also points to possible association between the occurrence of FBTC and the development of multiple
650 intracranial epileptic foci.⁶¹ The tools developed in the present work may be used in future studies to
651 assess if the number of independent foci recruited during either FBTC and FIA differentially predicts
652 multifocal seizures and poor surgical outcomes in epileptic individuals.

653 The electrophysiological hallmark of behavioral generalization was a widespread increase in HG
654 power. This HG increase at generalization onset was especially synchronous in deeper channels
655 (amygdala, and to a smaller extent, hippocampus). This suggests that deep sources particularly well-
656 connected to limbic areas – such as arousal centers in the brainstem or basal forebrain – may be
657 involved in spreading cortical activation during the generalization process. Unilateral blockade of
658 inhibitory GABA neurotransmission in the basal forebrain is able to trigger bilateral limbic motor
659 seizures in the rat.⁶² The involvement of subcortical structures in seizure generalization is also
660 supported by a previous SPECT study demonstrating increased cerebral blood flow in the brainstem
661 and basal ganglia during FBTC compared to FIA.⁵⁹ This hypothesis is also in line with early work in
662 cats suggesting that electrical activation of the brainstem can rapidly induce widespread increases in

663 markers of cortical activation⁶³ while its ictal involvement can generate tonic posturing⁶⁴ and bilateral
664 convulsions.⁶⁵ Another potential candidate for the subcortical mediation of seizure generalization
665 might be the zona incerta. Indeed, rodent studies showed that high intensity cholinergic stimulation
666 of the zona incerta leads to generalized seizures with highest probability amongst all other subcortical
667 sites.⁶⁶ The zona incerta⁶⁷ is a central relay of communication between the thalamus and the brainstem
668 and presents especially rich interconnections with bilateral intralaminar and higher order nuclei of the
669 thalamus.^{67,68}

670 In the five patients where EMG channels were available, we found no meaningful contribution of
671 EMG to HG signals, comparing EMG channel to deep and superficial channels from left as well as
672 right hemispheres (average shared variance <5%). This finding suggests that as the HG increase that
673 is observed during FBTC postictal states,^{48,49} the iEEG HG activity increases observed during and
674 after generalization phase cannot be accounted by increased EMG activity. Findings of higher
675 synchrony in deep iEEG contacts, further away from the scalp, and of only partial synchrony between
676 cortical iEEG channels during the post-generalization phase also plead against an artifact as the
677 primary source for the observed increases in HG signal.

678 To further ascertain of the neuronal origin of HG power increases, we quantified MUA data during
679 three human FBTC. We found that increases in HG during FBTC were indeed accompanied by
680 sustained increases in neuronal firing even in areas remote from the SOZ. Taken together, these
681 findings suggest that during FBTC – unlike LOC during FIA – is accompanied by widespread
682 increases in neuronal activation throughout the brain. Of note, frequent FBTC recruiting a large
683 number of areas may favor Hebbian plastic changes and secondary potentiation of multiple areas in
684 the cortex, further favoring conditions for secondary epileptic foci to emerge, even in non-recruited
685 brain areas. Such changes could explain worsened surgical outcomes and global cognitive impairment
686 found in patients with frequent FBTC seizures.

687 This study has several important limitations. Only nine patients had both FBTC and FIA seizures.
688 However, electrode coverage and demographics were similar between patients with FIA and FBTC
689 at the group level, with broad electrode coverage and a large number of included seizures in both
690 cases. Only three FBTC were recorded with multi-unit activity recordings, and the present findings
691 should be confirmed in additional datasets with recordings within and outside the SOZ. Finally, the
692 evidence we have for subcortical third driver(s) is only indirect; animal studies may be more suited
693 to test the contribution of various subcortical structures to seizure generalization and to explore
694 various neuromodulation strategies. In combination with brain activity recordings, future studies
695 should aim at probing behavior continuously throughout seizures. However, continuous behavioral

696 sampling is extremely difficult to perform during FBTC. Retrospective collection of phenomenal
697 experiences remembered by patient may provide useful complementary information about LOC in
698 patients who are behaviorally unresponsive.¹²

699

700 **Conclusion**

701 In summary, our results show that FBTC are characterized by widespread increases in high-frequency
702 activity and neuronal firing, which further progressed after onset of behavioral generalization. This
703 high-frequency activity was most synchronous in deep iEEG channels, hinting to the possible
704 contribution of sub-cortical drivers. These findings suggest that LOC during human FBTC may occur
705 through a different mechanism than during FIA, with the presence of widespread increase of neural
706 activation throughout the cortex.

707

708 **Acknowledgements**

709 The authors would like to thank Pei-Ning Peggy Hsu for help with clinical information and William
710 Marshall for statistical advice.

711

712 **Funding**

713 This work was supported by the Tiny Blue Dot foundation (to MB, GT), K23 award (K23NS112473
714 to MB) and the Swiss National Foundation (SNF grants # 168437 and 177873 to EJ). V.K. was
715 partially funded by institutional resources of Czech Technical University in Prague.

716

717 **Competing interests**

718 The authors report no competing interests.

719

720

721

722

723

724 References

- 725 1. Zack MM, Kobau R. National and State Estimates of the Numbers of Adults and Children
726 with Active Epilepsy - United States, 2015. *MMWR Morb Mortal Wkly Rep.*
727 2017;66(31):821-825. doi:10.15585/mmwr.mm6631a1
- 728 2. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-
729 resistant epilepsy: A systematic review and meta-analysis. *Epilepsia.* 2018;59(12):2179-2193.
730 doi:10.1111/epi.14596
- 731 3. Tellez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery:
732 a systematic review and meta-analysis. *Brain.* 2005;128(Pt 5):1188-1198.
733 doi:10.1093/brain/awh449
- 734 4. Cavanna AE, Monaco F. Brain mechanisms of altered conscious states during epileptic
735 seizures. *Nat Rev Neurol.* 2009;5(5):267-276. doi:10.1038/nrneurol.2009.38
- 736 5. Blumenfeld H. Impaired consciousness in epilepsy. *Lancet Neurol.* 2012;11(9):814-826.
737 doi:10.1016/S1474-4422(12)70188-6
- 738 6. Nevalainen O, Ansakorpi H, Simola M, et al. Epilepsy-related clinical characteristics and
739 mortality: a systematic review and meta-analysis. *Neurology.* 2014;83(21):1968-1977.
740 doi:10.1212/WNL.0000000000001005
- 741 7. Devinsky O. Sudden, unexpected death in epilepsy. *N Engl J Med.* 2011;365(19):1801-1811.
742 doi:10.1056/NEJMra1010481
- 743 8. Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death
744 in epilepsy: epidemiology, mechanisms, and prevention. *Lancet Neurol.* 2016;15(10):1075-
745 1088. doi:10.1016/S1474-4422(16)30158-2
- 746 9. McPherson A, Rojas L, Bauerschmidt A, et al. Testing for minimal consciousness in complex
747 partial and generalized tonic-clonic seizures. *Epilepsia.* 2012;53(10):e180-3.
748 doi:10.1111/j.1528-1167.2012.03657.x
- 749 10. Yang L, Shklyar I, Lee HW, et al. Impaired consciousness in epilepsy investigated by a
750 prospective responsiveness in epilepsy scale (RES). *Epilepsia.* 2012;53(3):437-447.
751 doi:10.1111/j.1528-1167.2011.03341.x
- 752 11. Johanson M, Valli K, Revonsuo A, Chaplin JE, Wedlund J-E. Alterations in the contents of
753 consciousness in partial epileptic seizures. *Epilepsy Behav.* 2008;13(2):366-371.
754 doi:10.1016/j.yebeh.2008.04.014
- 755 12. Johanson M, Revonsuo A, Chaplin J, Wedlund J-E. Level and contents of consciousness in
756 connection with partial epileptic seizures. *Epilepsy Behav.* 2003;4(3):279-285.
757 doi:10.1016/s1525-5050(03)00106-9
- 758 13. Shin JH, Joo EY, Seo D-W, Shon Y-M, Hong SB, Hong S-C. Prognostic factors determining
759 poor postsurgical outcomes of mesial temporal lobe epilepsy. *PLoS One.*
760 2018;13(10):e0206095. doi:10.1371/journal.pone.0206095
- 761 14. Englot DJ, Yang L, Hamid H, et al. Impaired consciousness in temporal lobe seizures: role of
762 cortical slow activity. *Brain.* 2010;133(Pt 12):3764-3777. doi:10.1093/brain/awq316
- 763 15. Kundishora AJ, Gummadavelli A, Ma C, et al. Restoring Conscious Arousal During Focal
764 Limbic Seizures with Deep Brain Stimulation. *Cereb Cortex.* 2017;27(3):1964-1975.
765 doi:10.1093/cercor/bhw035
- 766 16. Filipescu C, Lagarde S, Lambert I, et al. The effect of medial pulvinar stimulation on
767 temporal lobe seizures. *Epilepsia.* 2019;60(4):e25-e30. doi:10.1111/epi.14677
- 768 17. Yoo JY, Farooque P, Chen WC, et al. Ictal spread of medial temporal lobe seizures with and
769 without secondary generalization: an intracranial electroencephalography analysis. *Epilepsia.*
770 2014;55(2):289-295. doi:10.1111/epi.12505
- 771 18. Weiss SA, Banks GP, McKhann GM, et al. Ictal high frequency oscillations distinguish two

- 772 types of seizure territories in humans. *Brain*. 2013;136(Pt 12):3796-3808.
773 doi:10.1093/brain/awt276
- 774 19. Schönberger J, Birk N, Lachner-Piza D, Dümpelmann M, Schulze-Bonhage A, Jacobs J.
775 High-frequency oscillations mirror severity of human temporal lobe seizures. *Ann Clin Transl
776 Neurol*. 2019;6(12):2479-2488. doi:10.1002/acn3.50941
- 777 20. Schindler K, Leung H, Lehnertz K, Elger CE. How generalised are secondarily “generalised”
778 tonic clonic seizures? *J Neurol Neurosurg Psychiatry*. 2007;78(9):993-996.
779 doi:10.1136/jnnp.2006.108753
- 780 21. Blumenfeld H, Westerveld M, Ostroff RB, et al. Selective frontal, parietal, and temporal
781 networks in generalized seizures. *Neuroimage*. 2003;19(4):1556-1566. doi:10.1016/s1053-
782 8119(03)00204-0
- 783 22. Bagshaw AP, Jacobs J, LeVan P, Dubeau F, Gotman J. Effect of sleep stage on interictal
784 high-frequency oscillations recorded from depth macroelectrodes in patients with focal
785 epilepsy. *Epilepsia*. 2009;50(4):617-628. doi:10.1111/j.1528-1167.2008.01784.x
- 786 23. Smith EH, Merricks EM, Liou J-Y, et al. Dual mechanisms of ictal high frequency
787 oscillations in human rhythmic onset seizures. *Sci Rep*. 2020;10(1):19166.
788 doi:10.1038/s41598-020-76138-7
- 789 24. Schevon CA, Weiss SA, McKhann G, et al. Evidence of an inhibitory restraint of seizure
790 activity in humans. *Nat Commun*. 2012;3:1060. doi:10.1038/ncomms2056
- 791 25. Smith EH, Liou J, Davis TS, et al. The ictal wavefront is the spatiotemporal source of
792 discharges during spontaneous human seizures. *Nat Commun*. 2016;7:11098.
793 doi:10.1038/ncomms11098
- 794 26. Schevon CA, Tobochnik S, Eissa T, et al. Multiscale recordings reveal the dynamic spatial
795 structure of human seizures. *Neurobiol Dis*. 2019;127:303-311.
796 doi:10.1016/j.nbd.2019.03.015
- 797 27. Weiss SA, Lemesiou A, Connors R, et al. Seizure localization using ictal phase-locked high
798 gamma: A retrospective surgical outcome study. *Neurology*. 2015;84(23):2320-2328.
799 doi:10.1212/WNL.0000000000001656
- 800 28. Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal
801 lobe epilepsy: a quantified study from intracerebral EEG. *Brain*. 2008;131(Pt 7):1818-1830.
802 doi:10.1093/brain/awn111
- 803 29. Bartolomei F, Cosandier-Rimele D, McGonigal A, et al. From mesial temporal lobe to
804 temporoperisylvian seizures: a quantified study of temporal lobe seizure networks. *Epilepsia*.
805 2010;51(10):2147-2158. doi:10.1111/j.1528-1167.2010.02690.x
- 806 30. Kini LG, Davis KA, Wagenaar JB. Data integration: Combined imaging and
807 electrophysiology data in the cloud. *Neuroimage*. 2016;124(Pt B):1175-1181.
808 doi:10.1016/j.neuroimage.2015.05.075
- 809 31. Klatt J, Feldwisch-Drentrup H, Ihle M, et al. The EPILEPSIAE database: an extensive
810 electroencephalography database of epilepsy patients. *Epilepsia*. 2012;53(9):1669-1676.
811 doi:10.1111/j.1528-1167.2012.03564.x
- 812 32. Fisher RS, Cross JH, D’Souza C, et al. Instruction manual for the ILAE 2017 operational
813 classification of seizure types. *Epilepsia*. 2017;58(4):531-542. doi:10.1111/epi.13671
- 814 33. Arthuis M, Valton L, Régis J, et al. Impaired consciousness during temporal lobe seizures is
815 related to increased long-distance cortical-subcortical synchronization. *Brain*. 2009;132(Pt
816 8):2091-2101. doi:10.1093/brain/awp086
- 817 34. Blenkmann AO, Phillips HN, Princich JP, et al. iElectrodes: A Comprehensive Open-Source
818 Toolbox for Depth and Subdural Grid Electrode Localization. *Front Neuroinformatics*.
819 2017;11:14. doi:10.3389/fninf.2017.00014
- 820 35. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR
821 image analysis and implementation as FSL. *Neuroimage*. 2004;23 Suppl 1:S208-19.

- 822 doi:10.1016/j.neuroimage.2004.07.051

823 36. Lancaster JL, Woldorff MG, Parsons LM, et al. Automated Talairach atlas labels for
824 functional brain mapping. *Hum Brain Mapp*. 2000;10(3):120-131. doi:10.1002/1097-
825 0193(200007)10:3<120::aid-hbm30>3.0.co;2-8

826 37. Lancaster JL, Rainey LH, Summerlin JL, et al. Automated labeling of the human brain: a
827 preliminary report on the development and evaluation of a forward-transform method. *Hum*
828 *Brain Mapp*. 1997;5(4):238-242. doi:10.1002/(SICI)1097-0193(1997)5:4<238::AID-
829 HBM6>3.0.CO;2-4

830 38. Lundstrom BN, Boly M, Duckrow R, Zaveri HP, Blumenfeld H. Slowing less than 1 Hz is
831 decreased near the seizure onset zone. *Sci Rep*. 2019;9(1):6218. doi:10.1038/s41598-019-
832 42347-y

833 39. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG
834 dynamics including independent component analysis. *J Neurosci Methods*. 2004;134(1):9-21.
835 doi:10.1016/j.jneumeth.2003.10.009

836 40. Kremen V, Brinkmann BH, Van Gompel JJ, Stead M, St Louis EK, Worrell GA. Automated
837 unsupervised behavioral state classification using intracranial electrophysiology. *J Neural*
838 *Eng*. 2019;16(2):026004. doi:10.1088/1741-2552/aae5ab

839 41. Reed CM, Birch KG, Kamiński J, et al. Automatic detection of periods of slow wave sleep
840 based on intracranial depth electrode recordings. *J Neurosci Methods*. 2017;282:1-8.
841 doi:10.1016/j.jneumeth.2017.02.009

842 42. Eissa TL, Tryba AK, Marcuccilli CJ, et al. Multiscale Aspects of Generation of High-Gamma
843 Activity during Seizures in Human Neocortex. *Eneuro*. 2016;3(2).
844 doi:10.1523/ENEURO.0141-15.2016

845 43. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J. High-frequency
846 oscillations during human focal seizures. *Brain*. 2006;129(Pt 6):1593-1608.
847 doi:10.1093/brain/awl085

848 44. Penny WD, Duzel E, Miller KJ, Ojemann JG. Testing for nested oscillation. *J Neurosci*
849 *Methods*. 2008;174(1):50-61. doi:10.1016/j.jneumeth.2008.06.035

850 45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful
851 approach to multiple testing. *Journal of the Royal Statistical Society: Series B*
852 *(Methodological)*. 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.x

853 46. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. *J*
854 *Stat Softw*. 2015;67(1):1-48. doi:10.18637/jss.v067.i01

855 47. Riedner BA, Vyazovskiy VV, Huber R, et al. Sleep homeostasis and cortical synchronization:
856 III. A high-density EEG study of sleep slow waves in humans. *Sleep*. 2007;30(12):1643-1657.
857 doi:10.1093/sleep/30.12.1643

858 48. Bateman LM, Schevon CA. Postictal clinical and EEG activity following intracranially
859 recorded bilateral tonic-clonic seizures. *Epilepsia*. 2019;60(8):1746-1747.
860 doi:10.1111/epi.16274

861 49. Bateman LM, Mendiratta A, Liou J-Y, et al. Postictal clinical and electroencephalographic
862 activity following intracranially recorded bilateral tonic-clonic seizures. *Epilepsia*.
863 2019;60(1):74-84. doi:10.1111/epi.14621

864 50. McGonigal A, Marquis P, Medina S, et al. Postictal stereo-EEG changes following bilateral
865 tonic-clonic seizures. *Epilepsia*. 2019;60(8):1743-1745. doi:10.1111/epi.16252

866 51. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with
867 wavelets and superparamagnetic clustering. *Neural Comput*. 2004;16(8):1661-1687.
868 doi:10.1162/089976604774201631

869 52. Merricks EM, Smith EH, McKhann GM, et al. Single unit action potentials in humans and the
870 effect of seizure activity. *Brain*. 2015;138(Pt 10):2891-2906. doi:10.1093/brain/awv208

871 53. Hill DN, Mehta SB, Kleinfeld D. Quality metrics to accompany spike sorting of extracellular

- 872 signals. *J Neurosci*. 2011;31(24):8699-8705. doi:10.1523/JNEUROSCI.0971-11.2011
- 873 54. Merricks EM, Smith EH, Emerson RG, et al. Neuronal Firing and Waveform Alterations
- 874 through Ictal Recruitment in Humans. *J Neurosci*. 2021;41(4):766-779.
- 875 doi:10.1523/JNEUROSCI.0417-20.2020
- 876 55. Jobst BC, Williamson PD, Neuschwander TB, Darcey TM, Thadani VM, Roberts DW.
- 877 Secondarily generalized seizures in mesial temporal epilepsy: clinical characteristics,
- 878 lateralizing signs, and association with sleep-wake cycle. *Epilepsia*. 2001;42(10):1279-1287.
- 879 doi:10.1046/j.1528-1157.2001.09701.x
- 880 56. Siclari F, Baird B, Perogamvros L, et al. The neural correlates of dreaming. *Nat Neurosci*.
- 881 2017;20(6):872-878. doi:10.1038/nn.4545
- 882 57. Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the neural correlates
- 883 of consciousness in the front or in the back of the cerebral cortex? clinical and neuroimaging
- 884 evidence. *J Neurosci*. 2017;37(40):9603-9613. doi:10.1523/JNEUROSCI.3218-16.2017
- 885 58. Bauerschmidt A, Koshkelashvili N, Ezeani CC, et al. Prospective assessment of ictal behavior
- 886 using the revised Responsiveness in Epilepsy Scale (RES-II). *Epilepsy Behav*. 2013;26(1):25-
- 887 28. doi:10.1016/j.yebeh.2012.10.022
- 888 59. Blumenfeld H, Varghese GI, Purcaro MJ, et al. Cortical and subcortical networks in human
- 889 secondarily generalized tonic-clonic seizures. *Brain*. 2009;132(Pt 4):999-1012.
- 890 doi:10.1093/brain/awp028
- 891 60. Bartolomei F, Wendling F, Régis J, Gavaret M, Guye M, Chauvel P. Pre-ictal synchronicity in
- 892 limbic networks of mesial temporal lobe epilepsy. *Epilepsy Res*. 2004;61(1-3):89-104.
- 893 doi:10.1016/j.epilepsyres.2004.06.006
- 894 61. Tobochnik S, Bateman LM, Akman CI, et al. Tracking Multisite Seizure Propagation Using
- 895 Ictal High-Gamma Activity. *J Clin Neurophysiol*. 2021;Publish Ahead of Print.
- 896 doi:10.1097/WNP.0000000000000833
- 897 62. Gale K. Subcortical structures and pathways involved in convulsive seizure generation. *J Clin*
- 898 *Neurophysiol*. 1992;9(2):264-277. doi:10.1097/00004691-199204010-00007
- 899 63. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG.
- 900 *Electroencephalogr Clin Neurophysiol*. 1949;1(4):455-473. doi:10.1016/0013-
- 901 4694(49)90219-9
- 902 64. Browning RA. Role of the brain-stem reticular formation in tonic-clonic seizures: lesion and
- 903 pharmacological studies. *Fed Proc*. 1985;44(8):2425-2431.
- 904 65. Gastaut H, Naquet R, Fischerwilliams M. The pathophysiology of grand mal seizures
- 905 generalized from the start. *J Nerv Ment Dis*. 1958;127(1):21-33. doi:10.1097/00005053-
- 906 195807000-00004
- 907 66. Brudzynski SM, Cruickshank JW, McLachlan RS. Cholinergic mechanisms in generalized
- 908 seizures: importance of the zona incerta. *Can J Neurol Sci*. 1995;22(2):116-120.
- 909 doi:10.1017/s031716710004018x
- 910 67. Wang X, Chou X-L, Zhang LI, Tao HW. Zona incerta: an integrative node for global
- 911 behavioral modulation. *Trends Neurosci*. 2020;43(2):82-87. doi:10.1016/j.tins.2019.11.007
- 912 68. Power BD, Mitrofanis J. Zona incerta: Substrate for contralateral interconnectivity in the
- 913 thalamus of rats. *J Comp Neurol*. 2001;436(1):52-63.
- 914