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Abstract

Background: High-dimensional omics datasets provide valuable resources to determine the causal
role of molecular traits in mediating the path from genotype to phenotype. Making use of quantitative
trait loci (QTL) and genome-wide association studies (GWASs) summary statistics, we developed a
multivariable Mendelian randomization (MVMR) framework to quantify the connectivity between three
omics layers (DNA methylome (DNAm), transcriptome and proteome) and their cascading causal im-
pact on complex traits and diseases.

Results: Evaluating 50 complex traits, we found that on average 37.8% (95% CI: [36.0%-39.5%)]) of
DNAm-to-trait effects were mediated through transcripts in the cis-region, while only 15.8% (95% ClI:
[11.9%-19.6%]) are mediated through proteins in cis. DNAm sites typically regulate multiple transcripts,
and while found to predominantly decrease gene expression, this was only the case for 53.4% across
~ 47,000 significant DNAm-transcript pairs. The average mediation proportion for transcript-to-trait
effects through proteins (encoded for by the assessed transcript or located in trans) was estimated to
be 5.27% (95%Cl: [4.11%-6.43%)]). Notable differences in the transcript and protein QTL architectures
were detected with only 22% of protein levels being causally driven by their corresponding transcript
levels. Several regulatory mechanisms were hypothesized including an example where cg10385390
(chr1:8°022°505) increases the risk of irritable bowel disease by reducing PARK?7 transcript and protein
expression.

Conclusions: The proposed integrative framework identified putative causal chains through omics
layers providing a powerful tool to map GWAS signals. Quantification of causal effects between suc-
cessive layers indicated that molecular mechanisms can be more complex than what the central dogma

of biology would suggest.
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Introduction

In the past decade, genome-wide association studies (GWASs) have identified thousands of genetic
variants associated to complex traits [1], however mapping these variants to molecular processes and
pathways still remains challenging [2]. A first step towards interpreting GWAS signals is to map trait-
associated single nucleotide polymorphisms (SNPs) to genes. Naive approaches based on physical
distance attribute SNPs to their closest gene [3] and many of them additionally take into account the
linkage disequilibrium (LD) structure and GWAS association strengths (i.e. p-values) to compute gene
scores [4, 5]. In a second step, scores from several genes can be combined and mapped to biological
pathways by incorporating knowledge from external databases such as KEGG [6], Gene Ontology [7],
WikiPathways [8], Reactome [9], or MSigDB [10], and making use of pathway enrichment analysis tools
[5, 11, 12].

GWAS signals of common diseases predominantly fall into the non-coding genome [13] and both
their enrichment in regulatory elements (e.g. quantitative trait loci (QTL) [13, 14]), as well as advances
in omics technology [15], has motivated the establishment of large-scale consortia providing publicly
available QTL datasets for molecular phenotypes such as DNA methylation (DNAm) [16], as well as
transcript [17, 18], protein [19, 20, 21] or metabolite [22, 23] levels. Consequently, a next step in inter-
preting GWAS findings has been to integrate this new type of data, allowing to find diverse mediators
of SNP-trait associations in a high-throughput, data-driven fashion. Integrative statistical methods com-
bining GWAS and omics QTL summary data include colocalization tests [24, 25], summary versions
of transcriptome-wide association studies (TWAS) [26, 27] and Mendelian randomization (MR) studies
[28, 29]. Their application to a wide variety of GWAS datasets has resulted in the identification of many
putative molecular trait-disease associations confirming known and highlighting potential new molecu-
lar mechanisms [30]. Colocalization methods identify shared QTL and GWAS signals, and while this
might indicate causality between the molecular and GWAS trait, shared signals can also arise due to
reverse causality (i.e. causal effect of the GWAS trait on the molecular trait [31]) or horizontal pleiotropy
(i.e. the identified shared genetic variant drives the molecular and trait perturbation independently). In
comparison, MR studies, which are conceptually similar to TWAS, that use multiple genetic variants as
instrumental variables (1Vs) are less prone to reverse causality and artefacts arising from LD patterns
[32] - although horizontal pleiotropy can never be ruled out entirely. An important advantage of MR
methods is that they allow the detection and elimination of pleiotropic markers. In addition, MR analyses

allow the quantification - direction and magnitude - of the causal effect of the omic on the outcome trait.
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With the advent of QTL datasets with increased sample sizes [16, 18], opportunities to integrate
GWAS data with multiple molecular traits are no longer hampered by low statistical power. Previous
efforts integrating multiple QTL omics data either adopted colocalization strategies [33, 34] or com-
bined pairwise MR associations (two-step MR) [35, 36] to predict molecular mechanisms of the following
scheme: omics trait 1 — omics trait 2 — outcome trait. While these approaches provide evidence for
regulatory pathways, ascertaining their robustness can be difficult, since often only a single causal vari-
ant underlying these multiple associations was assessed [33, 35, 36]. As a consequence, the control
over horizontal pleiotropy remained limited, although it was usually mitigated by the HEIDI (heterogene-
ity in dependent instruments) test statistic [28]. Furthermore, combining pairwise associations can lack
the ability of inferring directionality between the different traits involved, an issue that can be identified by
comparing the magnitude of QTL and GWAS effects [37]. Overall, while current integration methods test
genetic downstream effects through omics traits, they often only accommodate the testing of a single

molecular mediator.

Multivariable MR (MVMR) approaches have been proposed to identify multiple mediators of exposure-
outcome relationships [38, 39]. These approaches enable the dissection of the total causal effect of an
exposure on an outcome into a direct and indirect effect measured via mediators. Similar to MR, the
use of genetic instruments allows for robust causal inference and MVMR has proven as an unbiased
approach for mediation analyses, even in the presence of confounders [38, 39]. Hence, in addition to
identifying causal effects through multiple layers, MVMR allows the quantification of mediation effects.
Although not yet widely implemented on high-dimensional omics data, they provide great opportunities

in the study of molecular mediation [40].

Here, we proposed a three-sample MVMR (3S-MVMR) framework to quantify the role of molecular
mediators (omics trait 2) on a molecular exposure (omics trait 1) - complex trait relationship (Figure 1).
We integrated methylomic, transcriptomic and proteomic QTL (mQTL, eQTL and pQTL, respectively)
with GWAS summary data of 50 clinically relevant traits to perform mediation analyses and to estimate
global mediation proportions (MPs). Three different combinations of exposure-mediator molecular traits
were analysed: DNAm regulating transcripts in cis, DNAm regulating proteins in cis, and transcripts
regulating their encoded protein in addition to proteins in trans. We performed simulation studies to
estimate the bias of the defined MP under various parameter settings. In addition to quantifying the
regulatory connectivity between each of these molecular layers, we investigated underlying factors driv-
ing high MPs, and hypothesized several mechanistic pathways between DNAm, gene expression and

complex traits.
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Figure 1: Overview of the MVMR design to quantify mediation of complex traits through DNAm, tran-
scripts and proteins. A) General MVMR model: genetic instruments (SNPs) are selected to be directly
associated (dashed arrow) with either the exposure (omics trait 1) or any mediator k (omics trait 2). The
total effect 6 (dotted arrow) of the exposure on the outcome (complex trait) is estimated in a univariable
MR analysis based on exposure-associated SNPs only. The direct effect 6 is estimated in a MVMR
analysis on all valid instruments. The mediation effect 6,, results from the difference between 61 and
0p, and allows to calculate the mediation proportion (MP). The genetic effect sizes 5 on the exposure,
mediator and outcome come from m/e/pQTL and GWAS summary statistics, respectively. B) DNAm-
to-complex trait effects were mediated once through transcripts in cis and once through proteins in cis.
C) Transcript-to-complex trait effects were mediated through the protein the transcript is encoding for
(encoded protein; if available in the dataset), as well as through proteins in trans. Except for the en-
coded protein, mediators were required to be causally associated to the exposure in both DNAm- and
transcript-exposure settings.
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Results

Overview of the method

We performed univariable and multivariable MR to estimate total and direct effects, 6 and 6, respec-
tively, of molecular exposures on 50 outcomes through various molecular mediators (Figure 1; Equation
1 and 3). MP estimates were then calculated as the ratio of the indirect effect through the molecular
mediators to the total effect of the exposure on the outcome trait [41] and computed only for exposure-
outcome pairs with significant Bonferroni-corrected 61 effects, grouped by trait, trait category and all
pairs combined. We further filtered out exposure-outcome pairs whose exposures have no significant
causal effect on any potential mediator as the link between those pairs cannot be mediated. For com-

pleteness, however, we also present results for the scenario when the last filtering step is omitted.

While weak genetic instruments in univariable MR analyses can introduce a bias towards the null
[42], it has been shown that this bias can be in any direction in MVMR studies [43]. Both the sample
size and the choice of instruments and mediators can contribute to biases in various directions [43],
leading to under- or over-estimations of the MP. To quantify this bias and assess the sensitivity and
robustness of estimated MPs, we conducted simulation studies mimicking the settings that emerge in

real data applications for either DNAm or transcript levels as exposure (Methods) (Figure S1).

Simulation results

Simulations showed that the bias in the estimated MPs (W) is minimal for the settings most relevant for
real data we explored (Figures S2-3; Table S2; Methods). A determining factor in accurately estimating
MPs was the sample size of the mediator QTL effects. Low sample sizes resulted in significant underes-
timations of the MP, with sample sizes of 3,000 compared to 30,000 resulting in a 20% relative decrease
(6% in absolute values) of the estimated MP in the DNAm-exposure simulation settings (Figure 2A). The
reason for this significant underestimation was the omission of relevant mediators with 0.45/3 (15%) be-
ing missed at a sample size of 3,000 in the DNAm-exposure simulation settings (Figure 2B). We further
tested the robustness of the MP with respect to the number of included mediators by varying the media-
tor selection threshold Pgy (Methods). At more stringent threshold, relevant mediators were more likely
to be missed resulting in an underestimation of the MP (Figure S4). Importantly, including irrelevant
mediators at more lenient thresholds did not bias the MP, although a critical point was reached upon
the inclusion of > 10 irrelevant mediators where the estimated MP started to become underestimated in
the transcript-exposure setting (Figure S4). The used transcript and DNAm QTL datasets provide SNP
effect sizes in cis of the assessed transcript and probe, respectively, and were primarily restricted to
significant mQTLs for the latter. Thus, SNP-exposure effects for SNPs serving as mediator instruments

are often missed and set to zero. However, our simulation studies, which mimicked this scenario by
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Figure 2: Simulation results in DNAm- (orange) and transcript- (blue) exposure settings to assess the
impact of the mediator sample size on the A) estimated MP and B) number of selected mediators. For
a given mediator sample size, 300 exposure-outcome pairs were simulated on which an MP and 95%
Cl (error bars) were estimated. The true MP of the model was 0.3 and 0.15, and the true number of
relevant mediators was 3 and 2 in the DNAm-exposure and transcript-exposure setting, respectively, as
indicated by the solid horizontal lines.

setting non-significant effects to zero (Methods), showed that this did not induce any bias.

DNAm-to-complex trait effects mediated by gene expression in cis

Across 50 traits (Table S1), we evaluated the mediation of 2,069 DNAm-trait causal pairs by transcripts
in cis. The MP for each of the 41 traits influenced by at least 10 DNAm probes ranged from 18.0
to 78.0% (mean: 36.9%, 95% Cl: [13.5%-60.3%)]) (Figure 3A). Regressing 5 against 6 for all pairs
combined and accounting for regression dilution bias (Equation 4) yielded an MP of 37.8% (95% Cl:
[36.0%-39.5%)]) (Figure 3B). Grouping the traits into 10 physiological categories (Table S1) showed that
the MP was highest for hepatic biomarkers (mean: 46.6%, 95%Cl: [41.5%-51.7%)), followed by renal
biomarkers (mean: 43.5%, 95%CI: [37.5%-49.5%)]). In contrast, adiposity-related and hormonal traits
exhibited the lowest MP (Figure 3B, Figure S5).

The average number of mediator transcripts was 3.3 per methylation-trait pair, indicating that the
impact of methylation is not mediated by a single transcript. To further explore this observation, we
assessed the extent to which DNAm—trait effects were mediated by the single most significantly DNAm-
associated transcript (“top” transcript; Methods), as opposed to all transcripts in cis. This resulted in an
l\//IBtop of 26.0% (range: [13.0%-46.8%)]) averaged across the 41 traits, and an I\//II\Z’tOp of 26.6% (95% CI:
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[25.1%-28.1%]) when aggregating the 2,069 DNAm-trait pairs. This significant drop in the MP (Pgitt <
5e-21) corroborates our initial hypothesis that DNAm sites regulate the expression of multiple transcripts

in the cis region.
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Figure 3: MPs for transcripts and proteins in cis mediating DNAm-to-trait effects. A) MPs by trait in the
DNAm-to-trait via transcripts in cis analysis. Error bars denote the 95% CI, and the grey vertical bar
shows the mean MP across the traits. Only traits with > 10 DNAm-trait pairs are displayed (41 traits
with the exact number of evaluated pairs indicated in parentheses), colour-coded by their physiological
category as defined in the legends of B) and C). B) All DNAm-trait pairs with traits being grouped
into 10 physiological categories. The global MP in % with 95% Cl is shown in the plotting area and
individual category MPs in the legend. C) Same analysis as in B), but with mediators being proteins in
cis. Category MPs not significantly different from zero (n.s.) are written in grey.

Including DNAm-trait pairs with testable transcripts in the cis region, but not causally linked to the
assessed DNAm site (2,623 DNAm-trait pairs, Methods: adjusted MP calculation; Table S3), decreased
the overall MP to 28.3% (95% ClI: [26.9%-29.8%]) (Figure S7). While it may seem to be a more objective
measure of the importance of the transcriptome in mediating DNAm-to-phenotype effects, it is overly

conservative since the set of testable transcript mediators (N = 19,250 [18]) is a magnitude lower than
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that of the whole transcriptome [44]. A distribution of the number of times no mediation analysis could be
conducted due to the absence of (causally associated) transcripts in the region or insufficient (exposure-

associated) IVs is shown in Figure S24.

Transcripts levels are under tighter DNAm control than protein levels

Next, we investigated the role of protein levels as mediators. Assessing the same DNAm-trait pairs
as previously, we performed mediation analyses based on a potential mediator set of 2,838 proteins
in total (INTERVAL pQTL dataset [19]). The estimated MP equalled 15.8% (95% Cl: [11.9%-19.6%)])
across 328 DNAm-trait pairs with at least 1 mediator protein (Figure 2C). Highest MPs were obtained for
cardiovascular traits (mean: 27.8%, 95% CI: [19.9%-35.8%)]) (Figure S6). Given the lower sample size
of the pQTL dataset and the results from the simulation studies, a drop in MP was expected. Not only
the lower sample size, but also the lower number of testable proteins contributed to this decrease. To
compare the difference in MP due to the mediators being transcripts instead of proteins, we repeated the
analysis on the common set of transcripts and their encoded proteins (N = 2,145). We observed a drop
in the adjusted MP from 28.3% (95% Cl: [26.9%-29.8%)], 2,623 DNAm-trait pairs) to 8.15% (95% Cl:
[7.11%-9.19%], 2,111 DNAm-trait pairs) for transcripts and from 1.24% (95%CI: [0.66%-1.83%], 2,380
DNAm-trait pairs) to 0.85% (95%Cl: [0.30%-1.39%], 2,111 DNAm-trait pairs) for proteins (Figure S8). A
key difference in the two mediation analyses was the number of mediators (V,,..q) found to be causally
associated to the DNAm site and subsequently included in the mediation analysis (mean Np,ed transcript
= 0.48 and mean Ny,ed protein = 0.12). Restricting MP calculations to the same DNAm-trait pairs with
at least one transcript and protein mediator, no statistical difference between the two MPs could be
detected (Pgi = 0.28; Figure S9). Besides differences in sample size, a previous pQTL study of larger
sample size (N = 30,931) reported strong differences in the underlying genetic architecture of transcript
and protein levels, with less than a third of pQTLs being also eQTLs [21]. Accordingly, we found that only
333 out of 1,510 transcripts (i.e. those with a corresponding protein product present in the INTERVAL
dataset and having at least 3 independent eQTLs to be used as 1Vs) could explain the levels of their
encoded protein at a nominal significance threshold (Methods; Table S6). Focusing on DNAm-trait pairs
where the top transcript mediator was the same than the top protein mediator (N = 106), the proportion of
protein levels causally linked to their transcript levels increased to 72%. While both mediation analyses
yielded similar results for transcript and protein levels with the same QTL structure, the findings suggest
that overall, the genetic architecture of mQTLs is more similar to the one of eQTLs than to the one of
pQTLs, which translates to a stronger DNAm-trait mediation through transcripts than through protein

levels.
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Determining factors of mediation proportions

We further explored underlying factors driving high MPs through transcript levels (Figure 4A). Wtop de-
creased with increased distances between the DNAm site and the gene transcription start site (TSS) of
the top transcript (p = -0.076, P = 5.2e-4; Figure 4B). Further investigations revealed that this distance
is negatively correlated to the DNAm-to-transcript MR squared effect size, o%,,, (o = -0.13, P = 3.1e-
19; Figure 4C), which in turn is a good predictor for high MPs (p = 0.39, P = 2.5e-75; Figure 4D). The
mediation proportion was the highest for DNAm sites residing in the first exon, followed by those in the
5'UTR, within 200bp of the TSS and finally lowest for those within 1500bp and in the gene body (Figure
S10).

DNAm inhibiting the binding of transcription factors (TFs) and thus repressing gene expression is
often alluded to as the classical mechanism of action for DNAm [45] and might be driving this observa-
tion. However, many other mechanisms have been hypothesized [46] and many might still be unknown
[47]. From the 1,066,307 unique DNAm-to-transcript causal effects assessed, 47,445 were significant
at P < 4.7e-8. Although negative effects had a larger magnitude than positive ones (two-sided t-test: P
= 0.0082) only 53.4% of DNAm—transcript causal effects were negative. Stratifying DNAm sites with
respect to their location on the assessed transcript, we found that DNAm sites situated in the first exon
and nearby the TSS were enriched for negative effects (P = 2.7e-3, 1.2e-5 and 3.8e-4 for 1st exon,
TSS1500 and TSS200, respectively), whereas those in the gene body were enriched for positive ones
(P = 2.2e-10; Table S4). These observations are in line with previous studies that only showed a slight
trend for negative methylation-gene expression correlations [46, 48, 49, 47]. We further tested whether
the MR DNAm-to-transcript causal effects correlated with reported methylation-transcript correlations

[48] and found a strong agreement (p = 0.39, P = 2.6e-18, 471 DNAm-transcript pairs).

Consistent with higher MPs when mediating through multiple transcripts, we found a strong correla-
tion between the number of mediators and the MP (p = 0.39, P = 4.4e-75; Figure 4E). Many of these
mediators were correlated amongst each other, which in theory should be accounted for via the multi-
variable Mendelian randomisation. To ensure that this was the case, we repeated the mediation analysis
with uncorrelated mediators (Rmeq < 0.3; Methods). The mean number of selected mediators dropped
by more than half, from 3.3 to 1.2 (Figure S11), and the MP across all the DNAm-trait pairs decreased
(Wuncorremted = 30.5% (95% CI [28.8%-32.1%)])), while remaining significantly higher than Wtop (Pgift =
6.6e-4). Decreasing the Rpyeq threshold to 0.2 and 0.1 did not significantly decrease I\//IBunco,remed (Pgiss
> 0.05), which stabilized at 29.2% (95% ClI: [27.5%-30.8%] for Rmegq < 0.1 (Figure S11).
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Figure 4: Exposure-to-mediator regulatory strength and number of mediators explaining MPs. A) Summary of
the correlations (R) between MP and DNAm-to-transcript causal MR effects (4%,,; dark green), distance between
the DNAm site and transcription start site (TSS; light green) and number of mediators (V,,,.q; blue). B) Average
I\//II\DIop of DNAm-transcript pairs stratified according to the distance between the DNAm site and the TSS of the top
transcript. All DNAm-trait pairs with at least one mediator were included. C) Average MR causal effects (4%,,) of
DNAm-transcript pairs stratified according to the distance between the DNAm site and the TSS. Unique DNAm-
transcript mediator pairs across all DNAm-trait pairs were included. D) Average top MPs (MPy,) of DNAm-trait
pairs stratified according to DNAm-to-top transcript MR causal effect size 4%,,. All DNAm-trait pairs with at least
one mediator were included. E) Average MPs of DNAm-trait pairs stratified according to the number of mediators.
All DNAm-trait pairs with at least one mediator were included. In every calculation, Pearson correlations and
corresponding p-values (P) between the two respective quantities were calculated on DNAm-trait/DNAm-transcript
pairs prior stratification. Error bars represent standard deviations and the red slope represents the regression fit
between the bin’s positions and heights, and serves merely for visualization purposes.


https://doi.org/10.1101/2021.09.29.462396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462396; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Finally, we assessed the influence of the p-value threshold Pgy to select mediators based on the
exposure-to-mediator causal effect (default Pgy = 0.01 for which N = 2,069 DNAm-trait pairs with at
least 1 mediator were found). With a more lenient threshold (Pgy = 0.05), more DNAm-trait pairs with
mediators emerged (N = 2,189). Conversely, with a more stringent threshold (Pgy = 0.001), less pairs
were detected (N = 1,881). No differences in MPs between the three settings were found (Pgis > 0.05;
Figure S12), but when calculating the adjusted MP (inclusion of all DNAm-trait pairs with potential tran-
script mediators in the cis-region) on a common set of DNAm-trait pairs (N = 2,543, Wadj,pm = 27.6%
(95% Cl: [26.1%-29.2%)])), a significantly higher MP for the more lenient threshold (Wadjyp(m = 32.0%
(95% Cl: [30.4%-33.6%)]); P4t = 1.1e-4), and significantly lower MP for the more stringent threshold
were observed (Wadj,PO(ﬂ = 24.6% (95% Cl: [23.2%-26.1%]; P4 = 4.8e-3; Figure S13). Overall, these
sensitivity analyses showed that the estimated MPs remain robust with respect to correlations within
the selected mediator set, while also suggesting that the Pgy may be threshold-sensitive and mediators

selected at the 0.01 p-value threshold may lead to conservative MP estimates.

Transcript-to-complex trait effects mediated by proteins

Next, we quantified the role of proteins in mediating transcript-to-trait causal effects. First, we identified
3,848 significant transcript-trait pairs (Pt < 5e-5, > 5 IVs; Table S3) across the 50 traits and performed
mediation analyses through the protein encoded by the transcript (if present in the INTERVAL pQTL
dataset [19]), in addition to any other protein in trans (i.e. any protein which is not encoded by the inves-
tigated transcript) causally associated to the transcript (Pem = 1€-3; Figure 5A). The estimated MP for the
1,577 transcript-trait pairs with at least 1 mediator was 5.27% (95%CI: [4.11%-6.43%)]) and significantly
higher than average for cardiovascular traits (Pgif = 8.7e-3; mean = 9.62%, 95% ClI: [6.58%-12.7%;
Figure 5B). A distribution of the number of times transcript-trait pairs could be assessed in a mediation
analysis through proteins is shown in Figure S25. When further restricting the mediation analysis to
only those transcript-trait pairs for which the encoded protein was present, we observed an I\//IFencoded of
5.08% (95% CI: [2.62%-7.53%], 333 transcript-trait pairs) which increased, albeit not significantly, when
additionally considering mediator proteins in trans (Wtrans = 6.89%; 95% ClI: [4.17%-9.61%)]; Figure
S14). As mentioned previously, less than a quarter of the causal MR effects of transcripts on their en-
coded proteins were nominally significant and since we found exposure-mediator effects to be driving
the MP (Figure 4B), we next focused on the 93 transcript-trait pairs for which the encoded protein was
nominally significantly associated to the transcript (Figure S16). We observed a non-significant increase
in the MPencoded 10 13.7% (95% Cl: [4.34%-23.0%]) and in the MPyans to 16.6% (95% Cl: [8.19%-25.1%)).
Stratifying traits by broad categories (e.g. metabolite, protein, physical measurement; Table S1), highest
MPs were achieved for protein outcome traits (e.g. apolipoprotein B, alkaline phosphatase; Figure S15
and S17).
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Figure 5: Proteins mediating transcript-to-trait causal effects. A) All transcript-trait pairs with with at least
one mediating protein (encoded or/and in trans). Pairs are colour-coded by physiological categories as
defined in B) and overall MP in % with 95% Cl is shown. B) MPs by trait category for the same pairs.
Error bars denote the 95% ClI, and the grey vertical line shows the mean MP across transcript-trait pairs.
The number of evaluated transcript-trait pairs in each category is indicated in parentheses. C) MPs
of transcript-trait pairs stratified according to the maximum transcript-to-protein MR causal effect size
within the set of included mediator proteins. D) MPs of transcript-trait pairs stratified according to the
number of mediators. Correlations (R) and corresponding p-values (P) in C) and D) were calculated on
transcript-trait pairs (same ones as in A) and B)) prior to stratification. Error bars represent standard
deviations and the red slope represents the regression fit between the bin’s positions and heights, and
serves merely for visualization purposes.

12


https://doi.org/10.1101/2021.09.29.462396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462396; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

As for the DNAm-trait mediation analysis, we confirmed that strong exposure-mediator effect size
(a%,,) was the major driver of high MPs (Figure 5C). We calculated the correlation between MP and the
maximum causal effect size squared between the transcript and any of its mediator proteins (% 3/ na.)»
yielding p = 0.35 (P = 1.4e-45, Npus = 1,577, mean N,,.q = 2.15). Additionally, we found a signifi-
cant correlation between N,,.q and MP (p = 0.20, P = 3.0e-15, Npais = 1,577). We performed further
sensitivity analyses to assess the influence of the Pgy threshold (default Pgy = 1e-3). Considering all
transcript-trait pairs (including those with no encoded protein), choosing a more lenient threshold (Pgm
= 0.01) resulted in more transcript-trait pairs to be evaluated (Npairs = 2,820), but not in a significant
change in MP (W = 4.08%, 95% ClI: [3.14%-5.03%]; Pg4i > 0.05; Figure S18). On the other hand, a
more stringent threshold (Pem = 1e-4) resulted in fewer transcript-trait pairs (Npairs = 758) and a signif-
icantly higher MP (I\//IB = 10.9%, 95% ClI: [9.02%-12.9%]; P4 = 7.2e-7), as consequence of selecting

transcript-trait pairs with higher o2, (Figure S21).

Finally, we aimed at validating our results using a different protein dataset. While there are publicly
available pQTL datasets of larger sample size, the number of tested proteins in these studies is orders
of magnitude lower (e.g. 71 proteins (N = 6,861) in the Framingham Heart Study [20]; 90 proteins (N
= 30,000) in the SCALLOP consortium [21]). We used pQTL summary statistics of 41 cardiovascu-
lar proteins released by the SCALLOP Consortium [21] which overlapped with our main pQTL dataset
from the INTERVAL Consortium [19], as well as with our main eQTL dataset of the corresponding tran-
scripts (eQTLGen Consortium [18]). In a first step, we tested the agreement of MR causal effects of the
transcripts on their encoded protein between the two protein datasets. Among the 38 tested transcript-
protein pairs (> 1 eQTL), we observed a very strong correlation of causal effect sizes (p = 0.74, P =
9.4e-8) and no difference in their magnitude (two-sided t-test: P > 0.05). Given the larger sample size of
the SCALLOP dataset, standard errors of the effect estimates were on average three times smaller (Fig-
ure S19). Due to the small number of overlap between the proteins and transcripts in the three datasets,
there were only 6 transcript-trait pairs that could be compared in the mediation analysis through en-
coded protein, and for these, there was no significant difference in the direct effects 0p (Figure S20).
Overall, while we could replicate causal effect sizes between the transcript and protein levels, the small
number of available proteins did not allow to reliably quantify the bias in our estimated MP caused by

the comparably small sample size of the pQTL dataset.
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DNAm-to-complex traits mechanisms of action

In addition to providing insights into global patterns governing the mediation between different interme-
diate phenotypic layers and functional traits, our analyses generated plausible hypotheses regarding
specific biological pathways. Recently, the involvement of the anti-oxidant and anti-inflammatory protein
PARK?Y in inflammatory bowel disease (IBD) has been brought to light [50, 51, 52, 53]. While the exact
role of the protein in the disease remains debated, reduced intestinal expression of PARK7 was ob-
served in patients and mouse models for IBD [53]. Moreover, Park7 knockout mice were shown to have
increased levels of pro-colitis bacterial species in their microbiome [54, 52] and experience aggravated
symptoms of experimental-induced colitis [53]. In line with these observations, DNAm of the PARK7
promoter probe cg10385390 (chr1:8'022'505) decreased both PARK?7 transcript (&g, = -0.675, P
= 2.7e-4) and protein (&gam,p = -0.193, P = 2.0e-3) expression (Figure 6A). High transcript (&ary,r =
-0.131, P = 1.7e-7) and protein (&g, p = -0.193, P = 0.31) levels decrease IBD risk, resulting in an
overall increased IBD risk upon DNAm (A = 0.114, P = 8.2e-9). Interestingly, early GWAS identified
the region as a susceptibility locus for IBD, listing TNFRSF9 as the top candidate gene [55, 56], thereby

exemplifying how the integration of multiple omics layers can help to identify further causal genes.

Despite often being associated with decreased expression [45], our data provides examples of
methylation boosting expression. For instance, DNAm of cg13428477 (chr3:122'748’086) increased
PDIA5 expression (aga,r = 0.333, P = 7.3e-11; agym,p = 0.931, P = 7.1e-63), whose levels subse-
quently increased platelet count (&ary,7 = 0.062, P = 0.018; &y, p = 0.058, P = 3.8e-24), so that DNAm
resulted in increased platelet count (97 = 0.056, P = 1.3e-43) (Figure 6B). Association between the
PDIAS locus and platelet count was reported through GWAS [57]. Platelets are small cell fragments pro-
duced by megakaryocytes, which themselves are derived from hematopoietic stem cells. Accordingly,
PDIA5 has a binding site for the hematopoietic stem and progenitor cell TF MEIS1 [58] and is overex-
pressed in megakaryocytes as compared to other blood cell types [59]. Further studies showed that
pdia5 protein knockdown in zebrafish resulted in strongly decreased platelet count [60], matching our
findings and confirming the role of PDIA5S in thrombopoiesis. Additional putative regulatory mechanisms
of DNAm-to-complex traits through transcript and protein levels are shown in Table S8-9, respectively,

and were selected based on |f7| > 0.02 and MP > 0.2.
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Figure 6: Plausible DNAm-transcript/protein-trait regulatory mechanisms between A) PARK7 and irri-
table bowel disease (IBD) and B) PDIA5 and platelet count. The top row displays a schematic of the
mechanism with calculated univariable and multivariable MR effects. The four following rows show the
regional SNP associations (-log1o(p-values)) with the trait (green), encoded protein (purple), transcript
(blue) and DNAm (brown) probe, respectively. Solid diamonds represent DNAm-associated instruments
used in the univariable (for 6 calculation) and multivariable (for 6, calculation) MR analyses. Upwards
and downwards pointing triangles are transcript- and protein-associated SNPs, respectively, that were
additionally included in the MVMR instrument set. Red dashed lines indicate the significance thresh-
olds of the respective SNP associations and the vertical black dashed line represents the DNAm probe
position. Bottom row illustrates the positions and strand direction of the genes in the locus.
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While the aforementioned DNAmM — gene expression — trait mechanisms were supported by both
differential transcript and protein levels, other examples for which protein expression could not be as-
sessed due to lack of pQTL data still reflect highly plausible mechanisms. For instance, we observed
that DNAm of ¢cg09070378 (chr1:161°183°762) decreased asthma risk (éT =-0.031, P =8.1e-11) by re-
ducing FCER1G expression (&g, =-1.0, P = 3.5e-18), a gene listed in the KEGG pathway for asthma
(hsa05310) and whose expression associated with an increased risk for asthma (&ayv,r = 0.019, P =
3e-12) (Figure S21). The FCER1G promoter was found to be hypomethylated in patients with atopic der-
matitis, with DNAm levels correlating negatively with the gene’s expression [61], suggesting a broad role
of FCER1G in allergic disorders. Our data also supports and provides a mechanistical explanation for
the recent finding that reduced IFNAR2 expression causally decreases the odds of severe coronavirus
disease 2019 (COVID-19) [62, 63], which was later supported by the increased susceptibility for se-
vere COVID-19 in individuals with rare loss-of-function mutations in /IFNARZ2 [64]. Indeed, we found that
DNAm of the IFNAR2 promoter probe ¢g13208562 (chr21:34'603'264) decreased the gene’s expression
(&pm,r =-0.446, P = 2.4e-19) (Figure S22). As IFNARZ2 expression protects against hospitalization fol-
lowing COVID-19 infection (aasy.r = -0.090, P = 4.2e-6), DNAm of the locus increased the risk of severe
infection (67 = 0.064, P = 8.5e-13).

Transcript-to-complex traits mechanisms of action

Next, we focused on the results of the transcript-to-complex traits analysis to identify examples of tran-
scriptome changes that mediate their phenotypic effect through the proteome. As a first example, we
focused on MANBA (Figure 7A). After establishing that variants decreasing the gene’s expression colo-
calized with risk variants for chronic kidney disease [65], the deleterious impact of decreased MANBA
expression on renal health was recently confirmed in both humans with common expression-altering
or rare loss-of-function variants, as well as Manba knockout mice [66]. Accordingly, we found that
increased MANBA transcript had a beneficial impact on kidney damage biomarkers, as it decreased
serum urea (éT =-0.066, P = 1.2e-5) and cystatin C (61 = -0.103, P = 1.6e-12), while increasing esti-
mated glomerular filtration rate (€GFR; 6 = 0.052, P = 1.4e-6). Importantly, our data shows that these
effects are mediated (MPyrea = 120% ; MPoystain c = 100% ; MPegrr = 76%) through increased MANBA
protein levels (&g, p = 1.0, P = 5.2e-10), which in turn affected the aforementioned traits (serum urea:
anmy,p =-0.022, P = 3.2e-5; cystatin C: dsy,p =-0.043, P = 1.9e-9; eGFR: Gy, p = 0.019, P = 6.3e-9).
Furthermore, transcript levels of 3 pseudogenes overlapping the first intron of MANBA (RP11-10L12.1
(ENSG00000251288), KRT8P46 (ENSG00000248971); LRRC37A15P (ENSG00000230069)), as well
as levels of the adjacent UBE2D3 antisense RNA RP11-10L12.4 (ENSG00000246560), mediated their
phenotypic impact on alkaline phosphatase, cystatin C, diastolic blood pressure, eGFR, and serum
urea through decreased MANBA protein levels (Table S7). Overall, this suggests a complex gene-to-

phenotype regulation of MANBA influenced by nearby non-coding elements.
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Figure 7: Plausible transcript-protein-trait regulatory mechanisms. A) Left: Impact of differential MANBA
expression on kidney biomarkers through the regulation of its encoded protein. Annotated are the total
effect 61 of the MANBA transcript levels on the respective outcomes, as well as MPs through the en-
coded protein. Right: Zoom on the MANBA region; transcripts below the dashed lines are non-coding
and putative negative regulators of MANBA protein levels. B) Scheme and locus zoom of the effect
of OAS1/OAS2/OAS3 transcript levels on severe COVID-19 disease. Mediation through the encoded
protein could only be tested for OAST.

In contrast, non-coding elements were also found to exert their phenotypic effects through distantly
encoded proteins, as illustrated by the transcript originating from the U6 small nuclear RNA 516 pseu-
dogene ENSG00000223313 on chromosome 15, which decreased insulin-like growth factor 1 levels
(IGF-1; 67 = -0.029, P = 4.0e-7) by decreasing the protein levels of IGF binding protein 3 (IGFBP3;
&pm,p =-0.154, P = 7.6e-4), a well-known regulator of IGF-1’s bioavailability and half-life [67] encoded
on chromosome 7 (aypy,p = 0.115, P = 4.0e-7). Alternatively, we observed several cases of protein-
coding transcripts affecting traits through proteins in trans. For instance, transcript levels of SUOX,
encoding for a mitochondrial sulfite oxidase, increased lymphocyte count (9} = 0.027, P = 4.7e-5) by
positively affecting tyrosylprotein sulfotransferase 2 protein levels (TPST2; &g, p = 0.206, P = 4.0e-4).
In turn, TPST2 increased lymphocyte count (¢rv,p = 0.029, P = 0.02). Both SUOX and TPST2 belong
to the KEGG sulfur metabolism pathway (hsa00920). Sulfite oxidase catalyzes the oxidation of sulfite
to sulfate [68]. In contrast, sulfate is used by PAPSS1/PAPSS2 to generate 3’-phosphoadenosine-5'-
phosphosulfate (PAPS) [69], the main cosubstrate of the sulfotransferase reactions catalyzed by TPST2
[70]. Sulfation of chemokine receptors, which play a critical role in immune function and are widely ex-
pressed on lymphocytes, can modulate a receptor’s affinity and/or selectivity for cognate chemokines,

as well as mediate pathogen entry [71], establishing the importance of sulfur metabolism for lymphocyte
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function. Another immune-related example involves the recently established link between the interferon-
induced antiviral OAS gene cluster (OAS1, OAS2, OAS3) and severe COVID-19 [62, 63]. In line with
reports highlighting the protective effect of a Neandertal haplotype associating with increased OAS1

[72, 73], we found that the protective effect against COVID-19 of increased OAST transcript levels (67

-0.038, P = 6.9e-8) was mediated (I\//II\:> = 28%) by increased levels of the encoded protein (&g, p
0.334, P = 2.0e-23) (Figure 7B). Of note, while protein levels were only available for OAS1, our MR
analysis indicated that adjacent and related transcripts OAS3 (61 = 0.105, P = 6.8e-8) and OAS2 (41
= 0.133, P = 5.2e-3) exerted opposite effects on COVID-19 severity. The opposite effect of OAST and

OAS3 on the outcome reflect previous findings [73] and highlight the complex role of the locus in me-
diating immunity. Further putative regulatory mechanisms of transcript-to-complex traits through protein
levels are shown in Table S10 and were selected based on |f7| > 0.02, MP > 0.1 and Pmyk < 0.05.
Taken together, these examples illustrate how both protein-coding and non-coding transcripts can exert
phenotypic changes through modulation of encoded, as well as trans protein levels, suggesting new

biological mechanisms.

Discussion

We presented a framework to quantify mediation of complex trait-impacting effects through multiple
omics layers, unravelling nuanced patterns in gene and protein expression regulation. First, we as-
sessed the extent to which DNAm-to-trait effects were mediated by cis-transcripts and compared this
proportion to the mediation through cis-proteins. Evaluating 50 complex traits, the overall adjusted
MP (i.e.including DNAm-trait pairs with testable mediators in cis not under DNAm regulation) through
cis-transcripts and cis-proteins was estimated to be 28.3% and 1.2%, respectively. Simulation studies
indicated that the lower sample size of the pQTL dataset (NyqrL ~ 3,300 vs Neqri ~ 30,000) was esti-
mated to result in a relative decrease of 20% in MP, in line with the fact that exposures/mediators with
more precise genetic effect estimates are prioritized by MVMR regression models [43]. Despite the fact
that ~6.8x lower number of proteins present in the pQTL dataset (i.e. fewer testable indirect pathways)
than transcripts in the eQTL data, it was not the main reason for the striking difference in the MPs. We
demonstrated this by repeating the analysis on a common set of 2,145 transcripts and their encoded
proteins, where the adjusted MP through proteins was still ~10x lower than through transcripts (8.15%
vs 0.85%). We suspect that this difference was mainly due to the fact that, on average, proteins were
four times less likely to be causally linked to the investigated DNAm site than transcripts, suggesting
a tighter link between DNAm and transcript expression than between DNAm and protein levels. This
implies a moderate similarity between eQTLs and pQTLs which we confirmed when testing for causal
effects between transcript and encoded protein levels: The fraction of testable transcripts linked to their
respective protein (when available) at a nominal significance threshold was found to be only 22%. While

some of the missing links might be due to the lack of statistical power, it indicates that the transcript to

18


https://doi.org/10.1101/2021.09.29.462396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462396; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

protein regulation is more nuanced than the central dogma of biology would imply, whereby a straight-
forward translation from transcripts to proteins by ribosomes is assumed. As a consequence of these
weak transcript-to-protein effects, the mediation of transcript-to-trait effects through the encoded protein
yielded relatively low MPs (mean = 5.1%). Previous studies reported discrepancies in transcript and
protein abundances with explained variances of protein levels by transcript levels ranging from 40 to
85% [74, 75], as well as in eQTL and pQTL co-analyses where only 12 to 40% of the signals were found
to be shared [19, 21]. Mechanisms explaining why protein abundance cannot be entirely predicted from
transcript levels include protein synthesis delay, transport, degradation, post-transcriptional changes,

but also technical variation attributable to measurement instruments [74, 75].

Noteworthily, MR analyses provide directions of estimated causal effects, and two, rather counter-
intuitive, observations were made: i) 46.6% of significant DNAm-to-transcript effects were of positive
sign (i.e. DNAm increases transcription) and ii) 20% of significant transcript-to-protein effects were of
negative sign (i.e. high transcript levels decrease protein levels). The first observation is in line with pre-
vious genome-wide methylation and gene expression association studies which reported high fractions
of positive correlations (30-35%) [48, 46]. While poorly understood [47], several mechanisms have been
proposed to explain the phenomenon: preferential binding of some transcription factors to methylated
DNA [76, 77], prevention of repressor binding indirectly leading to increased expression through loop-
ing DNA [78, 35], or DNAm in the gene body provoking elongation efficiency and preventing spurious
initiation of transcription [79]. As to the negative transcript-to-protein effects, which were consistent in
the direction when computed with either the INTERVAL or SCALLOP pQTL datasets, literature is more
sparse. While negatively correlating gene products have been reported previously [80, 81], this has, to
the best of our knowledge, not yet been studied in the context of QTL analyses and remains the topic
of future investigations. Finally, MP estimates indicate that DNAm sites typically regulate multiple tran-
scripts in cis. Average MPs of 37% suggest that phenotypic DNAm effects are largely mediated through
pathways other than local gene expression regulation, especially when the DNAm site is located further
away from the TSS of the main transcript mediator. Collectively, these results describe a more diverse
picture of the transcription and translation machinery, challenging the classical views of DNAm solely
reducing gene expression, and this in the TF region, as well as mRNA levels being a good proxy for

protein abundance.

Mapping genetic variants identified in GWAS analyses to biological processes is notoriously difficult
[2]. However, systems genetics approaches that integrate multiple omics datasets as a way of lever-
aging GWAS summary data have proven successful in providing a more complete picture of the path
from genotype to phenotype [82]. Here, we demonstrated that our multi-omics framework was able to

attribute GWAS signals to biological pathways in loci harbouring multiple genes (e.g. PARK7-IBD and
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FCERGT1-asthma). A challenge in identifying causal chains through omics layers is the attenuation in
the genetic association strengths when moving up along layers. In a linear model, the genetic effect
on the phenotype is assumed to be the product of causal effects between the preceding layers and it
was previously shown that the variance explained by the top associated QTL of the first layer decreases
with each successive omics layer [35]. In line with this observation, the biological examples depicted in
Figure 6 visualize the decrease in the genetic associations from the DNAm to the complex trait level.
Importantly, integration of both eQTL and pQTL data represent orthogonal approaches in corroborating
mediators of DNAm-to-trait or transcript-to-trait effects. Current pQTL datasets lack the sample size and
number of proteins to systematically validate regulatory mechanisms found through eQTL integration
(e.g. OAS1/OAS2/0AS3-COVID-19). In the future, we expect larger datasets to become available and
here presented a proof of concept of how protein-level data can either support mechanistic findings
resulting from transcript data or warrant future investigations leading to the discovery of potential new

mechanisms of action, implicating other genes.

Throughout the manuscript, we highlighted multiple putative molecular mechanisms of action sup-
ported by high MPs through intermediate omics layer and strong literature evidence. More examples can
be found in Tables S8-10, including some for which the putative mechanism of action remain strongly
debated. For instance, our analyses implicated a DNAm site (cg15133208: chr4:90'757°351) in the TSS
region of SNCA in Parkinson’s disease (PD) (Figure S23). Many studies have investigated mechanisms
involving DNAm, SNCA and PD, resulting in conflicting results as to the effect directions. Our results
suggest a protective effect of that DNAm site on PD. While supported by studies in the field [83], the
assumed DNAm effect on SNCA expression is different from our estimated MR effect. Both SNCA tran-
script and SNCA protein levels were estimated to be upregulated in the hypermethylated DNA state, with
high SNCA levels calculated to decrease PD risk. It is generally assumed that increased SNCA expres-
sion contribute to PD pathogenesis [84], although blood and brain-specific SNCA expression pattern, as
well as different isoforms, have been reported to correlate differently with PD [85]. A recent study showed
positive correlations between SNCA levels and both PD and the related synucleinopathy of Lewy body
dementia (LBD) in the temporal cortex, but negative and non-significant ones for LBD and PD in blood,
respectively [85]. Another recent GWAS with integrative brain eQTL follow-up analyses indicated that
high levels of SNCA-AS1, which regulates SNCA expression levels, might be protective against LBD
[86], suggesting complex regulatory mechanisms governing the locus. Similarly, mechanisms involv-
ing proteins in trans mediating transcripts-to-trait effects were less straightforward to interpret. Several
examples involved non-coding RNA for which functional information is sparse, complicating literature

validation.
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While our method highlights candidate pathways, several limitations have to be considered. First, like
all MR-inverse variance weighting (IVW) analyses, our MR analyses assumed all genetic variants to be
valid IVs. We applied Steiger filtering to mitigate the inclusion of pleiotropic IVs that violate independence
of the outcome conditional on the exposure and mediators, as well as independence of the mediators
conditional on the exposure in the case of variants associated with both the exposure and mediators
(third MR assumption; Methods [37]). However, the presence of invalid IVs cannot be excluded and
could therefore compromise causal effect estimates [40, 87]. In particular, since selected MR Vs are
all in cis of the investigated molecular trait, they might be based on a single (pleiotropic) haplotype
signal. Conversely, one might argue that the Steiger filter is too stringent if the reverse effect from
the mediator on the exposure is biologically unlikely, so that it excludes Vs potentially important in
accurately estimating causal effect sizes. Second, we select mediators based on their association to
the exposure without taking into account their mediator potential, i.e. whether or not the mediator is
additionally causally linked to the trait. Phrased differently, the selected mediators are simply candidates
and such selection serves as a first filter to remove non-mediators. In line with our simulations, it has
been shown that extremely large number of such mediator candidates that are not true mediators (92
candidates in total with 88 of them being false mediators) can cause MVMR regression models to fail
[43], indicating that our framework is less suitable for large numbers of molecular mediators, unless the
selection threshold Pgy is made more stringent. Third, our mediation model cannot completely exclude
the possibility of reverse effects from the mediator(s) on the exposure. This concern especially applies
when considering DNAm as exposure and cis-transcripts as mediator(s), since differential transcript
levels have been suggested to modulate DNAm levels [35]. We use the largest publicly available mQTL
dataset, however, it misses genetic effect sizes of the entire cis-region, which would be required to test
for reverse or bi-directional effects of transcripts on DNAm. Fourth, with the exception of pQTLs [19],
large-scale trans-QTL datasets are still lacking, prohibiting genome-wide assessment of mediation and
restricting many analyses to cis-mediation. Finally, while molecular mechanisms ought to be tissue-
or even cell type-specific, QTL data used in this study were all derived from whole blood. It is known
that different tissues express different isoforms [88], with many splicing and expression QTLs shown
to differ across tissues [89]. Accordingly, MPs for blood biomarkers were generally higher than those
for diseases, for which blood might not be the most relevant tissue. Alternatively, this differences might
also be due to the fact that indirect pathways, through unmeasured mediators, play a greater role for
diseases than for biomarkers. Once tissue-stratified multi-omics datasets of larger sample size become

available, more accurate, and potentially higher MPs will be obtained in trait-relevant tissues.
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Conclusion

We quantified the causal connectivity between three omics layers - DNAm, transcript and protein abun-
dance - and their importance in shaping complex traits. We examined regulatory effects of DNAm on
gene expression - assessed through both the transcriptome and proteome - which in its complementary
use allowed for robust causal inference between molecular and complex traits. Overall, the results in-
dicated that regulatory mechanisms can be more nuanced and complex than suggested by the central
dogma of biology, leaving many open questions as to alternative transcription and translation processes.
Our integrative omics framework can be extended to other omics-GWAS combinations using the soft-
ware made available (https://github.com/masadler/smrivw), and provide a powerful tool for mapping

GWAS signals to biological pathways and prioritizing functional follow-up experiments.

Methods

Univariable and multivariable Mendelian randomization

Univariable Mendelian randomization (MR) was applied to estimate the total causal effect (67) and mul-
tivariable MR (MVMR) to estimate the direct causal effect (9p) of an exposure E on an outcome Y. The
mediation proportion (MP) was defined as 1 — 6 /67. Under the MR assumptions, genetic variants G
used as instrumental variables (IVs) must be i) associated with E, ii) independent of any confounder of
the E — Y relationship, iii) conditionally independent of Y given E. Independent IVs (r? < 0.05) associ-
ated with the molecular exposure (P < 1e-6) and located in cis (< 1 Mb) allowed the estimation of 61
using an inverse-variance weighted (IVW) method assuming equal weights given the standardization of

the data and accounting for correlated instruments [90]:

Or = (BEC™'Br) ' BEC ' By (1)

where B and By are vectors of genetic effect sizes obtained from summary statistics for E and V,
respectively. C is the linkage disequilibrium (LD) matrix with pairwise correlations between IVs estimated
from the UK10K reference panel [91]. Prior to the causal effect calculation, IVs were filtered to fulfill the

MR Steiger criterion of no larger Y than E genetic effects [37] and were thus required to pass a threshold
185 |18y, |
Vvar(Be;)+var(By;)
IVs not passing this threshold are prone to violating the third MR assumption of horizontal pleiotropy

trew < with t,., set at -2, equivalent to a one sided test p-value threshold of 0.023.
since they are more directly linked to the outcome. As a result MR estimates including such IVs would
potentially mix up forward and reverse causal effects. The standard error (SE) of 6 can be approximated
by the Delta method [92]:

SE(0r) = \/(B,C~Bp) ' B,C~1/25C~1/2f(8},C Bp) @)
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where X is a diagonal matrix with each diagonal element i equalling the maximum of the regression

variance s? and var(By;) [93].

Through the inclusion of mediators M, and their associated cis genetic variants (> < 0.05, P <
1e-6), fp can be estimated analogously to 6 using a multivariable regression model [41] as the first
element of 6p:
6p = (B'C'B)"'B'C '8y (3)

where B is a matrix with £ + 1 columns containing the effect sizes of the IVs on the exposure in the
first column and on each mediator in the subsequent columns. The remaining elements of 8 represent
the direct effects of the mediators on the outcome and were referred to as aasv,x. In the estimation
of MPs, we were not interested in ary i, values per se, but we took these effect sizes into account for
inferring molecular mechanisms. If the number of mediator-associated instruments was sufficient (> 3)
to conduct a univariable MR from the mediator on the outcome, we estimated a sy, from this analysis
instead, since computed on a single regressor, narrower Cls are obtained.

This MVMR model does not allow for the presence of a causal effect from the mediators on the
outcome via the exposure, and we therefore conducted several Steiger filtering steps on the IVs. In
addition to meeting the Steiger criterion described above, exposure-associated 1Vs were required to
pass that same threshold ¢,..,, of no larger mediator than exposure effects for each of the mediators My.
Similarly, to mitigate reverse causal effects from the outcome on the mediators, mediator-associated
instruments with larger Y than M effects were removed if not passing the ¢,..,, threshold. The SE of 6p

was derived analogously to the univariable form as shown in [29].

Omics and trait summary statistics

We used mQTL data from the GoDMC consortium (N = 32,851) [16], which contains > 170,000 whole
blood DNAm sites with at least one significant cis-mQTL (P < 1e-6, < 1 Mb from the DNAm site, N
> 5,000). Cis-eQTL data were taken from the eQTLGen consortium (N = 31,684) [18] which includes
cis-eQTLs (< 1 Mb from gene center, 2-cohort filter) for 19,250 transcripts (16,934 with at least one
significant cis-eQTL at FDR < 0.05 corresponding to P < 1.8e-05). Cis- and trans-pQTL data were from
the INTERVAL study (N = 3,301) [19]. SomaLogic aptamers (Nsomamers = 3,283) quantified the levels
of 2,977 proteins and complexes with a UniProt ID. After removing protein complexes (Nsomamers = 42),
sex chromosome encoded proteins (Nsomamers = 113), and UniProt IDs that could not be mapped to an
EnsemblID (Nsomamers = 6), 2,838 proteins remained of which 696 had at least one significant cis-pQTL
(P < 1e-6, < 1 Mb from the protein-encoding gene center, N > 2,000). If two SOMAmers mapped to the
same protein, the one with the strongest transcript-to-protein causal MR effect was retained (see omics-
to-omics MR analysis). If the transcript was not available in the eQTLGen dataset or did not have any

significant Vs, the SOMAmer with the highest number of significant cis-pQTLs (or trans-pQTLs if no cis-
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pQTLs were present) was chosen. Mapping from UniProt to Ensembl identifiers was done through the
UniProt REST API [94] and genomic coordinates were retrieved from the Ensembl REST API (GRCh37
build) [95]. Exact mapping of SOMAmer-UniProt-Ensembl identifiers is provided in Table S5. A total of
2,145 transcript-encoded protein pairs were present in both the eQTL and pQTL datasets.

GWAS summary statistics for outcome traits came from the largest (Nayerage > 320,000), predomi-

nantly European-descent, publicly available studies, as listed in Table S1.

Prior to each mediation analysis, exposure and mediator omics, GWAS and the reference panel
data were harmonized. The analysis was conducted on autosomal chromosomes, and palindromic
single nucleotide variants (SNPs), as well as SNPs with an allele frequency difference > 0.05 between
any pairs of datasets were removed. If allele frequencies were not reported by the GWAS summary
statistics, allele frequencies from the UK Biobank were used. Z-scores of summary statistics (molecular
and outcome GWAS) were standardized by the square root of the sample size to be on the same SD

scale.

DNAm-to-trait mediation analysis

First, univariable MRs were conducted to estimate the total causal effect 6, of the DNAm sites on
each trait, assessing ~50,000 DNAm probes with > 5 independent mQTLs after harmonization of the
datasets (r? < 0.05). DNAm probes significantly associated to the outcome (Pt < 0.05/50000 = 1e-6)
were clumped based on the p-value of the total causal effect 61, Pt (distance-pruning at 1 Mb), to be

independent of each other.

Second, MVMR analyses were performed to estimate the direct effect 6. Potential transcript media-
tors in cis of the DNAm exposure probe (+ 500kb) were extracted and causal effects agas,,. of the DNAm
probe on these transcripts were assessed by univariable MR. Transcripts satisfying Pemx < Pem (default
Pem = 0.01, with 0.05 and 1e-3 being tested as well) were included as mediators, as well as their associ-
ated SNPs as additional instruments. Steiger filtering was applied as described previously and IVs were
clumped based on a rank score determined as follows: 1) for each mediator, 1Vs were ranked according
to their association p-value to the mediator and assigned an integer score, 2) for each |V, a final score
was calculated as the sum of its individual mediator scores. Following the establishment of the B effect
size matrix, 6, was calculated, as well as ém(,p which was estimated from a MVMR model that includes
a single mediator, namely the transcript with the lowest Pgy k. If no transcript causally associated to
the DNAm probe, mediation is not detectable, hence 6, was set to 67 for that probe (inclusion of such
probes in MP calculation was termed “adjusted mediation proportion”). As the Steiger filter removed

exposure-associated instruments with larger mediator than exposure effects (see “Univariable and mul-
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tivariable Mendelian randomization”), the number of initial exposure-associated instruments (mg > 5)
could decrease. Therefore, to avoid scenarios of reverse causality where the mediator exerts an effect

on the outcome through the exposure, we required > 3 exposure-associated IVs.

We additionally conducted mediation analyses on independent mediators. To this end, selected me-
diators (those that passed Pgy) were clumped at various correlation thresholds Rpyeq (default Ryeq <
0.3, with 0.2 and 0.1 being tested as well). Correlations among the mediators were calculated based on
QTL effect sizes of independent exposure and mediators IVs and priority was given to the mediator with

the lowest PEM,k-

The mediation proportion (MP) was calculated by regressing 6, on 61 to estimate for the unmediated
proportion, 4, which after correcting for regression dilution bias (Equation 4):

Neor = 7 — (4)
1 _ Xse(r)
0%
yielded MP=1- Yeor for a defined set of DNAm-trait pairs. MVMR analyses were repeated on the
selected DNAm-trait pairs through proteins in cis following the same mediator and IV filtering steps as

described above.

Transcript-to-trait mediation analysis

MPs for transcript-to-trait mediation analyses were calculated similarly to DNAm-to-trait MPs. Briefly, we
first computed total causal effects 6, of transcripts on traits for ~ 11,000 transcripts with > 5 independent
(r? < 0.05) and significant eQTLs (P < 1e-6), ~ 1,200 of which had an encoded protein in the pQTL
dataset. For each trait, significant transcripts (Pt < 0.05/1,000 = 5e-5) were selected. Second, MVMR
analyses were conducted, where for each transcript, mediators were defined as i) the encoded protein or
ii) the encoded protein plus any other protein in trans among a set of 696 proteins with > 1 significant (P
< 1e-6) pQTL that satisfied Pem i < Pem (default Pey = 1e-3, with 1e-2 and 1e-4 being tested as well). If
more than 10 proteins satisfied the condition, the ten most strongly associated were retained. Associated
pQTLs were included as IVs and following Steiger filtering, instruments were pruned as described in
the DNAm-to-trait mediation analysis section. Effect sizes of mediator-associated Vs that were not
significant (P > 1e-6) for a given mediator were shrunk to 0 [96]. Direct effects 6, were calculated
using encoded proteins (if available) as mediators in addition to selected trans proteins. Additionally,
direct effects were calculated using only encoded proteins as mediators. Finally, MPs were calculated
by aggregating all transcript-trait pairs as specified in each sub-analysis, and regressing 6, on 67 while

accounting for regression dilution bias (Equation 4).
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Omics-to-omics MR analysis

MR causal effects between two molecular traits were calculated following the same procedure than in
the univariable MR to calculate total effects 6. First, independent (2 < 0.05) and significant (P < 1e-6)
exposure 1Vs were selected and IVs not passing the aforementioned Steiger filter were discarded. MR

causal effects were then computed based on Equation 1.

DNAm-to-transcript MR analysis

MR effects between DNAm sites and transcripts in cis (+ 500kb) with > 3 exposure 1Vs were calculated.
Pearson correlation coefficient with previously reported DNAm-transcript correlations [48] was calculated
on common DNAm-transcript pairs. DNAm probe annotations with respect to the assessed transcript
were from the llluminaHumanMethylation450kanno.iimn12.hg19 R package [97].

Transcript-to-encoded-protein MR analysis

On the common transcript-encoded protein pairs, causal effects were calculated for transcripts with >
3 independent eQTLs (r2 < 0.05). When comparing causal effects obtained from the INTERVAL and
SCALLOP pQTL dataset, we additionally included transcripts with a single eQTL.

Simulation studies

We conducted simulation studies to assess the robustness of our model and to identify sources of bias
in the estimated MP. Two simulation settings were set up: one replicating the DNAm-to-trait via tran-
scripts in cis mediation analysis and one replicating the transcript-to-trait via proteins in trans mediation
analysis. Both scenarios were simulated under the same model, but with different parameter settings
(Figure S1, Table S2).

We considered an exposure with heritability 22, and m  independent IVs. Effect sizes 37 for mp IVs
were drawn from a normal distribution 8Z ~ N(0,/h%/mg) and rescaled to total h%. N,,.q potential
mediators were simulated, among which Ny..q ., Were contributing to the indirect effect 6,,. Each
mediator £ associated with my, IVs with direct effects ﬁé‘fﬁecm ~ N0, \/ 13 gireer.x/ M) rescaled to
W31 airect i+ the direct heritability of the mediator that does not take into account the additional heritability
coming through the exposure. Direct heritabilities were sampled from a uniform distribution h3; ;,.cc; . ~
U(h31 10w» Parnign)- Causal effects of the exposure on the mediator (azar,x) and of the mediator on the
outcome (aary,x) for Noed,sig Mediators were drawn from a bivariate normal distribution a gk, ary i ~

N (0, X) with 3 the covariance matrix:
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5 var(apnr) p- \/var(ozEM) -var(apy)

p - var(apwm) - var(any) var(ary )

where p is the correlation between agas 1 and aasy,,. For the remaining Np,eq - Nied,sig Mediators,
ag .k and ayy,, causal effects were set to zero. The vector of effect sizes 3+ of size mg + Nyea - mas

for each mediator k& was constructed to have effect sizes equalling 37 - a g i for mp exposure SNPs

My,
direct,i

and effect sizes equalling g for mj,; mediator-associated SNPs. The effect sizes of remaining IVs
associated to mediators i # k were set to zero. Likewise, effect sizes of the N,,.q - mas IVs on the

exposure in the 3% vector were set to zero.

The indirect effect 0,,, direct effect 6 and total effect 6 were calculated as:

1

Op = ZCYEM,k “amyk 3 Op = eM(W —-1) ; Or=0p+6um
%

These quantities allowed to design the outcome effect size vector 3Y :

BY =60p-BF + ZaMy,k - BMr
%

For each scenario, we simulated 300 data sets to each time get 3%, 3M* and 3¥. Normally dis-
tributed noise, as a function of the sample size N, £ ~ N(0,1/Ng), e ~ N(0,1/Ny) and € ~
N(0,1/Ny) was added to each simulated vector. To approximate our real data, exposure effect sizes of
SNPs serving as mediator instruments were set to zero again. We then estimated for each model b
and 6, by including mediators that satisfied Pgy (p-value of the causal effect from the exposure on the
mediator). Causal effects 0p were regressed on 7 to estimate the coefficient 4 which after accounting

for regression dilution (Equation 4) allowed to obtain the estimated MP.

Comparing mediation proportions

To test the statistical significance between MPs estimated on two different sets of exposure-trait pairs
(e.g. MP of a given physiological category vs all categories combined) or on the same exposure-trait
pairs, but with different parameter settings (e.g. changing Pgy), we make use of 4 and its corresponding
standard error se(4) obtained from regressing 6, on 61 (both of which being corrected for regression
dilution (Equation 4)) to yield 4., and se(%..-). We then perform a two-sided z-test based on the

following test statistic:

’A)/cor 1= ’?cor 2
) ) ~ /\/‘(0’ 1) (5)
\/38('3/607‘,1)2 + 56(&00732)2

A significant difference between MPs was claimed if the two-sided p-value was below 0.05.
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Availability of data and materials

QTL datasets can be downloaded at the following websites: mQTLs (http://mqtldb.godmc.org.uk/
downloads), eQTLs (https://www.eqtlgen.org/cis-eqtls.html), pQTLs (http://www.phpc.cam.ac.
uk/ceu/proteins/. The list of GWAS summary statistics used is in Table S1, all of which are all from

the public domain.

Software to conduct univariable MR-IVW (molecular trait — outcome, molecular trait 1 — molecular
trait 2) and multivariable MR-IVW (molecular trait 1 — molecular trait 2 — outcome) can be found at
https://github.com/masadler/smrivw. Source code (C++, released under GPL v3 license) and exe-
cutable file (for Linux platforms, released under MIT license) are provided which rely on functionalities
and the data management architecture of the SMR software (https://cnsgenomics.com/software/smr
[35]). The provided documentation hosted on the github repository guides users in reproducing the me-
diation results and conducting univariable and multivariable MR on their own combinations of QTL and
GWAS datasets.
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