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Abstract

Background: High-dimensional omics datasets provide valuable resources to determine the causal

role of molecular traits in mediating the path from genotype to phenotype. Making use of quantitative

trait loci (QTL) and genome-wide association studies (GWASs) summary statistics, we developed a

multivariable Mendelian randomization (MVMR) framework to quantify the connectivity between three

omics layers (DNA methylome (DNAm), transcriptome and proteome) and their cascading causal im-

pact on complex traits and diseases.

Results: Evaluating 50 complex traits, we found that on average 37.8% (95% CI: [36.0%-39.5%]) of

DNAm-to-trait effects were mediated through transcripts in the cis-region, while only 15.8% (95% CI:

[11.9%-19.6%]) are mediated through proteins in cis. DNAm sites typically regulate multiple transcripts,

and while found to predominantly decrease gene expression, this was only the case for 53.4% across

≈ 47,000 significant DNAm-transcript pairs. The average mediation proportion for transcript-to-trait

effects through proteins (encoded for by the assessed transcript or located in trans) was estimated to

be 5.27% (95%CI: [4.11%-6.43%]). Notable differences in the transcript and protein QTL architectures

were detected with only 22% of protein levels being causally driven by their corresponding transcript

levels. Several regulatory mechanisms were hypothesized including an example where cg10385390

(chr1:8’022’505) increases the risk of irritable bowel disease by reducing PARK7 transcript and protein

expression.

Conclusions: The proposed integrative framework identified putative causal chains through omics

layers providing a powerful tool to map GWAS signals. Quantification of causal effects between suc-

cessive layers indicated that molecular mechanisms can be more complex than what the central dogma

of biology would suggest.

Keywords: multi-omics, multivariable Mendelian randomization, omics QTL, GWAS, complex traits,

molecular mechanisms, bioinformatics
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Introduction

In the past decade, genome-wide association studies (GWASs) have identified thousands of genetic

variants associated to complex traits [1], however mapping these variants to molecular processes and

pathways still remains challenging [2]. A first step towards interpreting GWAS signals is to map trait-

associated single nucleotide polymorphisms (SNPs) to genes. Naive approaches based on physical

distance attribute SNPs to their closest gene [3] and many of them additionally take into account the

linkage disequilibrium (LD) structure and GWAS association strengths (i.e. p-values) to compute gene

scores [4, 5]. In a second step, scores from several genes can be combined and mapped to biological

pathways by incorporating knowledge from external databases such as KEGG [6], Gene Ontology [7],

WikiPathways [8], Reactome [9], or MSigDB [10], and making use of pathway enrichment analysis tools

[5, 11, 12].

GWAS signals of common diseases predominantly fall into the non-coding genome [13] and both

their enrichment in regulatory elements (e.g. quantitative trait loci (QTL) [13, 14]), as well as advances

in omics technology [15], has motivated the establishment of large-scale consortia providing publicly

available QTL datasets for molecular phenotypes such as DNA methylation (DNAm) [16], as well as

transcript [17, 18], protein [19, 20, 21] or metabolite [22, 23] levels. Consequently, a next step in inter-

preting GWAS findings has been to integrate this new type of data, allowing to find diverse mediators

of SNP-trait associations in a high-throughput, data-driven fashion. Integrative statistical methods com-

bining GWAS and omics QTL summary data include colocalization tests [24, 25], summary versions

of transcriptome-wide association studies (TWAS) [26, 27] and Mendelian randomization (MR) studies

[28, 29]. Their application to a wide variety of GWAS datasets has resulted in the identification of many

putative molecular trait-disease associations confirming known and highlighting potential new molecu-

lar mechanisms [30]. Colocalization methods identify shared QTL and GWAS signals, and while this

might indicate causality between the molecular and GWAS trait, shared signals can also arise due to

reverse causality (i.e. causal effect of the GWAS trait on the molecular trait [31]) or horizontal pleiotropy

(i.e. the identified shared genetic variant drives the molecular and trait perturbation independently). In

comparison, MR studies, which are conceptually similar to TWAS, that use multiple genetic variants as

instrumental variables (IVs) are less prone to reverse causality and artefacts arising from LD patterns

[32] - although horizontal pleiotropy can never be ruled out entirely. An important advantage of MR

methods is that they allow the detection and elimination of pleiotropic markers. In addition, MR analyses

allow the quantification - direction and magnitude - of the causal effect of the omic on the outcome trait.
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With the advent of QTL datasets with increased sample sizes [16, 18], opportunities to integrate

GWAS data with multiple molecular traits are no longer hampered by low statistical power. Previous

efforts integrating multiple QTL omics data either adopted colocalization strategies [33, 34] or com-

bined pairwise MR associations (two-step MR) [35, 36] to predict molecular mechanisms of the following

scheme: omics trait 1 → omics trait 2 → outcome trait. While these approaches provide evidence for

regulatory pathways, ascertaining their robustness can be difficult, since often only a single causal vari-

ant underlying these multiple associations was assessed [33, 35, 36]. As a consequence, the control

over horizontal pleiotropy remained limited, although it was usually mitigated by the HEIDI (heterogene-

ity in dependent instruments) test statistic [28]. Furthermore, combining pairwise associations can lack

the ability of inferring directionality between the different traits involved, an issue that can be identified by

comparing the magnitude of QTL and GWAS effects [37]. Overall, while current integration methods test

genetic downstream effects through omics traits, they often only accommodate the testing of a single

molecular mediator.

Multivariable MR (MVMR) approaches have been proposed to identify multiple mediators of exposure-

outcome relationships [38, 39]. These approaches enable the dissection of the total causal effect of an

exposure on an outcome into a direct and indirect effect measured via mediators. Similar to MR, the

use of genetic instruments allows for robust causal inference and MVMR has proven as an unbiased

approach for mediation analyses, even in the presence of confounders [38, 39]. Hence, in addition to

identifying causal effects through multiple layers, MVMR allows the quantification of mediation effects.

Although not yet widely implemented on high-dimensional omics data, they provide great opportunities

in the study of molecular mediation [40].

Here, we proposed a three-sample MVMR (3S-MVMR) framework to quantify the role of molecular

mediators (omics trait 2) on a molecular exposure (omics trait 1) - complex trait relationship (Figure 1).

We integrated methylomic, transcriptomic and proteomic QTL (mQTL, eQTL and pQTL, respectively)

with GWAS summary data of 50 clinically relevant traits to perform mediation analyses and to estimate

global mediation proportions (MPs). Three different combinations of exposure-mediator molecular traits

were analysed: DNAm regulating transcripts in cis, DNAm regulating proteins in cis, and transcripts

regulating their encoded protein in addition to proteins in trans. We performed simulation studies to

estimate the bias of the defined MP under various parameter settings. In addition to quantifying the

regulatory connectivity between each of these molecular layers, we investigated underlying factors driv-

ing high MPs, and hypothesized several mechanistic pathways between DNAm, gene expression and

complex traits.
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Figure 1: Overview of the MVMR design to quantify mediation of complex traits through DNAm, tran-

scripts and proteins. A) General MVMR model: genetic instruments (SNPs) are selected to be directly

associated (dashed arrow) with either the exposure (omics trait 1) or any mediator k (omics trait 2). The

total effect θT (dotted arrow) of the exposure on the outcome (complex trait) is estimated in a univariable

MR analysis based on exposure-associated SNPs only. The direct effect θD is estimated in a MVMR

analysis on all valid instruments. The mediation effect θM results from the difference between θT and

θD, and allows to calculate the mediation proportion (MP). The genetic effect sizes β on the exposure,

mediator and outcome come from m/e/pQTL and GWAS summary statistics, respectively. B) DNAm-

to-complex trait effects were mediated once through transcripts in cis and once through proteins in cis.

C) Transcript-to-complex trait effects were mediated through the protein the transcript is encoding for

(encoded protein; if available in the dataset), as well as through proteins in trans. Except for the en-

coded protein, mediators were required to be causally associated to the exposure in both DNAm- and

transcript-exposure settings.
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Results

Overview of the method

We performed univariable and multivariable MR to estimate total and direct effects, θ̂T and θ̂D, respec-

tively, of molecular exposures on 50 outcomes through various molecular mediators (Figure 1; Equation

1 and 3). MP estimates were then calculated as the ratio of the indirect effect through the molecular

mediators to the total effect of the exposure on the outcome trait [41] and computed only for exposure-

outcome pairs with significant Bonferroni-corrected θ̂T effects, grouped by trait, trait category and all

pairs combined. We further filtered out exposure-outcome pairs whose exposures have no significant

causal effect on any potential mediator as the link between those pairs cannot be mediated. For com-

pleteness, however, we also present results for the scenario when the last filtering step is omitted.

While weak genetic instruments in univariable MR analyses can introduce a bias towards the null

[42], it has been shown that this bias can be in any direction in MVMR studies [43]. Both the sample

size and the choice of instruments and mediators can contribute to biases in various directions [43],

leading to under- or over-estimations of the MP. To quantify this bias and assess the sensitivity and

robustness of estimated M̂Ps, we conducted simulation studies mimicking the settings that emerge in

real data applications for either DNAm or transcript levels as exposure (Methods) (Figure S1).

Simulation results

Simulations showed that the bias in the estimated MPs (M̂P) is minimal for the settings most relevant for

real data we explored (Figures S2-3; Table S2; Methods). A determining factor in accurately estimating

MPs was the sample size of the mediator QTL effects. Low sample sizes resulted in significant underes-

timations of the MP, with sample sizes of 3,000 compared to 30,000 resulting in a 20% relative decrease

(6% in absolute values) of the estimated M̂P in the DNAm-exposure simulation settings (Figure 2A). The

reason for this significant underestimation was the omission of relevant mediators with 0.45/3 (15%) be-

ing missed at a sample size of 3,000 in the DNAm-exposure simulation settings (Figure 2B). We further

tested the robustness of the M̂P with respect to the number of included mediators by varying the media-

tor selection threshold PEM (Methods). At more stringent threshold, relevant mediators were more likely

to be missed resulting in an underestimation of the M̂P (Figure S4). Importantly, including irrelevant

mediators at more lenient thresholds did not bias the M̂P, although a critical point was reached upon

the inclusion of > 10 irrelevant mediators where the estimated M̂P started to become underestimated in

the transcript-exposure setting (Figure S4). The used transcript and DNAm QTL datasets provide SNP

effect sizes in cis of the assessed transcript and probe, respectively, and were primarily restricted to

significant mQTLs for the latter. Thus, SNP-exposure effects for SNPs serving as mediator instruments

are often missed and set to zero. However, our simulation studies, which mimicked this scenario by
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Figure 2: Simulation results in DNAm- (orange) and transcript- (blue) exposure settings to assess the

impact of the mediator sample size on the A) estimated M̂P and B) number of selected mediators. For

a given mediator sample size, 300 exposure-outcome pairs were simulated on which an M̂P and 95%

CI (error bars) were estimated. The true MP of the model was 0.3 and 0.15, and the true number of

relevant mediators was 3 and 2 in the DNAm-exposure and transcript-exposure setting, respectively, as

indicated by the solid horizontal lines.

setting non-significant effects to zero (Methods), showed that this did not induce any bias.

DNAm-to-complex trait effects mediated by gene expression in cis

Across 50 traits (Table S1), we evaluated the mediation of 2,069 DNAm-trait causal pairs by transcripts

in cis. The M̂P for each of the 41 traits influenced by at least 10 DNAm probes ranged from 18.0

to 78.0% (mean: 36.9%, 95% CI: [13.5%-60.3%]) (Figure 3A). Regressing θ̂D against θ̂T for all pairs

combined and accounting for regression dilution bias (Equation 4) yielded an M̂P of 37.8% (95% CI:

[36.0%-39.5%]) (Figure 3B). Grouping the traits into 10 physiological categories (Table S1) showed that

the M̂P was highest for hepatic biomarkers (mean: 46.6%, 95%CI: [41.5%-51.7%]), followed by renal

biomarkers (mean: 43.5%, 95%CI: [37.5%-49.5%]). In contrast, adiposity-related and hormonal traits

exhibited the lowest M̂P (Figure 3B, Figure S5).

The average number of mediator transcripts was 3.3 per methylation-trait pair, indicating that the

impact of methylation is not mediated by a single transcript. To further explore this observation, we

assessed the extent to which DNAm→trait effects were mediated by the single most significantly DNAm-

associated transcript (“top” transcript; Methods), as opposed to all transcripts in cis. This resulted in an

M̂Ptop of 26.0% (range: [13.0%-46.8%]) averaged across the 41 traits, and an M̂Ptop of 26.6% (95% CI:
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[25.1%-28.1%]) when aggregating the 2,069 DNAm-trait pairs. This significant drop in the M̂P (Pdiff <

5e-21) corroborates our initial hypothesis that DNAm sites regulate the expression of multiple transcripts

in the cis region.

Figure 3: M̂Ps for transcripts and proteins in cis mediating DNAm-to-trait effects. A) M̂Ps by trait in the

DNAm-to-trait via transcripts in cis analysis. Error bars denote the 95% CI, and the grey vertical bar

shows the mean M̂P across the traits. Only traits with ≥ 10 DNAm-trait pairs are displayed (41 traits

with the exact number of evaluated pairs indicated in parentheses), colour-coded by their physiological

category as defined in the legends of B) and C). B) All DNAm-trait pairs with traits being grouped

into 10 physiological categories. The global M̂P in % with 95% CI is shown in the plotting area and

individual category M̂Ps in the legend. C) Same analysis as in B), but with mediators being proteins in

cis. Category M̂Ps not significantly different from zero (n.s.) are written in grey.

Including DNAm-trait pairs with testable transcripts in the cis region, but not causally linked to the

assessed DNAm site (2,623 DNAm-trait pairs, Methods: adjusted MP calculation; Table S3), decreased

the overall M̂P to 28.3% (95% CI: [26.9%-29.8%]) (Figure S7). While it may seem to be a more objective

measure of the importance of the transcriptome in mediating DNAm-to-phenotype effects, it is overly

conservative since the set of testable transcript mediators (N = 19,250 [18]) is a magnitude lower than

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462396
http://creativecommons.org/licenses/by-nc-nd/4.0/


that of the whole transcriptome [44]. A distribution of the number of times no mediation analysis could be

conducted due to the absence of (causally associated) transcripts in the region or insufficient (exposure-

associated) IVs is shown in Figure S24.

Transcripts levels are under tighter DNAm control than protein levels

Next, we investigated the role of protein levels as mediators. Assessing the same DNAm-trait pairs

as previously, we performed mediation analyses based on a potential mediator set of 2,838 proteins

in total (INTERVAL pQTL dataset [19]). The estimated M̂P equalled 15.8% (95% CI: [11.9%-19.6%])

across 328 DNAm-trait pairs with at least 1 mediator protein (Figure 2C). Highest M̂Ps were obtained for

cardiovascular traits (mean: 27.8%, 95% CI: [19.9%-35.8%]) (Figure S6). Given the lower sample size

of the pQTL dataset and the results from the simulation studies, a drop in MP was expected. Not only

the lower sample size, but also the lower number of testable proteins contributed to this decrease. To

compare the difference in MP due to the mediators being transcripts instead of proteins, we repeated the

analysis on the common set of transcripts and their encoded proteins (N = 2,145). We observed a drop

in the adjusted M̂P from 28.3% (95% CI: [26.9%-29.8%], 2,623 DNAm-trait pairs) to 8.15% (95% CI:

[7.11%-9.19%], 2,111 DNAm-trait pairs) for transcripts and from 1.24% (95%CI: [0.66%-1.83%], 2,380

DNAm-trait pairs) to 0.85% (95%CI: [0.30%-1.39%], 2,111 DNAm-trait pairs) for proteins (Figure S8). A

key difference in the two mediation analyses was the number of mediators (Nmed) found to be causally

associated to the DNAm site and subsequently included in the mediation analysis (mean Nmed,transcript

= 0.48 and mean Nmed,protein = 0.12). Restricting MP calculations to the same DNAm-trait pairs with

at least one transcript and protein mediator, no statistical difference between the two MPs could be

detected (Pdiff = 0.28; Figure S9). Besides differences in sample size, a previous pQTL study of larger

sample size (N = 30,931) reported strong differences in the underlying genetic architecture of transcript

and protein levels, with less than a third of pQTLs being also eQTLs [21]. Accordingly, we found that only

333 out of 1,510 transcripts (i.e. those with a corresponding protein product present in the INTERVAL

dataset and having at least 3 independent eQTLs to be used as IVs) could explain the levels of their

encoded protein at a nominal significance threshold (Methods; Table S6). Focusing on DNAm-trait pairs

where the top transcript mediator was the same than the top protein mediator (N = 106), the proportion of

protein levels causally linked to their transcript levels increased to 72%. While both mediation analyses

yielded similar results for transcript and protein levels with the same QTL structure, the findings suggest

that overall, the genetic architecture of mQTLs is more similar to the one of eQTLs than to the one of

pQTLs, which translates to a stronger DNAm-trait mediation through transcripts than through protein

levels.
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Determining factors of mediation proportions

We further explored underlying factors driving high MPs through transcript levels (Figure 4A). M̂Ptop de-

creased with increased distances between the DNAm site and the gene transcription start site (TSS) of

the top transcript (ρ = -0.076, P = 5.2e-4; Figure 4B). Further investigations revealed that this distance

is negatively correlated to the DNAm-to-transcript MR squared effect size, α2
EM , (ρ = -0.13, P = 3.1e-

19; Figure 4C), which in turn is a good predictor for high MPs (ρ = 0.39, P = 2.5e-75; Figure 4D). The

mediation proportion was the highest for DNAm sites residing in the first exon, followed by those in the

5’UTR, within 200bp of the TSS and finally lowest for those within 1500bp and in the gene body (Figure

S10).

DNAm inhibiting the binding of transcription factors (TFs) and thus repressing gene expression is

often alluded to as the classical mechanism of action for DNAm [45] and might be driving this observa-

tion. However, many other mechanisms have been hypothesized [46] and many might still be unknown

[47]. From the 1,066,307 unique DNAm-to-transcript causal effects assessed, 47,445 were significant

at P < 4.7e-8. Although negative effects had a larger magnitude than positive ones (two-sided t-test: P

= 0.0082) only 53.4% of DNAm→transcript causal effects were negative. Stratifying DNAm sites with

respect to their location on the assessed transcript, we found that DNAm sites situated in the first exon

and nearby the TSS were enriched for negative effects (P = 2.7e-3, 1.2e-5 and 3.8e-4 for 1st exon,

TSS1500 and TSS200, respectively), whereas those in the gene body were enriched for positive ones

(P = 2.2e-10; Table S4). These observations are in line with previous studies that only showed a slight

trend for negative methylation-gene expression correlations [46, 48, 49, 47]. We further tested whether

the MR DNAm-to-transcript causal effects correlated with reported methylation-transcript correlations

[48] and found a strong agreement (ρ = 0.39, P = 2.6e-18, 471 DNAm-transcript pairs).

Consistent with higher MPs when mediating through multiple transcripts, we found a strong correla-

tion between the number of mediators and the MP (ρ = 0.39, P = 4.4e-75; Figure 4E). Many of these

mediators were correlated amongst each other, which in theory should be accounted for via the multi-

variable Mendelian randomisation. To ensure that this was the case, we repeated the mediation analysis

with uncorrelated mediators (Rmed < 0.3; Methods). The mean number of selected mediators dropped

by more than half, from 3.3 to 1.2 (Figure S11), and the M̂P across all the DNAm-trait pairs decreased

(M̂Puncorrelated = 30.5% (95% CI [28.8%-32.1%])), while remaining significantly higher than M̂Ptop (Pdiff =

6.6e-4). Decreasing the Rmed threshold to 0.2 and 0.1 did not significantly decrease M̂Puncorrelated (Pdiff

> 0.05), which stabilized at 29.2% (95% CI: [27.5%-30.8%] for Rmed < 0.1 (Figure S11).
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Figure 4: Exposure-to-mediator regulatory strength and number of mediators explaining MPs. A) Summary of

the correlations (R) between MP and DNAm-to-transcript causal MR effects (α̂2
EM ; dark green), distance between

the DNAm site and transcription start site (TSS; light green) and number of mediators (Nmed; blue). B) Average

M̂Ptop of DNAm-transcript pairs stratified according to the distance between the DNAm site and the TSS of the top

transcript. All DNAm-trait pairs with at least one mediator were included. C) Average MR causal effects (α̂2
EM ) of

DNAm-transcript pairs stratified according to the distance between the DNAm site and the TSS. Unique DNAm-

transcript mediator pairs across all DNAm-trait pairs were included. D) Average top M̂Ps (M̂Ptop) of DNAm-trait

pairs stratified according to DNAm-to-top transcript MR causal effect size α̂2
EM . All DNAm-trait pairs with at least

one mediator were included. E) Average M̂Ps of DNAm-trait pairs stratified according to the number of mediators.

All DNAm-trait pairs with at least one mediator were included. In every calculation, Pearson correlations and

corresponding p-values (P) between the two respective quantities were calculated on DNAm-trait/DNAm-transcript

pairs prior stratification. Error bars represent standard deviations and the red slope represents the regression fit

between the bin’s positions and heights, and serves merely for visualization purposes.
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Finally, we assessed the influence of the p-value threshold PEM to select mediators based on the

exposure-to-mediator causal effect (default PEM = 0.01 for which N = 2,069 DNAm-trait pairs with at

least 1 mediator were found). With a more lenient threshold (PEM = 0.05), more DNAm-trait pairs with

mediators emerged (N = 2,189). Conversely, with a more stringent threshold (PEM = 0.001), less pairs

were detected (N = 1,881). No differences in MPs between the three settings were found (Pdiff > 0.05;

Figure S12), but when calculating the adjusted MP (inclusion of all DNAm-trait pairs with potential tran-

script mediators in the cis-region) on a common set of DNAm-trait pairs (N = 2,543, M̂Padj,P01 = 27.6%

(95% CI: [26.1%-29.2%])), a significantly higher MP for the more lenient threshold (M̂Padj,P05 = 32.0%

(95% CI: [30.4%-33.6%]); Pdiff = 1.1e-4), and significantly lower MP for the more stringent threshold

were observed (M̂Padj,P001 = 24.6% (95% CI: [23.2%-26.1%]; Pdiff = 4.8e-3; Figure S13). Overall, these

sensitivity analyses showed that the estimated MPs remain robust with respect to correlations within

the selected mediator set, while also suggesting that the PEM may be threshold-sensitive and mediators

selected at the 0.01 p-value threshold may lead to conservative MP estimates.

Transcript-to-complex trait effects mediated by proteins

Next, we quantified the role of proteins in mediating transcript-to-trait causal effects. First, we identified

3,848 significant transcript-trait pairs (PT < 5e-5, ≥ 5 IVs; Table S3) across the 50 traits and performed

mediation analyses through the protein encoded by the transcript (if present in the INTERVAL pQTL

dataset [19]), in addition to any other protein in trans (i.e. any protein which is not encoded by the inves-

tigated transcript) causally associated to the transcript (PEM = 1e-3; Figure 5A). The estimated M̂P for the

1,577 transcript-trait pairs with at least 1 mediator was 5.27% (95%CI: [4.11%-6.43%]) and significantly

higher than average for cardiovascular traits (Pdiff = 8.7e-3; mean = 9.62%, 95% CI: [6.58%-12.7%];

Figure 5B). A distribution of the number of times transcript-trait pairs could be assessed in a mediation

analysis through proteins is shown in Figure S25. When further restricting the mediation analysis to

only those transcript-trait pairs for which the encoded protein was present, we observed an M̂Pencoded of

5.08% (95% CI: [2.62%-7.53%], 333 transcript-trait pairs) which increased, albeit not significantly, when

additionally considering mediator proteins in trans (M̂Ptrans = 6.89%; 95% CI: [4.17%-9.61%]; Figure

S14). As mentioned previously, less than a quarter of the causal MR effects of transcripts on their en-

coded proteins were nominally significant and since we found exposure-mediator effects to be driving

the MP (Figure 4B), we next focused on the 93 transcript-trait pairs for which the encoded protein was

nominally significantly associated to the transcript (Figure S16). We observed a non-significant increase

in the M̂Pencoded to 13.7% (95% CI: [4.34%-23.0%]) and in the M̂Ptrans to 16.6% (95% CI: [8.19%-25.1%]).

Stratifying traits by broad categories (e.g. metabolite, protein, physical measurement; Table S1), highest

MPs were achieved for protein outcome traits (e.g. apolipoprotein B, alkaline phosphatase; Figure S15

and S17).
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Figure 5: Proteins mediating transcript-to-trait causal effects. A) All transcript-trait pairs with with at least

one mediating protein (encoded or/and in trans). Pairs are colour-coded by physiological categories as

defined in B) and overall M̂P in % with 95% CI is shown. B) M̂Ps by trait category for the same pairs.

Error bars denote the 95% CI, and the grey vertical line shows the mean M̂P across transcript-trait pairs.

The number of evaluated transcript-trait pairs in each category is indicated in parentheses. C) M̂Ps

of transcript-trait pairs stratified according to the maximum transcript-to-protein MR causal effect size

within the set of included mediator proteins. D) M̂Ps of transcript-trait pairs stratified according to the

number of mediators. Correlations (R) and corresponding p-values (P) in C) and D) were calculated on

transcript-trait pairs (same ones as in A) and B)) prior to stratification. Error bars represent standard

deviations and the red slope represents the regression fit between the bin’s positions and heights, and

serves merely for visualization purposes.
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As for the DNAm-trait mediation analysis, we confirmed that strong exposure-mediator effect size

(α2
EM ) was the major driver of high MPs (Figure 5C). We calculated the correlation between MP and the

maximum causal effect size squared between the transcript and any of its mediator proteins (α2
EM,max),

yielding ρ = 0.35 (P = 1.4e-45, Npairs = 1,577, mean Nmed = 2.15). Additionally, we found a signifi-

cant correlation between Nmed and MP (ρ = 0.20, P = 3.0e-15, Npairs = 1,577). We performed further

sensitivity analyses to assess the influence of the PEM threshold (default PEM = 1e-3). Considering all

transcript-trait pairs (including those with no encoded protein), choosing a more lenient threshold (PEM

= 0.01) resulted in more transcript-trait pairs to be evaluated (Npairs = 2,820), but not in a significant

change in MP (M̂P = 4.08%, 95% CI: [3.14%-5.03%]; Pdiff > 0.05; Figure S18). On the other hand, a

more stringent threshold (PEM = 1e-4) resulted in fewer transcript-trait pairs (Npairs = 758) and a signif-

icantly higher MP (M̂P = 10.9%, 95% CI: [9.02%-12.9%]; Pdiff = 7.2e-7), as consequence of selecting

transcript-trait pairs with higher α2
EM (Figure S21).

Finally, we aimed at validating our results using a different protein dataset. While there are publicly

available pQTL datasets of larger sample size, the number of tested proteins in these studies is orders

of magnitude lower (e.g. 71 proteins (N = 6,861) in the Framingham Heart Study [20]; 90 proteins (N

= 30,000) in the SCALLOP consortium [21]). We used pQTL summary statistics of 41 cardiovascu-

lar proteins released by the SCALLOP Consortium [21] which overlapped with our main pQTL dataset

from the INTERVAL Consortium [19], as well as with our main eQTL dataset of the corresponding tran-

scripts (eQTLGen Consortium [18]). In a first step, we tested the agreement of MR causal effects of the

transcripts on their encoded protein between the two protein datasets. Among the 38 tested transcript-

protein pairs (≥ 1 eQTL), we observed a very strong correlation of causal effect sizes (ρ = 0.74, P =

9.4e-8) and no difference in their magnitude (two-sided t-test: P > 0.05). Given the larger sample size of

the SCALLOP dataset, standard errors of the effect estimates were on average three times smaller (Fig-

ure S19). Due to the small number of overlap between the proteins and transcripts in the three datasets,

there were only 6 transcript-trait pairs that could be compared in the mediation analysis through en-

coded protein, and for these, there was no significant difference in the direct effects θ̂D (Figure S20).

Overall, while we could replicate causal effect sizes between the transcript and protein levels, the small

number of available proteins did not allow to reliably quantify the bias in our estimated MP caused by

the comparably small sample size of the pQTL dataset.
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DNAm-to-complex traits mechanisms of action

In addition to providing insights into global patterns governing the mediation between different interme-

diate phenotypic layers and functional traits, our analyses generated plausible hypotheses regarding

specific biological pathways. Recently, the involvement of the anti-oxidant and anti-inflammatory protein

PARK7 in inflammatory bowel disease (IBD) has been brought to light [50, 51, 52, 53]. While the exact

role of the protein in the disease remains debated, reduced intestinal expression of PARK7 was ob-

served in patients and mouse models for IBD [53]. Moreover, Park7 knockout mice were shown to have

increased levels of pro-colitis bacterial species in their microbiome [54, 52] and experience aggravated

symptoms of experimental-induced colitis [53]. In line with these observations, DNAm of the PARK7

promoter probe cg10385390 (chr1:8’022’505) decreased both PARK7 transcript (α̂EM,T = -0.675, P

= 2.7e-4) and protein (α̂EM,P = -0.193, P = 2.0e-3) expression (Figure 6A). High transcript (α̂MY,T =

-0.131, P = 1.7e-7) and protein (α̂EM,P = -0.193, P = 0.31) levels decrease IBD risk, resulting in an

overall increased IBD risk upon DNAm (θ̂T = 0.114, P = 8.2e-9). Interestingly, early GWAS identified

the region as a susceptibility locus for IBD, listing TNFRSF9 as the top candidate gene [55, 56], thereby

exemplifying how the integration of multiple omics layers can help to identify further causal genes.

Despite often being associated with decreased expression [45], our data provides examples of

methylation boosting expression. For instance, DNAm of cg13428477 (chr3:122’748’086) increased

PDIA5 expression (α̂EM,T = 0.333, P = 7.3e-11; α̂EM,P = 0.931, P = 7.1e-63), whose levels subse-

quently increased platelet count (α̂MY,T = 0.062, P = 0.018; α̂MY,P = 0.058, P = 3.8e-24), so that DNAm

resulted in increased platelet count (θ̂T = 0.056, P = 1.3e-43) (Figure 6B). Association between the

PDIA5 locus and platelet count was reported through GWAS [57]. Platelets are small cell fragments pro-

duced by megakaryocytes, which themselves are derived from hematopoietic stem cells. Accordingly,

PDIA5 has a binding site for the hematopoietic stem and progenitor cell TF MEIS1 [58] and is overex-

pressed in megakaryocytes as compared to other blood cell types [59]. Further studies showed that

pdia5 protein knockdown in zebrafish resulted in strongly decreased platelet count [60], matching our

findings and confirming the role of PDIA5 in thrombopoiesis. Additional putative regulatory mechanisms

of DNAm-to-complex traits through transcript and protein levels are shown in Table S8-9, respectively,

and were selected based on |θ̂T | > 0.02 and M̂P > 0.2.
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Figure 6: Plausible DNAm-transcript/protein-trait regulatory mechanisms between A) PARK7 and irri-

table bowel disease (IBD) and B) PDIA5 and platelet count. The top row displays a schematic of the

mechanism with calculated univariable and multivariable MR effects. The four following rows show the

regional SNP associations (-log10(p-values)) with the trait (green), encoded protein (purple), transcript

(blue) and DNAm (brown) probe, respectively. Solid diamonds represent DNAm-associated instruments

used in the univariable (for θ̂T calculation) and multivariable (for θ̂D calculation) MR analyses. Upwards

and downwards pointing triangles are transcript- and protein-associated SNPs, respectively, that were

additionally included in the MVMR instrument set. Red dashed lines indicate the significance thresh-

olds of the respective SNP associations and the vertical black dashed line represents the DNAm probe

position. Bottom row illustrates the positions and strand direction of the genes in the locus.
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While the aforementioned DNAm → gene expression → trait mechanisms were supported by both

differential transcript and protein levels, other examples for which protein expression could not be as-

sessed due to lack of pQTL data still reflect highly plausible mechanisms. For instance, we observed

that DNAm of cg09070378 (chr1:161’183’762) decreased asthma risk (θ̂T = -0.031, P = 8.1e-11) by re-

ducing FCER1G expression (α̂EM,T = -1.0, P = 3.5e-18), a gene listed in the KEGG pathway for asthma

(hsa05310) and whose expression associated with an increased risk for asthma (α̂MY,T = 0.019, P =

3e-12) (Figure S21). The FCER1G promoter was found to be hypomethylated in patients with atopic der-

matitis, with DNAm levels correlating negatively with the gene’s expression [61], suggesting a broad role

of FCER1G in allergic disorders. Our data also supports and provides a mechanistical explanation for

the recent finding that reduced IFNAR2 expression causally decreases the odds of severe coronavirus

disease 2019 (COVID-19) [62, 63], which was later supported by the increased susceptibility for se-

vere COVID-19 in individuals with rare loss-of-function mutations in IFNAR2 [64]. Indeed, we found that

DNAm of the IFNAR2 promoter probe cg13208562 (chr21:34’603’264) decreased the gene’s expression

(α̂EM,T = -0.446, P = 2.4e-19) (Figure S22). As IFNAR2 expression protects against hospitalization fol-

lowing COVID-19 infection (α̂MY,T = -0.090, P = 4.2e-6), DNAm of the locus increased the risk of severe

infection (θ̂T = 0.064, P = 8.5e-13).

Transcript-to-complex traits mechanisms of action

Next, we focused on the results of the transcript-to-complex traits analysis to identify examples of tran-

scriptome changes that mediate their phenotypic effect through the proteome. As a first example, we

focused on MANBA (Figure 7A). After establishing that variants decreasing the gene’s expression colo-

calized with risk variants for chronic kidney disease [65], the deleterious impact of decreased MANBA

expression on renal health was recently confirmed in both humans with common expression-altering

or rare loss-of-function variants, as well as Manba knockout mice [66]. Accordingly, we found that

increased MANBA transcript had a beneficial impact on kidney damage biomarkers, as it decreased

serum urea (θ̂T = -0.066, P = 1.2e-5) and cystatin C (θ̂T = -0.103, P = 1.6e-12), while increasing esti-

mated glomerular filtration rate (eGFR; θ̂T = 0.052, P = 1.4e-6). Importantly, our data shows that these

effects are mediated (M̂Purea = 120% ; M̂Pcystatin C = 100% ; M̂PeGFR = 76%) through increased MANBA

protein levels (α̂EM,P = 1.0, P = 5.2e-10), which in turn affected the aforementioned traits (serum urea:

α̂MY,P = -0.022, P = 3.2e-5; cystatin C: α̂MY,P = -0.043, P = 1.9e-9; eGFR: α̂MY,P = 0.019, P = 6.3e-9).

Furthermore, transcript levels of 3 pseudogenes overlapping the first intron of MANBA (RP11-10L12.1

(ENSG00000251288), KRT8P46 (ENSG00000248971); LRRC37A15P (ENSG00000230069)), as well

as levels of the adjacent UBE2D3 antisense RNA RP11-10L12.4 (ENSG00000246560), mediated their

phenotypic impact on alkaline phosphatase, cystatin C, diastolic blood pressure, eGFR, and serum

urea through decreased MANBA protein levels (Table S7). Overall, this suggests a complex gene-to-

phenotype regulation of MANBA influenced by nearby non-coding elements.
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Figure 7: Plausible transcript-protein-trait regulatory mechanisms. A) Left: Impact of differential MANBA

expression on kidney biomarkers through the regulation of its encoded protein. Annotated are the total

effect θ̂T of the MANBA transcript levels on the respective outcomes, as well as M̂Ps through the en-

coded protein. Right: Zoom on the MANBA region; transcripts below the dashed lines are non-coding

and putative negative regulators of MANBA protein levels. B) Scheme and locus zoom of the effect

of OAS1/OAS2/OAS3 transcript levels on severe COVID-19 disease. Mediation through the encoded

protein could only be tested for OAS1.

In contrast, non-coding elements were also found to exert their phenotypic effects through distantly

encoded proteins, as illustrated by the transcript originating from the U6 small nuclear RNA 516 pseu-

dogene ENSG00000223313 on chromosome 15, which decreased insulin-like growth factor 1 levels

(IGF-1; θ̂T = -0.029, P = 4.0e-7) by decreasing the protein levels of IGF binding protein 3 (IGFBP3;

α̂EM,P = -0.154, P = 7.6e-4), a well-known regulator of IGF-1’s bioavailability and half-life [67] encoded

on chromosome 7 (α̂MY,P = 0.115, P = 4.0e-7). Alternatively, we observed several cases of protein-

coding transcripts affecting traits through proteins in trans. For instance, transcript levels of SUOX,

encoding for a mitochondrial sulfite oxidase, increased lymphocyte count (θ̂T = 0.027, P = 4.7e-5) by

positively affecting tyrosylprotein sulfotransferase 2 protein levels (TPST2; α̂EM,P = 0.206, P = 4.0e-4).

In turn, TPST2 increased lymphocyte count (α̂MY,P = 0.029, P = 0.02). Both SUOX and TPST2 belong

to the KEGG sulfur metabolism pathway (hsa00920). Sulfite oxidase catalyzes the oxidation of sulfite

to sulfate [68]. In contrast, sulfate is used by PAPSS1/PAPSS2 to generate 3’-phosphoadenosine-5’-

phosphosulfate (PAPS) [69], the main cosubstrate of the sulfotransferase reactions catalyzed by TPST2

[70]. Sulfation of chemokine receptors, which play a critical role in immune function and are widely ex-

pressed on lymphocytes, can modulate a receptor’s affinity and/or selectivity for cognate chemokines,

as well as mediate pathogen entry [71], establishing the importance of sulfur metabolism for lymphocyte
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function. Another immune-related example involves the recently established link between the interferon-

induced antiviral OAS gene cluster (OAS1, OAS2, OAS3) and severe COVID-19 [62, 63]. In line with

reports highlighting the protective effect of a Neandertal haplotype associating with increased OAS1

[72, 73], we found that the protective effect against COVID-19 of increased OAS1 transcript levels (θ̂T

= -0.038, P = 6.9e-8) was mediated (M̂P = 28%) by increased levels of the encoded protein (α̂EM,P

= 0.334, P = 2.0e-23) (Figure 7B). Of note, while protein levels were only available for OAS1, our MR

analysis indicated that adjacent and related transcripts OAS3 (θ̂T = 0.105, P = 6.8e-8) and OAS2 (θ̂T

= 0.133, P = 5.2e-3) exerted opposite effects on COVID-19 severity. The opposite effect of OAS1 and

OAS3 on the outcome reflect previous findings [73] and highlight the complex role of the locus in me-

diating immunity. Further putative regulatory mechanisms of transcript-to-complex traits through protein

levels are shown in Table S10 and were selected based on |θ̂T | > 0.02, M̂P > 0.1 and PMY,k < 0.05.

Taken together, these examples illustrate how both protein-coding and non-coding transcripts can exert

phenotypic changes through modulation of encoded, as well as trans protein levels, suggesting new

biological mechanisms.

Discussion

We presented a framework to quantify mediation of complex trait-impacting effects through multiple

omics layers, unravelling nuanced patterns in gene and protein expression regulation. First, we as-

sessed the extent to which DNAm-to-trait effects were mediated by cis-transcripts and compared this

proportion to the mediation through cis-proteins. Evaluating 50 complex traits, the overall adjusted

M̂P (i.e.including DNAm-trait pairs with testable mediators in cis not under DNAm regulation) through

cis-transcripts and cis-proteins was estimated to be 28.3% and 1.2%, respectively. Simulation studies

indicated that the lower sample size of the pQTL dataset (NpQTL ≈ 3,300 vs NeQTL ≈ 30,000) was esti-

mated to result in a relative decrease of 20% in MP, in line with the fact that exposures/mediators with

more precise genetic effect estimates are prioritized by MVMR regression models [43]. Despite the fact

that ≈6.8x lower number of proteins present in the pQTL dataset (i.e. fewer testable indirect pathways)

than transcripts in the eQTL data, it was not the main reason for the striking difference in the MPs. We

demonstrated this by repeating the analysis on a common set of 2,145 transcripts and their encoded

proteins, where the adjusted MP through proteins was still ≈10x lower than through transcripts (8.15%

vs 0.85%). We suspect that this difference was mainly due to the fact that, on average, proteins were

four times less likely to be causally linked to the investigated DNAm site than transcripts, suggesting

a tighter link between DNAm and transcript expression than between DNAm and protein levels. This

implies a moderate similarity between eQTLs and pQTLs which we confirmed when testing for causal

effects between transcript and encoded protein levels: The fraction of testable transcripts linked to their

respective protein (when available) at a nominal significance threshold was found to be only 22%. While

some of the missing links might be due to the lack of statistical power, it indicates that the transcript to
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protein regulation is more nuanced than the central dogma of biology would imply, whereby a straight-

forward translation from transcripts to proteins by ribosomes is assumed. As a consequence of these

weak transcript-to-protein effects, the mediation of transcript-to-trait effects through the encoded protein

yielded relatively low MPs (mean = 5.1%). Previous studies reported discrepancies in transcript and

protein abundances with explained variances of protein levels by transcript levels ranging from 40 to

85% [74, 75], as well as in eQTL and pQTL co-analyses where only 12 to 40% of the signals were found

to be shared [19, 21]. Mechanisms explaining why protein abundance cannot be entirely predicted from

transcript levels include protein synthesis delay, transport, degradation, post-transcriptional changes,

but also technical variation attributable to measurement instruments [74, 75].

Noteworthily, MR analyses provide directions of estimated causal effects, and two, rather counter-

intuitive, observations were made: i) 46.6% of significant DNAm-to-transcript effects were of positive

sign (i.e. DNAm increases transcription) and ii) 20% of significant transcript-to-protein effects were of

negative sign (i.e. high transcript levels decrease protein levels). The first observation is in line with pre-

vious genome-wide methylation and gene expression association studies which reported high fractions

of positive correlations (30-35%) [48, 46]. While poorly understood [47], several mechanisms have been

proposed to explain the phenomenon: preferential binding of some transcription factors to methylated

DNA [76, 77], prevention of repressor binding indirectly leading to increased expression through loop-

ing DNA [78, 35], or DNAm in the gene body provoking elongation efficiency and preventing spurious

initiation of transcription [79]. As to the negative transcript-to-protein effects, which were consistent in

the direction when computed with either the INTERVAL or SCALLOP pQTL datasets, literature is more

sparse. While negatively correlating gene products have been reported previously [80, 81], this has, to

the best of our knowledge, not yet been studied in the context of QTL analyses and remains the topic

of future investigations. Finally, MP estimates indicate that DNAm sites typically regulate multiple tran-

scripts in cis. Average MPs of 37% suggest that phenotypic DNAm effects are largely mediated through

pathways other than local gene expression regulation, especially when the DNAm site is located further

away from the TSS of the main transcript mediator. Collectively, these results describe a more diverse

picture of the transcription and translation machinery, challenging the classical views of DNAm solely

reducing gene expression, and this in the TF region, as well as mRNA levels being a good proxy for

protein abundance.

Mapping genetic variants identified in GWAS analyses to biological processes is notoriously difficult

[2]. However, systems genetics approaches that integrate multiple omics datasets as a way of lever-

aging GWAS summary data have proven successful in providing a more complete picture of the path

from genotype to phenotype [82]. Here, we demonstrated that our multi-omics framework was able to

attribute GWAS signals to biological pathways in loci harbouring multiple genes (e.g. PARK7 -IBD and
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FCERG1-asthma). A challenge in identifying causal chains through omics layers is the attenuation in

the genetic association strengths when moving up along layers. In a linear model, the genetic effect

on the phenotype is assumed to be the product of causal effects between the preceding layers and it

was previously shown that the variance explained by the top associated QTL of the first layer decreases

with each successive omics layer [35]. In line with this observation, the biological examples depicted in

Figure 6 visualize the decrease in the genetic associations from the DNAm to the complex trait level.

Importantly, integration of both eQTL and pQTL data represent orthogonal approaches in corroborating

mediators of DNAm-to-trait or transcript-to-trait effects. Current pQTL datasets lack the sample size and

number of proteins to systematically validate regulatory mechanisms found through eQTL integration

(e.g. OAS1/OAS2/OAS3-COVID-19). In the future, we expect larger datasets to become available and

here presented a proof of concept of how protein-level data can either support mechanistic findings

resulting from transcript data or warrant future investigations leading to the discovery of potential new

mechanisms of action, implicating other genes.

Throughout the manuscript, we highlighted multiple putative molecular mechanisms of action sup-

ported by high MPs through intermediate omics layer and strong literature evidence. More examples can

be found in Tables S8-10, including some for which the putative mechanism of action remain strongly

debated. For instance, our analyses implicated a DNAm site (cg15133208: chr4:90’757’351) in the TSS

region of SNCA in Parkinson’s disease (PD) (Figure S23). Many studies have investigated mechanisms

involving DNAm, SNCA and PD, resulting in conflicting results as to the effect directions. Our results

suggest a protective effect of that DNAm site on PD. While supported by studies in the field [83], the

assumed DNAm effect on SNCA expression is different from our estimated MR effect. Both SNCA tran-

script and SNCA protein levels were estimated to be upregulated in the hypermethylated DNA state, with

high SNCA levels calculated to decrease PD risk. It is generally assumed that increased SNCA expres-

sion contribute to PD pathogenesis [84], although blood and brain-specific SNCA expression pattern, as

well as different isoforms, have been reported to correlate differently with PD [85]. A recent study showed

positive correlations between SNCA levels and both PD and the related synucleinopathy of Lewy body

dementia (LBD) in the temporal cortex, but negative and non-significant ones for LBD and PD in blood,

respectively [85]. Another recent GWAS with integrative brain eQTL follow-up analyses indicated that

high levels of SNCA-AS1, which regulates SNCA expression levels, might be protective against LBD

[86], suggesting complex regulatory mechanisms governing the locus. Similarly, mechanisms involv-

ing proteins in trans mediating transcripts-to-trait effects were less straightforward to interpret. Several

examples involved non-coding RNA for which functional information is sparse, complicating literature

validation.
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While our method highlights candidate pathways, several limitations have to be considered. First, like

all MR-inverse variance weighting (IVW) analyses, our MR analyses assumed all genetic variants to be

valid IVs. We applied Steiger filtering to mitigate the inclusion of pleiotropic IVs that violate independence

of the outcome conditional on the exposure and mediators, as well as independence of the mediators

conditional on the exposure in the case of variants associated with both the exposure and mediators

(third MR assumption; Methods [37]). However, the presence of invalid IVs cannot be excluded and

could therefore compromise causal effect estimates [40, 87]. In particular, since selected MR IVs are

all in cis of the investigated molecular trait, they might be based on a single (pleiotropic) haplotype

signal. Conversely, one might argue that the Steiger filter is too stringent if the reverse effect from

the mediator on the exposure is biologically unlikely, so that it excludes IVs potentially important in

accurately estimating causal effect sizes. Second, we select mediators based on their association to

the exposure without taking into account their mediator potential, i.e. whether or not the mediator is

additionally causally linked to the trait. Phrased differently, the selected mediators are simply candidates

and such selection serves as a first filter to remove non-mediators. In line with our simulations, it has

been shown that extremely large number of such mediator candidates that are not true mediators (92

candidates in total with 88 of them being false mediators) can cause MVMR regression models to fail

[43], indicating that our framework is less suitable for large numbers of molecular mediators, unless the

selection threshold PEM is made more stringent. Third, our mediation model cannot completely exclude

the possibility of reverse effects from the mediator(s) on the exposure. This concern especially applies

when considering DNAm as exposure and cis-transcripts as mediator(s), since differential transcript

levels have been suggested to modulate DNAm levels [35]. We use the largest publicly available mQTL

dataset, however, it misses genetic effect sizes of the entire cis-region, which would be required to test

for reverse or bi-directional effects of transcripts on DNAm. Fourth, with the exception of pQTLs [19],

large-scale trans-QTL datasets are still lacking, prohibiting genome-wide assessment of mediation and

restricting many analyses to cis-mediation. Finally, while molecular mechanisms ought to be tissue-

or even cell type-specific, QTL data used in this study were all derived from whole blood. It is known

that different tissues express different isoforms [88], with many splicing and expression QTLs shown

to differ across tissues [89]. Accordingly, MPs for blood biomarkers were generally higher than those

for diseases, for which blood might not be the most relevant tissue. Alternatively, this differences might

also be due to the fact that indirect pathways, through unmeasured mediators, play a greater role for

diseases than for biomarkers. Once tissue-stratified multi-omics datasets of larger sample size become

available, more accurate, and potentially higher MPs will be obtained in trait-relevant tissues.
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Conclusion

We quantified the causal connectivity between three omics layers - DNAm, transcript and protein abun-

dance - and their importance in shaping complex traits. We examined regulatory effects of DNAm on

gene expression - assessed through both the transcriptome and proteome - which in its complementary

use allowed for robust causal inference between molecular and complex traits. Overall, the results in-

dicated that regulatory mechanisms can be more nuanced and complex than suggested by the central

dogma of biology, leaving many open questions as to alternative transcription and translation processes.

Our integrative omics framework can be extended to other omics-GWAS combinations using the soft-

ware made available (https://github.com/masadler/smrivw), and provide a powerful tool for mapping

GWAS signals to biological pathways and prioritizing functional follow-up experiments.

Methods

Univariable and multivariable Mendelian randomization

Univariable Mendelian randomization (MR) was applied to estimate the total causal effect (θT ) and mul-

tivariable MR (MVMR) to estimate the direct causal effect (θD) of an exposure E on an outcome Y. The

mediation proportion (MP) was defined as 1 − θD/θT . Under the MR assumptions, genetic variants G

used as instrumental variables (IVs) must be i) associated with E, ii) independent of any confounder of

the E− Y relationship, iii) conditionally independent of Y given E. Independent IVs (r2 < 0.05) associ-

ated with the molecular exposure (P < 1e-6) and located in cis (< 1 Mb) allowed the estimation of θT

using an inverse-variance weighted (IVW) method assuming equal weights given the standardization of

the data and accounting for correlated instruments [90]:

θ̂T = (β′
EC

−1βE)
−1β′

EC
−1βY (1)

where βE and βY are vectors of genetic effect sizes obtained from summary statistics for E and Y,

respectively. C is the linkage disequilibrium (LD) matrix with pairwise correlations between IVs estimated

from the UK10K reference panel [91]. Prior to the causal effect calculation, IVs were filtered to fulfill the

MR Steiger criterion of no larger Y than E genetic effects [37] and were thus required to pass a threshold

trev <
|βEi

|−|βYi
|√

var(βEi
)+var(βYi

)
with trev set at -2, equivalent to a one sided test p-value threshold of 0.023.

IVs not passing this threshold are prone to violating the third MR assumption of horizontal pleiotropy

since they are more directly linked to the outcome. As a result MR estimates including such IVs would

potentially mix up forward and reverse causal effects. The standard error (SE) of θT can be approximated

by the Delta method [92]:

SE(θ̂T ) =
√
(β′

EC
−1βE)−1β′

EC
−1/2ΣC−1/2βE(β′

EC
−1βE)−1 (2)
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where Σ is a diagonal matrix with each diagonal element i equalling the maximum of the regression

variance s2 and var(βYi
) [93].

Through the inclusion of mediators Mk and their associated cis genetic variants (r2 < 0.05, P <

1e-6), θD can be estimated analogously to θT using a multivariable regression model [41] as the first

element of θD:

θ̂D = (B′
C

−1B)−1B′
C

−1βY (3)

where B is a matrix with k + 1 columns containing the effect sizes of the IVs on the exposure in the

first column and on each mediator in the subsequent columns. The remaining elements of θD represent

the direct effects of the mediators on the outcome and were referred to as αMY,k. In the estimation

of MPs, we were not interested in αMY,k values per se, but we took these effect sizes into account for

inferring molecular mechanisms. If the number of mediator-associated instruments was sufficient (≥ 3)

to conduct a univariable MR from the mediator on the outcome, we estimated αMY,k from this analysis

instead, since computed on a single regressor, narrower CIs are obtained.

This MVMR model does not allow for the presence of a causal effect from the mediators on the

outcome via the exposure, and we therefore conducted several Steiger filtering steps on the IVs. In

addition to meeting the Steiger criterion described above, exposure-associated IVs were required to

pass that same threshold trev of no larger mediator than exposure effects for each of the mediators Mk.

Similarly, to mitigate reverse causal effects from the outcome on the mediators, mediator-associated

instruments with larger Y than M effects were removed if not passing the trev threshold. The SE of θ̂D

was derived analogously to the univariable form as shown in [29].

Omics and trait summary statistics

We used mQTL data from the GoDMC consortium (N = 32,851) [16], which contains > 170,000 whole

blood DNAm sites with at least one significant cis-mQTL (P < 1e-6, < 1 Mb from the DNAm site, N

> 5,000). Cis-eQTL data were taken from the eQTLGen consortium (N = 31,684) [18] which includes

cis-eQTLs (< 1 Mb from gene center, 2-cohort filter) for 19,250 transcripts (16,934 with at least one

significant cis-eQTL at FDR < 0.05 corresponding to P < 1.8e-05). Cis- and trans-pQTL data were from

the INTERVAL study (N = 3,301) [19]. SomaLogic aptamers (NSOMAmers = 3,283) quantified the levels

of 2,977 proteins and complexes with a UniProt ID. After removing protein complexes (NSOMAmers = 42),

sex chromosome encoded proteins (NSOMAmers = 113), and UniProt IDs that could not be mapped to an

EnsemblID (NSOMAmers = 6), 2,838 proteins remained of which 696 had at least one significant cis-pQTL

(P < 1e-6, < 1 Mb from the protein-encoding gene center, N > 2,000). If two SOMAmers mapped to the

same protein, the one with the strongest transcript-to-protein causal MR effect was retained (see omics-

to-omics MR analysis). If the transcript was not available in the eQTLGen dataset or did not have any

significant IVs, the SOMAmer with the highest number of significant cis-pQTLs (or trans-pQTLs if no cis-
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pQTLs were present) was chosen. Mapping from UniProt to Ensembl identifiers was done through the

UniProt REST API [94] and genomic coordinates were retrieved from the Ensembl REST API (GRCh37

build) [95]. Exact mapping of SOMAmer-UniProt-Ensembl identifiers is provided in Table S5. A total of

2,145 transcript-encoded protein pairs were present in both the eQTL and pQTL datasets.

GWAS summary statistics for outcome traits came from the largest (Naverage > 320,000), predomi-

nantly European-descent, publicly available studies, as listed in Table S1.

Prior to each mediation analysis, exposure and mediator omics, GWAS and the reference panel

data were harmonized. The analysis was conducted on autosomal chromosomes, and palindromic

single nucleotide variants (SNPs), as well as SNPs with an allele frequency difference > 0.05 between

any pairs of datasets were removed. If allele frequencies were not reported by the GWAS summary

statistics, allele frequencies from the UK Biobank were used. Z-scores of summary statistics (molecular

and outcome GWAS) were standardized by the square root of the sample size to be on the same SD

scale.

DNAm-to-trait mediation analysis

First, univariable MRs were conducted to estimate the total causal effect θ̂T of the DNAm sites on

each trait, assessing ∼50,000 DNAm probes with ≥ 5 independent mQTLs after harmonization of the

datasets (r2 < 0.05). DNAm probes significantly associated to the outcome (PT < 0.05/50000 = 1e-6)

were clumped based on the p-value of the total causal effect θ̂T , PT (distance-pruning at 1 Mb), to be

independent of each other.

Second, MVMR analyses were performed to estimate the direct effect θ̂D. Potential transcript media-

tors in cis of the DNAm exposure probe (± 500kb) were extracted and causal effects αEM,k of the DNAm

probe on these transcripts were assessed by univariable MR. Transcripts satisfying PEM,k < PEM (default

PEM = 0.01, with 0.05 and 1e-3 being tested as well) were included as mediators, as well as their associ-

ated SNPs as additional instruments. Steiger filtering was applied as described previously and IVs were

clumped based on a rank score determined as follows: 1) for each mediator, IVs were ranked according

to their association p-value to the mediator and assigned an integer score, 2) for each IV, a final score

was calculated as the sum of its individual mediator scores. Following the establishment of the B effect

size matrix, θ̂D was calculated, as well as θ̂D,top which was estimated from a MVMR model that includes

a single mediator, namely the transcript with the lowest PEM,k. If no transcript causally associated to

the DNAm probe, mediation is not detectable, hence θ̂D was set to θ̂T for that probe (inclusion of such

probes in MP calculation was termed “adjusted mediation proportion”). As the Steiger filter removed

exposure-associated instruments with larger mediator than exposure effects (see “Univariable and mul-
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tivariable Mendelian randomization”), the number of initial exposure-associated instruments (mE ≥ 5)

could decrease. Therefore, to avoid scenarios of reverse causality where the mediator exerts an effect

on the outcome through the exposure, we required ≥ 3 exposure-associated IVs.

We additionally conducted mediation analyses on independent mediators. To this end, selected me-

diators (those that passed PEM) were clumped at various correlation thresholds Rmed (default Rmed <

0.3, with 0.2 and 0.1 being tested as well). Correlations among the mediators were calculated based on

QTL effect sizes of independent exposure and mediators IVs and priority was given to the mediator with

the lowest PEM,k.

The mediation proportion (MP) was calculated by regressing θ̂D on θ̂T to estimate for the unmediated

proportion, γ̂, which after correcting for regression dilution bias (Equation 4):

γ̂cor =
γ̂√

1−
∑

se2(θ̂T )
∑

θ̂2

T

(4)

yielded M̂P = 1 − γ̂cor for a defined set of DNAm-trait pairs. MVMR analyses were repeated on the

selected DNAm-trait pairs through proteins in cis following the same mediator and IV filtering steps as

described above.

Transcript-to-trait mediation analysis

MPs for transcript-to-trait mediation analyses were calculated similarly to DNAm-to-trait MPs. Briefly, we

first computed total causal effects θ̂T of transcripts on traits for ∼ 11,000 transcripts with ≥ 5 independent

(r2 < 0.05) and significant eQTLs (P < 1e-6), ∼ 1,200 of which had an encoded protein in the pQTL

dataset. For each trait, significant transcripts (PT < 0.05/1,000 = 5e-5) were selected. Second, MVMR

analyses were conducted, where for each transcript, mediators were defined as i) the encoded protein or

ii) the encoded protein plus any other protein in trans among a set of 696 proteins with ≥ 1 significant (P

< 1e-6) pQTL that satisfied PEM,k < PEM (default PEM = 1e-3, with 1e-2 and 1e-4 being tested as well). If

more than 10 proteins satisfied the condition, the ten most strongly associated were retained. Associated

pQTLs were included as IVs and following Steiger filtering, instruments were pruned as described in

the DNAm-to-trait mediation analysis section. Effect sizes of mediator-associated IVs that were not

significant (P > 1e-6) for a given mediator were shrunk to 0 [96]. Direct effects θ̂D were calculated

using encoded proteins (if available) as mediators in addition to selected trans proteins. Additionally,

direct effects were calculated using only encoded proteins as mediators. Finally, M̂Ps were calculated

by aggregating all transcript-trait pairs as specified in each sub-analysis, and regressing θ̂D on θ̂T while

accounting for regression dilution bias (Equation 4).
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Omics-to-omics MR analysis

MR causal effects between two molecular traits were calculated following the same procedure than in

the univariable MR to calculate total effects θ̂T . First, independent (r2 < 0.05) and significant (P < 1e-6)

exposure IVs were selected and IVs not passing the aforementioned Steiger filter were discarded. MR

causal effects were then computed based on Equation 1.

DNAm-to-transcript MR analysis

MR effects between DNAm sites and transcripts in cis (± 500kb) with ≥ 3 exposure IVs were calculated.

Pearson correlation coefficient with previously reported DNAm-transcript correlations [48] was calculated

on common DNAm-transcript pairs. DNAm probe annotations with respect to the assessed transcript

were from the IlluminaHumanMethylation450kanno.ilmn12.hg19 R package [97].

Transcript-to-encoded-protein MR analysis

On the common transcript-encoded protein pairs, causal effects were calculated for transcripts with ≥
3 independent eQTLs (r2 < 0.05). When comparing causal effects obtained from the INTERVAL and

SCALLOP pQTL dataset, we additionally included transcripts with a single eQTL.

Simulation studies

We conducted simulation studies to assess the robustness of our model and to identify sources of bias

in the estimated MP. Two simulation settings were set up: one replicating the DNAm-to-trait via tran-

scripts in cis mediation analysis and one replicating the transcript-to-trait via proteins in trans mediation

analysis. Both scenarios were simulated under the same model, but with different parameter settings

(Figure S1, Table S2).

We considered an exposure with heritability h2
E and mE independent IVs. Effect sizes βE

i for mE IVs

were drawn from a normal distribution βE
i ∼ N (0,

√
h2
E/mE) and rescaled to total h2

E . Nmed potential

mediators were simulated, among which Nmed,sig were contributing to the indirect effect θM . Each

mediator k associated with mM IVs with direct effects βMk

direct,i ∼ N (0,
√
h2
M,direct,k/mM ) rescaled to

h2
M,direct,k, the direct heritability of the mediator that does not take into account the additional heritability

coming through the exposure. Direct heritabilities were sampled from a uniform distribution h2
M,direct,k ∼

U(h2
M,low, h

2
M,high). Causal effects of the exposure on the mediator (αEM,k) and of the mediator on the

outcome (αMY,k) for Nmed,sig mediators were drawn from a bivariate normal distribution αEM,k, αMY,k ∼
N (0,Σ) with Σ the covariance matrix:
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Σ =


 var(αEM ) ρ ·

√
var(αEM ) · var(αMY )

ρ ·
√
var(αEM ) · var(αMY ) var(αMY )




where ρ is the correlation between αEM,k and αMY,k. For the remaining Nmed - Nmed,sig mediators,

αEM,k and αMY,k causal effects were set to zero. The vector of effect sizes βMk of size mE +Nmed ·mM

for each mediator k was constructed to have effect sizes equalling βE
i · αEM,k for mE exposure SNPs

and effect sizes equalling βMk

direct,i for mM mediator-associated SNPs. The effect sizes of remaining IVs

associated to mediators i 6= k were set to zero. Likewise, effect sizes of the Nmed · mM IVs on the

exposure in the βE vector were set to zero.

The indirect effect θM , direct effect θD and total effect θT were calculated as:

θM =
∑

k

αEM,k · αMY,k ; θD = θM (
1

MP
− 1) ; θT = θD + θM

These quantities allowed to design the outcome effect size vector βY :

βY = θD · βE +
∑

k

αMY,k · βMk

For each scenario, we simulated 300 data sets to each time get βE , βMk and βY . Normally dis-

tributed noise, as a function of the sample size N, εEi ∼ N (0, 1/NE), εMi ∼ N (0, 1/NM ) and εYi ∼
N (0, 1/NY ) was added to each simulated vector. To approximate our real data, exposure effect sizes of

SNPs serving as mediator instruments were set to zero again. We then estimated for each model θ̂T

and θ̂D by including mediators that satisfied PEM (p-value of the causal effect from the exposure on the

mediator). Causal effects θ̂D were regressed on θ̂T to estimate the coefficient γ̂ which after accounting

for regression dilution (Equation 4) allowed to obtain the estimated M̂P.

Comparing mediation proportions

To test the statistical significance between M̂Ps estimated on two different sets of exposure-trait pairs

(e.g. M̂P of a given physiological category vs all categories combined) or on the same exposure-trait

pairs, but with different parameter settings (e.g. changing PEM), we make use of γ̂ and its corresponding

standard error se(γ̂) obtained from regressing θ̂D on θ̂T (both of which being corrected for regression

dilution (Equation 4)) to yield γ̂cor and se(γ̂cor). We then perform a two-sided z-test based on the

following test statistic:

γ̂cor,1 − γ̂cor,2√
se(γ̂cor,1)2 + se(γ̂cor,2)2

∼ N (0, 1) (5)

A significant difference between M̂Ps was claimed if the two-sided p-value was below 0.05.
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Availability of data and materials

QTL datasets can be downloaded at the following websites: mQTLs (http://mqtldb.godmc.org.uk/

downloads), eQTLs (https://www.eqtlgen.org/cis-eqtls.html), pQTLs (http://www.phpc.cam.ac.

uk/ceu/proteins/. The list of GWAS summary statistics used is in Table S1, all of which are all from

the public domain.

Software to conduct univariable MR-IVW (molecular trait → outcome, molecular trait 1 → molecular

trait 2) and multivariable MR-IVW (molecular trait 1 → molecular trait 2 → outcome) can be found at

https://github.com/masadler/smrivw. Source code (C++, released under GPL v3 license) and exe-

cutable file (for Linux platforms, released under MIT license) are provided which rely on functionalities

and the data management architecture of the SMR software (https://cnsgenomics.com/software/smr

[35]). The provided documentation hosted on the github repository guides users in reproducing the me-

diation results and conducting univariable and multivariable MR on their own combinations of QTL and

GWAS datasets.
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Elena Carnero-Montoro, Daniel J Lawson, Kimberley Burrows, Matthew Suderman, et al. Genomic

and phenotypic insights from an atlas of genetic effects on dna methylation. Nature genetics,

53(9):1311–1321, 2021.

[17] GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature,

550(7675):204, 2017.
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Reedik Mägi, Stuart Meacham, Yukinori Okada, Nicola Pirastu, Rossella Sorice, Alexander Teumer,

Katrin Voss, Weihua Zhang, Ramiro Ramirez-Solis, et al. New gene functions in megakaryopoiesis

and platelet formation. Nature, 480(7376):201–208, December 2011.

[58] Sylvia T Nürnberg, Augusto Rendon, Peter A Smethurst, Dirk S Paul, Katrin Voss, Jonathan N

Thon, Heather Lloyd-Jones, Jennifer G Sambrook, Marloes R Tijssen, HaemGen Consortium, et al.

A gwas sequence variant for platelet volume marks an alternative dnm3 promoter in megakary-

ocytes near a meis1 binding site. Blood, The Journal of the American Society of Hematology,

120(24):4859–4868, 2012.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462396
http://creativecommons.org/licenses/by-nc-nd/4.0/


[59] Nicholas A Watkins, Arief Gusnanto, Bernard De Bono, Subhajyoti De, Diego Miranda-Saavedra,

Debbie L Hardie, Will GJ Angenent, Antony P Attwood, Peter D Ellis, Wendy Erber, et al. A haemat-

las: characterizing gene expression in differentiated human blood cells. Blood, The Journal of the

American Society of Hematology, 113(19):e1–e9, 2009.
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