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Abstract

In this study, we identified active enhancers in the mouse cerebellum at embryonic and
postnatal stages establishing the first catalog of enhancers active during embryonic cerebellum
development. The majority of cerebellar enhancers have dynamic activity between embryonic
and postnatal development. Cerebellar enhancers were enriched for neural transcription factor
binding sites with temporally specific expression. Putative gene targets displayed spatially
restricted expression patterns, indicating cell-type specific expression regulation. Functional
analysis of target genes indicated that enhancers regulate processes spanning several
developmental epochs such as specification, differentiation and maturation. We use these
analyses to discover one novel regulator and one novel marker of cerebellar development:
Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants
associated with autism spectrum disorder in cerebellar enhancers. Our study provides insight into
the dynamics of gene expression regulation by enhancers in the developing brain and delivers a
rich resource of novel gene-enhancer associations providing a basis for future in-depth studies in

the cerebellum.

Introduction

Neuronal development is a complex and dynamic process that involves the coordinated
generation and maturation of countless cell types. For the most numerous neuron in the brain, the
cerebellar granule cell, neuronal differentiation consists of several steps beginning with the
commitment of neural stem cells to become specified neural precursors, followed by multiple
migratory stages to reach and mature at its final destination (Consalez, Goldowitz, Casoni, &
Hawkes, 2021). Underpinning these events is the expression of gene regulatory networks that
drive dynamic molecular processes required for proper brain formation (Ziats, Grosvenor, &
Rennert, 2015). However, the transcriptional mechanisms that precisely regulate these gene
expression programs have not been fully described.

Gene expression is typically activated when transcription factors (TFs) bind to non-
coding regulatory elements and recruit the necessary components to begin transcription. Among
the several classes of non-coding sequences that regulate gene expression, enhancers are the
most common, with thousands predicted to coordinate transcriptional regulation during

development (Heinz, Sven, Romanoski, Benner, & Glass, 2015). Enhancers are stretches of DNA
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that bind to TFs and upregulate distal target gene expression. In the brain, enhancers help to
ensure that gene expression is spatially- and temporally-specific, defining what genes will be
active during distinct stages of development (Nord & West, 2020). Transcriptional regulation by
enhancers has been shown to be critical for cellular identity, maturation during central nervous
system (CNS) development, and activity-dependent responses in mature neurons (Frank et al.,
2015; Pattabiraman et al., 2014). A detailed understanding of the enhancers that govern changes in
gene expression during embryonic and early postnatal brain development remains limited.
Profiling genome-wide enhancer activity at different time points and identifying their gene
regulatory targets can provide insight into developmental processes regulated by enhancer
elements.

Several molecular properties have been associated with enhancer activity, and the
advancement of sequencing technology has facilitated their identification genome-wide in
several developing brain structures (Carullo & Day, 2019). Enhancers are marked with histone
post-translational modifications H3K4mel and H3K27ac, both of which contribute to opening
chromatin for TF binding (Calo & Wysocka, 2013). H3K27ac delineates active from poised
elements, and has been a reliable marker for enhancer activity genome-wide (Creyghton et al.,
2010). Analysis of these marks, in conjunction with transcriptomic and epigenomic datasets, has
revealed that the vast majority of non-coding variants associated with neurological and
psychiatric disorders are found within these regulatory elements, highlighting their importance in
functional readout in the brain (Baresi¢, Nash, Dahoun, Howes, & Lenhard, 2020). Thus, profiling
enhancer-associated histone modifications in the brain across time provides a comprehensive
understanding of gene-regulatory principles, disease-associated variants, and the genetics of
brain development (Nott et al., 2019).

The cerebellum has been a long-standing model to study the developmental genetics of
the brain. This is, in part, due to the limited number of cell types, well-defined epochs of
development for these cell types and a simple trilaminar structure in which these cells are
organized, making for an enhanced resolution of events in time and space (Wang, V. Y. & Zoghbi,
2001). More recently, the study of cerebellar development has gained added interest through its
documented role in the etiology of ASD (Stoodley & Limperopoulos, 2016). Previously, we
developed a 12-timepoint transcriptional analysis of the developing cerebellum leading to the

discovery of novel TFs critical for proper development (Zhang, P. G. Y. et al., 2018). More
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recently, the developing cerebellum has served as an ideal setting for pioneering single-cell
RNA-seq time course studies (Carter et al., 2018; Peng et al., 2019; Wizeman, Guo, Wilion, & Li,
2019). At the level of gene expression regulation, chromatin accessibility and enhancer activity
have been examined previously in the postnatal cerebellum, leading to the discovery of distinct
transcriptional profiles between immature and mature neurons, coordinated by non-coding cis-
regulatory sequences (Frank et al., 2015). However, a comprehensive atlas of enhancers defining
the role they play during embryonic and early postnatal cerebellar development has yet to be
established. Profiling these non-coding regulatory elements and their target genes will discover
novel genetic drivers of the precisely-timed and cell-specific molecular events in the developing
cerebellum.

We utilize chromatin immunoprecipitation followed by sequencing (ChIP-seq) of
enhancer associated histone marks H3K4mel and H3K27ac at 3 stages of embryonic and early
postnatal cerebellar development. We identify temporally specific enhancers using a differential
peak analysis comparing postnatal and embryonic timepoints. Transcription factor motif
enrichment and prediction of gene targets led to the elucidation of molecular processes regulated
by enhancers during these stages. We use these analyses to discover two novel regulators of
cerebellar development, Pax3 and Bhlhe22: a novel marker of GABAergic progenitors and a
regulator of postnatal granule cell migration, respectively. Finally, we identify an enrichment of
autism spectrum disorder (ASD) associated SNPs and de novo variants found in ASD-affected
individuals in cerebellar enhancers, functionally annotating ASD-associated variation. Our study
provides further insight into the dynamics of gene expression regulation by enhancers in the
developing brain and delivers a rich resource to help understand the developmental and

functional genetics of the developing cerebellum.

Results
Enhancer identification during cerebellar development

To identify enhancers active during embryonic and postnatal cerebellar development, we
generated genome-wide H3K27ac and H3K4mel ChIP-seq profiles from mouse cerebella
dissected at embryonic day 12 (E12), postnatal day 0 (P0O) and postnatal day 9 (P9) (Figure 1A).
These developmental days represent 3 distinct stages of murine cerebellar development, each

with its own developmental profile (Goldowitz & Hamre, 1998). H3K27ac and H3K4mel signals
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were reproducible between biological replicates as exemplified in a region on chromosome 14
(Figure 1B). There was a high correlation between replicates for both marks at each age
(Supplementary Figure 1A). Therefore, we had confidence in using our H3K27ac and
H3K4mel data in downstream analyses. Robust cerebellar enhancers were identified by the
presence of overlapping peaks between the two enhancer-associated histone marks at each age.
This highlighted a total of 9,622 peaks; 5,859, 474, and 3,289 peaks that were in both the
H3K27ac and H3K4mel datasets at E12, PO, and P9, respectively (Figure 1C). Duplicate peaks
between ages were removed, producing a list of 7,024 active cerebellar enhancers derived from

overlapping H3K27ac and H3K4mel signals (Supplementary Data 1).
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Figure 1. Enhancer identification during cerebellar development. A) An overview of the stages of cerebellar
development profiled in this study. The datasets collected at these ages and the downstream analyses are shown.
Labels: NE: Neuroepithelium, RL: Rhombic lip, EGL: External granular layer, PL: Purkinje layer, IGL: Inner
granular layer, CN: Cerebellar nuclei B) A region of the mouse genome chr14:122,715,876-122,899,964 (mm9) in
the Integrative Genomics Viewer (IGV) showing H3K27ac and H3K4mel profiles across biological replicates of
E12, PO, P9 cerebella. Active cerebellar enhancers are highlighted (gray box). C) Venn diagrams displaying overlap
between H3K27ac and H3K4mel peaks at each E12, PO and P9. D-E) An example of a cerebellar enhancer
identified from the E12 cerebella. Shown is normalized H3K27ac and H3K4mel signal at the enhancer (gray box),
as well as (E) normalized CAGE-seq expression of the nearest gene, Ascll, across developmental time, at E12, PO,
P9. TPM, Transcripts Per Million. (F-G) An example of a cerebellar enhancer identified from the P9 cerebella.
Shown is normalized H3K27ac and H3K4mel signal at the enhancer (gray box), as well as (G) normalized (TPM)
CAGE-seq expression of the nearest gene, Pax6, across developmental time, at E12, PO, P9.
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117 The relationship between enhancer activity and genes relevant to cerebellar development
118  is shown in genomic regions flanking Asc// and Pax6, two genes critical to cerebellar

119  development (Kim, Battiste, Nakagawa, & Johnson, 2008; Yeung, Ha, Swanson, & Goldowitz, 2016b).
120  We identified an enhancer active at E12 located in close proximity to Ascl// (Figure 1D). A

121 decrease in the H3K27ac ChIP-seq signal at this enhancer corresponded to a decrease in 4Ascll
122 gene expression (Figure 1E). We identified two active enhancers at P9 located near Pax6

123 (Figure 1F). H3K27ac ChIP-seq signal also showed a pattern of activity similar to Pax6

124  expression, increasing from embryonic to postnatal ages (Figure 1G). These results provide
125  validation for the enhancers identified in our dataset in regulating genes critical to cerebellar
126  development.

127 We compared our list of robust cerebellar enhancers to three previously published

128  enhancer datasets. First, P7 H3K27ac ChIP-seq and DNase-seq profiles previously generated by
129  Frank et al (2015) were compared to robust cerebellar enhancers. Greater than 90% of our

130 reported cerebellar enhancers are replicated by H3K27ac and DNAse-seq peaks from this study
131  (Supplementary Figure 1B-C). Second, enhancers retrieved from the enhancer database

132 EnhancerAtlas 2.0, reporting enhancer activity in the mouse cerebellum at P0-P14 (Gao & Qian,
133  2020), were compared to robust cerebellar enhancers were compared to. We found that 73%, and
134  80% of our enhancers overlapped with the postnatal cerebellum enhancer dataset at PO, and P9,
135  respectively (Supplementary Figure 1D). Third, mouse enhancers that had experimentally

136  validated hindbrain activity at E11.5 from the VISTA Enhancer Browser (Visel, Minovitsky,

137  Dubchak, & Pennacchio, 2007) were compared to cerebellar enhancers. We found that 56% of
138  VISTA enhancers overlap with our cerebellar enhancer sequences at E12 (Supplementary

139  Figure 1E). These confirmative findings indicate our approach was effective in capturing active
140  cerebellar enhancers.

141

142  Enhancer dynamics during cerebellar development

143 The dynamics of enhancer activity over cerebellar development were examined through a
144  differential peak analysis of H3K27ac signal. The majority, 89% (6238/7023), of cerebellar

145  enhancers had significant differences in peak signal (adjusted p-value < 0.05) throughout

146  cerebellar development (Figure 2A). At P9, 1273 cerebellar enhancers were significantly active

147  compared to either PO or E12 (Supplementary Data 2). At E12, 4432 active enhancers were
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148  differentially active compared to either P9 or PO (Supplementary Data 2). At PO, in contrast, only
149  a small number of enhancers with differential signal was identified (403 and 154 showed

150  significant changes when compared to E12 and P9, respectively). However, none of these PO

151  cerebellar enhancers were differentially active when compared to both E12 and P9, indicating
152  that enhancer activity did not spike at birth. Taken together, this analysis highlights two

153  temporally specific windows of enhancer activity at Early (embryonic) and Late (postnatal)

154  stages (Figure 2B).
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156 Figure 2. Enhancer activity is dynamic throughout cerebellar development. A) Volcano plots showing robust
157 cerebellar enhancers with differential H3K27ac peak signal for three comparisons: E12 vs P9, E12 vs P0, and PO vs
158 P9. Differential signal strength was identified for 4433 and 4355 robust cerebellar enhancers when comparing E12
159 to P9 and to PO, respectively. At P9, 1275 and 403 robust cerebellar enhancers had differential signal when

160 compared to E12 and PO, respectively. Enhancers with significant differential activity are colored at a cutoff of an
161 adjusted p-value < 0.05. Displayed on the y-axis is the negative log10 adjusted p-value and on the x-axis is the
162 difference in ChIP-seq signal between to the ages for a given peak. B) A diagram displaying how Early and Late
163  active cerebellar enhancers were classified based on differential peak analysis results. C) A boxplot showing mean
164 ChlIP-seq signal (y-axis) for all Early (upper) and Late (lower) active enhancers. Error bars represent the standard
165 error of the mean. D) Mean profile and heatmaps of H3K27ac signal at the midpoint of our predicted cerebellar
166  enhancers (rows = 3kb) in Early and Late groups at E12, PO and P9.

169 Distinct patterns of enhancer activity were observed for temporally classified enhancers.
170  For Early active enhancers, there was a loss of mean H3K27ac signal over time, with a steep

171 decline after E12 (Figure 2C). Late active enhancers exhibited a gain in activity over time, with
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mean H3K27ac signal increasing steadily through development. These patterns are seen when
looking at the changes in signal flanking the summits of our peaks across time (Figure 2D).
These results indicate that the majority of cerebellar enhancers are dynamic throughout time and

exhibit temporally specific activity.

Cerebellar enhancers are enriched for neural transcription factor binding sites in an age-
dependent manner

We then sought to identify transcription factors whose activity is dictated by the
availability of robust cerebellar enhancers, as many neural lineage-defining factors drive cell
commitment in the developing brain through enhancer binding (Elsen et al., 2018; Lindtner et al.,
2019). We used HOMER to search for enriched motifs (adjusted p-value < 1E-11) in Late and
Early active cerebellar enhancers and then matched them to known transcription factor motifs in
the JASPAR database (Heinz, S. et al., 2010). This analysis revealed a distinct set of significantly
enriched motifs for Early and Late enhancers matching predicted TFs with both known and novel
regulatory roles in cerebellar development (Figure 3A). TFs enriched in the Early active
enhancers show a decrease in expression over time while TFs enriched in the Late active
enhancer group show an increase in expression over time. This correspondence between enriched
TF expression and enhancer activity provides validation for our findings and indicates the timing
of enhancer activity may be dictated by the expression and binding of these enriched TFs.

The top three enriched TF motifs for Early active enhancers were Ascll, Meis2 and
Atohl (Figure 3A). These TFs have established roles in cerebellar development, acting as
markers of GABAergic or glutamatergic cell types and regulators of differentiation (Ben-Arie et
al., 1997; Kim et al., 2008; Wizeman et al., 2019). Importantly, many of the motifs enriched in the
Early group matched with TFs which have received little to no attention in the cerebellum,
including Sox4, Lhx2, Rfx4, Pou3fl and Pax3 (Figure 3A). These TFs have been previously
associated with the development of other brain areas (Frantz, Bohner, Akers, & McConnell, 1994;
Porter et al., 1997; Su et al., 2016; Zhang, D. et al., 2006). In contrast, the TFs matching the motifs
enriched in the Late active enhancers have a previously identified role in cerebellar development;
but not necessarily involved in the same processes (Figure 3A). For example, the top 3 enriched
motifs matched with Neurodl, Nfia/b/x, and NF1, which have all been associated with granule

cell differentiation (Miyata, Maeda, & Lee, 1999; Sanchez-Ortiz et al., 2014; Wang, W. et al., 2007).
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203  However, two other TFs with enriched binding sites, Pax6 and Smad4 have been found to be
204  critical for granule cell precursor proliferation, a process preceding differentiation (Swanson &
205  Goldowitz, 2011). These results suggest a dynamic role for the majority of our Early and Late
206 active enhancers, driven by TFs involved in distinct stages of neuron development.

207
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209 Figure 3. Neural transcription factors with known and novel function in the developing cerebellum are

210 enriched in dynamic cerebellar enhancers. A) Dot plot displaying significantly enriched (adjusted p-value < 1E-
211 11) motifs and the predicted matching transcription factor (TF). Displayed are the results for Early (top) and Late
212 (bottom) active enhancers. TFs with an unknown functional role in cerebellar development are indicated with a red
213 arrow. Size of the dots indicate the negative log10 adjusted p-value for a given motif and the color scale displays the
214 z-score normalized expression throughout the cerebellar developmental time course. B) Top: Immunofluorescent
215 staining of Pax3 in the mouse cerebellum at E12, E15 and P0O. Bottom: Pax3 and Ptfla immunofluorescent co-

216 staining of the E12 mouse cerebellum. Immunofluorescent co-staining of Pax3 and Pax2 in the mouse cerebellum at
217 E15 and PO. Labels: CP: Cerebellar parenchyma, EGL: External granular layer, NGL: Nascent granular layer, RL:
218  Rhombic lip, VZ: Ventricular zone, Scalebars = 100um.

219

220  Early active enhancers are enriched for Pax3 binding sites, a novel marker for GABAergic
221 cells

222 The TF motif enrichment analysis of Early enhancers led to the discovery of several TFs
223  with novel in the context of embryonic cerebellar development; potentially involved in seminal
224  aspects of development such as cellular specification or commitment. As a case study, we

225  focused on Pax3, as other members of the Pax protein family have been shown to play key roles
226  in the developing cerebellum (Leto et al., 2009; Urbanek, Fetka, Meisler, & Busslinger, 1997; Yeung,
227  Ha, Swanson, & Goldowitz, 2016a). Indeed, we observed robust expression in the ventricular zone

228  (VZ); a neural progenitor region for GABAergic cells in the cerebellum (Leto, Carletti, Williams,
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Magrassi, & Rossi, 2006) (Figure 3B). Colocalization between Pax3 and Ptfla, the GABAergic
lineage-defining molecule in the cerebellum (Hoshino et al., 2005), confirmed expression within
GABAergic neural progenitors. At E15, Pax3+ cells are seen in the region just dorsal to the VZ,
which consist of post-proliferative cells such as Purkinje cells and interneurons (Hoshino et al.,
2005; Leto et al., 2006) (Figure 3B). We examined Pax3 co-labeling with markers for these cell
types Foxp2 and Pax2, respectively (Fujita et al., 2008; Maricich & Herrup, 1999). While
colocalization between Pax3 and Pax2 was found (Figure 3B), no co-staining between Pax3 and
Foxp2 was observed (Supplemental Figure 3A). These results extend to PO, where Pax3+ cells
are found in the nascent granule cell layer as well as the cerebellar parenchyma; ie co-labeling
with Pax2 and not Calbindin, a Purkinje cell marker (Figure 3E, Supplemental Figure 3B).
Thus, Pax3 is a novel marker for GABAergic progenitors and interneuron precursors in the

developing cerebellum.

Co-expressed putative target genes are expressed in spatially distinct areas of the
developing cerebellum.

We next investigated the molecular processes regulated by robust cerebellar enhancers
through predicting their downstream targets (Osterwalder et al., 2018; Yao et al., 2015). This was
done by calculating the correlation between H3K27ac signal and gene expression at E12, PO, and
P9 (Zhang et al., 2018) for genes located within the same conserved topological associating
domain (TAD) identified previously (Dixon et al., 2012) (See Methods). Overall, at least one
positively correlated target gene was identified for 5815/7023 (70.61%) cerebellar enhancers
with an average Pearson correlation coefficient of 0.86 (Supplementary Data 3). In total, we
identified 2261 target genes. Using the Mouse Genome Informatics (MGI) database, we
identified 98 target genes that when knocked out result in a cerebellar phenotype; demonstrating
the validity of our high throughput approach.

An unbiased k-means clustering was then conducted for Early and Late target genes to
delineate them into the various co-expression programs coordinating molecular events during
development. For this analysis, the target gene expression time course was expanded to 12
different timepoints during cerebellar development, quantified previously by CAGE-seq (Zhang
et al., 2018). For Early active enhancers, 4 Clusters of co-expressed target genes were identified

(Figure 4A). Genes in these clusters had decreased expression over time, similar to their
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260  corresponding enhancer activity. However, a distinct mean expression profile was observed for
261  each Cluster (Figure 4B). Interestingly, genes with known function during cerebellar
262  development showed distinct spatial expression patterns, observed using ISH data from the

263  Developing Mouse Brain Atlas (Thompson et al., 2014) (Figure 4C).
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266 Figure 4. Co-expressed Early target genes are expressed in spatially distinct areas and have diverse roles in
267 cerebellar development. A) Line plot and heatmap showing mean z-score expression for Early target genes

268 throughout the cerebellar time course. B) Line graph representation of expression pattern throughout time for each
269 cluster. C) Known cerebellar genes in each cluster and in sifu hybridization (ISH) images showing spatial expression
270 at peak expression ages. ISH images were taken from the Developing Mouse Atlas conducted at E13.5 for clusters 1
271 and 2, and E11.5 for clusters 3 and 4. D) Gene Ontology (GO) enrichment analysis of target genes from each cluster,
272 displaying the top enriched GO terms. Size of the dots indicates the gene ratio for a given cluster which is equal to
273  the number of genes within the GO category divided by the total number of genes in the cluster. Color scale

274  indicates the adjusted p-value for each GO term.

275 For example, in Cluster 3, cerebellar genes 4Asc/l and Neurog?2 are expressed exclusively
276  in the ventricular zone at E11.5 while Cluster 4 contains LAx9 and Meis2 which are expressed in
277  the Nuclear Transitory Zone (neurons destined for the cerebellar nuclei). A Gene Ontology (GO)
278  enrichment analysis revealed that each cluster is enriched for molecular processes known to be
279  regulated by cerebellar genes within the cluster (Figure 4D). For example, Cluster 1 is enriched
280 for axonogenesis (GO:0007409, p-value: 3.31E-4), neuron migration (GO:0001764, p-value:
281  3.3E-4) and Purkinje layer development (GO:0021691, p-value: 0.01) and also contains LAx/
282  and Lhx5 which are expressed in migrating Purkinje cells in cerebellar parenchyma and has

283  previously been associated with the regulation of Purkinje cell differentiation during embryonic
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cerebellar development (Zhao et al., 2007). Together, these findings support the notion that Early

active enhancers regulate their targets in a spatially-specific manner, regulating distinct processes

in their respective cell types.

For the Late active enhancers, 4 Clusters of co-expressed target genes were identified

(Figure SA). We observed relatively distinct expression patterns in each of the 4 Clusters with a

gradual rise in mean expression throughout time (Figure 5B). Genes with known function during

cerebellar development also show distinct spatial expression patterns, identified using the

Developmental Mouse Atlas (Figure SC). For example, Cluster 1 and 3 contained known

cerebellar genes critical for granule cell development, such as Neurodl and Zicl, while Cluster

2 and 4 contained cerebellar genes important for in Purkinje cell development, such as Atxn/ and

Hcenl (Figure 5C) (Aruga & Millen, 2018; Ebner et al., 2013; Miyata et al., 1999; Rinaldi et al., 2013).
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Figure 5. Co-expressed Late target genes are expressed in developing granule cells or Purkinje cells with
common roles in cerebellar development. A) Line plot and heatmap showing mean z-score expression throughout
the cerebellar time course. B) Line plot representation of expression pattern throughout time for each cluster. C)
Known cerebellar genes in each cluster and in situ hybridization showing spatial expression at peak expression ages.
ISH images were taken from the Developing Mouse Atlas provided by the Allen Brain Atlas conducted at P4.5 for
all clusters. D) Gene Ontology (GO) enrichment analysis of all target genes of Late active enhancers, displaying the
top enriched GO terms. Size of the dots indicates the number target genes within a given GO term and the gene ratio
(x-axis) is equal to the number of genes within the GO category divided by the total number of genes in the cluster.

Color scale indicates the adjusted p-value for each GO term.

A GO enrichment analysis was conducted for each Cluster; with no significantly

enriched Cluster-specific GO terms. However, if all Late enhancer target genes were combined,

several enriched GO terms emerged including ones involved in postnatal neuronal development,
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such as neuron death (GO:0070997, p-value: 0.003), neurotransmitter transport
(GO:0006836, p-value: 0.006) and regulation of synaptic vesicle exocytosis (GO:2000300, p-
value: 0.005) (Figure 5D). Overall, this analysis provides a working framework for the
placement of hundreds of genes into the overall structure of embryonic or postnatal cerebellar

development

Bhlhe22 is a novel regulator of granule cell development

To demonstrate the utility of our results, we sought to identify target genes not
previously identified in cerebellar development. We focused on Late Cluster 1, which contained
target genes expressed in granule cells. We hypothesized that genes within this cluster regulated
postnatal granule cell differentiation. To identify genes in this cluster regulating granule cell
development, we filtered these genes relative to their interaction with Atohl, the lineage defining
molecule for granule cells and other glutamatergic neurons in the developing cerebellum (Ben-
Arie et al., 1997). The genes were filtered using the following criteria: 1) Atohl is bound to the
predicted enhancer during postnatal development (Klisch et al., 2011) and 2) the genes are
differentially expressed in the Atohl-null mouse (Klisch et al., 2011). Among the top 15 genes in
the filtered list, we identified 4 novel genes and 11 genes that have previously been implicated in
postnatal granule cell development (Supplementary Table 1). The known genes provided
validation for our approach. The novel genes included Bhlhe2?2 (also known as Bhlhb5), Purb,
KIf13 and Sox18. We focused particularly on Bhlhe2?2 as it has previously been implicated in the
differentiation of neurons in the cortex (Joshi et al., 2008). An enhancer ~2 kb upstream of the
Bhlhe2?2 transcriptional start site was identified and is bound by Atoh1 during postnatal
development (Supplemental Figure 3A). This enhancer displayed H3K27ac activity highly
correlated (Pearson correlatoin coefficient = 0.98) to Bhlhe2?2 expression, which consistently
rises throughout cerebellar development and peaks at P9.5 (Supplemental Figure 3B).

To attain a cellular resolution of the expression pattern for Bhlhe22 over developmental
time, a time-course of protein expression using immunofluorescent staining spanning cerebellar

development was conducted. Bhlhe22 expression was observed in cells within the inner external
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Bhilhe22 Neurod1

Bhlhe22

336
337 Figure 6. Bhlhe22 is expressed in differentiating granule cells in postnatal cerebellar development. A) Bhlhe22

338  (green) and Neurod1 (red) immunofluorescent co-staining at P9.5 of taken from a posterior lobe IX. B) Bhlhe22
339  (green) and NeuN (red) immunofluorescence co-staining at P6 taken from posterior lobe IX. C) Bhlhe22 (red) and
340 Dcx (green) immunofluorescent co-staining at P6 showing the posterior lobe IX; Labels: EGL= external granular
341 layer IGL = inner granular layer, ML = molecular layer, Scalebars = 100um.

342
343  granule layer (EGL), molecular layer and in the inner granule layer (IGL) of the postnatal

344  cerebellum (Figure 6A). To identify whether Bhlhe22 is expressed in differentiating granule

345  cells, co-staining experiments were performed with Neurod1 and NeuN which mark

346  differentiating and mature granule cells, respectively (Miyata et al., 1999; Weyer & Schilling, 2003).
347 At P6.5, colocalization between Bhlhe22 and Neurod1 was observed, indicating expression in
348  differentiating and migrating granule cells (Figure 6A). Co-staining between Bhlhe22 and NeuN
349  expression was also observed, indicating expression in maturing granule cells found within the
350 IGL (Figure 6B). To confirm whether the Bhlhe22-positive cells within the molecular layer were
351  migrating granule cells, we performed a double labelling experiment for a neuronal migration
352  marker Doublecortin (Takacs, Zaninetti, Vig, Vastagh, & Hamori, 2008). Colocalization between
353  Doublecortin and Bhlhe22 was observed in cells within the inner EGL and the molecular layer,

354  confirming Bhlhe22 expression in migrating granule cells (Figure 6C).
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355 We then investigated the role that Bhlhe22 plays in postnatal granule cell development
356  using a well-established in vitro system (Lee, Greene, Mason, & Manzini, 2009). Three sets of

357  experiments were performed using isolated granule cells from P6.5 cerebella transfected with
358  siRNA targeting Bhlhe2?2 transcripts (Figure 7A). First, to determine if Bhlhe22 expression was
359  diminished, changes in gene expression were assessed after 3 days in vitro (DIV) using reverse
360 transcriptase quantitative PCR (RT-qPCR). A 50% reduction of Bhlhe22 expression, on average,

361  was found in treated cultures compared to controls (Figure 7B).
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362
363 Figure 7. Knockdown of Bhlhe22 reduces migration of cultured cerebellar granule cells. A) Workflow for

364 dissociated and reaggregate postnatal granule cell cultures. B) RT-qPCR analysis of Bhlhe22 gene expression in
365 dissociated postnatal granule cell cultures after treatment with Bhlhe22 siRNA. Gene expression was normalized
366 relative to the expression of the co-transfected EGFP protein to account for transfection variability between cultures.
367 Data are presented as mean + SD (n = 3). C) Image of cultured cerebellar granule cell reaggregates treated with
368  control and Bhlhe22 siRNA. Shown are EGFP positive cells indicating successful transfection. Scalebars = 100um.
369 D) Box plot displaying mean distance of granule cell migration from the aggregate. Value above indicates a

370 statistical difference between control cultures and those treated with Bhlhe22 siRNA (p-value = 0.0013). E) Bar plot
371 showing the percentage of cells migrated at different distances from the aggregate for control and Bhlhe22 siRNA
372 treated cerebellar granule cell cultures. F) RT-qPCR analysis of gene expression of cell adhesion molecules in

373 dissociated postnatal granule cell cultures after treatment with Bhlhe22 siRNA. Gene expression was normalized
374 relative to the expression of the co-transfected EGFP protein to account for transfection variability between cultures.
375  Data are presented as mean £ SD (n = 3). Symbols: *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, which indicate
376 statistical differences observed between Bhlhe22 siRNA treated samples and controls. All error bars represent the
377  standard error of the man

378
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Second, phenotypes of the transfected cells were examined; examining their neuritic
outgrowths from the aggregate, and the migration of granule cells from the aggregates, within the
first 24 hours of plating (Gartner, Collin, & Lalli, 2006). Neuritic outgrowth was unaffected,
however there was a marked reduction in migration (Figure 7C). Bhlhe22 siRNA transfected
cells travelled on average 54.2um from the edge of the aggregate, a 50% reduction compared to
control samples (Figure 7D). Examining the distribution of migrated cells from the edge of the
aggregate, there was a higher percentage of Bhlhe22 siRNA transfected granule cells migrating
less than 50um, while the majority of the cells in control samples migrated 100um and beyond
(Figure 7E).

Third, changes in the expression of cell adhesion molecules that are known to be
involved in granule cell development were assessed (Consalez et al., 2021; Wang et al., 2007). A
significant reduction of Efnb1, Efnb2, Tagl, Cdh2 and Astn2 was observed in Bhlhe22
knockdown granule cell cultures compared to controls (Figure 7F). In addition to these genes,
we also found a significant reduction in Doublecortin (Dcx) expression. Taken together, these in
vitro knockdown experiments reveal a novel function for Bhlhe22, a gene that was identified by
our temporal enhancer-target gene analysis and was predicted to have a critical role in postnatal

granule cell development.

Active cerebellar enhancers are enriched for common and de novo genetic variants
associated with autism spectrum disorder.

Genome wide association studies (GWAS) have revealed that the majority of variants
associated with neurodevelopmental diseases are found within non-coding regulatory sequences,
particularly enhancers (Visel, Rubin, & Pennacchio, 2009). Given the emerging importance of the
cerebellum in the etiology of autism spectrum disorder (ASD), we tested whether ASD-
associated variants are enriched in cerebellar enhancers. The software tool GREGOR (Genomic
Regulatory Elements and Gwas Overlap algoRithm) was used to evaluate the enrichment of
common genetic variants associated with ASD in cerebellar enhancers (Schmidt et al., 2015). ASD
associated SNPs were retrieved from the GWAS Catalog (Buniello et al., 2019) and a stringent
filter was applied to identify SNPs associated with the ASD (Supplementary Table 2). We
examined 174 ASD-associated SNPs with a maximum p-value of 9E-06 (Buniello et al., 2019).

ASD-associated SNPs were enriched in cerebellar enhancers (p-value = 2.34E-03) and in
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H3K?27ac peaks at E12, PO, and P9 (p-values of 1.29E-03, 1.05E-02 and 1.42E-04, respectively)
(Figure 8A). For the 13 cerebellar enhancers containing ASD-associated SNPs, we identified 12
predicted target genes (Supplementary Table 3). Among these, three (PAX6, TCF4, and ZMIZ])
are ASD risk genes according to the Simons Foundation Autism Research Initiative (SFARI)
gene database (Banerjee-Basu & Packer, 2010).

De novo mutations (DNMs) (variants present in the genome of a child but not his or her
parents) have been found to play a significant role in the etiology of ASD, including those found
in non-coding regions of the genome (Grove et al., 2019; Yuen et al., 2016). We hypothesized that
DNMs within cerebellar enhancers would be more prevalent in ASD-affected individuals

compared with their unaffected siblings. We used whole-genome sequencing data from 2,603

ASD-affected individuals and 164 unaffected siblings from the MSSNG cohort(C Yuen et al.,
2017), as well as 2,340 ASD-affected individuals and 1,898 unaffected siblings from the Simons
Simplex Collection (SSC) (Fischbach & Lord, 2010) to analyze the prevalence of DNMs in ASD-
affected individuals compared with their unaffected siblings.
A B
Reported Expected Number of DNMs
Dataset Number of Number of P-value 0Odds ratio
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Figure 8. Cerebellar enhancers are enriched for GWAS SNPs and DNMs associated with ASD. A) Number of
ASD-associated GWAS variants identified in cerebellar enhancers and H3K27ac peaks called from E12, PO, and P9
samples. B) Enrichment of de novo single nucleotide variants and indels in ASD-affected individuals compared with
their unaffected siblings. Counts are not equal to the sum of the four enhancer types because some enhancers are
categorized as more than one type. C) Gene targets for enhancers overlapped by de novo CNVs in the SSC cohort.
D) In situ hybridization showing Cdc42bpb expression in the lateral (left) and medial (right) adult mouse cerebellum
(REF mouse brain atlas). Note expression is found in granule cells, particularly those of the lateral cerebellum.
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We found that DNMs (specifically de novo single nucleotide variants and indels) in
cerebellar enhancers and H3K27ac peaks from E12, PO and P9 were enriched in ASD-affected
individuals, with odds ratios ranging from 1.04 to 1.10 (Figure 8B). While these differences
were not statistically significant for cerebellar enhancers and peak coordinates individually,
statistical significance was achieved when combined (odds ratio=1.06; p-value=0.0043). We also
identified de novo CNVss overlapping cerebellar enhancers. Since the number of such CNVs was
too small to perform statistical enrichment tests, we selected a subset of 7 of these CNVs (4
deletions and 3 duplications) for further characterization to identify candidates for association
with ASD (Figure 8C). The most promising candidate was an ~11 kb deletion overlapping an
enhancer predicted to target CDC42BPB, which has previously been implicated in
neurodevelopmental phenotypes (Chilton et al., 2020). By visual validation in Integrative
Genomics Viewer (Robinson et al., 2011), we verified that this deletion was truly de novo
(Supplementary Figure 4). CDC42BPB is expressed in the granule cell layer of the adult mouse
cerebellum (Figure 8D) and is expressed in the lateral aspects of the cerebellum but not the

medial cerebellum.

Discussion

The current model of gene expression regulation during brain development posits that
temporal and spatial transcription is under the intricate control of thousands of non-coding
enhancer sequences (Nord & West, 2020). This model has emerged from the findings of several
studies of enhancer activity in various parts of the developing brain (Nord et al., 2013; Pattabiraman
et al., 2014; Visel et al., 2013). In our study on the cerebellum, we performed an assessment of
enhancer activity through genome-wide profiling of H3K4mel and H3K27ac deposition at three
time points during embryonic and early postnatal times. These datasets were utilized to define
functional enhancer elements with temporally specific activity during these developmental ages.
In doing so, we establish the first catalog of predicted enhancers active during embryonic
cerebellum development. Through a motif enrichment analysis, neural TF motifs were found to
be enriched in cerebellar enhancers which may drive temporally specific enhancer activation.
This analysis highlighted a novel regulatory role for several understudied TFs in the context of
cerebellar development. These data were then integrated with a transcriptomic time course to

identify predicted target genes to inform our understanding of enhancer regulation in the
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developing cerebellum. Through unbiased clustering, we identified enhancer-regulated co-
expression gene programs with spatially distinct patterns of expression and unique biological
functions during embryonic and postnatal development. Further analysis of these results led to
the discovery of novel cell-type marker and regulator of cerebellar development and highlights

the importance of enhancer regulation during brain development and the etiology of ASD.

Cerebellar enhancers regulate gene expression important for distinct stages of neuronal

development

Identification of enriched TF binding sites and putative target genes indicated that
cerebellar enhancers likely play a regulatory role in various phases of neuronal development. In
agreement with our results, previous examinations of active non-coding regulatory sequences
revealed that neural progenitor cells and mature neurons exhibit distinct signatures of enhancer-
associated histone profiles, DNA methylation, chromatin conformation and enhancer-promoter
interactions (Bonev et al., 2017; de la Torre-Ubieta et al., 2018; Lister et al., 2013; Whyte et al., 2012).
Bonev et al. (2017) examined changes in enhancer-promoter interactions between transgenic cell
lines FACS sorted for embryonic stem cells, neural progenitors and mature neurons and
identified that changes in enhancer-promoter contacts are cell-state specific and correlate with
changes in gene expression (Bonev et al., 2017). When comparing contacts in neuro-progenitors
and mature neurons, a decrease in the interaction strength was observed between active domains
compared to an increased strength in inactive domains, indicating a shift in usage of regulatory
sequences. These changes were also reflected at the level of TF binding, as interactions at Pax6-
bound sites, a TF marking neural progenitors, were stronger in neural progenitors than in
neurons, while NeuroD2-bound sites, a TF marking mature neurons, were stronger in neurons
than NPCs (Bonev et al., 2017). This shift in enhancer usage throughout cortical development is
also reflected in DNA methylation profiles, where fetal enhancers are hypermethylated and
decommissioned in the adult brain, while enhancers regulating adult gene expression were
hypomethylated (Lister et al., 2013). Hypermethylation was accompanied by a decrease in
H3K4mel, H3K27ac and DNase hypersensitivity while the increase was observed after
hypomethylation (Lister et al., 2013). Our study supports the importance of temporally-specific
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activity during different stages of neuron development in vivo and details the processes driven by

enhancer-regulated expression during embryonic and early postnatal brain development.

Expression analysis of two genes novel to cerebellar development, Pax3 and Bhlhe22,
supported the notion that enhancer profiles are specific to developmental stage. TF enrichment
analysis identified Pax3 preferentially enriched in Early active enhancers and robust expression
of Pax3 was localized to GABAergic interneuron progenitor cells. Interestingly, through further
examination of cerebellar single-cell RNA-seq data produced by Carter et al. (2018), we found
that Pax3 expression is enriched in GABAergic progenitors and differentiating GABAergic
interneurons (Carter et al., 2018). Analysis of predicted gene targets of Late active enhancers
identified Bhlhe22 as a novel gene expressed in postnatal differentiated granule cells, and in
vitro knockdown experiments in primary granule cells indicated Bhlhe22 regulates granule cell
migration potentially through regulation of cell adhesion molecule expression. These results are
supported by findings in the developing cortex, where Bhlhe22 has been shown to regulate post-
mitotic acquisition of area identity in layers II-V of the somatosensory and caudal motor cortices
(Joshi et al., 2008). The contrasting expression profiles of Pax3 and Bhlhe22 highlight the wide-

ranging developmental impact of enhancer-mediated gene expression regulation.

Our findings from the TF enrichment and gene target analyses generated from
preferentially active postnatal enhancers indicate that many of the enhancers captured are active
in the developing granule cells and Purkinje cells. We attribute this apparent bias to our whole
tissue approach, as granule cells and Purkinje cells are the predominant cells in the cerebellum at
that time, making it more likely to capture signals specific to these cells compared to other less
abundant cell types. Our study therefore reveals that to elucidate enhancers specifically active
within less abundant cell types, a more granular approach may be required through single-cell
examination of chromatin accessibility, such as single cell ATAC-seq. This approach can be
coupled with the abundance of scRNA-seq data that has been collected in the developing
cerebellum. This strategy has seen success in the developing cortex and more recently in the

cerebellum (Preissl et al., 2018; Sarropoulos et al., 2021).
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Co-expressed gene targets of cerebellar enhancers display cell type-specific expression

patterns

In addition to being temporally-specific, recent evidence indicates that enhancer activity
is cell type specific in the brain (Blankvoort, Witter, Noonan, Cotney, & Kentros, 2018). This is
highlighted in the identification of cerebellar enhancer target gene clusters for Early and Late
active enhancers with cell specific patterns of expression (Figure 4 and 5). For example, distinct
boundaries can be seen in gene expression from Early Clusters 3 and 4 at E11.5 between cells in
the subpial stream (Cluster 4) and neuroepithelium (Cluster 3) where neural precursors of two
separate lineages, the glutamatergic cerebellar nuclei and GABAergic cerebellar nuclei and
Purkinje cells, are found, respectively. These sharp borders are reminiscent of the small domains
of distinct enhancer activity identified in neural progenitors in the telencephalon, which were
found to fate-map to specific prefrontal cortex subdivisions (Pattabiraman et al., 2014). We see a
similar pattern in the more developed postnatal cerebellum, observing a spatial distinction
between Late Clusters 1/3 and 2/4 delineating expression in granule cells and Purkinje cells,
respectively. This cell type specific enhancer usage is demonstrated in the adult brain.
Blankvoort et al (2018) (Blankvoort et al., 2018) used ChIP-seq analysis of microdissected
subregions of the adult mouse cortex to reveal unique enhancer profiles pertaining to each
region. Additionally, Nott et al (2019) (Nott et al., 2019) identified enhancer-promoter interactome
maps specific to the major cell types in the cortex, which included neurons, microglia,
oligodendrocyte and astrocytes. Enriched GO terms for each cerebellar target gene clusters were
cell-type and temporally specific, highlighting enhancer specificity. Functionally annotating their
respective clusters provides a working hypothesis for hundreds of genes, which can be used as a
jumping point for future in-depth studies in the cerebellum. Collectively, these findings support
the notion that the cell types in the cerebellum have specific enhancer signatures relevant which

are reflected by the expression and functions of their target genes.

GWAS SNPs and DNMs associated with ASD are enriched in cerebellar enhancers

Having established and characterized enhancer sequences in the cerebellum, we sought to
elucidate the potential involvement of these regions in the etiology of neurological disorders;

imaging and quantitative data show consistent cerebellar abnormalities, particularly in cases of
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554  individuals with autism (Limperopoulos et al., 2014) (Stoodley & Limperopoulos, 2016). Our results
555  indicate that cerebellar enhancer sequences are significantly enriched for GWAS variants and
556  DNMs associated with ASD, suggesting an important role for enhancers in contributing to the
557  condition. PAX6 was among 12 target genes of cerebellar enhancers containing ASD-associated
558  wvariants and is classified in the SFARI as a ASD risk gene. The deletion of Pax6 in the murine
559  cerebellum results in aberrant development of the glutamatergic cells in the cerebellum: the
560 cerebellar nuclei, unipolar brush cells and granule cells (Yeung et al., 2016). Behavioral analysis
561  of Pax6 animal models has also indicated a possible link between this gene and autistic-like
562  behavior (Umeda et al., 2010). Additionally, Pax6 has been linked with WAGR (Wilm’s tumor,
563  Aniridia, Genitourinary malformations, and mental Retardation syndrome) which is co-morbid
564  for ASD. Our analysis invites future investigation these target genes and how perturbation of

565 their expression may lead to ASD phenotypes.

566 Of the target genes of the enhancers that overlapped de novo CNVs in the SSC cohort,
567  none have been previously associated with cerebellar development. Interestingly, one of these
568 target genes, CDC42BPB, has recently been associated with neurodevelopmental disorders

569 including ASD (Chilton et al., 2020). This gene is a serine/threonine protein kinase and codes for
570 MRCKS (myotonic dystrophy-related Cdc42-binding kinase beta), a regulator of cell

571  cytoskeletal reorganization and cell migration (Pichaud, Walther, & Nunes de Almeida, 2019). Of
572  note, the CNV associated with this gene deletes the entire enhancer. CDC42BPB shows

573  expression in the granule cell layer of the lateral adult cerebellum, which has been associated

574  with cognitive functions (Koziol et al., 2014).

575 Together, our data serves as an invaluable resource for future studies, by providing
576  candidate genes involved in cerebellar development with potentially meaningful impact in the

577  etiology of ASD and other neurodevelopmental disabilities.

578
579  Materials and Methods

580  Mouse strains and husbandry
581  C57BL/6 J mice were originally purchased from JAX laboratory and maintained and bred in a
582  pathogen-free animal facility with 12/12 hour light/dark cycle and a controlled environment.

583  Embryonic ages utilized in these experiments were confirmed based upon the appearance of a
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584  vaginal plug. The morning that a vaginal plug was detected was designated as E0.5. Pregnant
585  females were cervically dislocated and embryos were harvested from the uterus. Postnatal ages
586  were determined based upon the date of birth with the morning of the observation of newborn
587  pups considered as P0.5. All studies were conducted according to the protocols approved by the
588 Institutional Animal Care and Use Committee and the Canadian Council on Animal Care at the
589  University of British Columbia.

590

591  Tissue preparation for chromatin immunoprecipitation

592  C57BL/6 J mice (male and female) at E12.5, P0.5 and P9.5 (henceforth referred to as E12, PO,
593  and P9) were decapitated for dissection of cerebella. Cerebella were dissected and collected in
594  ice cold Dulbecco’s PBS (DPBS) without magnesium or calcium and subsequently washed 2x
595  for 5 minutes. Samples from each litter were pooled and trypsinized in DPBS containing 0.25%
596  trypsin for 10, 15 and 30 min at room temperature for E12, PO and P9, respectively. Following 3
597  washes with fresh DPBS, the tissue was triturated with 3 progressively smaller (1, 0.5, 0.1mm)
598  bore polished and sterile pipettes in DPBS containing 250U/ml DNase, 0.25% glucose, and

599  8mg/ml BSA. The triturated cells were diluted 1:4 with cold DPBS and passed through a cell
600  strainer (40pum mesh) to remove large cellular debris. The cells were collected by mild

601  centrifugation, washed in fresh DPBS and counted. The cells were split into 100,000 cell

602 aliquots, pelleted and snap frozen using liquid nitrogen. Cell pellets were stored at -80°C.

603

604  Histone chromatin immunoprecipitation

605  We performed native chromatin immunoprecipitation (ChIP) using validated antibodies against
606 H3K4mel and H3K27ac according to previously established protocols by the International

607  Human Epigenomics Consortium (IHEC) (Lorzadeh, Lopez Gutierrez, Jackson, Moksa, & Hirst,
608  2017). Briefly, cells were lysed in mild non-ionic detergents (0.1% Triton X-100 and

609  Deoxycholate) and protease inhibitor cocktail (Calbiochem) to preserve the integrity of histones
610  harbouring epitopes of interest during cell lysis. Cells were digested by Microccocal nuclease
611  (MNase) at room temperature for 5 minutes and 0.25mM EDTA was used to stop the reaction.
612  Antibodies to H3K4mel (Diagenode: Catalogue #C15410037, lot A1657D) and H3K27ac

613  (Hiroshi Kimura, Cell Biology Unit, Tokyo Institute of Technology) were incubated with anti-

614  IgA magnetic beads (Dynabeads from Invitrogen) for 2 hours. Digested chromatin was incubated
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with magnetic beads alone for 1.5 hours. Digested chromatin was separated from the beads and
incubated with antibody-bead complex overnight in immunoprecipitation buffer (20mM Tris-
HCI pH 7.5, 2mM EDTA, 150mM NaCl, 0.1% Triton X-100, 0.1% Deoxycholate). The resulting
immunoprecipitations were washed 2 times by low salt (20mM Tris-HCI pH 8.0, 2mM EDTA,
150mM NaCl, 1% Triton X-100, 0.1% SDS) and then high salt (20mM Tris-HCI pH 8.0, 2mM
EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS) wash buffers. Immunoprecipitations were
eluted in an elution buffer (1% SDS, 100 mM Sodium Bicarbonate) for 1.5 hours at 65°C.
Remaining histones were digested by Protease (Invitrogen) for 30 minutes at 50°C and DNA
fragments were purified using Ampure XP beads (Beckman Coulter). The library preparation
was conducted by Diagenode ChIP-seq/ChIP-qPCR Profiling service (Diagenode Cat#
G02010000) using the MicroPlex Library Preparation Kit v2 (Diagenode Cat. C05010013). 50-
bp single-end sequencing was performed on all libraries by Diagenode (Belgium) on an Illumina
HiSeq 3000 platform. Two independent biological replicates were performed for each antibody

and developmental time point.

Histone modification ChIP-seq data processing

The sequencing data were uploaded to the Galaxy web platform (usegalaxy.org) for analyses
(Afgan et al., 2016). 50-bp single-end ChIP-seq reads were aligned to the NCBI37/mm9 reference
genome and converted to binary alignment/map (BAM) format by Bowtie2 v.2.3.4 (Langmead,
Trapnell, Pop, & Salzberg, 2009) with default parameters. Duplicate reads were marked using
Picard v.1.52. Peak enrichment was computed using MACS v.2.1.1 (Zhang, Y. et al., 2008) with a
false discovery rate (FDR) cutoff of 0.01 (p-value < 1E-5) using input samples as a control for
each replicate. bigWigs were generated and normalized by the total number of mapped reads
using the BamCompare and profiles were generated from these bigWigs by calculating average
coverage in 50 bp bins using Deeptools v.3.3 (Ramirez et al., 2016) for downstream analysis and

visualization.

Identification of active cerebellar enhancers
We first determined consensus peaks between replicates for both H3K27ac and H3K4mel peaks
collected at E12, PO and P9 using the intersect function from Bedtools v.2.28 (Quinlan & Hall,

2010). Robust active cerebellar enhancers were identified by overlapping replicated H3K27ac
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and H3K4mel peaks called for E12, PO and P9 samples. The genomic coordinates of the
H3K27ac peaks that overlapped with H3K4mel enriched regions at the same age were used for
our list of robust active cerebellar enhancers. We then removed peaks found within promoter
sequences by eliminating any peaks found 500bp upstream or downstream of transcription start
sites (TSSs) in the developing cerebellum as determined previously (Zhang et al., 2018). The
resulting list of robust active cerebellar enhancer sequences at E12, PO, and P9 were used for
downstream analysis.

For the comparative analysis with cerebellar postnatal enhancers previously published by Frank
et al. (2015), H3K27ac and DNase-seq peak coordinates were downloaded from Gene
Expression Omnibus (GEO) (GSE60731). The following sequences were downloaded from
public enhancer databases: 1) enhancers downloaded from the VISTA Enhancer Browser

(https://enhancer.lbl.gov/) (Visel et al., 2007) with hindbrain activity were filtered using the

‘Advanced Search’ tool, selecting “hindbrain” under Expression Pattern and retrieving only
mouse sequences with positive signal and 2) mouse cerebellar neonate enhancer coordinates
were downloaded from the Enhancer Atlas 2.0 repository

(http://www.enhanceratlas.org/downloadv2.php) (Gao & Qian, 2020). For the comparisons,

sequences were overlapped with our robust cerebellar enhancer peaks and H3K27ac peaks at

E12, PO and P9 using Bedtools v.2.28(Quinlan & Hall, 2010).

Differential binding analysis

Aligned read counts (BAM file format) from our H3K27ac ChIP-seq experiments mapped to our
robust active cerebellar enhancers for E12, PO and P9 samples were used as input to the package
DiffBind v1.4.2 (Stark & Brown, 2011). Read counting at each genomic location was conducted,
which was subsequently normalized by experimental input samples. The result of counting is a
binding affinity matrix containing normalized read counts for every sample at each robust active
cerebellar enhancer. For differential binding affinity analysis, three contrasts were set up in
DiffBind: E12 vs PO, E12 vs P9, and PO vs P9. Differential binding was determined by DiffBind
using a negative binomial test at an FDR < 0.05 threshold. The FDRs and normalized signal
difference for each contrast were plotted using the EnhancedVolcano package in R (Kevin Blighe,

Sharmila Rana, & Myles Lewis, 2020).
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677  Temporal classification of cerebellar enhancers

678  To determine cerebellar enhancers with embryonic-specific activity, H3K27ac signal at E12 was
679  compared to PO and P9. Enhancers with significantly higher signal at E12 for either contrast

680  were considered “Early” active enhancers. A region found to be enriched for both contrasts was
681  counted as one enhancer. To determine cerebellar enhancers with postnatal-specific activity,

682  H3K27ac signal at P9 was compared to E12 and PO. Enhancers with significantly higher signal at
683 P9 for either contrast were considered “Late” active enhancers. A region found to be enriched for
684  both contrasts was counted as one enhancer. To determine cerebellar enhancers with activity
685  specific to birth, H3K27ac signal at PO was compared to P9 and E12. Enhancers with

686  significantly higher signal at PO in both contrasts would identify enhancers that peaked in

687  activity at PO. We did not identify any enhancers that peaked in activity at PO and conducted the
688  remaining analysis for only Early and Late enhancers.

689

690 Transcription factor motif enrichment analysis

691  Transcription factor motif enrichment was calculated using the software HOMER using the

692  script FindMotifsGenome.pl with default parameters (Heinz et al., 2010). Analyses for Early and
693  Late active enhancers were conducted separately. Motif enrichment was statistically analyzed
694  using a cumulative binomial distribution. Enriched motifs were aligned with known transcription
695 factor binding sites to determine the best matches. Top known motif matches were filtered based
696  on expression within the developing cerebellum at E12 for “Early” active enhancers and P9 for
697  “Late” active enhancers.

698

699  Cerebellar enhancer target gene prediction and co-expression analysis

700  To identify possible gene targets of our robust cerebellar enhancers, the correlation between

701  H3K27ac signal and mRNA expression of genes located in cis at E12, PO and P9 was calculated.
702  For a given enhancer, a gene located in cis was considered a possible target if it was positively
703  correlated with H3K27ac signal throughout time. These genes were then filtered based on

704  location using conserved topologically associating domains (TADs), which are areas of the

705  genome that preferentially interact (Dixon et al., 2012). These TADs are conserved between

706  different cell types and even across species and were established using Hi-C data generated,

707  previously. Gene target candidates for a given enhancer were curated for those located within the
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same TAD. Predicted gene targets were then ranked based on their Pearson correlation
coefficient value. For the predicted gene targets of Early and Late active enhancers, we
conducted k-means clustering of predicted gene targets separately. Input for this analysis was
gene expression captured from cerebella at 12 embryonic and postnatal time points (Zhang et al.,
2018). Briefly, gene expression was quantified using Cap Analysis of Gene Expression followed
by sequencing (CAGE-seq) for mouse cerebellar samples dissected every 24 hours from E11-P0
and then every 72 hours until P9 (12 in vivo time points in total). The number of clusters for the
k-means clustering was determined using the Elbow analysis for each classified group of

enhancers: Early (n=4) and Late (n=4).

Tissue preparation for histology

Embryos harvested between E11.5 to E15.5 were fixed by immersion in 4% paraformaldehyde in
0.1M phosphate buffer (PB, pH 7.4) for 1 hour at 4°C. Postnatal mice between P0.5 to P6.5 were
perfused through the heart with a saline solution followed by 4% paraformaldehyde/0.1M PBS.
The brain tissues were isolated and further fixed in 4% paraformaldehyde in 0.1M PB for 1 hour
at room temperature. Fixed tissues were rinsed with PBS, followed by cryoprotection with 30%
sucrose/PBS overnight at 4°C before embedding in the Optimal Cutting Temperature compound
(Tissue-Tek). Tissues were sectioned at 12um for immunofluorescence experiments and
cryosections were mounted on Superfrost slides (Thermo Fisher Scientific), air dried at room
temperature, and stored at —80°C until used. Sagittal sections were cut from one side of the
cerebellum to the other (left to right, or vice versa). In all cases, observations were based on a

minimum of 3 embryos per genotype per experiment.

Cerebellar immunostaining

Tissue sections were first rehydrated in PBS (3 x 5 minute washes) followed by a phosphate
buffered saline with Triton X-100 (PBS-T) rinse. Sections were then incubated at room
temperature for 1 hour with blocking solution (0.3% BSA, 10% normal goat serum, 0.02%
sodium azide in PBS-T). Following the blocking step, the slides were incubated with primary
antibody in incubation buffer (0.3% BSA, 5% normal goat serum, 0.02% sodium azide in PBS-
T) at room temperature overnight in a humid chamber. Following the overnight incubation, the

slides were rinsed in 3 x 10 minute PBS-T washes. The sections were then incubated with the
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appropriate secondary antibody at room temperature for 1 hour, followed by three 0.1M PB
washes and one 0.01M PB wash. Coverslips were applied to the slides using FluorSave mounting
medium (345789, Calbiochem). The primary antibodies used were: rabbit anti-Bhlhe22 (1:1000,
a gift from Dr. Michael Greenburg, Harvard University), mouse anti-Neurodl1 (1:500, Abcam,
ab60704), mouse anti-Pax3 (1:500, R&D systems, MAB2457), rabbit anti-Pax2 (1:200,
Invitrogen, 71-6000), mouse anti-NeuN (1:100, Millipore, MAB377), rabbit anti-Calbindin
(1:1000, Millipore, AB1778), rabbit anti-Foxp2 (1:2000, Novus Biologicals NB100-55411),
chicken anti-Doublecortin: (1:100, Abcam ab153668). For immunofluorescence, secondary

antibodies (Invitrogen) labeled with fluorochrome were used to recognize the primary antibodies.

Granule cell culture

Granule cells were isolated and cultured as previously described (Lee et al., 2009). Briefly,
cerebella from litters of P6 mice were pooled and digested at 37 °C for 20 minutes in 10U ml—1
papain (Worthington), and 250U ml—1 DNase in EBSS using the Papain Dissociation Kit
(Worthington, Cat #:LK003150). The tissue was mechanically triturated and suspended cells
were isolated and resuspended in EBSS with albumin-ovomucoid inhibitor solution. Cell debris
was removed using a discontinuous density gradient and cells were resuspended in HBSS,
glucose and DNase. The cell suspension was then passed through a 40um cell strainer (Falcon
2340), layered on a step gradient of 35% and 65% Percoll (Sigma), and centrifuged at 2,500rpm
for 12 minutes at 25°C. Granule cells were harvested from the 35/65% interface and washed in
HBSS-glucose. Granule cells were then resuspended in Neurobasal medium and 10% FBS and
pre-plated on lightly coated poly-D-lysine—coated dishes for 20 minutes. This step allows any
heavier cells to drop and adhere to the coated surface while the granule cells are retained in the
media. Granule cells in the media were then collected, washed and counted using a
Hemocytomoter. The cells were then plated on 25mm or 12mm poly-D-lysine (Sigma), laminin
coated coverglasses placed in 6-well plates with Neurobasal medium containing B-27 serum-free
supplement, 2mm l-glutamine, 100U/ml penicillin, and 100pg/ml streptomycin (pen-strep)
(Invitrogen, Grand Island, NY) and 0.45% d-glucose (Gibco). Granule cells were incubated at
37°C at 5% CO2 were incubated for 3 days in vitro (DIV).

For aggregate cultures, aggregates were allowed to form by incubating purified granule cells for

20 hours on uncoated tissue culture dishes in DMEM containing 10% FBS, 0.45% D-glucose,
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Pen-strep, 2mM L-glutamine at 4E6 cells/ml. Aggregates were then washed and cultured in
Neurobasal/B27 medium on poly-d-lysine/laminin-treated chamber slides at 37°C/5% CO?2.
Neuronal processes extend from aggregates and most form neurite bundles. After several hours,
small bipolar granule cells migrate unidirectionally away from the cell clusters along these
neurites and neurite bundles by extension of processes, followed by translocation of cell bodies
outside of the aggregate cell cluster margin. For immunofluorescence experiments, cells were
fixed in 4% paraformaldehyde for 10 minutes and washed with calcium and magnesium-free

PBS.

RNA interference

For the knockdown of Bhlhe22, we purchased ON-TARGETplus SMARTPool Mouse Bhlhe22
siRNA from Horizon Discovery (Cat ID: L-063262-01). Control samples were transfected with
ON-TARGETplus Non-targeting Control Pool (Cat ID: D-001810-10). siRNA molecules were
electroporated into isolated postnatal cerebellar granule cells using the Nucleofector 2b Device
(Lonza, AAB-1001) as previously described (Gartner et al., 2006). Briefly, after cells were
isolated (described above), 6-7E6 cells were resuspended in nucleofection solution and mixed
with 3ug of pPCAG-EGFP plasmid (Addgene, 89684) and 600nM of siRNA. Cuvettes were
loaded with cellular solution and nucleofected using program O-03. After electroporation, cells
were allowed to recover in DMEM media in a humidified 37°C/5% CO2 incubator for 90
minutes. Cells were washed and resuspended in either culture media for plating (dissociated

cultures) or DMEM media for overnight incubation (aggregate cultures).

RNA isolation and reverse transcription followed by quantitative PCR (RT-qPCR)

RNA was collected from cultured granule cells using the Monarch® Total RNA Miniprep Kit
(NEB). Then cDNA was reverse transcribed using SuperScript™ IV First-Strand Synthesis
System (Invitrogen) using random hexamers. Quantitative PCR was conducted using the Applied
Biosystems Fast SYBR Green Master Mix reagent and Applied Biosystems 7500 Real-time PCR
system. PCR conditions were as follows: 95 °C for 20 seconds, 40 cycles of 95 °C for 3 seconds,
and 60 °C for 30 seconds followed by 95 °C for 15 seconds, 60 °C for 1 minute, 95 °C for

15 seconds and 60 °C for 15 seconds. Three biological replicates were analyzed for each target

gene. Amplification of eGFP was used as a reference gene to normalize the relative amounts of
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successfully transfected cells between treated and control experiments. Gene specific primers are
listed in Supplementary Table 4. Expression profiles for each gene were calculated using the
average relative quantity of the sample using the deltaCT method (Livak & Schmittgen, 2001). For
comparisons between siRNA treated and control samples, means were compared using a two-
tailed t-test. Results were expressed as the average = SE, and p-values <0.05 were considered

significant.

Image analysis and microscopy

Analysis and photomicroscopy were performed with a Zeiss Axiovert 200M microscope with the
Axiocam/Axiovision hardware-software components (Carl Zeiss) and downstream image
analysis was conducted using the AxioVision software v.4.9.1 (Carl Zeiss). For cerebellar
granule cell aggregate cultures, aggregate size determined using the tracing tool and all
aggregates analyzed were within 1000 squared microns of each other. Transfected cells were
identified by examining eGFP expression and for each biological replicate/experimental
treatment, 20 aggregates were examined. Granule cell migration was measured by calculating the
distance of migrated cells from the edge of the aggregate on captured images. Mean migration
distance was calculated for each aggregate, and the average of all 20 aggregates was used for
statistical analysis. The distribution of migrated cells from the aggregate was calculated for the
following ranges: <25um, 25-50um, 50-75um, 75-100um, >100um. For each range, the average
percentage was calculated for 20 aggregates per replicate. For comparisons between siRNA
treated and control samples, means were compared using a two-tailed t-test. Results were

expressed as the average + SE, and p-values <0.05 were considered significant.

Plots and statistical methods

All plots and correlation analysis were generated in R version 3.2.3 and figures were produced
using the package ggplot2. Bedtools v.2.28 (Quinlan & Hall, 2010) was used for comparing and
overlapping the genomic coordinates of peaks and existing genomic features described in the
manuscript. Boxplots represent the median (centre line), first and third quartiles (top and bottom
of box, respectively) and confidence intervals (95%; black lines). Genome browser screenshots
were taken from the IGV genome browser (Robinson et al., 2011). Bar plots results were

expressed as the average and the corresponding error bars represent standard error.
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832

833 GWAS SNP enrichment analysis

834  Single nucleotide polymorphisms (SNPs) were retrieved from the GWAS Catalog (Buniello et al.,
835  2019) downloaded on March 8th, 2020. The SNPs were then filtered by their associated traits.
836  Traits containing the word “autism” were selected and from this list any traits containing the

837  word “or” were excluded. This resulted in a final list of 8 traits (Supplementary Table 2) and the
838  associated SNPs were used as input for our analysis. The software Genomic Regulatory

839  Elements and Gwas Overlap algoRithm (GREGOR) v.1.4.0 (Schmidt et al., 2015), a tool to test for
840  enrichment of an input list of trait-associated index SNPs in experimentally annotated regulatory
841  domains, was used to identify enrichment of trait-specific disease variants within enhancers. An
842  underlying hypothesis of GREGOR is that both trait-associated SNPs and variants in strong

843  linkage disequilibrium (LD) may be deemed as causal. For this, we used the European

844  population reference file (EUR; LD window size = 1 Mb; LD r? > 0.7) from 1000G data (Release
845  date: May 21, 2011). The probability of an overlap of either a SNP or at least one of its LD

846  proxies with our enhancers relative to a set of matched control variants was used to evaluate

847  significance of overlap. The enrichment p-value is the probability that the overlap of control

848  variants with our enhancers is greater than or equal to the overlap of the GWAS variants with our
849  enhancers.

850

851  De novo mutation analysis

852  De novo mutations were detected using whole-genome sequencing data from the MSSNG (Yuen
853  etal., 2016) and Simons Simplex Collection (SSC) (Isoda et al., 2017) cohorts using a pipeline

854  involving DeNovoGear (Ramu et al., 2013) as previously described (C Yuen et al., 2017). To

855  maximize data homogeneity, we included only individuals sequenced on the [llumina HiSeq X
856  platform. Individuals having a total DNM count more than three standard deviations above the
857  mean of the cohort were excluded. The NCBI LiftOver tool was used to convert the coordinates
858  of cerebellar enhancers from mm9 to hg19 to hg38, and BEDTools (Quinlan & Hall, 2010) was
859  used to identify DNMs overlapping these coordinates. Contingency tables (2x2) were generated
860  containing counts of the number of DNMs in ASD-affected individuals and unaffected siblings
861 either overlapping or not overlapping each dataset (cerebellar enhancer or H3K27ac peak

862  coordinates). Fisher’s exact test was used to determine statistical significance. Copy number
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variants (CNVs) >= 1000 bp were detected from the MSSNG and SSC WGS data using a
pipeline involving the algorithms ERDS (Zhu et al., 2012) and CNVnator (Abyzov, Urban, Snyder,
& Gerstein, 2011) as previously described (Trost et al., 2018). A CNV was deemed to be de novo if
it was detected by both ERDS and CNVnator in the child but by neither algorithm in both
parents. We then used BEDtools (Quinlan & Hall, 2010) to identify de novo CNVs overlapping
our cerebellar enhancers.
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