

1 **LORE homomerization is required for 3-OH-C10:0 induced immune signaling**

2 Sabine Eschrig¹, Milena Schäffer¹, Tina Illig¹, Sonja Eibel^{1,3}, Lin-Jie Shu¹, Atiara Fernandez^{1,2},
3 Stefanie Ranf^{1*}

4 ¹Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising-
5 Weihenstephan, Germany

6 ²Current address: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen,
7 Germany

8 ³Current address: Bavarian State Research Center for Agriculture, Institute for Crop Science and
9 Plant Breeding, Freising, Germany

10
11 *Correspondence: ranf@wzw.tum.de

13
14 **ABSTRACT**

15 Perception and processing of various internal and external signals is essential for all living
16 organisms. Plants have an expanded and diversified repertoire of cell surface-localized receptor-
17 like kinases (RLKs) that transduce signals across the plasma membrane. RLKs often assemble
18 into higher-order receptor complexes with co-receptors, regulators and scaffolds to convert
19 extracellular stimuli into cellular responses. To date, the only S-domain-RLK from *Arabidopsis*
20 *thaliana* with a known ligand and function is *AtLORE*, a pattern recognition receptor that senses
21 bacterial 3-hydroxy fatty acids of medium chain length, such as 3-hydroxy decanoic acid (3-OH-
22 C10:0), to activate pattern-triggered immunity. Here we show that *AtLORE* forms receptor
23 homomers, which is essential for 3-OH-C10:0-induced immune signaling. *AtLORE*
24 homomerization is mediated by the transmembrane and extracellular domain. We show natural
25 variation in the perception of 3-OH-C10:0 within the Brassicaceae family. *Arabidopsis lyrata* and
26 *Arabidopsis halleri* do not respond to 3-OH-C10:0, although they possess a putative LORE
27 orthologue. We found that LORE orthologues of these 3-OH-C10:0 nonresponsive species have
28 defective extracellular domains that can bind the 3-OH-C10:0 ligand but lack the ability to
29 homomerize. Our findings shed light on the activation mechanisms of *AtLORE* and explain natural
30 variation of 3-OH-C10:0 perception within the Brassicaceae family.

31
32 **KEYWORDS**

33 Receptor-like kinase, S-domain, LORE, homomerization, pattern recognition receptor, pattern-
34 triggered immunity, microbe-associated molecular pattern

35

36 INTRODUCTION

37 Perception, processing and integration of a wide range of environmental and cellular stimuli is
38 fundamental to all living organisms. In plants, this is implemented, amongst others, by members
39 of the super-families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) (Shiu and
40 Bleecker, 2001, 2003; Hohmann et al., 2017; Jamieson et al., 2018; Dievart et al., 2020). They
41 regulate various cellular processes such as growth, development, reproduction or immunity (Shiu
42 and Bleecker, 2001; De Smet et al., 2009; Li and Yang, 2016; Boutrot and Zipfel, 2017; Gou and
43 Li, 2020). Most RLKs comprise an extracellular, presumably ligand binding domain (ECD) with a
44 variety of sequence motifs, a single-span transmembrane domain (TMD) and an intracellular
45 domain (ICD) comprising a serine/threonine protein kinase domain for signal transduction (Shiu
46 and Bleecker, 2001; Dievart et al., 2020). In many cases, additional tyrosine phosphorylation
47 activity was observed. Presumably, RLKs are generally dual-specificity kinases, (Bojar et al.,
48 2014; Macho et al., 2015), but pseudo kinases also exist. RLPs, lacking an intracellular kinase
49 domain, are incapable of signal transduction on their own and require signaling competent
50 partners (Jamieson et al., 2018). RLKs and RLPs are classified according to their ECD motifs,
51 such as leucine-rich-repeat (LRR), L-type lectin (Lec), S-domain (SD) or lysin-motif (LysM)
52 domains (Shiu and Bleecker, 2001, 2003; Dievart et al., 2020).

53 A common theme of RLK and RLP signaling is their association into higher order receptor
54 complexes via homo- or hetero-oligomerization. They can act as ligand-binding receptors, co-
55 receptors, scaffolds or positive/negative regulators to orchestrate and fine tune signaling (Ma et
56 al., 2016b; Burkart and Stahl, 2017; Wan et al., 2019; Gou and Li, 2020). To date, we have gained
57 a detailed molecular and structural understanding of ligand binding, activation mechanisms and
58 the role of receptor complex formation for a few RLKs, which have become important receptor
59 models. One prototypical heteromeric signaling complex is the heterodimer between LRR-RLK
60 FLAGELLIN SENSING 2 (*AtFLS2*) and its LRR-co-receptors of the SOMATIC EMBRYOGENESIS
61 RECEPTOR-LIKE KINASE (*AtSERK*) family, particularly BRI1-ASSOCIATED RECEPTOR
62 KINASE 1/SERK3 (*AtBAK1*) from *A. thaliana* (Gomez-Gomez and Boller, 2000; Chinchilla et al.,
63 2006; Chinchilla et al., 2007; Roux et al., 2011). FLS2 functions as pattern recognition receptor
64 (PRR) in plant immunity. PRRs perceive microbe-associated molecular patterns (MAMPs) to
65 induce pattern-triggered immunity (PTI) (Boutrot and Zipfel, 2017). Perception of the ligand, the
66 peptide epitope flg22 of bacterial flagellin, triggers association of the *AtFLS2* receptor with its co-
67 receptors (Boller and Felix, 2009; Robatzek and Wirthmueller, 2013; Couto and Zipfel, 2016). Co-
68 crystallization of the ECDs of both *AtFLS2* and *AtBAK1* with flg22 shows a series of intermolecular
69 bonds that stabilize the heterodimer in both ligand- and receptor mediated manner (Sun et al.,
70 2013b). State of the art imaging techniques enable real-time analysis of receptor dynamics *in vivo*
71 and suggested that *AtFLS2/AtBAK1* heterodimers can further associate into tetrameric complexes
72 (Somssich et al., 2015). The multicomponent PRR complex for perception of the fungal MAMP
73 chitin is characterized in detail as well. In *Arabidopsis*, three LysM-RLKs (LYK), *AtLYK5*, *AtLYK4*
74 and the CHITIN ELICITOR RECEPTOR KINASE 1 (*AtCERK1/ AtLYK1*) cooperate in chitin
75 perception and signaling (Miya et al., 2007; Cao et al., 2014; Xue et al., 2019; Gong et al., 2020).
76 Upon chitin binding, the pseudo-kinase *AtLYK5* hetero-dimerizes with *AtCERK1*, triggering further
77 homomerization of *AtCERK1*. This leads to the formation of a sandwich-like receptor complex to
78 enable downstream signaling (Couto and Zipfel, 2016; Gong et al., 2020). *AtLYK4* interacts with
79 both *AtLYK5* and *AtCERK1* and was reported to have a role in scaffolding or ligand binding (Gong
80 et al., 2020).

81 While ligand induced hetero-dimerization with co-receptors is essential for signaling in the
82 previous examples, the mode of action is different for S-LOCUS RECEPTOR KINASEs (SRKs)
83 from *Brassica rapa*. *BraSRKs* belong to the family of S-domain-RLKs (SD-RLKs, also referred to
84 as G- or B-type lectin RLKs) which comprises about 40 members in *Arabidopsis* and more than
85 100 in rice (Shiu and Bleecker, 2001; Shiu et al., 2004; Vaid et al., 2012; Xing et al., 2013; Teixeira
86 et al., 2018). SRKs and their ligands, namely S-LOCUS CYSTEIN-RICH PEPTIDE (SCRs),
87 mediate self-incompatibility (SI) to maintain genetic variability by avoiding inbreeding (Ivanov et
88 al., 2010; Nasrallah and Nasrallah, 2014; Jany et al., 2019). Recognition of pollen-secreted SCRs
89 by SRKs expressed in the stigma enables the plant to detect and subsequently reject self-pollen
90 (Nasrallah and Nasrallah, 2014; Jany et al., 2019). The ECD of SRKs comprises two G-type lectin-
91 like, an epidermal-growth factor (EGF)-like and a plasminogen-apple-nematode (PAN) domain,
92 representing one typical domain architecture of SD-RLKs (Shiu and Bleecker, 2001; Xing et al.,
93 2013; Dievart et al., 2020). Spontaneous and ligand-independent homomerization of SRKs via the
94 ECD has been reported (Giranton et al., 2000; Naithani et al., 2007). However, the crystal
95 structures obtained from *BraSRK9* and engineered *BraSRK8* elucidated, that two SRKs and two
96 of the respective SCR peptides form a 2:2 hetero-tetrameric complex in a ligand- and receptor-
97 mediated manner (Ma et al., 2016a; Murase et al., 2020). Receptor homo-dimerization of SRKs
98 appears to be essential for SRK signaling. To date, no co-receptors are found to be involved in
99 SRK receptor complexes.

100 Apart from SRKs, only a few SD-RLKs from different plant species have been described in more
101 detail. They are involved in plant-pathogen interactions, symbiosis or abiotic stress responses
102 (Navarro-Gochicoa et al., 2003; Chen et al., 2006; Kanzaki et al., 2008; Kim et al., 2009b; Kim et
103 al., 2009a; Gilardoni et al., 2011; Chen et al., 2013; Cheng et al., 2013; Sun et al., 2013a; Zou et
104 al., 2015; Fan et al., 2018; Schnepf et al., 2018; Labb   et al., 2019; Jinjun et al., 2020; Pan et al.,
105 2020; Sun et al., 2020; Liu et al., 2021; Zhou et al., 2021). In *Glycine soja*, S-LOCUS LecRK
106 (GsSRK) regulates osmotic homeostasis and plant architecture under salt stress (Sun et al.,
107 2013a; Sun et al., 2018). *Oryza sativa* *OsPi-d2* confers resistance to rice blast caused by the
108 fungus *Magnaporthe grisea* (Chen et al., 2006). Interestingly, natural variation in a single amino
109 acid position in the TMD appears to define resistant or susceptible alleles (Chen et al., 2006; Li et
110 al., 2015). Expression of the LARGE SPIKE S-DOMAIN RECEPTOR LIKE KINASE 1 (*OsLSK1*)
111 in rice is regulated by growth hormones and is associated with abiotic stress sensitivity and yield.
112 The ECD of *OsLSK1* interacts with itself and heteromerizes with the ECDs of five homologous
113 SD-RLKs. Overexpression of truncated *OsLSK1* lacking the ICD increases plant height and grain
114 yield, supposedly by exerting a dominant negative effect on endogenous *OsLSK1* signaling (Zou
115 et al., 2015). Although a growing number of members of the large SD-RLK sub-family are being
116 characterized, their ligands, receptor complex formation and downstream signaling mechanisms
117 remain largely unknown. Biochemical characterization of SD-RLKs and identification of ligands is
118 proving to be particularly challenging. Large-scale expression and purification of SD-RLKs
119 appears to be especially difficult, likely because of their complex folding, high degree of
120 glycosylation, and tendency of protein aggregation (Murase et al., 2020; Sun et al., 2020).

121 In *A. thaliana*, we previously discovered the SD-RLK *AtLORE* (LIPOOLIGOSACCHARIDE
122 SPECIFIC REDUCED ELICITATION or SD1-29) as PRR for bacterial medium-chain 3-
123 hydroxylated fatty acid (3-OH-FA) metabolites (Ranf et al., 2015; Kutschera et al., 2019). 3-OH-
124 FAs are sensed in a chain-length and hydroxylation specific manner (Kutschera et al., 2019). Only
125 3-OH-FAs with acyl chains comprising 8 – 12 carbon atoms activate *AtLORE* signaling, with 3-OH-decanoic
126 acid (3-OH-C10:0) being the strongest elicitor in *A. thaliana*. 3-OH-C10:0 directly
127 binds to the *AtLORE* ECD, as evidenced by microscale thermophoresis (MST) and ligand

128 depletion-binding assays (Kutschera et al., 2019; Shu et al., 2021). *AtLORE* is the first SD-RLK in
129 *A. thaliana* with a known ligand and thus a controllable means of activation, making it an important
130 model for mechanistic studies of the SD-RLK family. Recently, downstream signaling components
131 of *AtLORE* were elucidated. Sensing of 3-OH-C10:0 leads to phosphorylation of *AtLORE* at Y600,
132 which is required for phosphorylation and activation of the receptor-like cytoplasmic kinase PBS1-
133 LIKE 34 (AtPBL34). *AtLORE* directly interacts with *AtPBL34* and its homologs *AtPBL35* and
134 *AtPBL36*, which seem to redundantly facilitate downstream signaling in *AtLORE*-mediated
135 immune responses (Luo et al., 2020). To date, no co-receptor has been found to be involved in
136 *AtLORE* signaling and the steps of receptor complex formation are unknown.

137 Here, we show that *AtLORE* forms receptor homomers via TMD and ECD, which is required for
138 3-OH-C10:0-induced immune signaling. Interestingly, we found natural variations in
139 responsiveness to 3-OH-C10:0 in some closely related Brassicaceae, which have LORE
140 orthologues with high protein sequence identity to *AtLORE*. Functional analysis of these
141 orthologues and chimera with *AtLORE* shows that orthologues from nonresponsive species have
142 defects in their ECDs. Interestingly, the defective LORE orthologues still bind the 3-OH-C10:0
143 ligand via their ECDs but are compromised in homomerization. This highlights that receptor
144 homomerization is essential for LORE-dependent immune signaling. Moreover, our results
145 indicate that in the case of LORE, ligand binding is independent of homomerization, in contrast to
146 ligand- and receptor-mediated homodimerization of *BraSRKs*. Our results show that two
147 Brassicaceae species closely related to *A. thaliana* lack the ability to respond to 3-OH-C10:0,
148 which is explained by altered homomerization ability. This sheds light on the mechanistic aspects
149 of 3-OH-C10:0 sensing in Brassicaceae.

150

151 **RESULTS**

152 ***AtLORE* forms receptor homomers *in planta***

153 We performed multiple sequence alignments (MAFFT algorithm, Jalview) (**Fig. S1**) of the amino
154 acid sequence of the ECDs of *AtLORE* (AT1G61380) and well-studied SRKs from *Brassica rapa*,
155 *BraSRK9* (BAA21132.1) and *BraSRK8* (BAF91375). Labeling of percentage identity shows a high
156 sequence similarity and conservation of disulfide bridge forming cysteine residues in the EGF and
157 PAN domain, indicating an overall similar domain architecture of *AtLORE* and *BraSRKs*. Transient
158 agrobacterium-mediated overexpression of kinase-active *AtLORE* in *Nicotiana benthamiana*,
159 which lacks a putative LORE orthologue (Ranf et al., 2015), results in a cell death-like necrotic
160 phenotype. These cell death symptoms can be visualized by trypan blue staining (**Fig. S2E**) and
161 an increased chlorophyll fluorescence (**Fig. 1A**), which is associated with cell death (Landeo
162 Villanueva et al., 2021). This phenomenon is not observed upon expression of *AtLORE-Km*, which
163 is mutated at the conserved ATP-binding site (K516A) in the kinase domain and has been shown
164 to be signaling incompetent (Ranf et al., 2015). Therefore, we assume that cell death is caused
165 by spontaneous receptor activation. Based on the high protein sequence similarity of *AtLORE* to
166 *BraSRKs* and the receptor auto-activation of *AtLORE* upon transient overexpression in *N.*
167 *benthamiana*, we hypothesized that *AtLORE* may form homomers like *BraSRKs*. Indeed, *AtLORE*
168 homomerizes *in vivo* upon transient expression in *N. benthamiana*. GFP and mCherry fusion
169 proteins of kinase-active and kinase-mutated (Km, K516A) *AtLORE* co-immunoprecipitate (Co-IP)
170 with each other (**Fig. 1B**). *AtLORE* homomerization was also observed in bimolecular
171 fluorescence complementation (BiFC) assays using *AtLORE*-split-YFP N-/C-terminal fragment
172 expression (SPYCE/SPYNE) fusion proteins. To avoid background auto-fluorescence caused by

173 the cell-death symptoms, *AtLORE*-Km was used for fluorescence-based assays. Transient co-
174 expression of *AtLORE*-Km fused to either SPYCE or SPYNE restores YFP fluorescence,
175 detectable via laser scanning microscopy and fluorescence quantification (**Fig. S2A-C**). We
176 performed Förster resonance energy transfer (FRET) fluorescence lifetime imaging (FLIM) to
177 proof direct physical LORE-LORE interaction (**Fig. 1C and Fig. S2D**). Co-expression of *AtLORE*-
178 Km-GFP and *AtLORE*-Km-mCherry results in a significant reduction in GFP fluorescence lifetime
179 τ compared to the FRET-donor only control *AtLORE*-Km-GFP. mCherry-tagged Glutathione-S
180 transferase of *A. thaliana* (AT1G17170, *AtGST*-mCherry), was used as co-expression control and
181 does not reduce GFP fluorescence lifetimes. An *AtLORE*-Km-GFP-mCherry fusion protein serves
182 as FRET positive control. *AtLORE* homomerization is not influenced by the presence of its ligand
183 3-OH-C10:0 in FRET-FLIM experiments (**Fig. 1D**). Thus, under the experimental conditions used,
184 *AtLORE* forms homomers in the plasma membrane in a ligand-independent manner.

185

186 ***AtLORE* homomerization is mediated by the extracellular- and transmembrane domain**

187 To identify the region of *AtLORE* that mediates its homomerization, we generated truncated
188 variants of *AtLORE* containing different combinations of ICD, ECD or TMD (**Fig. 2A**). Full length
189 *AtLORE*-Km-HA co-immunoprecipitates with full length *AtLORE*-Km-GFP, *AtLORE*-ECD-TMD-
190 GFP and weakly with *AtLORE*-TMD-ICD-Km-GFP upon transient expression in *N. benthamiana*
191 leaves (**Fig. 2B**). No co-immunoprecipitation is detected with apoplastic *AtLORE*-ECD-GFP,
192 cytosolic *AtLORE*-ICD-Km-GFP or cytosolic GFP. This indicates that ECD and TMD contribute to
193 LORE homomerization. In FRET-FLIM experiments, both *AtLORE*-ECD-TMD-mCherry and
194 *AtLORE*-TMD-ICD-Km-mCherry significantly reduce the GFP fluorescence lifetime of the FRET
195 donor *AtLORE*-Km-GFP (**Fig. 2C and S3**). Furthermore, *AtLORE*-ECD-TMD lacking the ICD can
196 still homomerize and interact with *AtLORE*-TMD-ICD (**Fig. 2D**). In the latter case, only the TMDs
197 can serve as an interaction interface, yet GFP fluorescence lifetime is reduced, highlighting the
198 contribution of both ECD and TMD to *AtLORE* homomerization.

199

200 ***A. lyrata* and *A. halleri* have LORE orthologues, but do not respond to 3-OH-C10:0**

201 Phylogenetic analysis shows that *LORE* is restricted to the plant family of Brassicaceae (Ranf et
202 al., 2015). Putative LORE orthologues are encoded in the genomes of *Arabidopsis halleri*
203 (*Aha**LORE*, Araha.6790s0007.1), *Arabidopsis lyrata* (*Alyr**LORE*, AL2G04470) and *Capsella*
204 *rubella* (*Crub**LORE*, CARUB_v10021901mg) (**Fig. S1**). Therefore, we analyzed these species for
205 the production of reactive oxygen species (ROS) (**Fig. 3A**), which is a typical PTI response to
206 application of 3-OH-C10:0 in *A. thaliana* (Kutschera et al., 2019). Interestingly, we found that, in
207 contrast to *C. rubella* and *A. thaliana*, *A. lyrata* and *A. halleri* do not respond to 3-OH-C10:0
208 elicitation. All four species produced ROS upon flg22 treatment (**Fig. S4B**). This suggests that
209 functional PTI signaling pathways (Yu et al., 2017) and components for ROS production are in
210 principle functional. That *A. lyrata* and *A. halleri* do not respond to 3-OH-C10:0 can originate from
211 diverse failures, such as lack of expression, morphological differences that hinder the access of
212 3-OH-C10:0 to the PRR or a dysfunctional LORE protein. For further analysis, we extracted RNA
213 from untreated leaf material of *C. rubella*, *A. lyrata* and *A. halleri* and transcribed it into cDNA to
214 clone the coding sequence (CDS) of *LORE*. We obtained full length CDS clones of all orthologues,
215 confirming that *LORE* is expressed in *A. lyrata* and *A. halleri* leaf tissue used for the ROS assay
216 (**Fig. 3A**). Amino acid sequences of *Alyr**LORE* and *Aha**LORE* slightly varied from publicly
217 available database sequences (**Fig. S8**). Furthermore, transient expression of GFP-fusions of

218 LORE orthologues in *N. benthamiana* shows that they localize to the plasma membrane,
219 *Aha*LORE-GFP was partially mislocalized (**Fig. S4A**). Solanaceous *N. benthamiana* has no
220 putative LORE orthologue and is therefore insensitive to 3-OH-C10:0 but can gain the function of
221 3-OH-C10:0 sensing by transient expression of *At*LORE (Ranf et al., 2015; Kutschera et al., 2019).
222 Therefore, we tested the cloned LORE orthologues for functionality in gain-of-function (GOF) ROS
223 assays in *N. benthamiana* (**Fig. 3B**). Expression of *At*LORE or *Crub*LORE, but not *Aha*LORE or
224 *Alyr*LORE resulted in a ROS response to treatment with 3-OH-C10:0. Taken together, these data
225 support that the LORE orthologues of *A. lyrata* and *A. halleri* are the underlying factor in the
226 inability of these species to respond to 3-OH-C10:0.

227

228 **LORE orthologues have elicitor binding capacity**

229 To identify the region of *Alyr*LORE that causes its dysfunction, we created reciprocal domain
230 swaps (DS) between ICD and ECD of *At*LORE and *Alyr*LORE and tested those domain swaps
231 (DS) for their GOF-ROS responses in *N. benthamiana* (**Fig. 4A**). Interestingly, we could render
232 *At*LORE inactive by replacing the ECD and TMD with *Alyr*LORE-ECD-TMD. In contrast, *At*LORE
233 remains functional, when the *At*LORE-ICD is substituted by *Alyr*LORE-ICD. From this we can
234 conclude that *Alyr*LORE has a signaling-competent kinase domain and a dysfunctional ECD. Next,
235 we tested whether the *Alyr*LORE-ECD is compromised in ligand binding. We have previously
236 shown with ligand-depletion assays that *At*LORE and *Crub*LORE, but not closely related *At*SD1-
237 23 (AT1G61390) can bind 3-OH-C10:0 (Shu et al., 2021). Here, we additionally tested the 3-OH-
238 C10:0 binding capacities of the ECDs of *Alyr*LORE and *Aha*LORE expressed and harvested from
239 *N. benthamiana* apoplasts in ligand-depletion assays. Equal amounts of total protein (**Fig. S5**)
240 were incubated with 3-OH-C10:0 and mixtures were filtered through membranes with a 30 kDa
241 molecular weight cut-off. The presence of unbound 3-OH-C10:0 in the filtrate was tested in a
242 bioassay by measuring the cytosolic calcium response of *At*LORE-overexpressing (OE) *A.*
243 *thaliana* seedlings. When the ECDs bind the elicitor, the filtrates do not contain 3-OH-C10:0 and
244 do not elicit a calcium response. Interestingly, the ECDs of all tested LORE orthologues bind 3-
245 OH-C10:0 and completely deplete 3-OH-C10:0 from the filtrates, as no calcium responses is
246 detectable after filtrate application (**Fig. 4B**). Since neither the kinase activity nor the ligand binding
247 of *Alyr*LORE appears to be affected, the impaired 3-OH-C10:0 perception of *Alyr*LORE must have
248 other causes.

249

250 **LORE orthologues from 3-OH-C10:0 nonresponsive species cannot homomerize**

251 Interestingly, unlike overexpression of *At*LORE or *Crub*LORE, overexpression of *Alyr*LORE or
252 *Aha*LORE in *N. benthamiana* does not cause cell death, as determined by chlorophyll
253 fluorescence measurements (**Fig. 5A**). This indicates that receptor activation, relevant for the
254 autoimmunity phenotype, is affected in these species. Therefore, we hypothesized that *Alyr*LORE
255 and *Aha*LORE may fail to homomerize and analyzed their ability to homomerize using FRET-
256 FLIM experiments in *N. benthamiana* (**Fig. 5B-D**). Indeed, *Alyr*LORE and *Aha*LORE are unable
257 to form homomers in *vivo*, whereas signaling-competent *Crub*LORE homomerizes similarly to
258 *At*LORE. Thus, we conclude that homomerization of LORE is crucial for the activation of signal
259 transduction. *Alyr*LORE and *Aha*LORE can bind 3-OH-C10:0 but do not homomerize. Thus,
260 ligand binding is independent of receptor homomerization and not sufficient to activate LORE-
261 dependent signaling. Furthermore, our data indicate that the cell death phenotype in *N.*

262 *benthamiana* can be used as indicator of LORE receptor functionality and requires both, an active
263 kinase domain and receptor homomerization.

264 **Mapping of homomerization region using *At*LORE and *Alyr*LORE chimera**

265 Our data suggest that loss of the homomerization ability of LORE renders two *Arabidopsis*
266 species, *A. lyrata* and *A. halleri*, insensitive to 3-OH-C10:0. While *Alyr*LORE and *Aha*LORE share
267 a very high overall amino acid identity with *At*LORE, they have several single amino acid
268 polymorphisms (SAPs) in their ECDs and TMD compared to the *At*LORE-ECD, distributed across
269 all domains (Fig. S1). To narrow down the region of the ECD that causes the loss of *Alyr*LORE
270 homomerization, we generated chimera between *At*LORE and *Alyr*LORE ECDs and TMDs. We
271 either exchanged individual domains, such as lectin 1, lectin 2, EGF or PAN domain (L1, L2, E, P,
272 **Fig. S7A**) or combinations of domains (LL, EP, **Fig. 6A**). After verifying the expression and correct
273 localization in *N. benthamiana* epidermal cells (Fig. S6), we analyzed homomerization of these
274 chimera in FRET-FLIM experiments (Fig. 6 and S7B). Chimera with individual domain swaps all
275 retained their ability to homomerize (Fig. S7B). This indicates that loss of homomerization in
276 *Alyr*LORE is not caused by a single SAP or diversification of a single domain. Therefore, we tested
277 domain combinations, namely LL, EP and full ECD-TMD swaps. Interestingly, substitution of the
278 whole ECD of *At*LORE by *Alyr*LORE, but not partial ECD swaps (LL, EP) impair homomerization
279 in FRET-FLIM experiments (Fig. 6B). A similar outcome was observed, when we tested these
280 chimeras in 3-OH-C10:0-triggered ROS or chlorophyll fluorescence assays upon overexpression
281 in *N. benthamiana* (Fig. 4A, 6C and D). Chimera with partial ECD swaps remain signaling
282 competent, while those with ECD-TMD exchange do not. Hence, we could not pin down a specific
283 region of the *Alyr*LORE-ECD or TMD that causes the loss of homomerization. This might indicate
284 a large, ectodomain-spanning interaction interface of *At*LORE.

285

286 **Homomerization is essential for *At*LORE downstream signaling**

287 Collectively, our data suggests that LORE homomerization is essential for its activation and
288 downstream signaling. To confirm this, we performed competition experiments with the truncated
289 *At*LORE-ECD-TMD variant. We have shown that *At*LORE-ECD-TMD lacking the ICD can form
290 hetero-complexes with full length *At*LORE (Fig. 2B and C). The hetero-complexes are presumably
291 signaling incompetent as they contain only one kinase domain. To outcompete *At*LORE homo-
292 complexes, *At*LORE-ECD-TMD must be present in excess relative to *At*LORE. We exploited the
293 fact, that upon transient expression in *N. benthamiana* *At*LORE-ECD-TMD accumulates to higher
294 protein levels than full length *At*LORE (Fig. 1B). To enhance the effect, we increased the ratio of
295 *Agrobacterium* carrying the competitor expression plasmid (*At*LORE-ECD-TMD) to those with full
296 length *At*LORE to 5:1. Indeed, *At*LORE-ECD-TMD outcompetes signaling-competent full length
297 *At*LORE homomers in competition assays, as shown by impaired ROS production in *N.*
298 *benthamiana* (Fig. 7). This is not observed when cytosolic mCherry is co-expressed in excess.
299 *At*LORE-ECD-TMD thus exerts a dominant-negative effect on the ROS response upon elicitation
300 with 3-OH-C10:0. Hence, homomerization of kinase-active LORE is required to activate signaling
301 upon 3-OH-C10:0 elicitation.

302

303 **DISCUSSION**

304 *AtLORE* is the first SD-RLK from *A. thaliana* with a known ligand and characterized function (Ranf
305 et al., 2015; Kutschera et al., 2019), which makes it an important model for studying signaling
306 mechanisms of the SD-RLK family. However, the mechanism of *AtLORE* receptor activation
307 remains largely unknown. Here we show that *AtLORE* forms receptor homomers *in vivo* and that
308 homomerization is required to activate immune signaling. In plants, numerous examples of
309 receptor-coreceptor hetero-dimerization have been found, making it a predominant concept of
310 receptor activation mechanisms (Burkart and Stahl, 2017; Wan et al., 2019; Gou and Li, 2020). In
311 contrast, the receptor activation by homo-dimerization, as shown here for *AtLORE*, seems to be
312 common among representatives of the SD-RLK family. The SD-RLKs *OsLSK1* homomerizes and
313 heteromerizes with five close homologs *in yeast* and *in planta* (Zou et al., 2015). Since its ligand
314 and physiological function are unknown, the mechanistic relevance of the observed interactions
315 also remains unclear. Homo-dimerization of *BraSRKs* has been studied in detail and was shown
316 to be required for ligand binding and signal transduction (Giranton et al., 2000; Naithani et al.,
317 2007; Shimosato et al., 2007; Ma et al., 2016a; Murase et al., 2020). To date, no co-receptors of
318 any SD-RLK has been identified, which underlines the relevance of homo-dimerization for receptor
319 activation. Protein homomerization analysis is particularly challenging due to uncontrollable
320 homodimer stoichiometry. Most protein-protein interaction methods require two different protein
321 epitope tags, whether for FRET, Co-IP, or BiFC (Xing et al., 2016). However, the combinations of
322 protein-tags in a homomer/dimer is subject to random distribution. Statistically, only one-third of
323 dimers have a combination of two different tags when expressed equimolar. Therefore, large
324 proportions of homomers remain unconsidered or even influence the readout of the experiment.
325 For example, in Co-IPs homodimers with identical tags compete with homodimers containing
326 different tags for binding to the antibody trap, but only the latter are detectable on the immunoblot.
327 In case of FLIM the stoichiometry of homo-dimerization results in formation of FRET-incapable
328 (GFP-GFP/mCherry-mCherry) or FRET-capable (GFP-mCherry) pairs. The method does not
329 provide the resolution to distinguish individual molecules. Rather, the measured average GFP
330 lifetime of each pixel is the result of a random mixture of all possible dimers. This might explain,
331 why the GFP lifetime is only moderately reduced for *AtLORE* homomers compared to the FRET-
332 positive control, as FRET-incapable *AtLORE*-GFP homodimers diminish the effect of the FRET-
333 capable *AtLORE*-GFP-*AtLORE*-mCherry dimers.

334 *BraSRKs* are thought to pre-assemble into homo-dimers in a ligand-independent manner and
335 these preformed complexes allow ligand binding and a rapid activation of the receptor (Giranton
336 et al., 2000; Naithani et al., 2007; Shimosato et al., 2007). Ligand binding might enhance *BraSRK*
337 dimerization by rearrangement of these pre-assembled complexes (Shimosato et al., 2007).
338 However, whether preformed receptor complexes exist prior to ligand binding under physiological
339 conditions is controversially discussed. *AtCERK1* forms homo-dimers independent of its ligand
340 chitin upon overexpression in *A. thaliana* (Liu et al., 2012), whereas under physiological conditions
341 *AtCERK1* homo-dimerization was fully dependent on *AtLYK5* and chitin binding (Cao et al., 2014;
342 Gong et al., 2020). Ligand-independent self-association of *AtFLS2* was also reported (Sun et al.,
343 2012). FLIM analysis of *AtFLS2* at the membrane did not show homomerization, leading to the
344 speculation that *AtFLS2* might only self-associate upon internalization in a ligand-independent
345 manner (Somssich et al., 2015). Our FRET-FLIM data show that *AtLORE* homomerization is
346 ligand-independent, at least under the experimental conditions used. We could not detect any
347 significant differences in the homomerization state of *AtLORE* between 10-20 minutes after
348 application of 3-OH-C10:0. Although receptor complex formation should be a rapid process, this
349 timeframe was suggested for comparable FLIM studies (Somssich et al., 2015). The authors

350 discussed that a relatively large proportion of complexes need to accumulate to change the
351 average lifetime of one pixel in an FLIM image. To avoid strong overexpression which might lead
352 to artifacts as shown for *AtCERK1*(Liu et al., 2012), we used an inducible promotor system for an
353 adjustable and more moderate protein expression. To date we can only speculate how *AtLORE*
354 homomerization acts under physiological conditions as protein expression driven by the
355 endogenous LORE-promotor is below the detection limit for fluorescence-based assays. At
356 present our data do not allow us to draw conclusions about the oligomerization state of *AtLORE*.
357 However, for *BraSRKs* oligomerization into higher order complexes was suggested by cross-
358 linking experiments and velocity sedimentation on sucrose gradients (Giranton et al., 2000), but
359 its physiological relevance remains unclear. Such oligomerization dynamics of receptor complex
360 formation was also reported for other receptor complexes, such as *AtFLS2-AtBAK1* (Somssich et
361 al., 2015). The plant may maintain receptor complexes in a stable preformed steady-state to
362 ensure rapid signal transduction that is fine-tuned by multiple regulators in higher-order
363 complexes.

364 Our data suggest that homomerization of *AtLORE* is mediated by the ECD and TMD. In Co-IPs,
365 neither the apoplastic ECD nor the cytosolic ICD could interact with full-length *AtLORE*, suggesting
366 that membrane anchoring is required for dimerization. However, it is also possible that the
367 interaction surface of the membrane-bound full-length *AtLORE* is not accessible for the soluble
368 truncations. Interestingly, *AtLORE*-ECD-TMD and *AtLORE*-TMD-ICD can interact in FRET-FLIM
369 experiments. In this combination, only the TMDs provide a potential interaction surface suggesting
370 that the TMD substantially contributes to *AtLORE* homomerization. TMD helices represent a
371 typical interaction interface in the hydrophobic environment of the membrane, which often contain
372 conserved TMD interaction motifs (Herrmann et al., 2009; Langosch and Arkin, 2009; Fink et al.,
373 2012). The relevance of TMDs for receptor complex formation is highly discussed in the animal
374 field (Westerfield and Barrera, 2020). Involvement of TMDs in dimerization has also been shown
375 for several plant RLKs. The TMD of the RLK SUPPRESSOR OF BRI1-1 (SOBIR1) possesses a
376 GxxxG-motif, which mediates high affinity TMD-TMD association and is crucial for its interaction
377 with the RLK Cf-4 (Bi et al., 2015). The TMD of the RLK *Arabidopsis* CRINKLY 4 (ACR4) homo-
378 dimerizes (Stokes and Gururaj Rao, 2008) and is specifically required for the interaction with the
379 RLK CLAVATA1 (CLV1) (Stahl et al., 2013). The relevance of TMDs in SD-RLK signaling is
380 underlined by *OsPi-d2*, in which a single amino acid polymorphism in the TMD (I441M) determines
381 susceptible or resistant alleles towards rice blast. For *BraSRKs* it was hypothesized that the TMDs
382 may contribute to the preformed SRK dimer, which is then strengthened by ligand binding
383 (Shimosato et al., 2007; Ma et al., 2016a). Interestingly, high-affinity binding of SCR8 peptides
384 was only observable for membrane-bound SRK8 variants containing the ECD, TMD and parts of
385 the juxta-membrane domain, but not for soluble ECDs (Takayama et al., 2001; Shimosato et al.,
386 2007). An artificially dimerizing form of the SRK8-ECD, achieved by integration of a helix-loop-
387 helix zipper domain, exhibited a high SCR binding affinity, which highlights the importance of
388 membrane anchorage for ligand binding and dimerization (Shimosato et al., 2007). *BraSRK* homo-
389 dimerization was furthermore shown to be mediated by the ECD in yeast-two-hybrid studies, while
390 kinase domains do not self-associate (Naithani et al., 2007). Especially the PAN and partially the
391 EGF domains, but not the lectin domains exhibited homo-dimerization capacities in yeast (Naithani
392 et al., 2007). For *BraSRK9* and engineered *BraSRK8*, crystal structures of their ECDs show both
393 ligand- and receptor mediated interaction (Ma et al., 2016a; Murase et al., 2020). In both cases,
394 an *BraSRK*-ECD dimer co-crystallized with two *BraSCR* peptide ligands, forming a tetrameric 2:2
395 receptor-ligand complex. Is it suggested that *BraSCRs* majorly contribute to complex formation by
396 cross-linkage of the *BraSRK* monomers. Although studies about *BraSRKs* provide a detailed
397 insight into homo-dimerization, the comparability between *AtLORE* and *BraSRKs* is limited as

398 *At*LORE binds a very small chemical compound instead of a peptide ligand. So far, the binding
399 site of 3-OH-C10:0 in the *At*LORE-ECD is unknown. Due to the small size of the ligand, one must
400 assume a relatively small interface between the receptor and the ligand, which may not be
401 sufficient to crosslink two *At*LORE monomers or to enhance homo-dimerization in a manner
402 comparable to SRK-SCR complexes. Interestingly, we found that *Alyr*LORE and *Aha*LORE
403 cannot homo-dimerize but bind the 3-OH-C10:0 ligand. Thus, 3-OH-C10:0 can bind to LORE
404 monomers. One may speculate that dimerization is stabilized by conformational changes rather
405 than ligand-mediated cross-linking. Taken together, it seems reasonable that *At*LORE may form
406 pre-assembled complexes in a ligand-independent manner. However, the underlying molecular
407 mechanism of receptor activation remains unclear.

408 *At*LORE homomerization is essential for receptor activation and downstream signaling. We
409 demonstrate that LORE orthologues of 3-OH-C10:0 insensitive species are impaired in their
410 homomerization capacity, and therefore cannot mediate downstream signaling. Truncated
411 *At*LORE containing only ECD and TMD exerts a dominant negative effect on 3-OH-C10:0 induced
412 signaling. We assume that this effect is caused by formation of non-functional heterodimers with
413 full-length *At*LORE, which lack downstream signaling capacities. Competition for ligand binding
414 seems unlikely given the high ligand concentrations used in our experiments. Similar competition-
415 based phenomena have been repeatedly described for other RLKs. Overexpression of truncated
416 *OsLSK1* lacking the kinase domain resulted in increased plant height and yield in rice (Zou et al.,
417 2015). *OsLSK1* was shown to interact with itself and five homologous proteins. Truncated *OsLSK1*
418 may interfere with signaling of *OsLSK1* and the other interacting SD-RLKs or may compete for
419 ligand binding. Upon overexpression of *AtFLS2* truncations lacking the LRR domain a similar
420 effect was observable. The truncations associate with full-length *AtFLS2* and exert a dominant
421 negative effect on flg22-induced signaling (Sun et al., 2012). Taken together, these studies show
422 that analysis of a dominant negative effect, which is especially applicable for homomerizing RLKs,
423 provides valuable insight into receptor complexes and their signaling mechanisms.

424 *In vitro* phosphorylation assay of microsomal membranes shows that oligomerization of
425 membrane-bound recombinant *Bra*SRKs is essential for auto-phosphorylation (Giranton et al.,
426 2000) and that preformed *Bra*SRK oligomers exhibit a basal constitutive auto-phosphorylation.
427 We assume a similar mode of action for *At*LORE. Strong overexpression of *At*LORE in *N. benthamiana*
428 results in cell death. We can show that this phenotype depends on both, an active
429 kinase domain and dimerization ability, as it is completely absent in non-homomerizing LORE-
430 orthologues or kinase mutated *At*LORE. Induced cell death is usually known as a highly effective
431 mechanism of hypersensitive defense responses after pathogen recognition (Balint-Kurti, 2019).
432 However, the phenomenon of cell death-like symptoms upon RLKs overexpression has been
433 described repeatedly. Overexpression of *AtCERK1* in *N. benthamiana* resulted in cell death in a
434 kinase-dependent manner (Pietraszewska-Bogiel et al., 2013). It was hypothesized that
435 overproduction of *AtCERK1* induces ligand-independent homomerization, leading to auto-
436 activation and dysregulated signal transduction. However, this *AtCERK1* cell-death phenotype
437 was not apparent upon stable expression in *A. thaliana*. Two L-type lectin RLKs (LecRKs),
438 *AtLecRK-IX.1* and *AtLecRK-IX.2*, exhibit cell death upon overexpression in both *A. thaliana* and
439 *N. benthamiana* (Wang et al., 2015). The cell death correlated with transgene expression levels
440 and was dependent on kinase activity, but not on extracellular lectin domains. Homomerization
441 was not shown for *AtLecRK-IX.1* and *AtLecRK-IX.2*, yet is also shown for other *AtLecRKs* (Guo
442 et al., 2018). Taken together, this suggests that homomerizing RLKs are in particular prone to
443 spontaneous auto-activation upon strong overexpression, resulting in cell death. In the case of

444 LORE, we found that this phenotype can serve as a proxy and simple read-out for signaling active
445 receptor complexes.

446 Interestingly, we found natural variation in 3-OH-C10:0 responsiveness within a subset of
447 Brassicaceae species. *A. lyrata* and *A. halleri* are closely related to *A. thaliana* and have LORE
448 orthologues with a high degree of sequence identity to *AtLORE*. While trying to decipher the
449 underlying defects in these two 3-OH-C10:0-insensitive species, we found that their orthologues
450 can bind the 3-OH-C10:0 ligand but exhibit defective dimerization capacities, which render them
451 signaling incompetent. Since we found a number of SAPs across the *AlyrLORE-ECD*, we
452 investigated chimera of *AtLORE* and *AlyrLORE* to identify the causal region or SAP. However,
453 only substitution by the entire *AlyrLORE-ECD* abolishes homomerization. We hypothesize that
454 several SAPs collectively cause the loss of homomerization. From an evolutionary perspective,
455 random single polymorphisms e.g. in the ligand binding site, seem more likely to lead to a loss-of-
456 function mutation than a series of SAPs accumulating in the ectodomain leading to a loss of
457 homomerization. This has been shown for example for FLS2. Flg22 binding capacities to putative
458 FLS2 orthologues were analyzed in several *A. thaliana* accessions. The data suggested a direct
459 correlation between the FLS2 binding capacities and the responsiveness to flg22 (Bauer et al.,
460 2001). While our findings were rather unexpected from an evolutionary perspective, they may
461 shed light on the evolutionary processes of diversification and neo-functionalization in the family
462 of SD-RLKs which is so far rather poorly understood (Xing et al., 2013). This supports that natural
463 variation provides a powerful molecular toolbox to improve our mechanistic understanding of RLK
464 signaling.

465

466 MATERIALS AND METHODS

467 Sequence alignments

468 Multiple amino acid sequence alignments (MSA) (Fig. S1) were performed with Jalview (Version
469 2.11.1.4 (Waterhouse et al., 2009)). Amino acid sequences of respective proteins were retrieved
470 from the Uniprot database (Consortium, 2020). For LORE, ECD regions excluding signal peptides
471 (SP) were selected according to domain annotations given on Uniprot and in (Naithani et al., 2007)
472 for LORE (see supplementary table 2). SP predictions of BraSRKs were done by SignalP-5.0
473 server (Almagro Armenteros et al., 2019). MSA of ECDs without SPs was calculated by the
474 MAFFT (multiple alignment using fast Fourier transformation) algorithm (Katoh et al., 2019) with
475 default settings with the in-built alignment tool of Jalview. Amino acid sequence alignment of
476 *AlyrLORE* and *AhaLORE* cloned from cDNA and the respective sequences from genome
477 database entries (Fig. S8) was performed using the in-built alignment tool of the SnapGene
478 software (Insightful Science; available at snapgene.com).

479

480 Plant material and cultivation

481 *N. benthamiana*, *A. thaliana* Col-0, *A. halleri* (N9852, from P. Falter-Braun, Helmholtz Center
482 Munich), *A. lyrata* (MN47, from M. Quint, MLU Halle) and *C. rubella* (N22697, from M. Quint, MLU
483 Halle) were sown on standard potting soil mixed with vermiculite (9:1). All Brassicaceae seeds
484 were stratified in the dark for at least 48 h at 4°C and then grown under short day conditions (8 h
485 light, 16 h darkness, 21°C, and 60% relative humidity). *N. benthamiana* was grown under long day
486 conditions (16 h light, 8 h darkness, 24°C, and 60% humidity). Generation of *A. thaliana* Col-0^{AEQ}
487 overexpressing *AtLORE* (CaMV35S:LORE, LORE-OE) was previously described (Shu et al.,

488 2021). For cytosolic Ca^{2+} -measurements, seeds were surface-sterilized with chlorine gas (4 h)
489 and seedlings grown in liquid medium (0.5× Murashige & Skoog medium, including vitamins
490 (Duchefa), 0.25% sucrose, 1 mM MES, pH 5.7) under long day conditions as described above.

491

492 **Molecular cloning**

493 All plasmids used in this study were cloned using Golden-Gate (GG) (Engler et al., 2009; Weber
494 et al., 2011) or Gateway™ cloning techniques (Katzen, 2007). Cloning of *AtLORE* (AT1G61380),
495 *AtLORE-Km*, *CrubLORE* (CARUB_v10021901mg), *CrubLORE-ECD*, *AtSD1-23i-ECD*
496 (AT1G61390) and apoplastic mCherry was described previously (Ranf et al., 2015; Shu et al.,
497 2021). *AtGST* (AT1G17170) was cloned from pGEX-6P-1. For cloning of *AhaLORE*
498 (Araha.6790s0007.1) and *AlyrLORE* (AL2G04470), total RNA was extracted from leaf material of
499 the respective species by the TRIzol RNA extraction method. RNA samples were treated with
500 DNase I (Thermo Fisher Scientific) and reverse-transcribed into cDNA using RevertAid reverse
501 transcriptase, Ribolock RNase inhibitor and Oligo(dT)₁₈ primer, according to manufacturer's
502 instructions (Thermo Fisher Scientific). Full length coding sequences (CDS) of respective genes
503 were amplified with specific primers (Supplementary table 1) and ligated into a suitable GG-vector.
504 Sequences cloned from cDNA of *AhaLORE* and *AlyrLORE* slightly varied from database entries
505 (see full sequence alignments figure S8). Conserved ATP binding sites of LORE kinase domains
506 (K516A, Km, primers see supplementary table 1) were modified by site-directed mutagenesis as
507 previously described (Ranf et al., 2015) (primers supplementary table 1). For *AhaLORE* the first
508 intron of *AtLORE* (109 bp) was amplified from genomic DNA and inserted into *AhaLORE* CDSs
509 (at the 45th codon) to circumvent problematic read through in *E. coli* or *Agrobacterium tumefaciens*
510 (primers supplementary table 1). *AtLORE* truncations and receptor chimera with *AlyrLORE* were
511 designed according to domain annotations from Uniprot and Naithani et al. (2007) (see
512 supplementary table 2). For cloning of truncations and chimera respective parts of the CDS were
513 amplified by PCR with BpI linkers from vectors with full length CDS (backbone PCR) and re-
514 circularized by GG techniques (see Supplementary table 1 and 3). For all membrane bound
515 truncations, the *AtLORE* signal peptide was integrated. CDSs excluding STOP codons were
516 combined with CaMV35S promotor and terminator, a C-terminal ten-glycine linker and respective
517 C-terminal epitope tags (GFP, mCherry, SPYCE, SPYNE, hemagglutinin (HA)) using GG
518 techniques. For FRET-FLIM experiments, CDSs were transferred via Gateway™ cloning (LR-
519 clonase™, Thermo Fisher Scientific, according to manufacturer's manual) into a final Gateway™
520 vector containing an estradiol inducible trans-activator cassette (XVE) and C-terminal GFP,
521 mCherry or GFP-mCherry fusion epitope tags (FLIM-vectors, previously described in (Bleckmann
522 et al., 2009)). Final expression vectors were transformed into *Agrobacterium tumefaciens* for
523 transient expression in *planta*.

524

525 **Transient protein expression in *N. benthamiana***

526 *N. benthamiana* was transiently transformed by *Agrobacterium*-mediated transformation as
527 described previously (Shu et al., 2021). *Agrobacterium tumefaciens* (strain GV3101 pMP90)
528 carrying expression constructs were cultivated on LB agar with 30 µg/mL gentamycin, 10 µg/mL
529 rifampicin, and 50 µg/mL kanamycin, or 100 µg/mL spectinomycin for *Agrobacterium* carrying FLIM
530 expression constructs. OD₆₀₀ of *Agrobacterium* was adjusted to 0.5 for general purposes or 0.025
531 for gain-of-function ROS measurement. Prior to infiltration, *Agrobacterium* carrying desired
532 expression vectors or the silencing suppressor p19 were mixed in a 1:1 ratio. In case of co-

533 expression, the ratio was adjusted to 1:1:1. For ROS competition assays, the OD₆₀₀ of
534 *Agrobacteri*a carrying p19 was 0.15, for *AtLORE* 0.025 and for *AtLORE-ECD-TMD* or cytosolic
535 mCherry 0.125 (ratio p19:*AtLORE*:competing component 6:1:5). Expression of FLIM constructs
536 driven by the inducible XVE trans-activator was induced by infiltration of 20 µM β-estradiol and
537 0.1% Tween20 into transformed leaf areas 24 h after infiltration of agrobacteria. Protein
538 expression was observable 16-24 h after induction.

539

540 **Protein extraction**

541 Plant material was harvested (60-70 leaf discs of Ø 4 mm), frozen in liquid nitrogen and ground to
542 fine powder (1 min at 30 Hz in a TissueLyzerII, Qiagen). Total protein was extracted by incubation
543 with extraction buffer (6 µL/leaf disc, 150 mM Tris-HCl pH 7.5, 150 mM NaCl, 10% glycerol,
544 1% Nonidet-P40, 10 mM EDTA, 1 mM Na₂MoO₄, 1 mM NaF, 1 mM DTT, 1% (w/v)
545 polyvinylpyrrolidon, 1% (v/v) protease inhibitor cocktail P9599 (Sigma-Aldrich)) for 1 h at 4°C. After
546 centrifugation (18000 g, 30 min, 4°C), the supernatant was used for verification of protein
547 expression via immunoblot or Co-IP experiments.

548

549 **Co-immunoprecipitation**

550 For Co-IPs, protein extracts were incubated for 1-2 h at 4°C with GFP-Trap_MA (magnetic beads,
551 ChromoTek, handling according to manufacturer's manual). Magnetic beads were washed three
552 times with buffer (150 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% Nonidet-P40) and re-suspended
553 in 20 µL 1xSDS-sample buffer (5x SDS sample buffer: 60 mM Tris-HCl pH 6.8, 2% SDS,
554 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenolblue).

555

556 **Immunoblot**

557 Protein samples in 1x SDS sample buffer were denatured for 10 min at 95 °C and separated by
558 SDS-polyacrylamide gel electrophoresis (5% stacking gel, 10% resolving gel, 60-100 V,
559 1x Laemmli running buffer). Proteins were blotted onto a 0.2 µm Protran™ nitrocellulose
560 membrane (GE healthcare) using 1x transfer buffer (3.03 g/L Tris base, 14.4 g/L glycine, 20%
561 methanol, 0.05% SDS) and a semi dry transfer cell (Bio-Rad, 1 mA/cm², 1 h). Membrane was
562 blocked with protein free blocking solution T20 (Pierce) and proteins were detected with respective
563 antibodies diluted in blocking solution for primary antibodies or 1x TBS-T (6.06 g/L Tris base,
564 8.76 g/L NaCl, pH 6.7, 0.05% Tween20) for secondary antibodies (1:1000 anti-GFP 3H9
565 (ChromoTek) with 1:20000 anti-rat-HRP (A9542, Sigma-Aldrich); 1:500 c-Myc 9E10 (Santa Cruz)
566 with 1:5000 anti-mouse sc-2031 (Santa Cruz); 1:2000 anti-HA-HRP 3F10 (Sigma-Aldrich)). After
567 washing of membranes (3x 10 min in 1x TBS-T), chemiluminescence was detected with a CCD
568 camera system (Fusion SL System, Vilber Lourmat GmbH) upon incubation with a peroxidase
569 substrate (SuperSignal®West Femto Maximum Sensitivity Substrate (Fig. 1A, S2D) or
570 SuperSignal®West Dura Extended Duration Substrate (Pierce) (Fig. 2B)). When immunoblots
571 were analyzed with a second, different antibody, membranes were washed (1x TBS-T) after
572 detection and incubated in stripping buffer (2% SDS, 62.5 mM Tris/HCl pH 6.7, 100mM
573 β-mercaptoethanol) at 50°C for 30 minutes. Stripped membrane was blocked and immuno-
574 detected again. Membranes were stained for total protein with amido black (1 g/L amido black,
575 250 mL/L isopropyl, 100 mL/L acetic acid).

576 **Bimolecular fluorescence complementation**

577 SPYCE/SPYNE epitope tags for BiFCs were previously described (Walter et al., 2004) and
578 adapted for GG cloning. Respective interaction candidates were transiently co-expressed in
579 *N. benthamiana*. YFP fluorescence complementation was visually assessed two days post
580 infiltration via confocal laser scanning microscopy (Leica TCS SP5, ex 514nm, em 525 – 550 nm,
581 Z-stack of 22 planes). For YFP fluorescence quantification, leaf discs (Ø 4 mm) were floated on
582 water in a black 96-well plate and fluorescence was measured with a plate reader (Tecan Infinite
583 F200 PRO, excitation 485 nm, emission 535 nm, 25 flashes, integration time 20 μ s, gain set to 70,
584 2x2 reads per well). Protein expression was validated by immunoblots.

585

586 **Trypan blue staining**

587 Leaf discs (Ø 2 cm) were harvested five days post transformation and incubated (95°C, 5 min)
588 with 3 mL trypan blue staining solution (25% (v/v) lactic acid, 25% (v/v) phenol, 25% (v/v) glycerol,
589 25% (v/v) H₂O, 25% (w/v) trypan blue). Leaf discs were washed several times with destaining solution
590 (250 g chloral hydrate in 100 mL H₂O) and rinsed with water before photo-documentation.

591

592 **ROS measurement**

593 Accumulation of ROS was measured with a luminol based reporter system and a microplate
594 reader (Tecan Infinite F200 PRO or Luminoscan Ascent 2.1, Thermo Fisher Scientific) as described
595 previously (Ranf et al., 2015). Leaf discs (Ø 4 mm) of Brassicaceae (6-8 weeks old) or transiently
596 transformed *N. benthamiana* (36 h post agro-infiltration) were floated on water in white 96-well
597 plates for at least 6h (for *N. benthamiana*) or overnight (for Brassicaceae). Prior to measurements,
598 water was replaced with 100 μ L horseradish peroxidase-luminol solution (2 μ g/mL horseradish
599 peroxidase, 10 μ M L-012 (WAKO Chemicals GmbH)). After addition of elicitors or respective
600 controls (3-OH-C10:0 (Matreya LLC) in MeOH, flg22 (QRLSTGSRINSAKDDAAGLQIA in ddH₂O),
601 luminescence was recorded in relative light units (RLU) in 1 minute intervals for up to 60 minutes.
602 Total ROS accumulation was summed up for elicitor and control treatments.

603

604 **Ligand depletion assay**

605 Ligand depletion assay was performed as previously described (Shu et al., 2021). ECDs of
606 respective proteins were transiently expressed in *N. benthamiana* apoplasts and harvested via
607 apoplastic washing fluids (AWF). AWFs were concentrated and incubated with 3-OH-C10:0 (9:1,
608 v/v). Unbound elicitor was separated by filtration (30 kDa molecular weight cut-off). Filtrates were
609 used for elicitation of cytosolic calcium signaling in LORE-OE reporter lines as described before
610 (Ranf et al., 2015; Shu et al., 2021). For each time point, luminescence was normalized to total
611 luminescence counts remaining (L/L_{max}) and total accumulation of calcium signals was summed
612 up from 3 to 30 minutes. 5 μ L of concentrated AWF with a total protein concentration of 1.5 mg/mL
613 was analyzed for protein expression by immunoblot.

614

615 **Red light chlorophyll fluorescence measurement for cell death quantification**

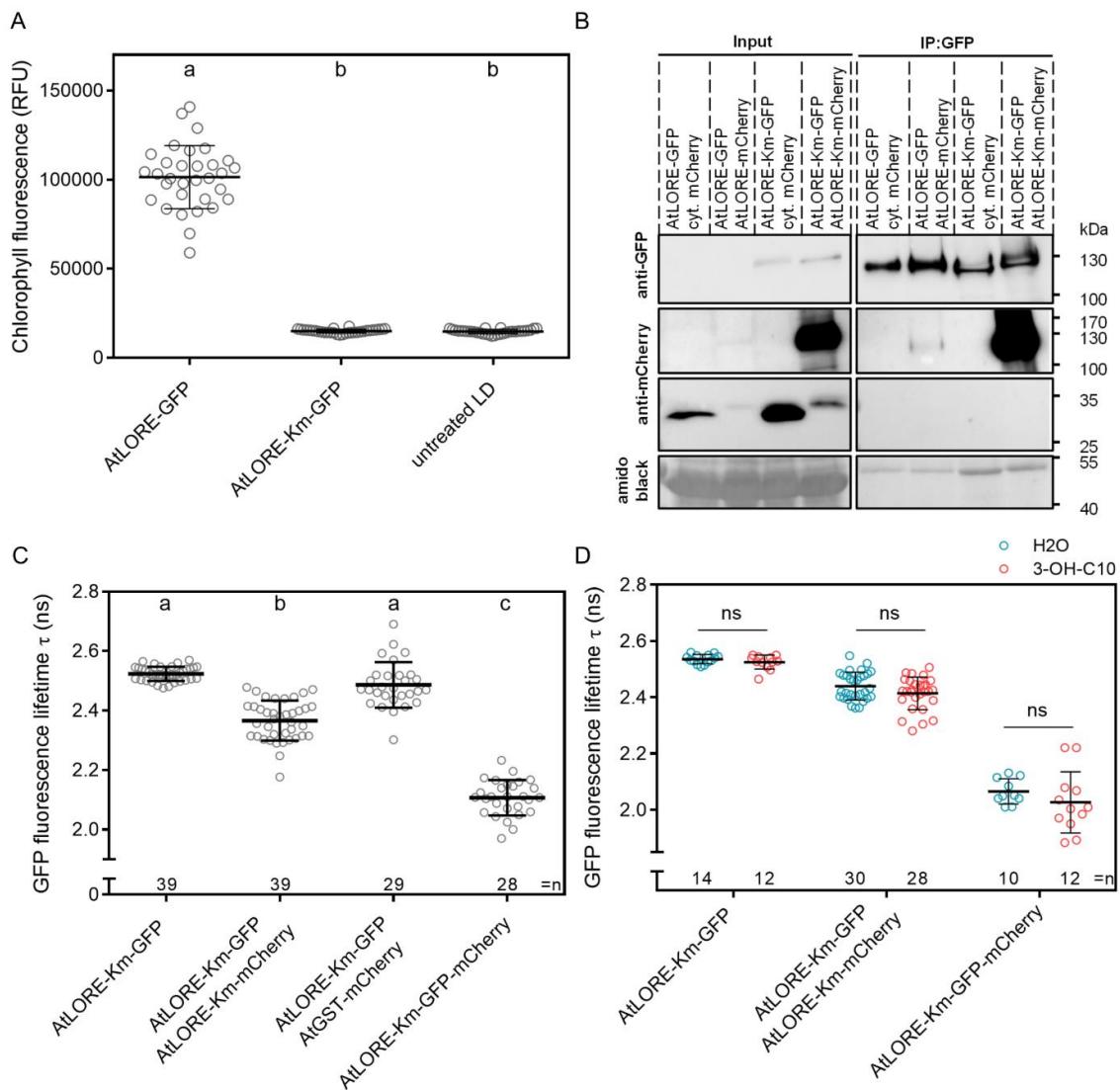
616 Red light emission of chlorophyll fluorescence can be measured for quantification of cell death
617 (Landeo Villanueva et al., 2021). Leaf discs (\varnothing 4 mm) of transiently transformed *N. benthamiana*
618 were floated on water in black 96-well plates and chlorophyll fluorescence was measured with a
619 plate reader (Tecan Infinite F200 PRO, excitation 535 nm, emission 590 nm, 25 flashes,
620 integration time 20 μ s, 4x4 reads per well, gain set to 80) as relative fluorescence units (RFU).
621 Values of all reads per well were summed up.

622

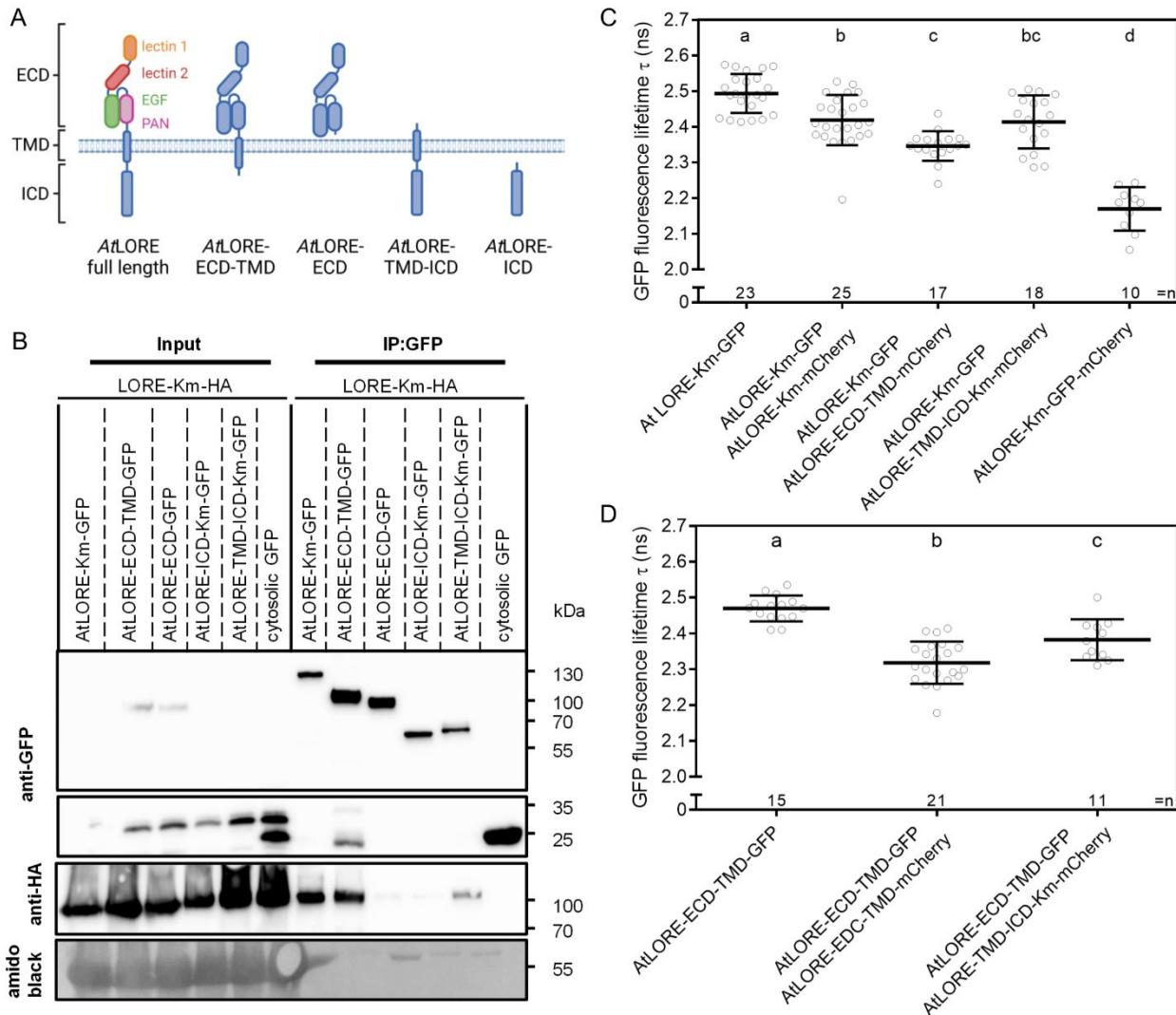
623 **Microscopy**

624 Confocal laser scanning microscopy was performed using either a Leica TCS SP5 (Argon laser,
625 HyD2 detectors) or an Olympus FV3000 system (diode lasers, PMT detectors). Images were
626 acquired with an image size of 512x512 pixels. In case of co-expression analysis, images were
627 taken with a sequential scan to avoid 'bleed through'. GFP was excited at 488 nm and emission
628 detected at 500-540 nm. mCherry was excited at 561 nm and emission detected at 570-620 nm.
629 YFP was excited at 514 nm and emission detected at 525-550 nm. Images were imported and
630 processed with OMERO (Allan et al., 2012).

631


632 **Fluorescence lifetime imaging (FLIM)**

633 GFP fluorescence lifetimes were measured via time-correlated single-photon counting (TCSPC)
634 by an Olympus FV3000 system linked to a PicoQuant FCS/FLIM-FRET/rapidFLIM upgrade kit,
635 based on previously described protocols (Weidtkamp-Peters and Stahl, 2017). TCSPC was
636 performed with a 485 nm (LDH-D-C-485) pulsed laser, two TCSPC modules (TimeHarp 260 PICO
637 Dual, TimeHarp 260 NANO Dual) and two photon counting PMA hybrid 40 detectors. Co-
638 expressing cells were detected by confocal imaging via an Olympus FV3000 60x water immersion
639 objective (UPLSAPO60XW 60x/NA 1.2/WD 0.28) and a selected measuring area was magnified
640 (4x zoom). TCSPC was performed with a laser pulse rate of 40.00 MHz, a TCSPC resolution of
641 25.0 ps and an image size of 512x512 pixels. 500-1000 photon counts per pixel were acquired for
642 each image. FLIM was analyzed by the Symphotime64 software of PicoQuant via n-exponential
643 deconvolution and an internally calculated instrument response function (IRF). A two-parameter
644 fitting ($n=2$) was performed in most cases. Only FLIM analysis with fitting coefficients (χ^2) between
645 1.0 and 2.0 were accepted. Intensity weighted average lifetimes τ of membrane ROIs were
646 determined for each FLIM image.


647

648

FIGURES

649 **Figure 1 AtLORE forms homomers and has an auto-immunity phenotype in *N.*
650 *benthamiana*.** **A** Chlorophyll fluorescence measurements (relative fluorescence units, RFU) in *N.*
651 *benthamiana* upon transient expression of candidates four days post transformation. Pooled data
652 of two technical replicates from one biological replicate are shown. Data show mean with SD.
653 n=32 leaf discs. Statistics analyzed by one-way ANOVA with Tukey's multiple comparisons test,
654 $\alpha=0.01$. Data not sharing the same letter are significantly different. **B** Anti-GFP and anti-mCherry
655 immunoblot of co-immunoprecipitation (GFP-trap) after transient co-expression of interaction
656 candidates in *N. benthamiana*. Total protein was stained with amido black. Km, kinase mutated
657 (K516A). **C** FRET-FLIM of AtLORE-Km-GFP and indicated candidates fused to an mCherry
658 epitope tag, transiently co-expressed in *N. benthamiana*. Pooled data of five independent
659 biological replicates. Data show mean with SD. n, number of analyzed cells. Statistics analyzed
660 by one-way ANOVA with Tukey's multiple comparisons test, $\alpha=0.01$. Data not sharing the same
661 letter are significantly different. **D** FRET-FLIM of AtLORE-Km-GFP with AtLORE-mCherry,
662 transiently co-expressed in *N. benthamiana* and treated with 5 μ M 3-OH-C10:0 or H₂O as control.
663 FLIM images were acquired 10-20 minutes after treatment. Pooled data from two independent
664 biological replicates. n, number of analyzed cells. Data show mean with SD. Differences between
665 treatments were analyzed by two-way ANOVA with Sidak's multiple comparisons test, $\alpha=0.01$.

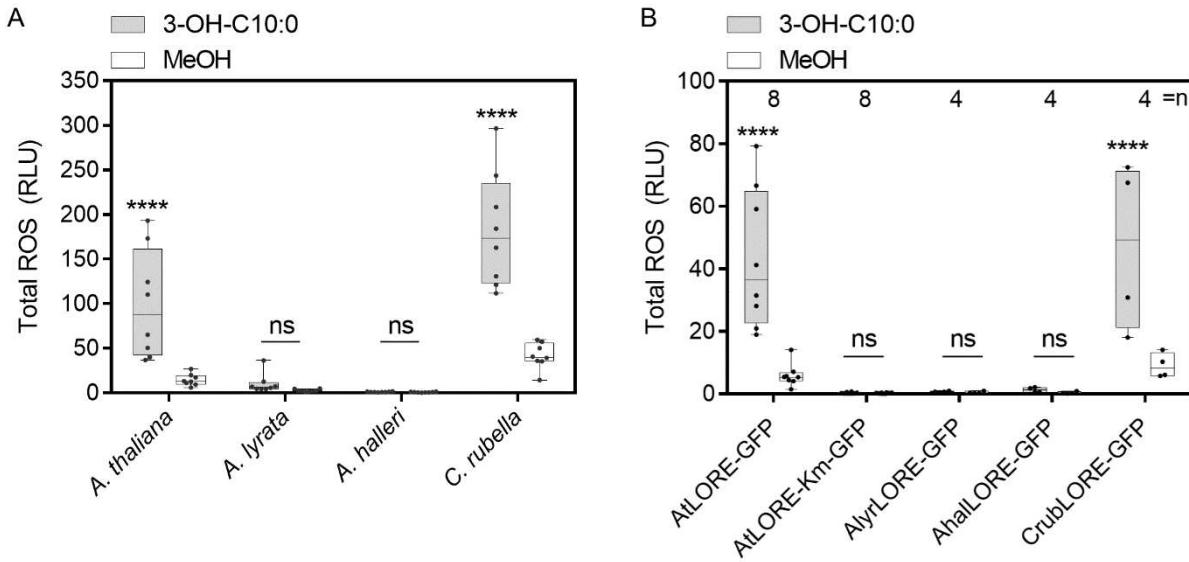
666
667 **Figure 2 Homomerization of AtLORE is mediated by the extracellular and trans-membrane**
668 **domain. A** Scheme of AtLORE truncation variants; ECD, extracellular domain; TMD,

669 transmembrane domain; ICD, intracellular domain. Created with BioRender.com. **B** Anti-GFP and

670 anti-mCherry immunoblot of co-immunoprecipitation (GFP-trap) after transient co-expression of

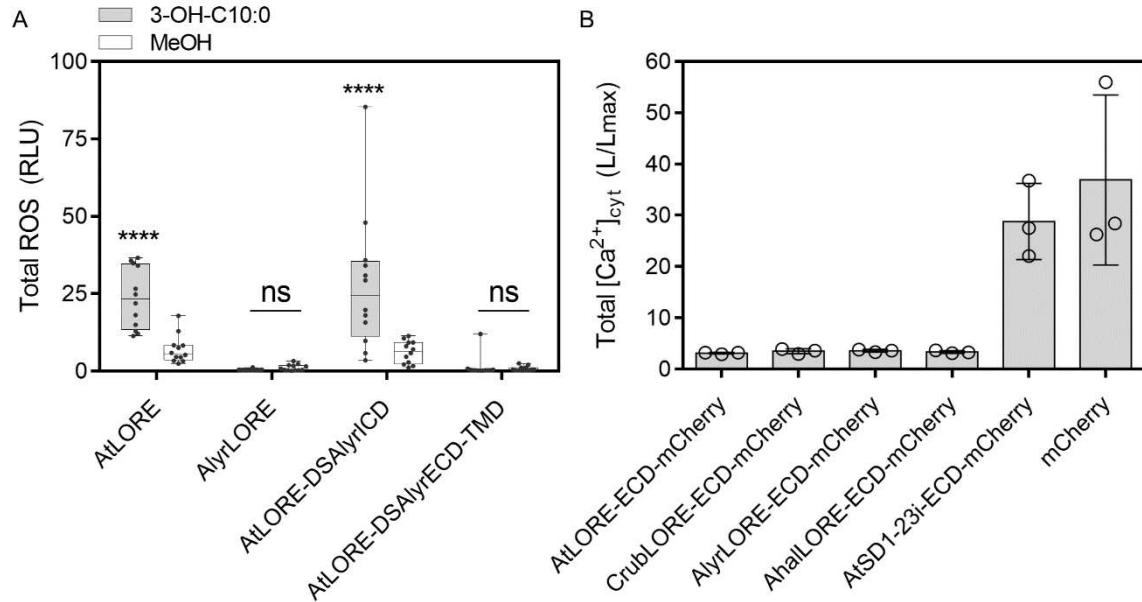
671 full length and truncated AtLORE-Km interaction candidates in *N. benthamiana*. Total protein is

672 stained with amido black. **C, D** FRET-FLIM of AtLORE-Km-GFP full length or AtLORE-ECD-TMD-


673 GFP versus truncated AtLORE-mCherry variants transiently expressed in *N. benthamiana*. Pooled

674 data from two independent biological replicates each. Data show mean with SD. n, number of

675 analyzed cells. Statistics analyzed by one-way ANOVA with Tukey's multiple comparisons test,


676 $\alpha=0.01$, data not sharing the same letter are significantly different.

677

678 **Figure 3 3-OH-C10:0 responsiveness of *A. lyrata*, *A. halleri* and *C. rubella* or *N. benthamiana***
679 **expressing putative LORE orthologues. A** Total ROS accumulation of *A. halleri*, *C. rubella*,
680 *A. lyrata* and *A. thaliana* leaf discs treated with 5 μ M 3-OH-C10:0 or MeOH as control. Median
681 with minimum to maximum of total ROS between 3-60 minutes after elicitation is shown; n=8 leaf
682 discs. Significance between MeOH and 3-OH-C10:0 treatment tested with two-way ANOVA with
683 Sidak's multiple comparisons test, $\alpha=0.01$. **B** Total ROS accumulation of *N. benthamiana* leaf
684 discs transiently overexpressing *AtLORE* or putative LORE orthologues upon application of 1 μ M
685 3-OHC10:0 or MeOH as control. Boxplot displays minimum to maximum with median of total ROS
686 between 3-45 minutes after treatment. n, number of leaf discs. Combined data of two independent
687 datasets from one biological replicate are shown. For *AtLORE* and *AtLORE-Km* data of both
688 datasets were pooled. Statistics was analyzed by two-way ANOVA with Sidak's multiple
689 comparisons test, $\alpha= 0.01$.

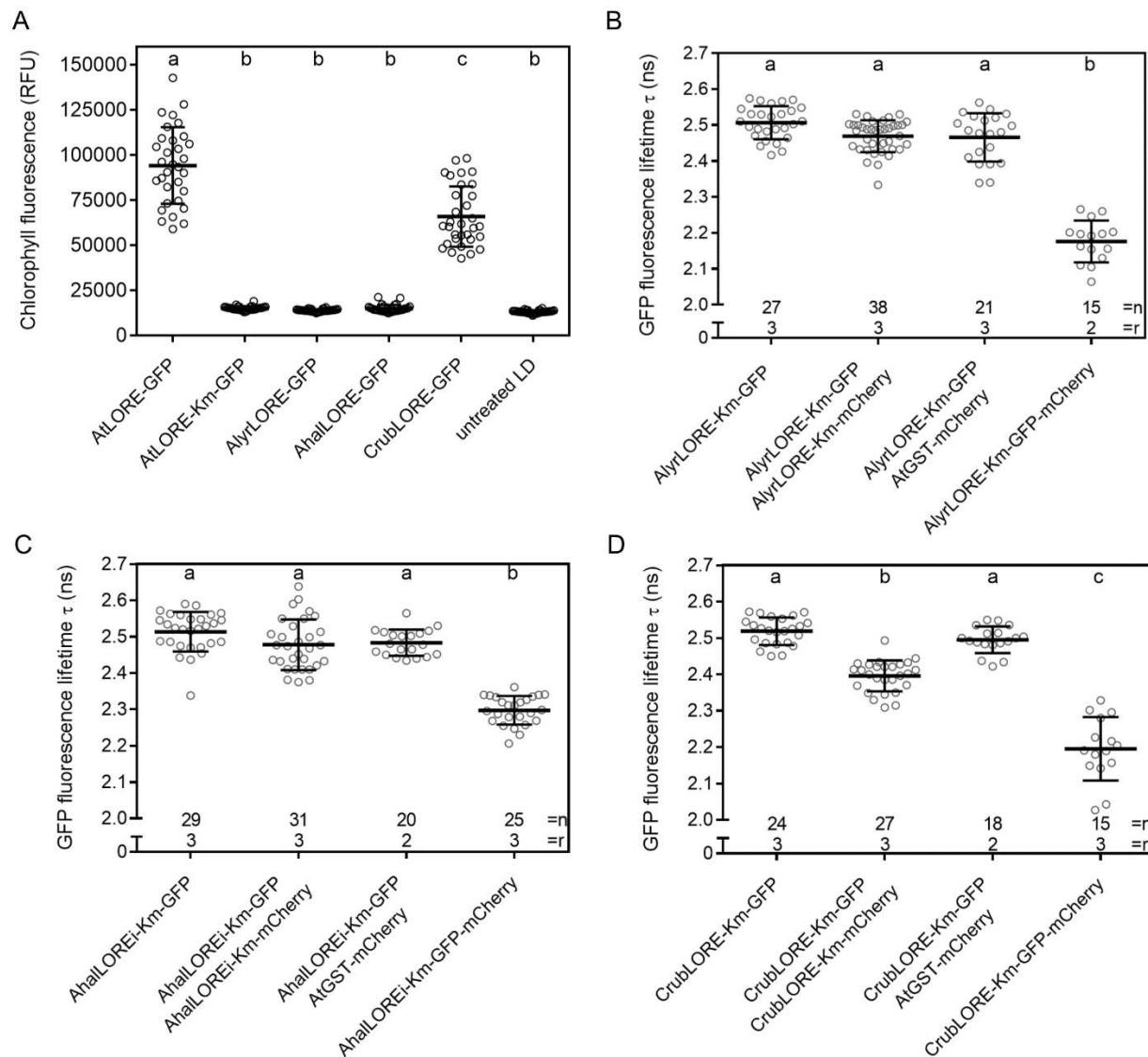
690

691 **Figure 4 The ECD of *AlyrLORE* is causal for defective 3-OH-C10:0 perception, but ligand**

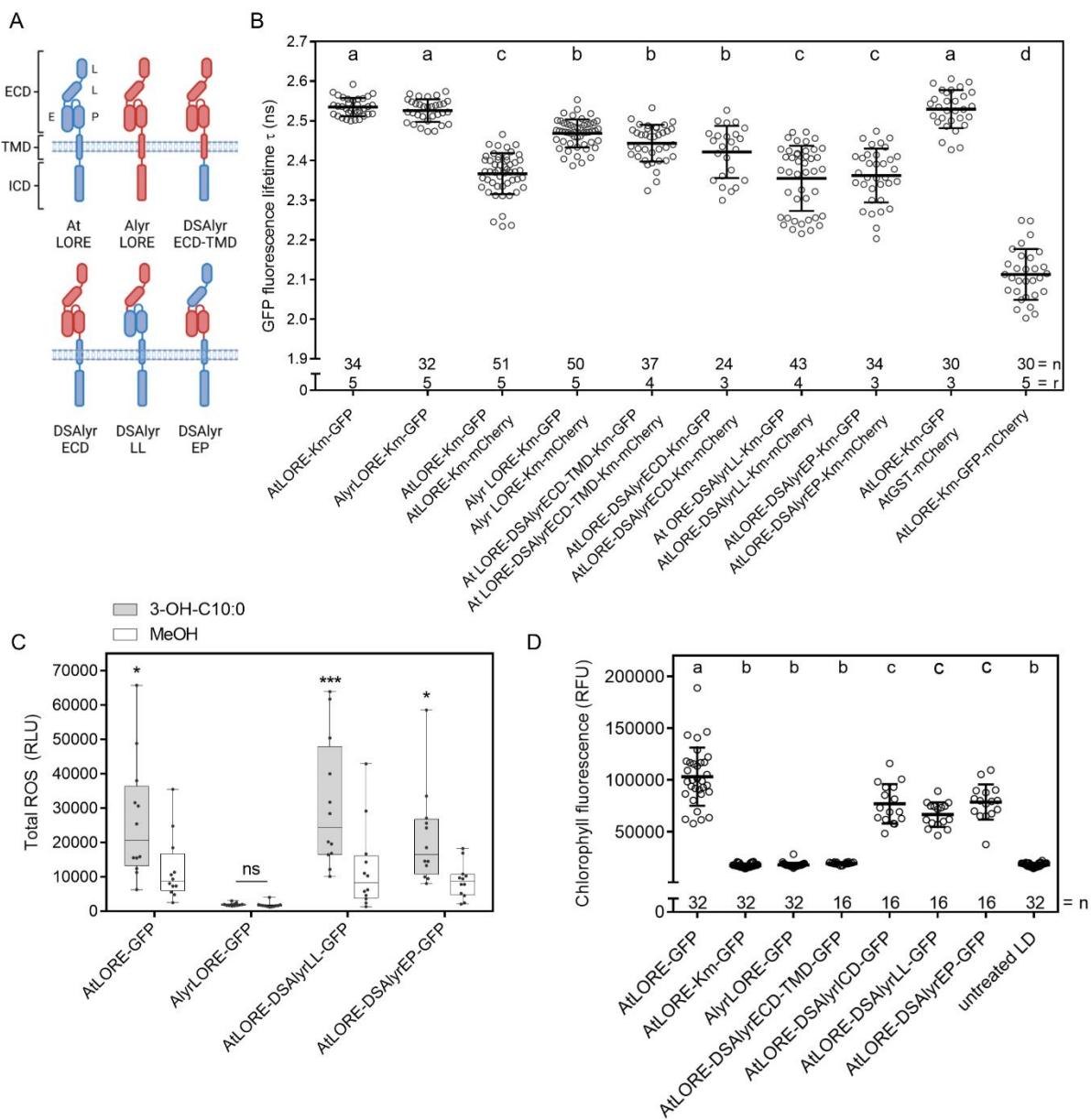
692 **binding of all orthologues is functional.** **A** Total ROS accumulation of *AtLORE*, *AlyrLORE* and

693 chimera with either ECD-TMD or ICD domain swap (DS) elicited with 10 μ M 3-OH-C10:0 or MeOH.

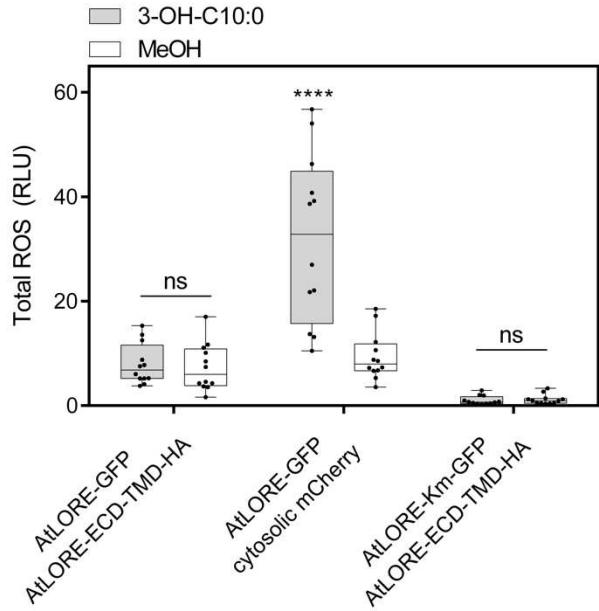
694 Median with minimum to maximum is shown; n=12 leaf discs. Statistics was analyzed by two-way


695 ANOVA with Sidak's multiple comparisons test, $\alpha = 0.01$. **B** 3-OH-C10:0 binding to LORE-ECDs

696 was tested in a ligand depletion assay. Unbound 3-OH-C10:0 in filtrates was detected by cytosolic


697 Ca²⁺ measurements of LORE-OE lines. Ligand binding is indicated by full depletion of a Ca²⁺

698 response. Data show mean and SD of total [Ca²⁺]_{cyt} from 3 to 30 minutes; n=3 seedlings.


699

700 **Figure 5 Putative LORE orthologues from 3-OH-C10:0 unresponsive species are impaired**
701 **in homomerization.** **A** Chlorophyll fluorescence measurement of *N. benthamiana* leaves
702 transiently overexpressing *AiLORE*, *AlyrLORE*, *AhaLORE* and *CrubLORE*. Mean and SD of
703 pooled data from two technical replicates are shown. n=32 leave discs. Statistics analyzed by one-
704 way ANOVA with Tukey's multiple comparisons test, $\alpha=0.01$. Data not sharing data are
705 significantly different. Experiment was repeated two times with similar outcome. **B-D** FRET-FLIM
706 of putative LORE orthologous from *A. lyrata* (**B**) *A. halleri* (**C**) and *C. rubella* (**D**) transiently
707 expressed in *N. benthamiana*. Km, kinase mutated; i, integrated LORE intron; n, number of
708 analyzed cells, r, number of biological replicates. Data show mean with SD. Statistics analyzed by
709 one-way ANOVA with Tukey's multiple comparisons test, $\alpha=0.01$. Data not sharing the same
710 letters are significantly different.

712 **Figure 6 Mapping of dimerization region using receptor chimera of AtLORE and AlyrLORE.**
713 **A** Schematic overview of chimera between AlyrLORE and AtLORE. DS, domain swap; LL, lectin
714 domain 1 and lectin domain 2; EP, EGF and PAN domain. Created with BioRender.com. **B** FRET-
715 FLIM of AtLORE-AlyrLORE domain swaps (DSAllyr) transiently expressed in *N. benthamiana*.
716 Mean and SD of pooled data are shown; r, number of biological replicates; n, number of analyzed
717 cells. Statistics analyzed by one-Way ANOVA with Tukey's multiple comparisons test, $\alpha=0.01$.
718 Data not sharing the same letter are significantly different. **C** Gain of function ROS measurements
719 of AtLORE-AlyrLORE chimera transiently expressed in *N. benthamiana* upon elicitation with
720 10 μ M 3-OH-C10:0 or MeOH as control. Median with minimum to maximum is shown; n=12 leaf
721 discs. Statistics was analyzed by two-way ANOVA with Sidak's multiple comparisons test, $\alpha=0.01$.
722 **D** Chlorophyll fluorescence measurements (in relative fluorescence units, RFU) in *N. benthamiana*
723 upon transient expression of AtLORE-AlyrLORE chimera four days post transformation. Mean and
724 SD of pooled data from two technical replicates of one biological replicate are shown. n, number
725 of leaf discs. Statistics analyzed by one-way ANOVA with Tukey's multiple comparisons test,
726 $\alpha=0.01$. Data not sharing the same letter are significantly different.

727

728 **Figure 7 AtLORE homomerization is essential for downstream signaling.** Dominant negative
729 effects of co-expressed AtLORE-ECD-TMD-HA or cytosolic mCherry was analyzed by competitive
730 ROS accumulation measurement in *N. benthamiana* transiently co-expressing indicated
731 candidates upon elicitation with 5 μ M 3-OH-C10:0 or MeOH as a control. Median with minimum
732 to maximum of total ROS between 3 and 45 min from three technical replicates is shown; n=12
733 leaf discs. Differences between treatments was analyzed by two-way ANOVA and Sidak's multiple
734 comparisons test ($\alpha=0.01$).

735

736 **ACKNOWLEDGEMENTS**

737 We acknowledge the Center for Advanced Light Microscopy (CALM) of imaging@TUM at the TUM
738 School of Life Sciences for providing access to FLIM microscopes used in this study, Pascal
739 Falter-Braun (Helmholtz center, Munich) and Marcel Quint (MLU Halle-Wittenberg) for providing
740 plant material and Yvonne Stahl (HHU Düsseldorf) for providing FLIM vectors. Graphs and
741 statistics were created by GraphPad Prism, microscopy images by OMERO and schemes by
742 BioRender.com. We thank Ralph Hückelhoven and Martin Stegmann for critical discussion of data.
743 Research in the Ranf lab is supported by the German Research Foundation (SFB924/TP-B10)
744 and Emmy Noether program (RA2541/1).

745

746 **REFERENCES**

747 **Allan, C., Burel, J.-M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., MacDonald, D.,**
748 **Moore, W.J., Neves, C., Patterson, A., Porter, M., Tarkowska, A., Loranger, B.,**
749 **Avondo, J., Lagerstedt, I., Lianas, L., Leo, S., Hands, K., Hay, R.T., Patwardhan, A.,**
750 **Best, C., Kleywegt, G.J., Zanetti, G., and Swedlow, J.R. (2012). OMERO: flexible,**
751 **model-driven data management for experimental biology. Nature Methods** **9**, 245-253.

752 **Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O.,**
753 **Brunak, S., von Heijne, G., and Nielsen, H. (2019). SignalP 5.0 improves signal**
754 **peptide predictions using deep neural networks. Nature biotechnology** **37**, 420-423.

755 **Balint-Kurti, P. (2019). The plant hypersensitive response: concepts, control and**
756 **consequences. Molecular Plant Pathology** **20**, 1163-1178.

757 **Bauer, Z., Gómez-Gómez, L., Boller, T., and Felix, G. (2001). Sensitivity of Different Ecotypes**
758 **and Mutants of Arabidopsis thaliana toward the Bacterial Elicitor Flagellin**
759 **Correlates with the Presence of Receptor-binding Sites *. Journal of Biological Chemistry**
760 **276**, 45669-45676.

761 **Bi, G., Liebrand, T.W.H., Bye, R.R., Postma, J., Burgh, A.M., Robatzek, S., Xu, X., and**
762 **Joosten, M.H.A.J. (2015). SOBIR1 requires the GxxxG dimerization motif in its**
763 **transmembrane domain to form constitutive complexes with receptor-like proteins.**
764 **Molecular Plant Pathology** **17**, 96-107.

765 **Bleckmann, A., Weidtkamp-Peters, S., Seidel, C., and Simon, R. (2009). Stem Cell Signaling**
766 **in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant**
767 **physiology** **152**.

768 **Bojar, D., Martinez, J., Santiago, J., Rybin, V., Bayliss, R., and Hothorn, M. (2014). Crystal**
769 **structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid**
770 **signal initiation. The Plant journal : for cell and molecular biology** **78**, 31-43.

771 **Boller, T., and Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated**
772 **Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual**
773 **Review of Plant Biology** **60**, 379-406.

774 **Boutrot, F., and Zipfel, C. (2017). Function, Discovery, and Exploitation of Plant Pattern**
775 **Recognition Receptors for Broad-Spectrum Disease Resistance. Annual review of**
776 **phytopathology** **55**, 257-286.

777 **Burkart, R.C., and Stahl, Y. (2017). Dynamic complexity: plant receptor complexes at the**
778 **plasma membrane. Curr Opin Plant Biol** **40**, 15-21.

779 **Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey,**
780 **G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-**
781 **induced complex with related kinase CERK1. eLife** **3**, e03766.

782 **Chen, L.J., Wuriyanghan, H., Zhang, Y.Q., Duan, K.X., Chen, H.W., Li, Q.T., Lu, X., He, S.J.,**
783 **Ma, B., Zhang, W.K., Lin, Q., Chen, S.Y., and Zhang, J.S. (2013). An S-domain**

784 receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced
785 leaf senescence in rice. *Plant Physiol* **163**, 1752-1765.

786 **Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma,**
787 **B., Wang, Y., Zhao, X., Li, S., and Zhu, L.** (2006). A B-lectin receptor kinase gene
788 conferring rice blast resistance. *The Plant Journal* **46**, 794-804.

789 **Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., and He, G.** (2013). A rice lectin receptor-
790 like kinase that is involved in innate immune responses also contributes to seed
791 germination. *The Plant Journal* **76**, 687-698.

792 **Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G.** (2006). The *Arabidopsis*
793 receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception.
794 *The Plant cell* **18**, 465-476.

795 **Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberg, T., Jones, J.D., Felix,**
796 **G., and Boller, T.** (2007). A flagellin-induced complex of the receptor FLS2 and BAK1
797 initiates plant defence. *Nature* **448**, 497-500.

798 **Consortium, T.U.** (2020). UniProt: the universal protein knowledgebase in 2021. *Nucleic acids*
799 *research* **49**, D480-D489.

800 **Couto, D., and Zipfel, C.** (2016). Regulation of pattern recognition receptor signalling in plants.
801 *Nature reviews. Immunology* **16**, 537-552.

802 **De Smet, I., Voß, U., Jürgens, G., and Beeckman, T.** (2009). Receptor-like kinases shape the
803 plant. *Nature Cell Biology* **11**, 1166-1173.

804 **Dievart, A., Gottin, C., Périn, C., Ranwez, V., and Chantret, N.** (2020). Origin and Diversity of
805 Plant Receptor-Like Kinases. *Annual Review of Plant Biology* **71**, 131-156.

806 **Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S.** (2009). Golden Gate Shuffling: A
807 One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes. *PLOS ONE* **4**,
808 e5553.

809 **Fan, J., Bai, P., Ning, Y., Wang, J., Shi, X., Xiong, Y., Zhang, K., He, F., Zhang, C., Wang,**
810 **R., Meng, X., Zhou, J., Wang, M., Shirsekar, G., Park, C.H., Bellizzi, M., Liu, W.,**
811 **Jeon, J.S., Xia, Y., Shan, L., and Wang, G.L.** (2018). The Monocot-Specific Receptor-
812 like Kinase SDS2 Controls Cell Death and Immunity in Rice. *Cell host & microbe* **23**, 498-
813 510.e495.

814 **Fink, A., Sal-Man, N., Gerber, D., and Shai, Y.** (2012). Transmembrane domains interactions
815 within the membrane milieu: Principles, advances and challenges. *Biochimica et*
816 *Biophysica Acta (BBA) - Biomembranes* **1818**, 974-983.

817 **Gilardoni, P.A., Hettenhausen, C., Baldwin, I.T., and Bonaventure, G.** (2011). *Nicotiana*
818 *attenuata* LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of
819 induced defense responses during *Manduca sexta* herbivory. *The Plant cell* **23**, 3512-
820 3532.

821 **Giranton, J.L., Dumas, C., Cock, J.M., and Gaude, T.** (2000). The integral membrane S-locus
822 receptor kinase of *Brassica* has serine/threonine kinase activity in a membranous
823 environment and spontaneously forms oligomers in planta. *Proceedings of the National*
824 *Academy of Sciences of the United States of America* **97**, 3759-3764.

825 **Gomez-Gomez, L., and Boller, T.** (2000). FLS2: an LRR receptor-like kinase involved in the
826 perception of the bacterial elicitor flagellin in *Arabidopsis*. *Molecular cell* **5**, 1003-1011.

827 **Gong, B.-Q., Wang, F.-Z., and Li, J.-F.** (2020). Hide-and-Seek: Chitin-Triggered Plant Immunity
828 and Fungal Counterstrategies. *Trends in plant science* **25**, 805-816.

829 **Gou, X., and Li, J.** (2020). Paired Receptor and Coreceptor Kinases Perceive Extracellular
830 Signals to Control Plant Development. *Plant physiology* **182**, 1667-1681.

831 **Guo, X., Ye, J., Li, M., Lin, X., Lu, X., Liu, S., Li, H., and Zhang, C.** (2018). LecRKIII.1 and
832 LecRKIII.2 formed homodimers to play physiological functions in *Arabidopsis thaliana*.
833 *SDRP Journal of Plant Science* **2**, 1-8.

834 **Herrmann, J.R., Panitz, J.C., Unterreitmeier, S., Fuchs, A., Frishman, D., and Langosch, D.**
835 (2009). Complex Patterns of Histidine, Hydroxylated Amino Acids and the GxxxG Motif

836 Mediate High-affinity Transmembrane Domain Interactions. *Journal of Molecular Biology*
 837 385, 912-923.

838 **Hohmann, U., Lau, K., and Hothorn, M.** (2017). The Structural Basis of Ligand Perception and
 839 Signal Activation by Receptor Kinases. *Annu Rev Plant Biol* **68**, 109-137.

840 **Ivanov, R., Fobis-Loisy, I., and Gaude, T.** (2010). When no means no: guide to Brassicaceae
 841 self-incompatibility. *Trends in plant science* **15**, 387-394.

842 **Jamieson, P.A., Shan, L., and He, P.** (2018). Plant cell surface molecular cypher: Receptor-like
 843 proteins and their roles in immunity and development. *Plant Sci* **274**, 242-251.

844 **Jany, E., Nelles, H., and Goring, D.R.** (2019). Chapter One - The Molecular and Cellular
 845 Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection. In
 846 International Review of Cell and Molecular Biology, L. Galluzzi, ed (Academic Press), pp.
 847 1-35.

848 **Jinjun, Z., Peina, J., Fang, Z., Chongke, Z., Bo, B., Yaping, L., Haifeng, W., Fan, C., and
 849 Xianzhi, X.** (2020). OsSRK1, an Atypical S-Receptor-Like Kinase Positively Regulates
 850 Leaf Width and Salt Tolerance in Rice. *Rice Science* **27**, 133-142.

851 **Kanzaki, H., Saitoh, H., Takahashi, Y., Berberich, T., Ito, A., Kamoun, S., and Terauchi, R.**
 852 (2008). NbLRK1, a lectin-like receptor kinase protein of *Nicotiana benthamiana*, interacts
 853 with *Phytophthora infestans* INF1 elicitor and mediates INF1-induced cell death. *Planta*
 854 **228**, 977-987.

855 **Katoh, K., Rozewicki, J., and Yamada, K.D.** (2019). MAFFT online service: multiple sequence
 856 alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* **20**,
 857 1160-1166.

858 **Katzen, F.** (2007). Gateway((R)) recombinational cloning: a biological operating system. *Expert*
 859 *opinion on drug discovery* **2**, 571-589.

860 **Kim, H.S., Jung, M.S., Lee, S.M., Kim, K.E., Byun, H., Choi, M.S., Park, H.C., Cho, M.J., and
 861 Chung, W.S.** (2009a). An S-locus receptor-like kinase plays a role as a negative
 862 regulator in plant defense responses. *Biochem Biophys Res Commun* **381**, 424-428.

863 **Kim, H.S., Jung, M.S., Lee, K., Kim, K.E., Yoo, J.H., Kim, M.C., Kim, D.H., Cho, M.J., and
 864 Chung, W.S.** (2009b). An S-locus receptor-like kinase in plasma membrane interacts
 865 with calmodulin in *Arabidopsis*. *FEBS Lett* **583**, 36-42.

866 **Kutschera, A., Dawid, C., Gisch, N., Schmid, C., Raasch, L., Gerster, T., Schaffer, M.,
 867 Smakowska-Luzan, E., Belkhadir, Y., Vlot, A.C., Chandler, C.E., Schellenberger, R.,
 868 Schwudke, D., Ernst, R.K., Dorey, S., Huckelhoven, R., Hofmann, T., and Ranf, S.**
 869 (2019). Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in
 870 *Arabidopsis* plants. *Science* **364**, 178-181.

871 **Labbé, J., Muchero, W., Czarnecki, O., Wang, J., Wang, X., Bryan, A.C., Zheng, K., Yang,
 872 Y., Xie, M., Zhang, J., Wang, D., Meidl, P., Wang, H., Morrell-Falvey, J.L., Cope, K.R.,
 873 Maia, L.G.S., Ané, J.-M., Mewalal, R., Jawdy, S.S., Gunter, L.E., Schackwitz, W.,
 874 Martin, J., Le Tacon, F., Li, T., Zhang, Z., Ranjan, P., Lindquist, E., Yang, X.,
 875 Jacobson, D.A., Tchaplin, T.J., Barry, K., Schmutz, J., Chen, J.-G., and Tuskan,
 876 G.A.** (2019). Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase.
 877 *Nature Plants* **5**, 676-680.

878 **Landeo Villanueva, S., Malvestiti, M.C., van Ieperen, W., Joosten, M.H.A.J., and van Kan,
 879 J.A.L.** (2021). Red light imaging for programmed cell death visualization and
 880 quantification in plant-pathogen interactions. *Molecular Plant Pathology* **22**, 361-372.

881 **Langosch, D., and Arkin, I.T.** (2009). Interaction and conformational dynamics of membrane-
 882 spanning protein helices. *Protein Sci* **18**, 1343-1358.

883 **Li, H., and Yang, W.-C.** (2016). RLKs orchestrate the signaling in plant male-female interaction.
 884 *Science China Life Sciences* **59**, 867-877.

885 **Li, J.B., Sun, Y.D., Liu, H., Wang, Y.Y., Jia, Y.L., and Xu, M.H.** (2015). Natural variation of rice
 886 blast resistance gene Pi-d2. *Genetics and molecular research : GMR* **14**, 1235-1249.

887 **Liu, C., Dong, X., Xu, Y., Dong, Q., Wang, Y., Gai, Y., and Ji, X.** (2021). Transcriptome and
888 DNA Methylome Reveal Insights Into Phytoplasma Infection Responses in Mulberry
889 (*Morus multicaulis* Perr.). *Frontiers in Plant Science* **12**.

890 **Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou,
891 J.-M., and Chai, J.** (2012). Chitin-Induced Dimerization Activates a Plant Immune
892 Receptor. *Science* **336**, 1160.

893 **Luo, X., Wu, W., Liang, Y., Xu, N., Wang, Z., Zou, H., and Liu, J.** (2020). Tyrosine
894 phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity. *The
895 EMBO journal* **n/a**, e102856.

896 **Ma, R., Han, Z., Hu, Z., Lin, G., Gong, X., Zhang, H., Nasrallah, J.B., and Chai, J.** (2016a).
897 Structural basis for specific self-incompatibility response in *Brassica*. *Cell Res* **26**, 1320-
898 1329.

899 **Ma, X., Xu, G., He, P., and Shan, L.** (2016b). SERKing Coreceptors for Receptors. *Trends in
900 plant science* **21**, 1017-1033.

901 **Macho, A.P., Lozano-Durán, R., and Zipfel, C.** (2015). Importance of tyrosine phosphorylation
902 in receptor kinase complexes. *Trends in plant science* **20**, 269-272.

903 **Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y.,
904 Kawakami, N., Kaku, H., and Shibuya, N.** (2007). CERK1, a LysM receptor kinase, is
905 essential for chitin elicitor signaling in *Arabidopsis*. *Proceedings of the National Academy
906 of Sciences* **104**, 19613-19618.

907 **Murase, K., Moriwaki, Y., Mori, T., Liu, X., Masaka, C., Takada, Y., Maesaki, R., Mishima,
908 M., Fujii, S., Hirano, Y., Kawabe, Z., Nagata, K., Terada, T., Suzuki, G., Watanabe,
909 M., Shimizu, K., Hakoshima, T., and Takayama, S.** (2020). Mechanism of self/nonself-
910 discrimination in *Brassica* self-incompatibility. *Nature Communications* **11**, 4916.

911 **Naithani, S., Chookajorn, T., Ripoll, D.R., and Nasrallah, J.B.** (2007). Structural modules for
912 receptor dimerization in the S-locus receptor kinase extracellular domain. *Proceedings of
913 the National Academy of Sciences* **104**, 12211-12216.

914 **Nasrallah, J.B., and Nasrallah, M.E.** (2014). S-locus receptor kinase signalling. *Biochemical
915 Society transactions* **42**, 313-319.

916 **Navarro-Gochicoa, M.-T., Camut, S., Timmers, A.C.J., Niebel, A., Herve, C., Boutet, E.,
917 Bono, J.-J., Imbert, A., and Cullimore, J.V.** (2003). Characterization of four lectin-like
918 receptor kinases expressed in roots of *Medicago truncatula*. Structure, location,
919 regulation of expression, and potential role in the symbiosis with *Sinorhizobium meliloti*.
920 *Plant physiology* **133**, 1893-1910.

921 **Pan, J., Li, Z., Wang, Q., Yang, L., Yao, F., and Liu, W.** (2020). An S-domain receptor-like
922 kinase, OsESG1, regulates early crown root development and drought resistance in rice.
923 *Plant Sci* **290**, 110318.

924 **Pietraszewska-Bogiel, A., Lefebvre, B., Koini, M.A., Klaus-Heisen, D., Takken, F.L.W.,
925 Geurts, R., Cullimore, J.V., and Gadella, T.W.J.** (2013). Interaction of *Medicago*
926 *truncatula* Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in *Nicotiana
927 benthamiana* Induces Defence-Like Responses. *PLOS ONE* **8**, e65055.

928 **Ranf, S., Gisch, N., Schaffer, M., Illig, T., Westphal, L., Knirel, Y.A., Sanchez-Carballo, P.M.,
929 Zahringer, U., Huckelhoven, R., Lee, J., and Scheel, D.** (2015). A lectin S-domain
930 receptor kinase mediates lipopolysaccharide sensing in *Arabidopsis thaliana*. *Nat
931 Immunol* **16**, 426-433.

932 **Robatzek, S., and Wirthmueller, L.** (2013). Mapping FLS2 function to structure: LRRs, kinase
933 and its working bits. *Protoplasma* **250**, 671-681.

934 **Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky,
935 F.G., Tör, M., de Vries, S., and Zipfel, C.** (2011). The *Arabidopsis* leucine-rich repeat
936 receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to
937 hemibiotrophic and biotrophic pathogens. *The Plant cell* **23**, 2440-2455.

938 **Schnepf, V., Vlot, A.C., Kugler, K., and Hückelhoven, R.** (2018). Barley susceptibility factor
939 RACB modulates transcript levels of signalling protein genes in compatible interaction
940 with Blumeria graminis f.sp. hordei. *Molecular plant pathology* **19**, 393-404.

941 **Shimosato, H., Yokota, N., Shiba, H., Iwano, M., Entani, T., Che, F.-S., Watanabe, M.,**
942 **Isogai, A., and Takayama, S.** (2007). Characterization of the SP11/SCR high-affinity
943 binding site involved in self/nonself recognition in brassica self-incompatibility. *The Plant*
944 **cell** **19**, 107-117.

945 **Shiu, S.H., and Bleecker, A.B.** (2001). Plant receptor-like kinase gene family: diversity,
946 function, and signaling. *Science's STKE : signal transduction knowledge environment*
947 **2001**, re22.

948 **Shiu, S.H., and Bleecker, A.B.** (2003). Expansion of the receptor-like kinase/Pelle gene family
949 and receptor-like proteins in *Arabidopsis*. *Plant Physiol* **132**, 530-543.

950 **Shiu, S.H., Karlowski, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F., and Li, W.H.** (2004).
951 Comparative analysis of the receptor-like kinase family in *Arabidopsis* and rice. *The Plant*
952 **cell** **16**, 1220-1234.

953 **Shu, L.-J., Schäffer, M., Eschrig, S., and Ranf, S.** (2021). Low cost, medium throughput
954 depletion-binding assay for screening S-domain-receptor ligand interactions using *in*
955 *planta* protein expression. *bioRxiv*, 2021.2006.2016.448648.

956 **Somssich, M., Ma, Q., Weidtkamp-Peters, S., Stahl, Y., Felekyan, S., Bleckmann, A.,**
957 **Seidel, C.A.M., and Simon, R.** (2015). Real-time dynamics of peptide ligand-dependent
958 receptor complex formation in *planta*. *Science Signaling* **8**, ra76-ra76.

959 **Stahl, Y., Grabowski, S., Bleckmann, A., Kühnemuth, R., Weidtkamp-Peters, S., Pinto,**
960 **Karine G., Kirschner, Gwendolyn K., Schmid, Julia B., Wink, René H., Hülsewede,**
961 **A., Felekyan, S., Seidel, Claus A.M., and Simon, R.** (2013). Moderation of *Arabidopsis*
962 Root Stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 Receptor Kinase
963 Complexes. *Current Biology* **23**, 362-371.

964 **Stokes, K.D., and Gururaj Rao, A.** (2008). Dimerization properties of the transmembrane
965 domains of *Arabidopsis* CRINKLY4 receptor-like kinase and homologs. *Archives of*
966 *biochemistry and biophysics* **477**, 219-226.

967 **Sun, M., Qian, X., Chen, C., Cheng, S., Jia, B., Zhu, Y., and Sun, X.** (2018). Ectopic
968 Expression of GsSRK in *Medicago sativa* Reveals Its Involvement in Plant Architecture
969 and Salt Stress Responses. *Frontiers in Plant Science* **9**.

970 **Sun, W., Cao, Y., Jansen Labby, K., Bittel, P., Boller, T., and Bent, A.F.** (2012). Probing the
971 *Arabidopsis* flagellin receptor: FLS2-FLS2 association and the contributions of specific
972 domains to signaling function. *The Plant cell* **24**, 1096-1113.

973 **Sun, X.L., Yu, Q.Y., Tang, L.L., Ji, W., Bai, X., Cai, H., Liu, X.F., Ding, X.D., and Zhu, Y.M.**
974 (2013a). GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a
975 positive regulator of plant tolerance to salt stress. *Journal of plant physiology* **170**, 505-
976 515.

977 **Sun, Y., Qiao, Z., Muchero, W., and Chen, J.-G.** (2020). Lectin Receptor-Like Kinases: The
978 Sensor and Mediator at the Plant Cell Surface. *Frontiers in plant science* **11**, 596301-
979 596301.

980 **Sun, Y., Li, L., Macho, A.P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., and Chai, J.** (2013b).
981 Structural Basis for flg22-Induced Activation of the *Arabidopsis* FLS2-BAK1 Immune
982 Complex. *Science* **342**, 624-628.

983 **Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F.-S., Watanabe, M., Iwano, M.,**
984 **and Isogai, A.** (2001). Direct ligand-receptor complex interaction controls Brassica self-
985 incompatibility. *Nature* **413**, 534-538.

986 **Teixeira, M.A., Rajewski, A., He, J., Castaneda, O.G., Litt, A., and Kaloshian, I.** (2018).
987 Classification and phylogenetic analyses of the *Arabidopsis* and tomato G-type lectin
988 receptor kinases. *BMC Genomics* **19**, 239.

989 **Vaid, N., Pandey, P.K., and Tuteja, N.** (2012). Genome-wide analysis of lectin receptor-like
990 kinase family from Arabidopsis and rice. *Plant molecular biology* **80**, 365-388.

991 **Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D.,**
992 **Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J.** (2004).
993 Visualization of protein interactions in living plant cells using bimolecular fluorescence
994 complementation. *The Plant Journal* **40**, 428-438.

995 **Wan, W.-L., Fröhlich, K., Pruitt, R.N., Nürnberger, T., and Zhang, L.** (2019). Plant cell surface
996 immune receptor complex signaling. *Current Opinion in Plant Biology* **50**, 18-28.

997 **Wang, Y., Cordewener, J.H.G., America, A.H.P., Shan, W., Bouwmeester, K., and Govers,**
998 **F.** (2015). Arabidopsis Lectin Receptor Kinases LecRK-IX.1 and LecRK-IX.2 Are
999 Functional Analogs in Regulating Phytophthora Resistance and Plant Cell Death.
1000 *Molecular Plant-Microbe Interactions®* **28**, 1032-1048.

1001 **Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J.** (2009). Jalview
1002 Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*
1003 (Oxford, England) **25**, 1189-1191.

1004 **Weber, E., Engler, C., Gruetzner, R., Werner, S., and Marillonnet, S.** (2011). A Modular
1005 Cloning System for Standardized Assembly of Multigene Constructs. *PLOS ONE* **6**,
1006 e16765.

1007 **Weidtkamp-Peters, S., and Stahl, Y.** (2017). The Use of FRET/FLIM to Study Proteins
1008 Interacting with Plant Receptor Kinases. *Methods in molecular biology* (Clifton, N.J.)
1009 **1621**, 163-175.

1010 **Westerfield, J.M., and Barrera, F.N.** (2020). Membrane receptor activation mechanisms and
1011 transmembrane peptide tools to elucidate them. *The Journal of biological chemistry* **295**,
1012 1792-1814.

1013 **Xing, S., Li, M., and Liu, P.** (2013). Evolution of S-domain receptor-like kinases in land plants
1014 and origination of S-locus receptor kinases in Brassicaceae. *BMC Evolutionary Biology*
1015 **13**, 69.

1016 **Xing, S., Wallmeroth, N., Berendzen, K.W., and Grefen, C.** (2016). Techniques for the
1017 Analysis of Protein-Protein Interactions in Vivo. *Plant Physiology* **171**, 727-758.

1018 **Xue, D.-X., Li, C.-L., Xie, Z.-P., and Staehelin, C.** (2019). LYK4 is a component of a tripartite
1019 chitin receptor complex in *Arabidopsis thaliana*. *Journal of experimental botany* **70**, 5507-
1020 5516.

1021 **Yu, X., Feng, B., He, P., and Shan, L.** (2017). From Chaos to Harmony: Responses and
1022 Signaling upon Microbial Pattern Recognition. *Annual review of phytopathology* **55**, 109-
1023 137.

1024 **Zhou, D., Godinez-Vidal, D., He, J., Teixeira, M., Guo, J., Wei, L., Van Norman, J.M., and**
1025 **Kaloshian, I.** (2021). A G-lectin Receptor Kinase is a Negative Regulator of Arabidopsis
1026 Immunity Against Root-Knot Nematode *Meloidogyne incognita*. *bioRxiv*,
1027 2021.2009.2007.459316.

1028 **Zou, X., Qin, Z., Zhang, C., Liu, B., Liu, J., Zhang, C., Lin, C., Li, H., and Zhao, T.** (2015).
1029 Over-expression of an S-domain receptor-like kinase extracellular domain improves
1030 panicle architecture and grain yield in rice. *Journal of experimental botany* **66**, 7197-
1031 7209.

1032