

1 Comprehensive Assessment of Smoking and Sex

2 Related Effects in Publicly Available Gene

3 Expression Data

4 **Authors:** Emily Flynn¹, Annie Chang², Bridget M. Nugent⁶, and Russ Altman³⁻⁵

5 ¹Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA.

6 ²Program in Human Biology, Stanford University, Stanford, CA, USA.

7 ³Department of Bioengineering, Stanford University, Stanford, CA USA.

8 ⁴Department of Genetics, Stanford University, Stanford, CA USA.

9 ⁵Department of Medicine, Stanford University, Stanford, CA USA.

10 ⁶Office of Women's Health, US Food and Drug Administration, Silver Spring, MD, USA

11 ABSTRACT

12 Smoking greatly reduces life expectancy in both men and women, but with different patterns of
13 morbidity. After adjusting for smoking history, women have higher risk of respiratory effects and
14 diabetes from smoking, while men show greater mortality from smoking-related cancers. While
15 many smoking-related sex differences have been documented, the underlying molecular
16 mechanisms are not well understood. To date, identification of sex differences in response to
17 smoking has been limited to a small number of studies and the resulting smoking-related effects
18 require further validation. Publicly available gene expression data present a unique opportunity
19 to examine molecular-level sex and smoking effects across many tissues and studies. We
20 performed a systematic search to identify smoking-related studies from healthy tissue samples
21 and found 31 separate studies as well as an additional group of overlapping studies that in total
22 span 2,177 samples and 12 tissues. These samples and studies were overall male-biased. In
23 smoking, while effects appeared to be somewhat tissue-specific and largely autosomal, we
24 identified a small number of genes that were consistently differentially expressed across tissues,
25 including *AHRR* and *GZMH*. We also identified one gene, *AKR1C3*, encoding an aldo-keto
26 reductase, which showed strong opposite direction, smoking-related effects in blood and airway
27 epithelium, with higher expression in airway epithelium and lower expression in blood of
28 smokers versus non-smokers. By contrast, at similar significance thresholds, sex-related effects
29 were entirely sex chromosomal and consistent across tissues, providing evidence of stronger
30 effects of smoking than sex on autosomal expression. Due to sample size limitations, we only
31 examined interaction effects in the largest study, where we identified 30 genes with sex
32 differential effects in response to smoking, only one of which, *CAPN9*, replicated in a held-out
33 analysis. Overall these results present a comprehensive analysis of smoking-related effects
34 across tissues and an initial examination of sex differential smoking effects in public gene
35 expression data.

36

37 INTRODUCTION

38 In some areas of biomedical research, females are underrepresented and sex is still routinely
39 left out of analyses, potentially leading to serious health consequences (Tannenbaum, Day, and
40 Matera Alliance 2017). Many sex and gender differences have been reported in both smoking
41 behaviors and health-related effects of smoking. Smoking is a major cause of premature death,
42 and in the U.S. is estimated to cause more than 480,000 deaths annually (Centers for Disease
43 Control, 2020). After adjusting for smoking history, women have been shown to have increased
44 risk of respiratory symptoms (Langhammer et al. 2000), type 2 diabetes (Will et al. 2001), and
45 lung cancer (Risch et al. 1993). Female smokers also are reported to be 50% more likely to
46 develop COPD than male smokers (Barnes 2016). Despite a higher incidence of smoking-
47 related cancers in females, males have higher mortality from these cancers (Visbal et al. 2004)
48 even though smoking shows a stronger effect on female patient survival (Allen, Oncken, and
49 Hatsukami 2014). However, the biology underlying these differences is not well understood.
50 Improved understanding of the molecular mechanisms behind these smoking-related
51 differences can aid the development of biomarkers and treatments for smoking-related
52 diseases, and may serve as a framework for examining sex differences in other chronic
53 diseases and drug exposures.

54 Gene expression data provide a unique opportunity to examine molecular level sex differences
55 and dynamic biological responses to smoking. Comprehensive analyses of sex differentially
56 expressed (DE) genes both across (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva
57 et al. 2020) and within individual tissues (e.g. liver (Zhang et al. 2011), blood (Bongen et al.
58 2019), brain (Trabzuni et al. 2013)) have found hundreds of sex differentially expressed (DE)
59 genes. Additionally, multiple methods (Buckberry et al. 2014; Ellis et al. 2018; Giles et al. 2017;
60 Toker, Feng, and Pavlidis 2016; Flynn, Chang, and Altman 2021) have been developed for
61 inferring sex labels from gene expression data, leveraging the highly sexually dimorphic
62 expression of X and Y chromosome genes. Smoking status also has a substantial impact on
63 gene expression: previous studies have identified hundreds of DE genes between smokers and
64 non-smokers in blood (Charlesworth et al. 2010; Na et al. 2015; Huan et al. 2016), airway
65 epithelium (Chen Xi Yang et al. 2019; Boelens et al. 2009), lung (Landi et al. 2008; He et al.
66 2018), and other tissues (Port et al. 2004; Na et al. 2015; Tsai et al. 2018). Researchers have
67 found that many of these effects replicate across studies (Huan et al. 2016; Silva and Kamens
68 2021), and gene signatures predicting smoking status have been identified for blood (Martin et
69 al. 2015; Beineke et al. 2012) and lung tissue (Landi et al. 2008; Bossé et al. 2012).

70 The impacts of sex and smoking on gene expression vary greatly throughout the body. In the
71 case of sex, the majority of sex-differentially expressed autosomal genes have small, tissue-
72 specific effects, while sex-chromosomal genes generally show consistent differential expression
73 across tissues (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva et al. 2020). By
74 contrast, the tissue-specificity of smoking-related differential expression is less fully
75 characterized. Several analyses have examined effects across tissues, but they focus on cancer
76 (Alexandrov et al. 2016; Desrichard et al. 2018; Alisoltani et al., n.d) and may not extend to
77 healthy tissues.

78 Characterizing smoking-induced gene expression changes across tissues helps not only with
79 understanding the etiologies of smoking-related cancers, but also may allow for less invasive
80 avenues for sampling. For instance, a blood sample or nasal swab could be used instead of a
81 bronchial brushing or lung biopsy if tissues show substantial overlap in expression. Two studies
82 examined a combination of bronchial epithelium and other epithelial tissues (nasal or nasal and
83 buccal respectively), and found that while there was overlap between smoking-associated DE
84 genes, the majority of DE genes were different between the tissues (Sridhar et al. 2008;
85 Imkamp et al. 2018). Outside of these epithelial tissues, researchers have found less overlap.
86 Morrow and colleagues (Morrow et al. 2019) demonstrated that across airway epithelium,
87 alveolar macrophages, and peripheral blood, samples largely clustered by tissue and there were
88 no shared DE genes; however, there was some overlap in pathway enrichment. Further work is
89 thus required to comprehensively compare the overlap of smoking related effects across a
90 larger number of tissues and studies.

91 While many studies have examined how smoking and sex individually affect gene expression, to
92 our knowledge, no studies have compared their relative impacts on expression and only a few
93 have identified genes with sex-differential responses to smoking. Consideration and comparison
94 of major drivers of variation is important in biological analysis, and sex differences are often
95 understudied and overemphasized drivers (Patsopoulos, Tatsioni, and Ioannidis 2007). Some
96 sex-related effects may not have clear clinical relevance, so comparison and evaluation of the
97 relative impact of sex-related effects to other drivers of variation (such as smoking and disease
98 states) may shed light on how these factors contribute to health and disease.

99 In the case of sex-differential smoking effects (also known as sex-by-smoking interaction
100 effects), Yang and colleagues (Chen Xi Yang et al. 2019) identified over 2,500 genes with sex-
101 specific responses to smoking in airway epithelium using data from 211 samples across 16
102 overlapping studies. In blood, using data from 48 samples, Paul and Amundson (Paul and
103 Amundson 2014) identified 80 genes with sex-differential smoking effects, many of which were
104 associated with female sex hormone receptors (e.g. estrogen and progesterone), and
105 Chatzioannou et al. (Chatzioannou et al. 2017) identified 26 genes with sex-differential effects
106 in 344 blood samples. Identifying and replicating interaction effects is challenging: they are
107 generally very small and require large sample sizes for identification. Across all 3 studies, there
108 is limited overlap of identified genes, which is possibly due to tissue specificity, but further
109 examination of these sex-differential smoking effects is required.

110 Here, we leverage publicly available gene expression data to examine smoking and sex-related
111 effects at scale and across multiple tissues to identify consistent, reproducible effects. We first
112 perform a systematic search to identify smoking related studies, and then assess sex bias
113 present in these studies. Next, across studies and tissues identified, we compare smoking and
114 sex-related effects and assess the extent to which these effects are shared vs. tissue-specific.
115 Following this, we perform an expanded re-analysis of an airway epithelium dataset to identify
116 smoking, sex, and sex-differential smoking effects. Finally, we attempt to replicate identified
117 sex-differential smoking effects using the largest of our identified studies.

118

119 METHODS

120 **1. Identification of smoking-related datasets**

121

122 **1-1 Study search strategy**

123 We identified smoking-related microarray datasets by searching for mentions of the words
124 “smoking/smoker/smoke”, “nicotine”, “tobacco”, or “cigarette” within study and sample metadata.
125 We used a multi-pronged approach to identify smoking-related studies, examining studies from
126 GEO (Edgar, Domrachev, and Lash 2002) and ArrayExpress (Brazma et al. 2003) separately.
127 We used GEOmetadb (Zhu et al. 2008) (downloaded 11/8/2020) to identify GEO human studies
128 and samples that mention a smoking-related term in the metadata. We restricted our sample
129 search to single channel arrays containing either total or polyA RNA samples. We searched for
130 mentions in the “title”, “summary”, or “overall_design” study fields and in the sample “title”,
131 “source_name_ch1”, “treatment_protocol_ch1”, “description”, and “characteristics_ch1” fields.
132 ArrayExpress is the European analog of GEO and contains a large number of expression
133 studies. We searched for mentions of the smoking-related terms in the ArrayExpress browser
134 and downloaded the resulting human studies, filtering for “RNA-seq” and “transcription profiling
135 by array” and removing miRNA platforms. We combined the results of these two searches and
136 removed studies with less than 10 samples.

137

138 **1-2 Manual Annotation and Filtering**

139 Based on the study title, abstract, and description, studies were manually annotated with tissue
140 type and assigned to one of the following categories:

- 141 **1. Smokers vs non-smokers or smoking history provided (and at least 1 smoker and
142 1 non-smoker)**
- 143 **2. Treated cells exposed to smoke component**
- 144 **3. All smokers (including current vs former)**
- 145 **4. All non-smokers**
- 146 **5. Not relevant (including cells with other exposures) or no smoking history provided**

147

148 **1-3 Normalization and extraction of covariate data**

149 For smoking history studies, we extracted phenotypic data on sex, age, race/ethnicity/ancestry,
150 BMI, and pack years, where available. Tissue annotations were manually assigned. We
151 additionally extracted terms related to disease state (e.g. COPD, cancer) if they were present.
152 Where present, the race/ethnicity/ancestry labels had highly variable annotations across
153 studies. We made efforts to normalize these labels into a combined race/ethnicity/ancestry
154 category, which included African, European, and Asian ancestries, and Hispanic/Latino
155 ethnicity.

156

157 **2. Assessment of sex bias**

158 Our previously developed method for logistic regression-based models for sex labeling (Flynn,
159 Chang, and Altman 2021) were trained on normalized data from the refine-bio database
160 (Greene et al. n.d.). This database consists of over 14,000 human studies from GEO,
161 ArrayExpress, and SRA; however, it is not complete. Of the 176 smoking history studies, 139
162 were contained in refine-bio. For application at scale, we restricted our assessment of sex bias

163 to these 139 studies. As in (Flynn, Chang, and Altman 2021), we grouped studies into the
164 following categories based on the sample sex labels:

- 165 1. *Unlabeled*: studies with either less than half of their samples labeled (for studies with up
166 to 60 samples) or less than 30 samples labeled (for studies with more than 60 samples)
- 167 2. *Male-only*: all male labels
- 168 3. *Female-only*: all female labels
- 169 4. *Mostly-male*: >80% of labeled samples are male
- 170 5. *Mostly-female*: >80% of labeled samples are female
- 171 6. *Mixed sex*: $\leq 80\%$ of labeled samples belong to either sex

172
173 To calculate the fraction of studies that are mixed sex or single sex, we exclude the “mostly” and
174 unlabeled studies from the total and calculate the ratio:

175 $\text{frac_mixed_sex} = \text{n_mixed_sex} / (\text{n_female_only} + \text{n_male_only} + \text{n_mixed_sex})$
176 $\text{frac_single_sex} = (\text{n_female_only} + \text{n_male_only}) / (\text{n_female_only} + \text{n_male_only} +$
177 $\text{n_mixed_sex})$

178

179

180 3. Identification and processing of studies for follow up analysis

181

182 3-1 Creation of an Airway Epithelium dataset

183 There were a large number of airway epithelium studies (n=35) from the same lab and platform
184 (GPL570), many of which contained some of the same sets of samples (Carolan et al. 2006;
185 Harvey et al. 2007; Ammous et al. 2008; Carolan et al. 2008; Tilley et al. 2009; Vanni et al.
186 2009; Hübner et al. 2009; Raman et al. 2009; Carolan et al. 2009; Leopold et al. 2009; Turetz et
187 al. 2009; Dvorak et al. 2011; Strulovici-Barel et al. 2010; R. Wang et al. 2010; Shaykhiev et al.
188 2011; Marcus W. Butler et al. 2011; M. W. Butler et al. 2011; R. Wang et al. 2011; Tilley et al.
189 2011; Hackett et al. 2012; R. Wang et al. 2012; Buro-Auriemma et al. 2013; Shaykhiev et al.
190 2013; Gao et al. 2014; Hessel et al. 2014; Walters et al. 2014; Tilley et al. 2016; Zhou et al.
191 2016; J. Yang et al. 2017; G. Wang et al. 2017) (see **Supplementary Table 1** for a list of study
192 accessions and titles). We aggregated these samples into a *Grouped Airway Epithelium*
193 (*Grouped AE*) dataset. Many of the samples contain covariate information related to age,
194 race/ethnicity and pack-years (see **Table 1A**). The dataset contains both large and small airway
195 epithelium samples, which largely cluster together in principal components space (see
196 **Supplementary Figure S6A**).

197

198 For processing, we first filtered to remove samples from subjects with COPD or asthma, and for
199 subjects with repeated measures, we used the first sample from the subject. We then
200 downloaded the raw expression data from GEO and used the R package affy (Gautier et al.
201 2004) to load, normalize, and RMA transform the data. Many of the samples were direct
202 duplicates across studies. For these samples, we combined their metadata, which exactly
203 matched for sex and race with the exception of one sample which we excluded. Three samples
204 contained different but nearby ages or pack-years; we took the average of the two values. We

205 also grouped by study participant ID (or “DGM” id in the metadata) and removed repeated
206 samples with the same participant ID.
207
208 Prior to covariate imputation and modeling, we grouped together categorical values with small n.
209 For race-ethnicity labels, we assigned samples in race-ethnicity groups with less than 5 counts
210 to “other race-ethnicity” for modeling purposes. Sample submission date correlated with
211 expression, but contains 22 variables, many with small counts. For date groups with less than
212 10 counts, we assigned the samples to the nearest submission date with more than 10 counts,
213 resulting in 10 total submission date categorical variables. We chose to do this (rather than
214 assigning all samples with small numbers of counts to an “other date” category) because
215 samples appear to cluster together over time in PC space (see **Supplementary Figure S6B**
216 **and C** for before and after date collapsing).
217

218 **3-2 Systematic Search for Smoking Studies across Tissues**

219 After removing the overlapping airway epithelium datasets, we focused on identifying studies
220 using healthy tissues from at least 5 never smokers and current smokers at the time of sample
221 selection. To do so, we downloaded the sample-level metadata for these studies in order to
222 determine if there were sufficient samples. We included healthy tumor adjacent tissue from
223 individuals with cancers, but excluded samples from individuals with COPD or other annotated
224 diseases. We also removed studies from single sex tissues (prostate) or associated with
225 pregnancy (placenta, umbilical cord). For studies with repeated samples from the same subject,
226 we include only the first sample. We also did not include “ever” smokers unless additional
227 information was present indicating that they were still smoking.
228

229 For quality control, we inferred sample sex labels for candidate studies. While our penalized
230 logistic regression model performs well at scale, clustering based methods are better for
231 examining large mixed sex studies because they allow for visualization and examination of
232 within-study clustering. Where expression levels for *XIST*, *RPS4Y1*, and *KDM5D* were
233 available, we applied the Toker method (Toker, Feng, and Pavlidis 2016), otherwise we used
234 massiR (Buckberry et al. 2014), which clusters based on the expression of Y chromosome
235 genes. We manually checked each study to ensure clear separation and excluded six studies,
236 and excluded mislabeled samples and studies without clear sex separation.
237

238 **3-3 Processing of Small Expression Studies**

239 MetalIntegrator (Haynes et al. 2017) was used to download the data as processed by the
240 authors. MetalIntegrator performed log-transformation and quantile normalization if these steps
241 were not already taken.
242

243 **4. Variance Decomposition**

244 We sought to examine the fraction of variance in each dataset associated with smoking and the
245 sex-by-smoking interaction effects. To do this, we used principal variance components analysis
246 (PVCA). Briefly, this method first performs PCA and then identifies the cumulative fraction of the
247 variance explained by each of the covariates in a model across the first n PCs, where n is
248 chosen based on the number of PCs that explain a cutoff fraction of the total variance. We used

249 0.8 for the cutoff fraction, but obtained similar results across a range of cutoffs (0.4-0.9). The R
250 package variancePartition (Hoffman and Schadt 2016) was used to calculate the variance
251 fractions.

252 We ran PVCA with two models:

253 1) baseline model:

254 $PC_i \sim sex + smoking + C$

255 2) interaction model:

256 $PC_i \sim sex + smoking + sex*smoking + C$

257 where C is the set of additional covariates, and PC_i is the ith PC.

258 The cumulative variance for covariate j is given by $\sum (X_{ij} * v_i)$ where X_{ij} is the fraction of the
259 variance in PC_i explained by covariate j and v_i is the fraction of the total variance in the
260 expression data explained by PC_i .

261

262 5. Differential expression analysis

263

264 5-1 Differential expression model

265 We performed differential expression analysis separately on each of the small datasets and the
266 grouped airway epithelium dataset. The R package limma (Ritchie et al. 2015) was used for
267 differential expression analysis, with the following model:

$$268 Y = sex + smoking + sex * smoking + covariates$$

269

270 Sex and sex*smoking covariates were excluded from single-sex datasets. We used the cutoffs
271 FDR <0.05 and absolute effect size log fold change of ≥ 0.3 for identifying differentially
272 expressed (DE) genes.

273

274 5 - 2 Summarizing probes to genes

275 Because the studies spanned a variety of platforms, identification of DE genes and comparison
276 across studies was performed at the gene level.

277

278 Probes were mapped to HGNC gene symbols using the appropriate Bioconductor package
279 (hgu133plus2.db, hgu219.db, hgu133a.db, hgu133a2.db, hugene10sttranscriptcluster.db) for
280 five platforms. For the remaining 7 platforms, the probe-to-gene mapping was downloaded
281 directly from GEO.

282

283 For meta-analysis, following model fitting at the probe-level, we used fixed effects inverse
284 variance meta-analysis to summarize effect sizes to genes, as implemented in the R package
285 meta (Schwarzer, Carpenter, and Rücker 2015).

286

287 Due to the lack of ground truth, we chose to drop out portions of a dataset and apply these
288 methods, where the “true” genes were the DE genes from the full dataset (where DE genes are
289 the set of genes to which all DE probes mapped). We used the Grouped AE dataset as the full
290 dataset, and smoking as the covariate examined. We examined the precision and recall of the
291 three methods at two FDR cutoffs (< 0.01 and < 0.05) and across varying dropout fractions (0.3-
292 0.9), with fifteen random dropouts per fraction (see **Supplementary Figure S9** for the results).

293

294 For this analysis, we wanted to be conservative in our estimates, and as a result, chose to use
295 meta-analysis for summarization.

296

297 **5 - 3 Assessment of replication and overlap**

298 Genes identified in the Grouped AE dataset were replicated using the dataset GSE7895, which
299 was selected for validation because it was the largest airway epithelium dataset present in the
300 set of smaller studies. We identified lists of *replicated genes*, which we define as the subset of
301 DE genes from the discovery that have a p-value < 0.05 in the validation and effect sizes in the
302 same direction in the discovery and validation sets. We also examined the correlation between
303 the effect sizes of the DE genes.

304

305 For examining overlapping genes between 2 studies (rather than replication), we use the union
306 of the DE genes ($FDR < 0.05$, $\log FC \geq 0.3$), resulting in n *overlapping genes*. We identify
307 *overlapping significant genes* as genes that have effect sizes in the same direction and p-value
308 $< 0.05/n_{genes}$ in both studies where n_{genes} is the number of overlapping genes. In order to
309 examine the similarities between 2 studies related to their association with the variable of
310 interest (smoking, sex), we examined the correlation of the effect sizes. We used a permissive
311 cutoff for genes included ($FDR < 0.10$ in either study) and, if there were at least 30 genes
312 remaining, we calculated the correlation coefficient across genes for mean effect sizes weighted
313 by their standard deviations. We chose to use a weighted correlation coefficient in order to be
314 less sensitive to the FDR cutoff, while ensuring that genes with smaller standard errors are
315 weighted more highly.

316

317 **5-4 Examining tissue specificity**

318 We used τ to examine tissue specificity of particular genes and compare the tissue-specificity
319 between smoking- and sex-related analyses (Yanai et al. 2005). This metric τ was designed for
320 examining tissue-specificity of expression of a particular gene and results in a number 0 to 1
321 where 0 is ubiquitously expressed and 1 is tissue-specific. We extend this to examine tissue-
322 specificity of differential expression by inputting the absolute log fold-change values instead of
323 the log expression intensity to obtain the tissue-specificity of differential expression. The formula
324 for τ is given below:

$$325 \tau = \frac{\sum_{i=1}^n (1 - \hat{x}_i)}{n - 1}; \hat{x}_i = \frac{x_i}{\max(x_i)}$$

326

326 Where n is the number of tissues and we define x_i as the median log-fold-change in tissue i .

327

327 Importantly this does not distinguish between opposite direction effects, so it is important to also
328 examine their presence.

329

330 **6. Between- and within-tissue meta-analyses**

331 We performed random effects meta-analysis using the DerSimonian-Laird estimator, first across
332 studies and tissues, and then for blood and airway epithelium studies separately, examining
333 both smoking and sex-related effects. The Grouped AE study was not included in the meta-
334 analysis because it is substantially larger than the other datasets and as a result may have a

335 strong impact on the results. We selected 4 validation studies: GSE7895 (airway epithelium),
336 GSE27002 (alveolar macrophages), GSE21862 (PBMCs), and E-MTAB-5279 (whole blood).
337
338 We included 6 whole blood and two PBMC studies in the blood meta-analysis. The B cell study
339 was excluded because it represents a specific cell type in blood, while the others are a mixture
340 (meta-analysis of all blood studies including the B cell study also shows similar results). For the
341 airway epithelium meta-analysis, we included four airway epithelium studies and added the
342 trachea epithelium study because trachea is an airway tissue and overlaps in PC space (we
343 expect this may reflect differences in terminology), and the expression was highly correlated.
344
345 We performed the smoking-related meta-analysis for genes present in at least 15 of the 27
346 studies. For the sex-related meta-analysis, we selected a lower cutoff for number of studies
347 (n=10 out of 24) because of the large number of missing sex chromosome probes. Finally, for
348 blood and airway meta-analyses, we filtered for at least 5 blood and 4 airway studies
349 respectively.
350

351 For validation, we considered a gene validated in a particular study if the gene's effect size is in
352 the same direction and has a p-value < 0.05 / (number of genes).
353

354 **7. Sample size calculation for interaction effects**

355 We examined the sample size required to detect an interaction effect in an expression dataset
356 in the case where we have two binary covariates (smoking, sex) and under the assumption that
357 the data is balanced. We used the R package *ssize* (Warnes et al. 2020) with a power of 0.80
358 and FDR of 0.05. We assumed uniform standard deviations of probes, and used a value of 0.6
359 based on the mean empirical standard deviation of probes across datasets included. We then
360 examined the sample size required for detecting absolute log effect sizes in the range of 0.1 to
361 0.6, assuming 90%, 95%, and 99% of genes were not differentially expressed (see
362 [Supplementary Figure S10](#)).

363

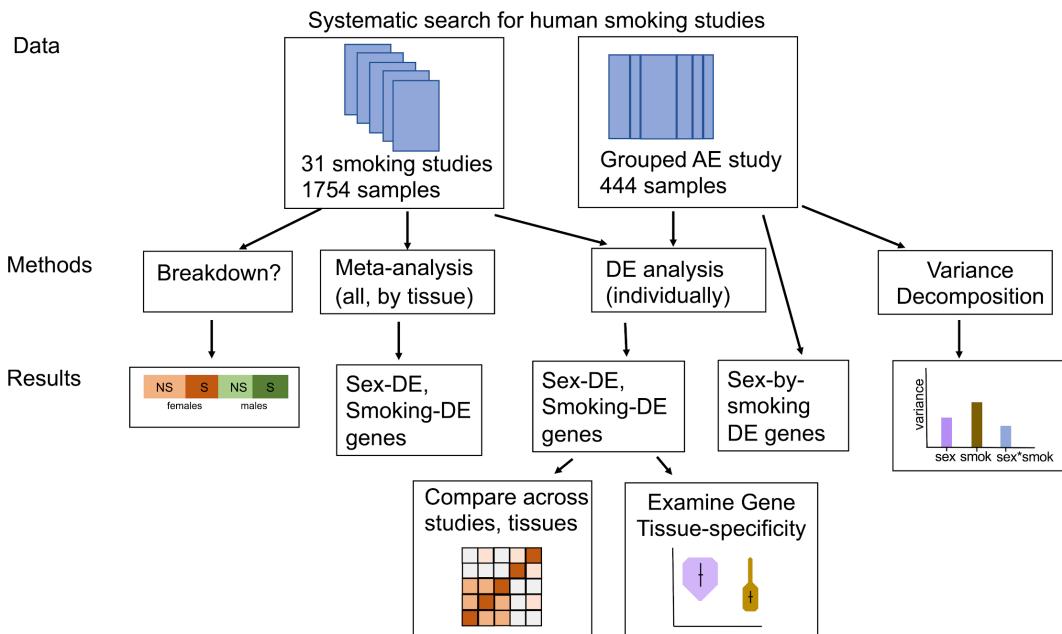
364 **RESULTS**

365 **1. Systematic search for smoking-related studies**

366 We performed a systematic search of human gene expression studies in GEO and
367 ArrayExpress to identify studies that have smoking-related information (see [Supplementary](#)
368 [Figure S1](#) for a diagram showing the systematic search approach). We searched both sample
369 and study metadata and identified 530 studies (spanning 63,772 samples) that contained a
370 smoking-related mention. We manually annotated the studies to identify the subset that have
371 smoking history information (n=176 studies).
372

373 To examine effects across tissues, we identified the subset of smoking history studies that
374 contain samples from at least 5 healthy smokers and non-smokers (see [Table 1B](#) for the list
375 and their sample breakdown). Thirty-five studies in airway epithelium were from the same lab,
376 using the same microarray platform, and had many overlapping samples. We combined all of

377 these into a single larger study (further described as *Grouped Airway Epithelium* or *Grouped*
378 *AE*), which contained 444 samples after deduplication (see **Table 1A, Methods 3-3**). The
379 additional airway epithelium studies are distinguished from the *Grouped AE* study in that they
380 are either from another lab and/or on a different microarray platform.
381
382 The remaining 31 studies (1754 samples) are majority blood or blood component (n=11),
383 followed by airway epithelium (n=5), then lung and alveolar macrophages (n=3), and buccal
384 mucosa (n=2), and 1 each of nasal epithelium, tracheal epithelium, oral cavity, sputum, kidney,
385 liver, and brain (prefrontal cortex). While the lower bound was 5 smokers and non-smokers, the
386 range for identified studies was 5 to 166 smokers and 5 to 56 non-smokers (medians = 21 and
387 22 respectively). Seven studies had significantly more smokers ($p = 1.6 \times 10^{-13}$ to 4.7×10^{-2}) while 3
388 had significantly more non-smokers ($p = 3.0 \times 10^{-7}$ to 5.4×10^{-5}).



389
390 **Figure 1. Study schematic.** We performed a search for human gene expression studies on smoking.
391 This resulted in a set of 31 separate studies, as well as a group of overlapping airway epithelium (AE)
392 studies we combined into a single grouped study. We examined the sex breakdown in these studies and
393 perform both individual differential expression analyses as well as meta-analyses across studies and
394 tissues in order to identify differentially expressed genes. We used the results of these analyses to
395 compare the effects of smoking and sex across studies and tissues.
396

397 **2. Smoking-related samples are male-biased**

398 We additionally sought to examine sex bias overall in smoking-related studies. We focused on
399 the 139 (out of 176) smoking history studies that were included in the refine-bio database by
400 inferring sex labels from gene expression data using our previously published method (Flynn,
401 Chang, and Altman 2021). For smoking history studies, 34.5% of samples and 38.8% of studies
402 were missing metadata sex labels; this is much lower than seen across all human studies and
403 samples (e.g. 70.7% of human microarray samples are missing sex labels (Flynn, Chang, and

404 Altman 2021)). The higher fraction of sex labels in smoking datasets may be related to the fact
405 that smoking status is included, so sex is additionally likely to be recorded as a covariate.
406

407 After inferring sex labels from expression, we found that smoking-related samples are slightly
408 male-biased with 59.1% and 68.1% percent of labeled samples derived from males for smoking
409 history and treated cell studies, respectively. This is in contrast to the overall pattern of human
410 samples which is slightly female-biased (52.1%) but matches the pattern that more men smoke.
411 The majority of smoking history studies are mixed sex (92% of labeled studies). The high
412 fraction of mixed sex studies helps with follow up examination of sex-related effects (see
413 **Supplementary Figure 2** and **Supplementary Table S2** for the sample and study sex
414 breakdowns, respectively).

415
416 Of the 31 studies included in our follow up analysis, 9 did not have metadata sex labels and 3
417 studies were single sex. In addition to the higher proportion of males (59.4%, $p < 4*10^{-15}$), male
418 sex was also significantly associated with smoking status ($p < 0.0007$, see **Supplementary**
419 **Figure S3** for the sex and smoking breakdown of these studies). Seven studies contained a
420 total of 23 samples where the inferred sex did not match the metadata sex, corresponding to
421 1.3% of the samples examined (see **Table 1B**). The Grouped AE study was a higher fraction
422 male (70%) and contained 2.4% mislabeled samples (see **Table 1A, Supplementary Figure**
423 **S7**). Sample sex mismatches highlight the potential for mislabeled samples along other
424 dimensions (e.g. smoking status), and were excluded from follow up analysis.
425

426 **3. Smoking effects are largely tissue-specific and autosomal** but show some consistency
427 across tissues, **while sex-related effects are sex chromosomal and consistent across**
428 **tissues**
429

430 We sought to examine the extent to which smoking-related effects are consistent across the
431 tissues and the studies we examined. First, we performed differential expression analysis within
432 each study across tissues (airway epithelium, lung, kidney, buccal mucosa, etc.) (see
433 **Supplementary Table S3** for a summary of results across studies), and summarized probes to
434 genes with meta-analysis. Four studies showed no differentially expressed (DE) genes related
435 to smoking, while the remaining studies had between 2 and 4357 DE genes, with a median of
436 31. As expected, larger studies had more DE genes (for smoking: spearman's $\rho=0.36$, $p =$
437 0.049, sex and sex-smoking n.s.) and more overlap between each other.
438

439 Overlap and between-study correlations of smoking-related effects appear to cluster by tissue,
440 with separate clusters of airway epithelium and blood studies (**Figure 2A** shows the counts of
441 overlapping genes; **Figure 2C** contains the correlations of top genes between all pairs of
442 studies). For example, Grouped AE showed the highest correlation with other airway epithelium
443 studies ($\rho=0.72$, 0.57, and 0.55) and the trachea epithelium study ($\rho= 0.584$). By comparison,
444 sex-related effects appear to correlate across studies and tissues (see **Figure 2D**). We
445 separated out the autosomal (**Figure 2E**) genes, and found that the strong pattern of shared,
446 consistent sex-related effects is largely limited to the sex chromosomes.
447

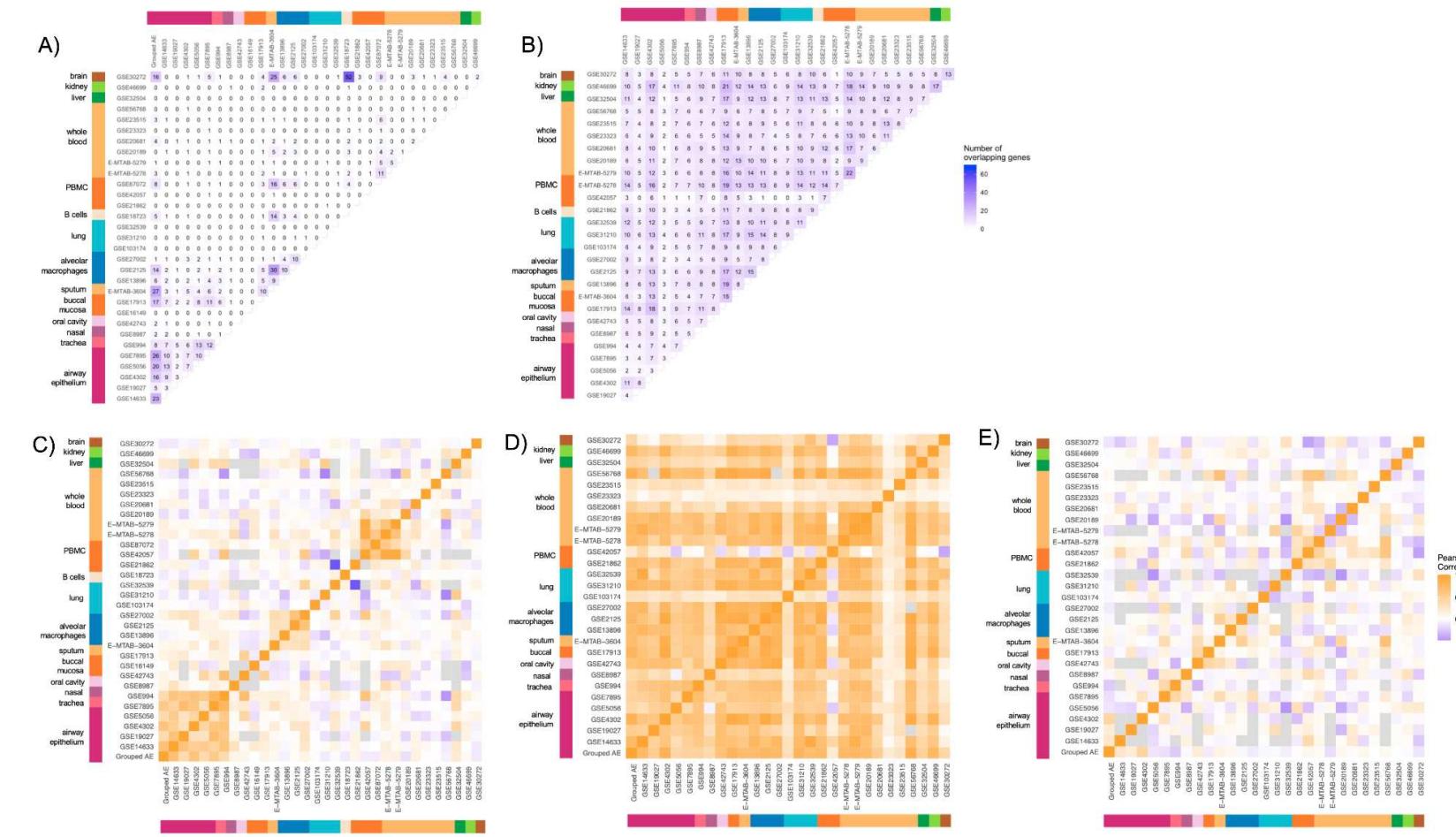
448 While the majority of overlap clustered by tissue, 7 DE genes were present in 5 studies
449 spanning both an airway-related tissue (airway, sputum, oral, buccal, lung, or alveolar) and non-
450 airway tissue (blood, brain, kidney or liver): *LRRN3*, *MS4A6A*, *GAPDH*, *RPLP0*, *CX3CL1*,
451 *GPR15*, and *AHRR* (another 7 genes were present in 4 studies with both an airway and non-
452 airway), indicating the presence of some consistent smoking-related effects across tissues (see
453 **Supplementary Table S4A** for full lists of smoking DE genes present in at least two studies).
454
455 We also performed a meta-analysis across tissues using 27 out of 31 studies (see **Methods 6**),
456 and identified 7 genes that showed significant smoking-related effects: the expression of *AHRR*,
457 *CYP1B1*, *NQO1*, *LRRN3* were significantly higher and *ELOVL7*, *CCL4*, and *GZMH* were
458 significantly lower in current smokers as compared to non-smokers (see **Supplementary Table**
459 **S5** for their effect sizes). **Figure 3A** shows the study-level expression of these 7 genes as well
460 as the pooled estimate. In our analysis, we identified *LRRN3* and *AHRR* as genes that had an
461 effect in both an airway and non-airway tissue. Two genes, *GZMH* and *AHRR*, appear to show
462 relatively consistent effects across tissues, showing consistently lower and higher expression in
463 smokers vs. non-smokers respectively. For the remainder of these genes, the effects appear to
464 be tissue-dependent. *NQO1* shows a strong association with smoking in airway epithelium,
465 while *LRRN3* appears to show a stronger association with smoking in blood (both have higher
466 expression in smokers). *CYP1B1* shows strongest association with smoking in airway
467 epithelium (higher in smokers), while *ELOVL7* and *CCL4* appear to be strongest in alveolar
468 macrophages and sputum (lower in smokers).
469
470 We examined whether these genes were differentially expressed in four held-out validation
471 datasets (GSE7895 - airway epithelium, GSE27002 - alveolar macrophages, and GSE21862
472 and E-MTAB-5279 - blood). Four of the smoking-related genes were differentially expressed in
473 the validation datasets, each in one study: *LRRN3* (blood), *AHRR* (blood), *NQO1* (airway
474 epithelium), and *CYP1B1* (alveolar macrophages). Interestingly, *LRRN3* and *NQO1* showed
475 similar tissue-specificity to the discovery dataset.
476
477 **Although some genes showed consistent responses to smoking across tissues, looking**
478 **within tissues highlights key genes involved in tissue-specific responses.** We performed
479 tissue specific meta-analyses for blood and airway epithelium studies. The blood analysis
480 included two PBMC and five whole blood studies, while the airway epithelium analysis included
481 four airway and one trachea epithelium study (see **Supplementary Figure S4** for heatmaps and
482 **Supplementary Table S5** for the lists of genes). At an FDR of 0.05 and effect size cutoff of \geq
483 0.3, the blood meta-analysis identified 19 DE genes, while the airway epithelium analysis
484 identified 66 DE genes. In airway epithelium, 21 out of the 66 DE genes validated in the held-out
485 airway epithelium dataset (GSE7895). In blood, only 3 DE genes were replicated (*SH2D1B*,
486 *KLRF1*, *AKR1C3*). Only 1 gene, *AKR1C3*, overlapped between the 2 meta-analyses and
487 interestingly, it showed opposite direction effects in the 2 tissues (pooled effect size estimates:
488 $\log FC = -0.32$, $p = 2.0 \times 10^{-5}$ in blood and $\log FC = 1.6$, $p = 6.2 \times 10^{-10}$, both validated), as shown in the
489 violin plot in **Figure 4**.
490

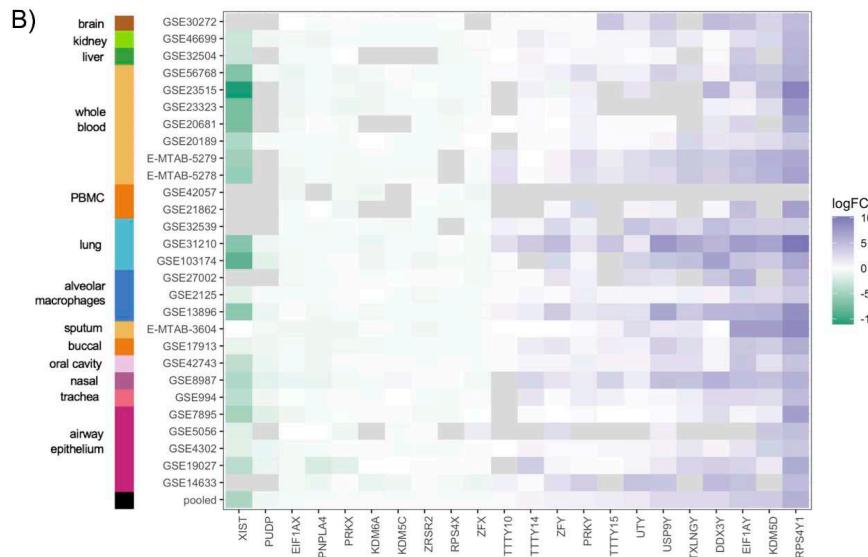
491 By contrast, most sex-DE genes were consistent across studies and tissues: forty-five genes
492 were consistently DE in at least three studies (see **Supplementary Table S4B**). Only four of
493 these genes were autosomal (*EIF5B*, *ACTB*, *KLF6*, *LAPTM4B*), and the sex-DE autosomal
494 genes had higher expression in females. Six of the DE sex chromosomal genes were present in
495 20 or more studies, including *RPS4Y1*, *EIF1AY*, *DDX3Y*, *KDM5D*, *UTY*, *USP9Y*, and *XIST*. We
496 additionally saw little evidence of tissue specificity for the sex-related meta-analysis (**Figure**
497 **3B**), which identified 22 X and Y chromosome genes with sex differences in expression: 12
498 higher in males and 10 higher in females. All but 2 of these genes validated in a held-out
499 dataset, and 11 validated in 2 or more datasets. Tissue-specific, sex differences meta-analyses
500 resulted in 32 genes in blood and 6 in airway epithelium. The majority of these genes were sex
501 chromosomal; however, 15 genes in blood and 1 gene in airway epithelium were autosomal.
502 Overall, 14 blood and 4 airway epithelium genes validated in the held-out datasets; all validated
503 genes were sex chromosomal.

504

505 It is important to note that for analysis, we inferred sex labels using the expression of a subset
506 of X and Y chromosome genes (although there are many other X and Y genes that are DE). In
507 addition, when we examined the subset of studies with metadata sex labels (35 studies) and
508 assumed that these labels were correct, we obtained similar patterns of significantly
509 differentially expressed X and Y chromosome genes that were overlapping across studies and
510 tissues.

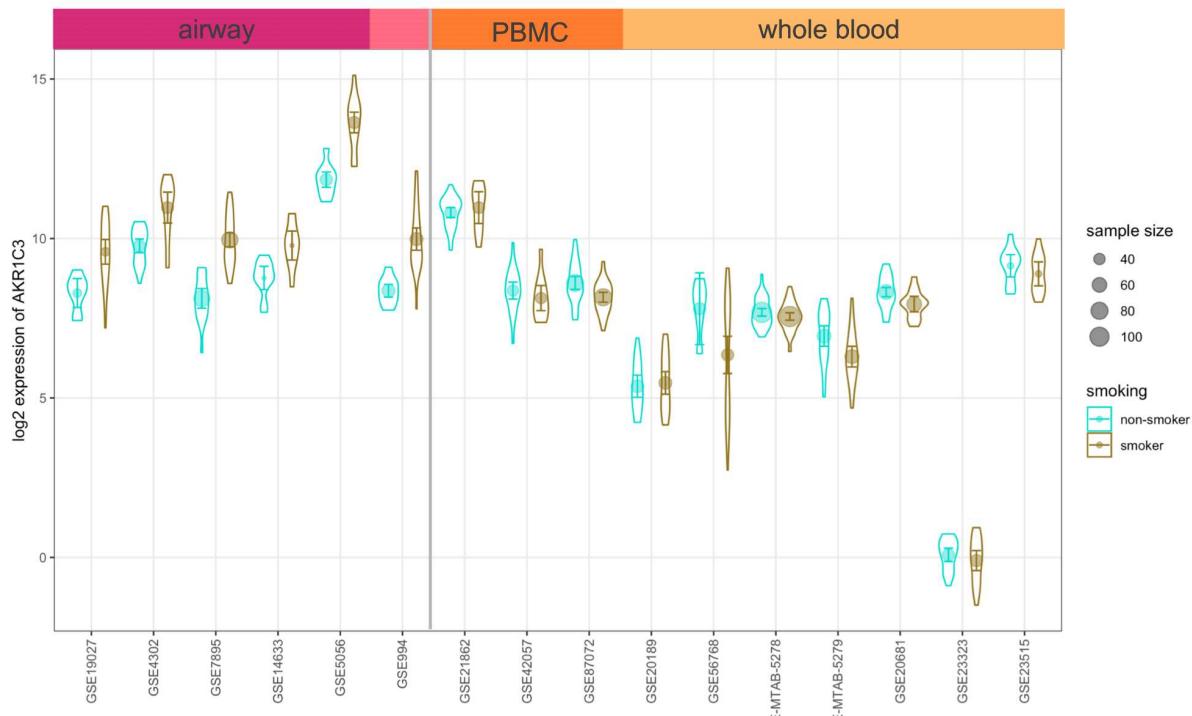
511





520
 521 **Figure 3.** Meta-analysis of differential expression across studies for smoking (A) and sex (B). Studies are organized by tissue, as indicated by the
 522 color bars on the left side of each heatmap. The color of the heatmap tiles show the log-fold change (logFC) of the association between the
 523 variable of interest (smoking or sex) and that gene in that specific study: gold is more highly expressed in smokers and turquoise is more highly
 524 expressed non-smokers, green is higher in females and purple is higher in males. Gray tiles indicate missing values.

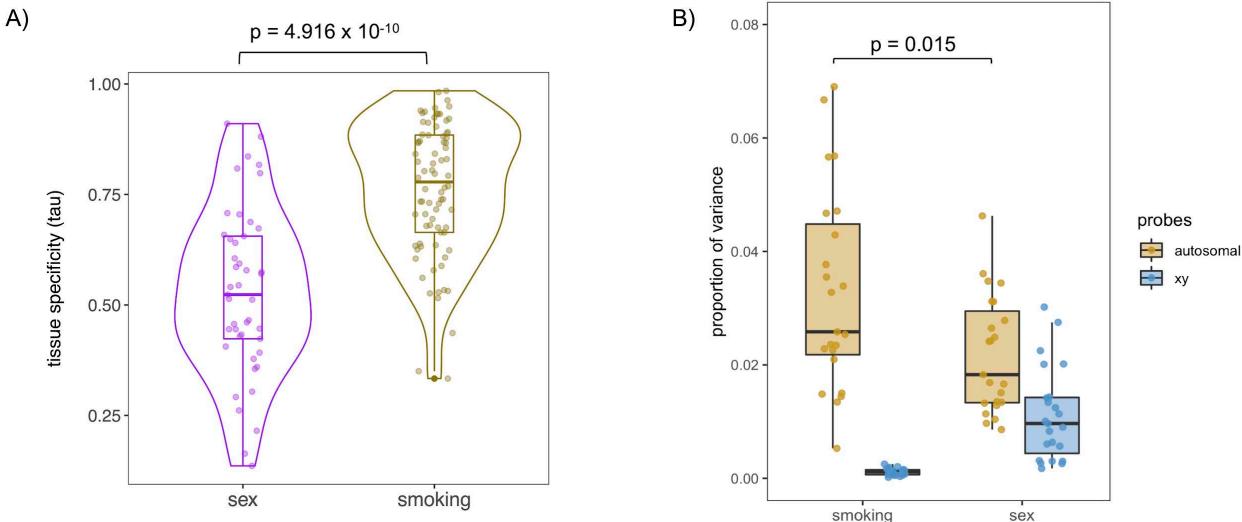
525
526
527



528
529 **Figure 4.** Violin plot showing the distribution of AKR1C3 levels across smokers (gold) and non-smokers
530 (teal) in airway and blood studies. The mean and 95% confidence interval are included for each
531 study/smoking group, and the size of point corresponds to the overall study sample size.
532

533
534 **Genes associated with smoking show more tissue specificity than genes with similar**
535 **effect sizes associated with sex.** We examined the subset of DE genes present in at least 3
536 studies and 2 tissues, and adapted the τ tissue-specificity metric (Yanai et al. 2005) to examine
537 specificity of differential rather than absolute gene expression (see **Methods 5-4**). Across DE
538 genes, smoking-related genes showed significantly more tissue-specificity than sex-related
539 related genes ($p= 4.92 * 10^{-10}$) (**Figure 5A** for the summary of these effects and
540 **Supplementary Figure S5** to visualize differences at the gene level).

541
542 In addition to comparing tissue-specificity, we used variance components analysis (see
543 **Methods 4**) to compare the contributions of sex and smoking to variation in gene expression.
544 We found that, across studies, smoking explains a significantly larger portion of variation in
545 autosomal gene expression than sex ($p=0.015$), highlighting the importance of considering
546 extrinsic sources of variation in addition to sex (**Figure 5B**).
547



548
549 **Figure 5. Comparison of sex and smoking effects.** (A) Smoking-related genes (gold) show higher
550 tissue-specificity than sex-related genes (purple). The y axis shows the tissue specificity using the τ
551 metric, where 0 is ubiquitous across tissues, and 1 is tissue-specific, and each point is a different gene
552 (see [Supplementary Figure S5](#) for the individual genes). (B) Study proportions of variance in expression
553 resulting from smoking-related autosomal effects are on average higher than that of sex-related
554 autosomal effects. The y-axis shows the proportion of variation. Each point is the proportion of variance
555 explained by that covariate (sex or smoking) in one study, colored by the location of the probes (orange
556 for autosomal, blue for sex chromosomal).

557
558 **4. Airway epithelium shows strong patterns of smoking-related differential expression**

559 We first examined the grouped airway epithelium dataset for patterns of smoking and sex-
560 related differential expression. The airway epithelium dataset consists of 444 samples, which is
561 an expanded version of the dataset analyzed by Yang et al (C. X. Yang et al. 2019) (n=211).

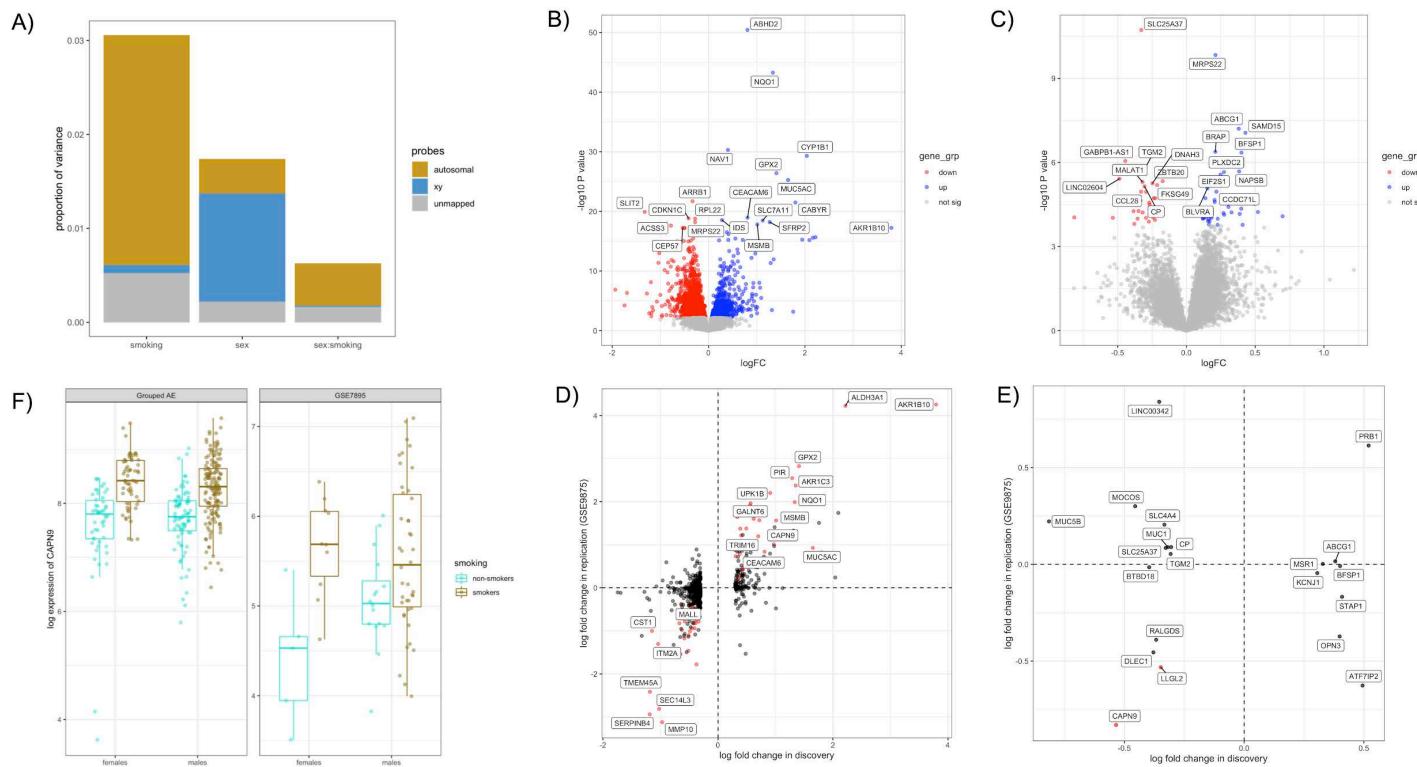
562
563 We used principal variance components analysis (PVCA) (see [Methods 4](#)) to examine the
564 overall contributions of the covariates sex, smoking, and a sex-by-smoking interaction effect to
565 variance in expression. Similar to the analysis across tissues, we found that in the Grouped AE
566 study, smoking-related autosomal genes explain a larger fraction of variance than sex-related
567 autosomal genes (see [Figure 6A](#)). Additionally, here we see a larger proportion of sex-related
568 variance due sex chromosomal genes versus autosomal genes.

569
570 We used a model including sex, smoking, and a sex-by-smoking interaction term, in addition to
571 the covariates race-ethnicity, pack-years, age, and submission date. This model is similar to that
572 used by Yang et al. (C. X. Yang et al. 2019) but also includes submission date to account for
573 batch effects (i.e. effect of non-biological factors) seen in the data (see [Supplementary Figure](#)
574 [S6](#)). Using this model with an FDR cutoff of <0.05 and absolute log fold-change cutoff of ≥ 0.3 ,
575 we identified 2625 probes differentially expressed related to smoking, 128 related to sex, and 1
576 related with a significant interaction effect. Given that many probes map to the same gene, we
577 sought to leverage these patterns of multi-mapping by meta-analyzing the values of the probes
578 corresponding to each gene (see [Methods 5-2](#)). After summarizing probes to genes, the same
579 cutoffs resulting in 932 DE genes related to smoking, 48 genes related to sex, and 30 with sex-

580 differential smoking effects (see **Supplementary Tables S5A-C**). Of these genes, 43 genes
581 with smoking-related and 33 genes sex-related effects were located on the X or Y
582 chromosomes. Volcano plots showing DE genes related to smoking and sex differential
583 smoking effects are included in **Figures 6B and C**, respectively. Many of these genes were also
584 identified by Yang et al (C. X. Yang et al. 2019) in their analysis, and show similar effect sizes
585 (see **Supplementary Figure S8** for a comparison of smoking-related genes).

586
587 We then sought to assess the extent to which these DE genes were replicated in a held-out
588 airway epithelium dataset. From our list of 21 studies, we selected GSE7895, which is the
589 largest airway epithelium dataset (and was also used for replication by Yang et al (C. X. Yang et
590 al. 2019)). This dataset was generated by the same lab as the Grouped AE dataset but was on
591 a different platform and represents a different set of subjects. **Figures 6D and E** compare the
592 effect sizes in the discovery (Grouped AE) dataset versus the replication (GSE7895) dataset for
593 smoking and sex differential smoking effects respectively. While 110 smoking DE and 18 sex-
594 DE genes replicated (same direction effect size and p-value < 0.05), only 1 of the interaction
595 effect genes replicated: CAPN9. CAPN9 is higher in smokers than non-smokers, but appears to
596 show a slightly stronger effect in females than in males; however, it is important to note that the
597 GSE7895 dataset contains only 5 female non-smokers, so it is difficult to draw conclusions
598 about whether this effect is truly replicated (see **Figure 6F**).
599

600 In addition to examining the replication of particular genes, we also sought to examine the
601 relationship of the effect sizes. Specifically, for DE genes identified in the discovery set, we
602 determined whether the effect sizes in the discovery and validation were related. Between the
603 discovery and validation, while there is a strong correlation in the effect sizes for smoking
604 related effects (Pearson's $\rho=0.63$, $p<2*10^{-16}$), there is no correlation in the effect sizes for sex
605 differential smoking effects (Pearson's $\rho=-0.04$, $p=0.86$). The lack of correlation as well as the
606 single gene in the replication of the sex-differential smoking effects is likely due in part to the
607 small sample size and unbalanced nature of the replication set, but also demonstrates a lack of
608 concordance of effect sizes, even if they are not significant in the replication.
609



610
611
612
613
614
615
616
617
618
619
620
621

Figure 6. Results from grouped airway epithelium analysis. (A) Bar plot showing airway epithelium variance decomposition across smoking, sex, and smoking-by-sex covariates. The location of the probes is given by the color of the bars: orange is autosomal, blue is sex chromosomal, and gray is unmapped. (B,C) Volcano plots showing DE genes related to smoking (B) and the sex-by-smoking interaction effect (C). The x-axis is the log-fold change (logFC) in expression between smokers and non-smokers, and the y axis is the -log10 of the unadjusted p-value. Each point is a gene, colored according to significance: red indicates the genes are significantly up in non-smokers, blue indicates the genes are significantly up in smokers, genes in gray do not pass the significance threshold. The top 20 genes (lowest p-value) are labeled. (D,E) Replication of DE genes in held out airway epithelium dataset (GSE9875) for sex (D) and sex-differential smoking responses (E). Each point is a DE gene identified in the Grouped AE dataset. The x-axis shows the log fold change in discovery and the y-axis shows the log fold change in the replication dataset. A positive log-fold change corresponds to higher expression in smokers. Red dots indicate genes that pass the replication threshold in the validation dataset. Only the top 20 gene names are shown in (D) for ease of visualization. Dashed lines are at log-fold change zero. (F) Visualization of CAPN9 interaction effects in discovery and validation in female and male smokers (gold) and non-smokers (teal).

622 **5. The majority of smoking-related expression studies are underpowered to detect sex**
623 **differences in smoking effects**

624 In addition to examining the effects of smoking across tissues, we were interested in assessing
625 whether there are sex-differential responses to smoking. However, large sample sizes are
626 required to have sufficient power to detect interaction effects, which are often very small.
627 Assuming best case scenario where the datasets are balanced - i.e. 1/4 each of male smokers,
628 male non-smokers, female smokers, and female non-smokers - in order to have 80% power to
629 detect absolute log effect sizes of 0.3 (i.e. 1.2-fold difference in expression levels) at an FDR of
630 0.05, we would need at least 60 samples (see **Supplementary Figure 10** for a visualization of
631 these parameters and **Methods 7** for an explanation of these calculations). It is expected that
632 most interaction effects are smaller than that, and for log effect sizes of 0.2 and 0.1, we would
633 need at least 140 and 525 samples, respectively. The *Grouped AE* study contains 444 samples,
634 but with an uneven breakdown: the smallest category (female non-smokers) contains only 61
635 samples (14%) and largest (male smokers) contains 200 samples (45%).
636

637 The studies overall were highly imbalanced across sex and smoking categories. Across all
638 studies, the median numbers of samples per category are 13.7, 9, 17.3 and 16 samples for
639 female non-smokers, female smokers, male non-smokers, and male smokers, with totals of 424,
640 279, 535, and 495 samples per category respectively. Only 4 of the 31 smoking-related studies
641 contained at least 15 male and female samples per smoking category (*E-MTAB-3604*,
642 *GSE17913*, *E-MTAB-5278*, *GSE30272*), and only 2 of these studies have more than 20 males
643 and females per category (*E-MTAB-5278*, *GSE30272*, with 23 or more per category). The
644 remaining studies did not have sufficient samples for detecting genes with sex-differential
645 smoking effects in standard interaction analyses. Given these power limitations, we focused on
646 whether the interaction effects identified in the *Grouped AE* study replicated in the other studies.
647 None of the 30 genes replicated at Bonferroni corrected p-value threshold ($p < 0.05/30$).
648 Because this is conservative, we also examined the results at an uncorrected p-value threshold;
649 however, this means that we expect they may be false positives, and all require further
650 validation.
651

652 Five of the 30 genes had an uncorrected p-value < 0.05 and same direction effects in the
653 replication: *SLC25A37* and *OPN3* in the study *E-MTAB-5278* (blood), and *RALGDS*, *KCNJ1*,
654 and *MS4A7* in *GSE30272* (brain). The list of these genes and their p-values and effect sizes are
655 included in **Supplementary Table 7**; see **Supplementary Figure 11** for visualization of their
656 effects. Briefly, in smokers relative to non-smokers, *SLC25A37* is lower in males and *KCNJ1* is
657 lower in females. Two genes, *OPN3*, *MS4A7*, appear to be lower only in female non-smokers,
658 while *RALGDS* shows opposite direction effects: higher in female smokers and lower in male
659 smokers.
660

661
662
663

Table 1. Smoking and sex breakdown of airway epithelium data

		Smokers			Non-smokers		
		total	female*	male	total	female	male
n		273	73	200	171	61	110
age [▽]	mean ± sd	42.6±7.4	41.3±8.9	43.1±6.8	40.3±10.2	37.9±11.3	41.6±9.4
	missing	79	19	60	30	13	17
race ⁺	Asian	0	0	0	4	4	0
	Black	119	33	86	67	20	47
	Black, Hispanic	0	0	0	2	2	0
	Hispanic	32	7	25	20	8	12
	White	45	14	31	50	14	36
	missing	77	19	58	28	13	15
pack years [◊]	mean ± sd	27.6±16.8	27.1±16.4	27.7±17.1	--	--	--
	missing	81	20	61	--	--	--

664
665
666
667
668
669
670
671
672
673
674

*Sex is not significantly associated with smoking p = 0.059 (chi-squared test)

▽Age is associated with smoking status (p = 0.02) and sex is also associated with age (p=0.01).

Missingness of age associated with smoking (p=0.009) but not sex (p=0.92).

+Race-ethnicity is significantly associated with smoking status (chisq p = 0.03, removed categories with less than 5 counts total) but not sex (p=0.99). Missingness of race-ethnicity associated with smoking status (p=0.006) but not sex (p=1)

◊Pack-years is not associated with sex (p=0.8) (t-test) and missingness of pack-years is not associated with sex (p=0.29) or race (p=0.08)

675 **Table 1B. Sex breakdown of smaller studies organized by tissue.** The number of females in each category is included in
 676 parentheses.

tissue	study	title (citation where available)	platform	smokers	non-smokers	sex label mismatch	additional phenotypes
airway epithelium	GSE14633	Gene expression from bronchial epithelial cell samples of current and never smokers.(Schembri et al. 2009)	GPL5175	11 (3)	11 (7)	0	race; pack years
airway epithelium	GSE19027	Antioxidant response gene expression in the bronchial airway epithelial cells of smokers at risk for lung cancer (X. Wang et al. 2010)	GPL96	22 (1)	7 (2)	2	age; race; pack years
airway epithelium	GSE4302	Genome-wide profiling of airway epithelial cells in asthmatics, smokers and healthy controls (Woodruff et al. 2007)	GPL570	15 (2)	28 (16)	no metadata	NA
airway epithelium	GSE5056	Airway epithelium, large airways, phenotypically normal smokers vs non-smokers, MAS5 (HuGeneFL) (Carolan et al. 2006)	GPL80	26 (8)	18 (4)	0	age; race; pack years
airway epithelium	GSE7895	Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression (Beane et al. 2007)	GPL96	52 (10)	21 (5)	0	age; pack years
alveolar macrophages	GSE13896	Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of	GPL570	50 (6)	43 (10)	4	age; race; pack years

		COPD (Shaykhiev et al. 2009)					
alveolar macrophages	GSE2125	Isolated alveolar macrophages (Woodruff et al. 2005)	GPL570	13 (2)	15 (10)	no metadata	NA
alveolar macrophages	GSE27002	Chronic cigarette smoke exposure results in coordinated methylation and gene expression changes in human alveolar macrophages (R. A. Philibert et al. 2012)	GPL5175	13 (4)	10 (5)	no metadata	NA
blood - b cells	GSE18723	Gene expression circulating B lymphocytes for smoking females (Pan et al. 2010)	GPL96	38 (38)	40 (40)	all female	menopause
blood - pbmc	GSE21862	Gene expression on 144 arrays representing 125 workers exposed to a range of benzene exposures (McHale et al. 2011)	GPL6104	9 (1)	33 (24)	0	age; subject_id; batch (chip id)
blood - pbmc	GSE42057	Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease (Bahr et al. 2013)	GPL570	13 (7)	27 (13)	0	age; pack_years; fev1; bmi; activity
blood - pbmc	GSE87072	Gene expression profiles from PBMCs collected from chronic smokers and moist snuff consumers (Arimilli et al. 2017)	GPL570	40 (0)	40 (0)	all male	age
blood - whole	E-MTAB-5278	Transcription profiling of blood from smokers (with or without COPD), non-smokers and former smokers to identify gene expression	GPL570	56 (23)	56 (23)	4	race; age

		signature for cigarette smoke exposure response (Martin et al. 2015)					
blood - whole	E-MTAB-5279	Transcription profiling of blood from smokers, non-smokers and former smokers to identify gene expression signature for cigarette smoke exposure response (Martin et al. 2015)	GPL570	27 (12)	28 (13)	0	race; age
blood - whole	GSE20189	A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma (Rotunno et al. 2011)	GPL571	27 (14)	21 (11)	no metadata	NA
blood - whole	GSE20681	Whole blood cell gene expression profiling in patients with coronary artery disease from the PREDICT trial (Elashoff et al. 2011)	GPL4133	14 (3)	48 (16)	0	age
blood - whole	GSE23323	Transcriptomics in response to cigarette smoking in humans	GPL6480	22 (10)	22 (10)	no metadata	NA
blood - whole	GSE23515	Radiation responses in peripheral white blood cells of smokers and non-smokers (Paul and Amundson 2011)	GPL6480	12 (6)	12 (6)	0	age
blood - whole	GSE56768	Whole blood and isolated blood cell transcriptomics in COPD	GPL570	39 (19)	5 (3)	no metadata	NA
brain - prefrontal cortex	GSE30272	Temporal dynamics and genetic control of transcription in the human prefrontal cortex	GPL4611	56 (23)	166 (52)	0	race; age; alcohol; postmortem

		(Colantuoni et al. 2011)					interval; batch
buccal mucosa	GSE16149	Examining smoking-induced differential gene expression changes in buccal mucosa (Kupfer et al. 2010)	GPL570	9 (9)	9 (9)	all female	NA
buccal mucosa	GSE17913	Effects of cigarette smoke on the human oral mucosal transcriptome (Boyle et al. 2010)	GPL570	35 (16)	33 (16)	9	NA
kidney	GSE46699	Smoking and obesity related molecular alterations in clear cell renal cell carcinoma (Eckel-Passow et al. 2014)	GPL570	21 (7)	37 (22)	no metadata	obesity
liver	GSE32504	Identification of expression quantitative trait loci (eQTL) in human liver (Schröder et al. 2013)	GPL13376	28 (12)	115 (64)	2*	race; age; alcohol; medication
lung	GSE103174	Expression data from lung tissue in mild-moderate COPD	GPL13667	5 (2)	10 (9)	1	age; bmi; pack years; fev1; batch; cell types
lung	GSE31210	Gene expression data for pathological stage I-II lung adenocarcinomas (Okayama et al. 2012)	GPL570	11 (4)	7 (4)	0	age
lung	GSE32539	Molecular phenotyping of the idiopathic interstitial pneumonias identifies two subtypes of idiopathic pulmonary fibrosis (I. V. Yang et al.	GPL6244	21 (11)	20 (5)	1	age; rin; pack years; batch (aliquot)

		2013)					
nasal epithelium	GSE8987	Expression data from buccal and nasal epithelium of current and never smokers (Sridhar et al. 2008)	GPL571	7 (1)	8 (2)	no metadata	NA
oral cavity	GSE42743	Oral cavity cancer compared to adjacent "Normal" tissue [validation set] (Lohavanichbutr et al. 2013)	GPL570	11 (3)	6 (2)	0	age/dxdate
sputum	E-MTAB-3604	Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD patients (Titze et al. 2015)	GPL570	40 (15)	45 (17)	0	race; age; pack years; bmi; fev/fvc
trachea epithelium	GSE994	Effects of cigarette smoke on the human airway epithelial cell transcriptome (Spira et al. 2004)	GPL96	31 (7)	18 (4)	no metadata	NA

677

678 *For comparison, we used the paper supplement metadata for this study, GEO metadata showed exactly the opposite sex labels.

679 DISCUSSION

680 In this study, we sought to examine sex- and smoking-related effects across tissues in publicly
681 available gene expression data. We performed a systematic search of publicly available gene
682 expression datasets, and identified 31 smoking-related studies spanning 1754 samples and 12
683 tissues as well as an additional group of overlapping airway epithelium studies consisting of 411
684 samples (which we refer to as the *Grouped Airway Epithelium* study). The studies identified
685 were overall male-biased and unbalanced across smoking and sex-related groups. Only 4 of the
686 31 studies and the Grouped Airway Epithelium (AE) study contained at least 15 males and
687 females per smoking category.

688

689 To our knowledge, our analysis represents the first comprehensive examination of smoking-
690 related gene expression across tissues in publicly available data. Additionally, our analysis
691 concomitantly considers sex-related effects, which are often ignored, and compares the relative
692 impacts of these covariates. We examined smoking-related effects across 31 studies and 12
693 tissues and found evidence for tissue-specific effects in smoking response, with separate
694 clusters for airway epithelium (and related tissues) and blood. Despite within-tissue similarities,
695 several genes appear to be key players across tissues, including 8 genes (*LRRN3*, *MS4A6A*,
696 *GAPDH*, *RPLP0*, *CX3CL1*, *GPR15*, and *AHRR*) that were differentially expressed in both an
697 airway-related and non-airway tissue. Many of these genes have been previously reported to be
698 associated with smoking status. In blood, *LRRN3*, or leucine-rich repeat neuronal 3 gene, has
699 been shown to have increased expression in smokers across multiple studies (Martin et al.
700 2015; Maas et al. 2020; Huan et al. 2016; Baiju et al. 2021), as well as differential DNA
701 methylation patterns (Guida et al. 2015; Huan et al. 2016). *GPR15* expression is associated with
702 smoking in blood (Huan et al. 2016), *CX3CL1* is associated with lung cancer stage in smokers
703 (Su et al. 2018), and *MS4A6A* is found to have altered DNA methylation in alveolar
704 macrophages in response to smoking (R. A. Philibert et al. 2012). Interestingly, while *GAPDH*
705 and *RPLP0* are housekeeping genes, *GAPDH* has been reported to be differentially expressed
706 in response to smoking in mouse lungs (Agarwal et al. 2012). It is possible that differences in
707 these housekeeping genes highlight differences in numbers and populations of cells, and future
708 work is required to examine potential cell-type specific effects.

709

710 By comparison, similar scale sex-related effects appeared to be consistent across studies and
711 tissues. These effects were largely limited to sex chromosomes, which is not unexpected given
712 study size and our use of conservative thresholds. Direct comparison of smoking and sex-
713 related effects highlighted that smoking has a larger impact on autosomal gene expression than
714 sex in the tissues we examined. Many of these tissues were airway-related, so is possible (and
715 likely) that examination of other tissues may show smaller magnitude smoking effects, and we
716 do not know how these effects will compare to sex. Sex-related effects are often
717 overemphasized, and these comparisons illustrate the importance of considering other
718 covariates and disease states that may have larger or similar scale impacts on expression.

719

720 In addition to examining overlapping sets of genes and correlations between studies, we used

721 meta-analysis to identify consistently DE genes across tissues, using 27 of the 31 studies as
722 discovery and 4 studies for validation. From this meta-analysis, we identified 7 genes with
723 smoking-related effects: *AHRR*, *CYP1B1*, *NQO1*, *LRRN3* were significantly higher and
724 *ELOVL7*, *CCL4*, and *GZMH* were significantly lower in current smokers as compared to non-
725 smokers (*LRRN3* and *AHRR* were also identified from the study overlap analysis). While the
726 smoking-related genes appeared across studies, only *AHRR* and *GZMH* showed consistent
727 effects across tissues, while the other genes were strongest in a particular tissue: airway
728 epithelium for *NQO1* and *CYP1B1*, blood for *LRRN3*, and alveolar macrophages and sputum for
729 *ELOVL7* and *CCL4*. Four of these genes validated in a held-out set and 4 genes were DE in the
730 validation studies: *LRRN3* (blood - similar tissue specificity), *AHRR* (blood), *NQO1* (airway
731 epithelium - similar tissue specificity), and *CYP1B1* (alveolar macrophages). For sex-related
732 effects, we identified 22 genes, all of which were sex chromosomal and appeared consistent
733 across tissues.

734
735 All 7 genes have known associations with smoking. Multiple studies have shown that *LRRN3* is
736 consistently overexpressed in smokers specifically in blood (described above). *NQO1* is
737 overexpressed in airway tissue in response to biofuel smoke (Mondal et al. 2018), matching the
738 possible tissue specificity seen above. However, it has also been shown to be overexpressed in
739 pancreatic tissue of smokers (Lyn-Cook et al. 2006), and a genetic variant located in this gene
740 has an interaction effect with smoking that is associated with colorectal cancer risk (X.-E. Peng
741 et al. 2013). Increased expression of *CYP1B1* in the aerodigestive tract is associated with
742 smoking (Port et al. 2004), and in oral mucosa *CYP1B1* has increased expression and
743 differential methylation in smokers vs. non-smokers (Richter et al. 2019). Neither *CCL4* or
744 *ELOVL7* were replicated in our analysis, but have known smoking-related associations. Multiple
745 genetic variants in this *ELOVL7* are associated with smoking behavior (Liu et al. 2019; Wootton
746 et al. 2020) and *CCL4* expression is lowered in PBMCs of smokers (Arimilli et al. 2017).

747
748 Multiple studies (Grieshaber et al. 2020; Philibert et al. 2020) have found that hypomethylation
749 of *AHRR*, which encodes the Aryl-Hydrocarbon Receptor Repressor, is strongly associated with
750 smoking in several tissues. *AHRR* modulates responses to dioxin toxicity and is involved in
751 regulation of cell growth. Similar to our analysis, additional studies have found that *AHRR*
752 expression is increased in smokers, and decreases following smoking cessation (Bossé et al.
753 2012). *GZMH* encodes Granzyme H, which is a T and NK cell serine protease involved in lysing
754 target cells. While one study in blood found decreased expression of *GZMH* in smokers (Arimilli
755 et al. 2017), matching our analysis, another study, also in blood, found significantly increased
756 expression (Vink et al. 2017), so further investigation is required to replicate the direction of this
757 effect.

758
759 We performed 2 within-tissue meta-analyses for smoking-related effects in blood and airway
760 epithelium, identifying 19 and 66 consistently DE genes, respectively. Interestingly, in airway
761 epithelium, the only overlapping gene, *AKR1C3*, was significantly higher in smokers relative to
762 non-smokers, but in blood, was significantly lower in smokers relative to non-smokers. The
763 significance and direction of effects were replicated in held-out airway epithelium and blood
764 studies, indicating that these opposite-direction effects are robust. To our knowledge, this

765 finding is a novel discovery of a gene that shows opposite-direction, tissue-specific responses to
766 smoking; however, it is unclear why this is the case. Opposite direction effects in different
767 tissues have been reported previously: Obeidat et al.(Obeidat et al. 2017) examined gene
768 expression associations between emphysema in blood and lung, and found that 24 out of 29
769 overlapping genes showed opposite direction effects across the two tissues. The gene *AKR1C3*
770 encodes an aldo/keto reductase, which is a family of proteins known to be involved in cancers,
771 including head and neck, bladder, prostate, uterine, breast, and ovarian cancer. Other members
772 of the *AKR1C* family are known to be upregulated in response to smoking (Woo et al. 2017),
773 and were similarly found differentially expressed in multiple tissues in our analysis. Examination
774 of *AKR1C3* regulation and tissue-specific expression of genes in nearby pathways may help
775 elucidate this differential response.

776
777 For the Grouped AE study, we found 932 significantly DE genes with smoking-related effects,
778 48 DE genes related to sex, and 30 genes with sex-differential responses to smoking. This is an
779 expanded re-analysis of the samples examined by Yang et al. (C. X. Yang et al. 2019) (n= 211
780 samples). Despite our larger sample size, we identified fewer genes because we used more
781 conservative thresholds and included an additional batch-related covariate. There was both
782 substantial overlap and correlation between effect sizes for the smoking-related effects, but not
783 for the sex-differential smoking effects. It is possible that we did not observe a correlation for the
784 sex-differential smoking effects because the replication study was very small. Additionally, while
785 110 smoking DE genes and 18 sex DE genes replicated, only 1 gene with a sex differential
786 smoking effect, *CAPN9*, was replicated in the validation study. Both male and female smokers
787 showed increased expression of *CAPN9*, but this increase appears to be slightly stronger in
788 females relative to males; however, this effect is subtle and the replication dataset was
789 unbalanced, with only 5 non-smoking females. *CAPN9* encodes a calcium-dependent cysteine
790 protease, which is activated in response to oxidative stress, and its expression is inversely
791 associated with prognosis in gastric cancer (P. Peng et al. 2016). Additionally, a previous study
792 found that *CAPN9* was correlated with the expression of *MUC5AC*, which is a mucin gene
793 known to respond to smoking (Goldfarbmuren et al., n.d.).

794
795 We found that the majority of the remaining publicly available smoking studies were too small to
796 identify sex-differential smoking (or sex-by-smoking) effects on gene expression. Additionally,
797 most studies were unbalanced, decreasing power to detect these effects. Only 4 studies had at
798 least 15 samples per sex/smoking category, with a maximum of 23 samples in the largest of
799 these 2 studies. Due to the limited sample sizes, we used these studies to examine replication
800 of the 30 sex-differential smoking genes identified in Grouped AE. No genes were replicated
801 after correcting for the number of tests (n=30). At a nominal p-value cutoff (uncorrected $p <$
802 0.05), 5 genes were identified that showed the same patterns in the discovery and validation:
803 *SLC25A37* and *OPN3* in the blood study and *RALGDS*, *KCNJ1*, and *MS4A7* in the brain study.
804 It is important to note that the studies were from various tissues (blood, brain, sputum, and
805 buccal mucosa) and not airway epithelium, so it is possible that the lack of replication was in
806 part due to tissue specificity; however, it may be due to sample size. We cannot draw
807 conclusions about replicability or tissue-specificity of sex-related smoking effects without
808 examining larger validation studies.

809
810 This work has several strengths. First, we performed a systematic search to identify and
811 manually filter smoking-related studies available in public gene expression databases in order to
812 construct our compendia of smoking studies. By performing such a search, we ensured that we
813 obtained a comprehensive picture of smoking effects on gene expression, rather than cherry-
814 picking specific studies. We also leveraged our previously developed method (Flynn, Chang,
815 and Altman 2021) to infer sex labels for these studies, without which, 9 of the 31 studies would
816 not have been available for analysis. As part of this sex labeling process, we also discarded
817 samples with mismatched metadata and inferred labels, which may also have other mislabeled
818 metadata, thereby increasing the quality of our data.
819
820 In our analysis of smoking and sex-related effects, we made conservative methodological
821 choices in order to identify consistent, reproducible effects. Our cutoff for identifying DE genes
822 consisted of both an effect size and FDR threshold. Additionally, we employed meta-analytic
823 techniques to summarize probes to genes in our comparisons, which has been suggested
824 before in the literature (Ramasamy et al. 2008), but to our knowledge not yet employed. We
825 demonstrate that use of this technique decreases the number of false positives. It is important to
826 note that meta-analysis also increases bias toward genes with more probes, which is a concern
827 for consistent examination across genes; however, it does not present problems if concerned
828 with true positive rate. By making these choices, we expect that our analysis has false
829 negatives and that we may have missed some subtle effects.
830
831 Two additional strengths of our analysis are the examination of the correlation structure
832 between studies and the side-by-side comparison of smoking and sex-related effects. Using a
833 weighted correlation metric allowed us to better understand the overall pattern of replication
834 without relying on specific significance cutoffs, which both require making decisions about a
835 threshold and could potentially miss replicated genes because of small sample sizes. The
836 concurrent analyses of smoking and sex-related effects allowed us to compare the tissue
837 specificity of the two effects. Sex-related gene expression has been examined across tissues
838 extensively (Gershoni and Pietrokovski 2017; Oliva et al. 2020; Mayne et al. 2016), and has
839 been shown to have both strong, shared sex chromosomal effects and small tissue-specific
840 autosomal effects. In our analysis, in part because of sample size and effect size cutoffs, we
841 only saw sex chromosomal effects which were present across tissues. This is in contrast to the
842 smoking-related effects that showed some tissue-specific patterns, which we identified in the
843 same studies at the same significance thresholds.
844
845 While the use of public data is a strength of our analysis, it also presents a limitation. Larger
846 studies on which previous analyses have been performed (Bossé et al. 2012; Huan et al. 2016;
847 Maas et al. 2020) are either not publicly available or missing sufficient metadata for re-analysis
848 of sex-related effects. Public data is also biased toward specific tissues, and while we sought to
849 examine effects across tissues, we were limited to the seven tissues with data available. The
850 majority of the available tissues were airway-related or blood, which makes sense given the
851 nature of smoking-related exposures and ease of sampling peripheral blood, but does not
852 provide a complete picture. Additionally, with the exception of airway epithelium and blood,

853 which had at least 5 studies each, there were less than 3 studies per tissue and many tissues
854 with only 1 study (e.g., brain, liver, kidney), which prevented an assessment of the extent to
855 which some smoking-related effects are tissue (rather than study) specific. Much of the data
856 were also generated by a single lab and on similar platforms. While this lack of heterogeneity
857 makes the analysis less complex, increased heterogeneity in studies leads to identification of
858 more robust, reproducible effects.

859

860 We also relied on the author-processed expression data for each study, which helped us obtain
861 data from a heterogeneous set of platforms. However, different processing pipelines are known
862 to greatly affect microarray results (Ioannidis et al. 2009). These effects are disproportionately
863 on the sex chromosomes (Castagné et al. 2011), which may have led to an underestimation of
864 sex chromosome contributions to variance. This also limited our analysis to studies with
865 available processed data. Use of standardized processing steps will allow us to examine
866 additional studies, and may reduce heterogeneity between studies due to processing artifacts.
867 We also limited our analysis to samples from healthy tissues; however, future analyses may
868 include disease samples, which may increase the search space and enable examination of
869 additional questions. In the process of identifying the studies for our analysis, we also identified
870 47 studies that involved cultured cells exposed to smoke components. While it is unclear
871 whether sex-related effects identified in culture would translate to humans, use of these data,
872 which have many replicates and show larger magnitude smoking responses could help identify
873 sex-related smoking effects.

874

875 Many studies were missing important covariate information, including age, race/ethnicity, pack-
876 years, and batch-related effects. Available covariates were included in our models; however,
877 this may have led to inconsistencies across studies because of differing sets of covariates. For
878 studies with missing covariate information, confounding may contribute to the identified genes,
879 leading to incorrect associations. For example, because men smoke more heavily on average
880 (Baumert et al. 2010), without pack-years information, effects attributable to smoking amount
881 might be attributed to sex. In addition to variation in available covariates, studies have shown
882 that self-reported data on smoking is often inaccurate (Gorber et al. 2009). Some studies use
883 plasma or urine cotinine levels to confirm smoking status; however, only 1 study reported these
884 levels. As a result, definitions of smoking may be inconsistent across studies and may include
885 incorrect labels due to self-report or sample label mix ups (while our sex labeling method
886 detects samples with swapped sex labels, we cannot detect mislabeling if it occurs between
887 samples of the same sex). Future work may involve developing models to infer additional
888 covariates and detection of mislabeled samples in other dimensions, such as for smoking
889 status. A possible direction could involve training models to infer smoking status from
890 expression data using either previously identified tissue-specific gene signatures (e.g. (Bossé et
891 al. 2012; Martin et al. 2015)) and/or genes identified in our meta-analysis. This could allow us to
892 expand our analysis to many additional studies that do not contain smoking metadata.

893

894 Another limitation is that our study focuses on gene expression data: smoking-related effects
895 occur on multiple biological levels, some of which have sex-related differences. In tumor
896 microenvironments, changes in immune cell populations in response to smoking were more

897 pronounced in women than in men (Alisoltani et al., n.d.). DNA methylation shows sex-specific
898 changes in response to smoking (Koo et al. 2020). Examination of these molecular data types in
899 concert with expression data may help identify additional important insights into smoking and
900 sex-related smoking effects.

901
902 In conclusion, we performed a large-scale systematic analysis of smoking and sex-related
903 smoking effects in healthy participants using publicly available gene expression samples from
904 31 studies and 1 study compendium, spanning 12 tissues. This analysis is the first to examine
905 these effects at this scale and in a sex-aware manner. Our results indicate that expression
906 changes in response to smoking largely cluster by tissue while also showing consistent effects
907 across tissues in a small number of genes. This is in contrast to similar magnitude sex-related
908 effects, which appear to be consistent across tissues. Comparison of smoking and sex-related
909 effects indicate that smoking has a larger impact on autosomal expression than sex in the
910 tissues examined in this study. Our study also highlights the challenges of examining and
911 replicating sex-differential smoking effects in publicly available data, which is in part due to
912 sample size and sex bias. Expansion of this analysis to additional studies and samples may
913 help to validate and further examine patterns of tissue-specificity and assess sex-differential
914 smoking effects.

915
916

917 **Acknowledgements**

918 This work was supported in part by a Center of Excellence in Regulatory Science and
919 Innovation (CERSI) grant to University of California, San Francisco (UCSF) and Stanford
920 University from the US Food and Drug Administration (U01FD005978) Office of Women's
921 Health. Its contents are solely the responsibility of the authors and do not represent the official
922 views of HHS or the FDA. The authors would like to thank Drs. Jonathan Kwan and Carolyn
923 Dresler for their input on study design.

924 The majority of the computing for this project was performed on the Stanford University
925 Sherlock cluster. We would like to thank the Stanford Research Computing Center for providing
926 the computational resources that contributed to these research results.

927

928 **Author contributions**

929 EF, AC, BN, and RBA conceived the study together. EF and AC performed the systematic
930 search for studies and data processing together. EF performed most downstream analyses and
931 data visualization, and AC assisted with this and on interpretation of the results. BN and RBA
932 supervised the project and provided regular feedback. All authors contributed to writing the
933 manuscript.

934

935 **Data and code availability**

936 All data used in this analysis is freely available on GEO or ArrayExpress: study accessions for
937 are located in **Supplementary Table 1** (for grouped airway epithelium) and **Table 1B** (for all
938 other tissues). The code used in the analysis is available on github at:
939 https://github.com/erflynn/smoking_sex_expression.

940

941 REFERENCES

942 Agarwal, Amit R., Liqin Zhao, Harsh Sancheti, Isaac K. Sundar, Irfan Rahman, and Enrique
943 Cadenas. 2012. "Short-Term Cigarette Smoke Exposure Induces Reversible Changes in
944 Energy Metabolism and Cellular Redox Status Independent of Inflammatory Responses in
945 Mouse Lungs." *American Journal of Physiology. Lung Cellular and Molecular Physiology*
946 303 (10): L889–98.

947 Alexandrov, Ludmil B., Young Seok Ju, Kerstin Haase, Peter Van Loo, Iñigo Martincorena,
948 Serena Nik-Zainal, Yasushi Totoki, et al. 2016. "Mutational Signatures Associated with
949 Tobacco Smoking in Human Cancer." *Science* 354 (6312): 618–22.

950 Alisoltani, Arghavan, Xinru Qiu, Lukasz Jaroszewski, Mayya Sedova, Zhanwen Li, and Adam
951 Godzik. n.d. "Large Scale Analysis of Smoking-Induced Changes in the Tumor Immune
952 Microenvironment." *bioRxiv*. <https://doi.org/10.1101/2020.03.06.981225>.

953 Allen, Alicia M., Cheryl Oncken, and Dorothy Hatsukami. 2014. "Women and Smoking: The
954 Effect of Gender on the Epidemiology, Health Effects, and Cessation of Smoking." *Current
955 Addiction Reports*. <https://doi.org/10.1007/s40429-013-0003-6>.

956 Ammous, Zeinab, Neil R. Hackett, Marcus W. Butler, Tina Raman, Igor Dolgalev, Timothy P.
957 O'Connor, Ben-Gary Harvey, and Ronald G. Crystal. 2008. "Variability in Small Airway
958 Epithelial Gene Expression among Normal Smokers." *Chest* 133 (6): 1344–53.

959 Arimilli, Subhashini, Behrouz Madahian, Peter Chen, Kristin Marano, and G. L. Prasad. 2017.
960 "Gene Expression Profiles Associated with Cigarette Smoking and Moist Snuff
961 Consumption." *BMC Genomics*. <https://doi.org/10.1186/s12864-017-3565-1>.

962 Bahr, Timothy M., Grant J. Hughes, Michael Armstrong, Rick Reisdorph, Christopher D.
963 Coldren, Michael G. Edwards, Christina Schnell, et al. 2013. "Peripheral Blood
964 Mononuclear Cell Gene Expression in Chronic Obstructive Pulmonary Disease." *American
965 Journal of Respiratory Cell and Molecular Biology*. <https://doi.org/10.1165/rcmb.2012-0230oc>.

966 Baiju, Nikita, Torkjel M. Sandanger, Pål Sætrom, and Therese H. Nøst. 2021. "Gene Expression
967 in Blood Reflects Smoking Exposure among Cancer-Free Women in the Norwegian
968 Women and Cancer (NOWAC) Postgenome Cohort." *Scientific Reports* 11 (1): 680.

969 Barnes, Peter J. 2016. "Sex Differences in Chronic Obstructive Pulmonary Disease
970 Mechanisms." *American Journal of Respiratory and Critical Care Medicine*.

971 Baumert, Jens, Karl-Heinz Ladwig, Esther Ruf, Christa Meisinger, Angela Döring, H-Erich
972 Wichmann, and KORA Investigators. 2010. "Determinants of Heavy Cigarette Smoking: Are
973 There Differences in Men and Women? Results from the Population-Based
974 MONICA/KORA Augsburg Surveys." *Nicotine & Tobacco Research: Official Journal of the
975 Society for Research on Nicotine and Tobacco* 12 (12): 1220–27.

976 Beane, Jennifer, Paola Sebastiani, Gang Liu, Jerome S. Brody, Marc E. Lenburg, and Avrum
977 Spira. 2007. "Reversible and Permanent Effects of Tobacco Smoke Exposure on Airway
978 Epithelial Gene Expression." *Genome Biology* 8 (9): R201.

979 Beineke, Philip, Karen Fitch, Heng Tao, Michael R. Elashoff, Steven Rosenberg, William E.
980 Kraus, James A. Wingrove, and PREDICT Investigators. 2012. "A Whole Blood Gene
981 Expression-Based Signature for Smoking Status." *BMC Medical Genomics* 5 (December):
982 58.

983 Boelens, Mirjam C., Anke van den Berg, Rudolf S. N. Fehrmann, Marie Geerlings, Wouter K. de
984 Jong, Gerard J. te Meerman, Hannie Sietsma, Wim Timens, Dirkje S. Postma, and Harry J.
985 M. Groen. 2009. "Current Smoking-Specific Gene Expression Signature in Normal
986 Bronchial Epithelium Is Enhanced in Squamous Cell Lung Cancer." *The Journal of
987 Pathology* 218 (2): 182–91.

988 Bongen, Erika, Haley Lucian, Avani Khatri, Gabriela K. Fragiadakis, Zachary B. Bjornson, Garry
989 P. Nolan, Paul J. Utz, and Purvesh Khatri. 2019. "Sex Differences in the Blood

990

991 Transcriptome Identify Robust Changes in Immune Cell Proportions with Aging and
992 Influenza Infection." *Cell Reports* 29 (7): 1961–73.e4.

993 Bossé, Yohan, Dirkje S. Postma, Don D. Sin, Maxime Lamontagne, Christian Couture, Nathalie
994 Gaudreault, Philippe Joubert, et al. 2012. "Molecular Signature of Smoking in Human Lung
995 Tissues." *Cancer Research* 72 (15): 3753–63.

996 Boyle, Jay O., Zeynep H. Gümüs, Ashutosh Kacker, Vishal L. Choksi, Jennifer M. Bocker, Xi
997 Kathy Zhou, Rhonda K. Yantiss, et al. 2010. "Effects of Cigarette Smoke on the Human
998 Oral Mucosal Transcriptome." *Cancer Prevention Research* 3 (3): 266–78.

999 Brazma, Alvis, Helen Parkinson, Ugis Sarkans, Mohammadreza Shojatalab, Jaak Vilo, Niran
1000 Abeygunawardena, Ele Holloway, et al. 2003. "ArrayExpress—a Public Repository for
1001 Microarray Gene Expression Data at the EBI." *Nucleic Acids Research* 31 (1): 68–71.

1002 Buckberry, Sam, Stephen J. Bent, Tina Bianco-Miotto, and Claire T. Roberts. 2014. "massiR: A
1003 Method for Predicting the Sex of Samples in Gene Expression Microarray Datasets."
1004 *Bioinformatics* 30 (14): 2084–85.

1005 Buro-Auriemma, Lauren J., Jacqueline Salit, Neil R. Hackett, Matthew S. Walters, Yael
1006 Strulovici-Barel, Michelle R. Staudt, Jennifer Fuller, et al. 2013. "Cigarette Smoking Induces
1007 Small Airway Epithelial Epigenetic Changes with Corresponding Modulation of Gene
1008 Expression." *Human Molecular Genetics* 22 (23): 4726–38.

1009 Butler, Marcus W., Tomoya Fukui, Jacqueline Salit, Renat Shaykhiev, Jason G. Mezey, Neil R.
1010 Hackett, and Ronald G. Crystal. 2011. "Modulation of Cystatin A Expression in Human
1011 Airway Epithelium Related to Genotype, Smoking, COPD, and Lung Cancer." *Cancer
1012 Research* 71 (7): 2572–81.

1013 Butler, M. W., N. R. Hackett, J. Salit, Y. Strulovici-Barel, L. Omberg, J. Mezey, and R. G.
1014 Crystal. 2011. "Glutathione S-Transferase Copy Number Variation Alters Lung Gene
1015 Expression." *The European Respiratory Journal: Official Journal of the European Society
1016 for Clinical Respiratory Physiology* 38 (1): 15–28.

1017 Carolan, Brendan J., Ben-Gary Harvey, Bishnu P. De, Holly Vanni, and Ronald G. Crystal.
1018 2008. "Decreased Expression of Intelectin 1 in the Human Airway Epithelium of Smokers
1019 Compared to Nonsmokers." *Journal of Immunology* 181 (8): 5760–67.

1020 Carolan, Brendan J., Ben-Gary Harvey, Neil R. Hackett, Timothy P. O'Connor, Patricia A.
1021 Cassano, and Ronald G. Crystal. 2009. "Disparate Oxidant Gene Expression of Airway
1022 Epithelium Compared to Alveolar Macrophages in Smokers." *Respiratory Research* 10
1023 (November): 111.

1024 Carolan, Brendan J., Adriana Heguy, Ben-Gary Harvey, Philip L. Leopold, Barbara Ferris, and
1025 Ronald G. Crystal. 2006. "Up-Regulation of Expression of the Ubiquitin Carboxyl-Terminal
1026 Hydrolase L1 Gene in Human Airway Epithelium of Cigarette Smokers." *Cancer Research*
1027 66 (22): 10729–40.

1028 Castagné, Raphaële, Maxime Rotival, Tanja Zeller, Philipp S. Wild, Vinh Truong, David-
1029 Alexandre Trégouët, Thomas Munzel, et al. 2011. "The Choice of the Filtering Method in
1030 Microarrays Affects the Inference Regarding Dosage Compensation of the Active X-
1031 Chromosome." *PLoS One* 6 (9): e23956.

1032 Centers for Disease Control and Prevention. "Tobacco-related Mortality Fact Sheet".
1033 [http://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/tobacco_related_mor
1034 tality/index.htm](http://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/tobacco_related_mortality/index.htm). Last updated: 2020, Date accessed: July 10, 2021.

1035 Charlesworth, Jac C., Joanne E. Curran, Matthew P. Johnson, Harald Hh Göring, Thomas D.
1036 Dyer, Vincent P. Diego, Jack W. Kent Jr, et al. 2010. "Transcriptomic Epidemiology of
1037 Smoking: The Effect of Smoking on Gene Expression in Lymphocytes." *BMC Medical
1038 Genomics* 3 (July): 29.

1039 Chatzioannou, Aristotelis, Panagiotis Georgiadis, Dennie G. Hebel, Irene Liampa, Ioannis
1040 Valavanis, Ingvar A. Bergdahl, Anders Johansson, et al. 2017. "Blood-Based Omic Profiling
1041 Supports Female Susceptibility to Tobacco Smoke-Induced Cardiovascular Diseases."

1093 Grieshaber, Laurie, Stefan Graw, Matt J. Barnett, Mark D. Thornquist, Gary E. Goodman, Chu
1094 Chen, Devin C. Koestler, Carmen J. Marsit, and Jennifer A. Doherty. 2020. "AHRR
1095 Methylation in Heavy Smokers: Associations with Smoking, Lung Cancer Risk, and Lung
1096 Cancer Mortality." *BMC Cancer* 20 (1): 905.

1097 Guida, Florence, Torkjel M. Sandanger, Raphaële Castagné, Gianluca Campanella, Silvia
1098 Polidoro, Domenico Palli, Vittorio Krogh, et al. 2015. "Dynamics of Smoking-Induced
1099 Genome-Wide Methylation Changes with Time since Smoking Cessation." *Human
1100 Molecular Genetics* 24 (8): 2349–59.

1101 Hackett, Neil R., Marcus W. Butler, Renat Shaykhiev, Jacqueline Salit, Larsson Omberg, Juan
1102 L. Rodriguez-Flores, Jason G. Mezey, et al. 2012. "RNA-Seq Quantification of the Human
1103 Small Airway Epithelium Transcriptome." *BMC Genomics* 13 (February): 82.

1104 Harvey, Ben-Gary, Adriana Heguy, Philip L. Leopold, Brendan J. Carolan, Barbara Ferris, and
1105 Ronald G. Crystal. 2007. "Modification of Gene Expression of the Small Airway Epithelium
1106 in Response to Cigarette Smoking." *Journal of Molecular Medicine* 85 (1): 39–53.

1107 Haynes, Winston A., Francesco Vallania, Charles Liu, Erika Bongen, Aurelie Tomczak, Marta
1108 Andres-Terrè, Shane Lofgren, et al. 2017. "EMPOWERING MULTI-COHORT GENE
1109 EXPRESSION ANALYSIS TO INCREASE REPRODUCIBILITY." *Pacific Symposium on
1110 Biocomputing. Pacific Symposium on Biocomputing* 22: 144–53.

1111 Hessel, Justina, Jonna Heldrich, Jennifer Fuller, Michelle R. Staudt, Sharon Radisch, Charleen
1112 Hollmann, Ben-Gary Harvey, et al. 2014. "Intraflagellar Transport Gene Expression
1113 Associated with Short Cilia in Smoking and COPD." *PLoS One* 9 (1): e85453.

1114 He, Xiaona, Cheng Zhang, Chao Shi, and Quqin Lu. 2018. "Meta-Analysis of mRNA Expression
1115 Profiles to Identify Differentially Expressed Genes in Lung Adenocarcinoma Tissue from
1116 Smokers and Non-Smokers." *Oncology Reports* 39 (3): 929–38.

1117 Hoffman, Gabriel E., and Eric E. Schadt. 2016. "variancePartition: Interpreting Drivers of
1118 Variation in Complex Gene Expression Studies." *BMC Bioinformatics* 17 (1): 483.

1119 Huan, Tianxiao, Roby Joehanes, Claudia Schurmann, Katharina Schramm, Luke C. Pilling,
1120 Marjolein J. Peters, Reedik Mägi, et al. 2016. "A Whole-Blood Transcriptome Meta-Analysis
1121 Identifies Gene Expression Signatures of Cigarette Smoking." *Human Molecular Genetics*
1122 25 (21): 4611–23.

1123 Hübner, Ralf-Harto, Jamie D. Schwartz, P. De Bishnu, Barbara Ferris, Larsson Omberg, Jason
1124 G. Mezey, Neil R. Hackett, and Ronald G. Crystal. 2009. "Coordinate Control of Expression
1125 of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to
1126 Cigarette Smoking." *Molecular Medicine* 15 (7-8): 203–19.

1127 Imkamp, Kai, Marijn Berg, Cornelis J. Vermeulen, Irene H. Heijink, Victor Guryev, Huib A. M.
1128 Kerstjens, Gerard H. Koppelman, Maarten van den Berge, and Alen Faiz. 2018. "Nasal
1129 Epithelium as a Proxy for Bronchial Epithelium for Smoking-Induced Gene Expression and
1130 Expression Quantitative Trait Loci." *The Journal of Allergy and Clinical Immunology* 142 (1):
1131 314–17.e15.

1132 Ioannidis, John P. A., David B. Allison, Catherine A. Ball, Issa Coulibaly, Xiangqin Cui, Aedín C.
1133 Culhane, Mario Falchi, et al. 2009. "Repeatability of Published Microarray Gene Expression
1134 Analyses." *Nature Genetics* 41 (2): 149–55.

1135 Koo, Hyeyoung, Jarrett Morrow, Priyadarshini Kachroo, Kelan Tantisira, Scott T. Weiss,
1136 Craig P. Hersh, Edwin K. Silverman, and Dawn L. DeMeo. 2020. "Sex-Specific
1137 Associations with DNA Methylation in Lung Tissue Demonstrate Smoking Interactions."
1138 *Epigenetics: Official Journal of the DNA Methylation Society*, September, 1–12.

1139 Kryuchkova-Mostacci, Nadezda, and Marc Robinson-Rechavi. 2017. "A Benchmark of Gene
1140 Expression Tissue-Specificity Metrics." *Briefings in Bioinformatics* 18 (2): 205–14.

1141 Kupfer, Doris M., Vicky L. White, Marita C. Jenkins, and Dennis Burian. 2010. "Examining
1142 Smoking-Induced Differential Gene Expression Changes in Buccal Mucosa." *BMC Medical
1143 Genomics* 3 (June): 24.

1144 Landi, Maria Teresa, Tatiana Dracheva, Melissa Rotunno, Jonine D. Figueroa, Huaitian Liu,
1145 Abhijit Dasgupta, Felecia E. Mann, et al. 2008. "Gene Expression Signature of Cigarette
1146 Smoking and Its Role in Lung Adenocarcinoma Development and Survival." *PLoS One* 3
1147 (2): e1651.

1148 Langhammer, A., R. Johnsen, J. Holmen, A. Gulsvik, and L. Bjermer. 2000. "Cigarette Smoking
1149 Gives More Respiratory Symptoms among Women than among Men. The Nord-Trondelag
1150 Health Study (HUNT)." *Journal of Epidemiology and Community Health* 54 (12): 917–22.

1151 Leopold, Philip L., Michael J. O'Mahony, X. Julie Lian, Ann E. Tilley, Ben-Gary Harvey, and
1152 Ronald G. Crystal. 2009. "Smoking Is Associated with Shortened Airway Cilia." *PLoS One* 4
1153 (12): e8157.

1154 Liu, Mengzhen, Yu Jiang, Robbee Wedow, Yue Li, David M. Brazel, Fang Chen, Gargi Datta, et
1155 al. 2019. "Association Studies of up to 1.2 Million Individuals Yield New Insights into the
1156 Genetic Etiology of Tobacco and Alcohol Use." *Nature Genetics* 51 (2): 237–44.

1157 Lohavanichbutr, Pawadee, Eduardo Méndez, F. Christopher Holsinger, Tessa C. Rue, Yuzheng
1158 Zhang, John Houck, Melissa P. Upton, et al. 2013. "A 13-Gene Signature Prognostic of
1159 HPV-Negative OSCC: Discovery and External Validation." *Clinical Cancer Research: An
1160 Official Journal of the American Association for Cancer Research* 19 (5): 1197–1203.

1161 Lyn-Cook, B. D., Y. Yan-Sanders, S. Moore, S. Taylor, B. Word, and G. J. Hammons. 2006.
1162 "Increased Levels of NAD(P)H: Quinone Oxidoreductase 1 (NQO1) in Pancreatic Tissues
1163 from Smokers and Pancreatic Adenocarcinomas: A Potential Biomarker of Early Damage in
1164 the Pancreas." *Cell Biology and Toxicology* 22 (2): 73–80.

1165 Maas, Silvana C. E., Michelle M. J. Mens, Brigitte Kühnel, Joyce B. J. van Meurs, André G.
1166 Uitterlinden, Annette Peters, Holger Prokisch, et al. 2020. "Smoking-Related Changes in
1167 DNA Methylation and Gene Expression Are Associated with Cardio-Metabolic Traits."
1168 *Clinical Epigenetics* 12 (1): 157.

1169 Martin, F., M. Talikka, J. Hoeng, and M. C. Peitsch. 2015. "Identification of Gene Expression
1170 Signature for Cigarette Smoke Exposure Response—from Man to Mouse." *Human &
1171 Experimental Toxicology*. <https://doi.org/10.1177/0960327115600364>.

1172 Mayne, Benjamin T., Tina Bianco-Miotto, Sam Buckberry, James Breen, Vicki Clifton, Cheryl
1173 Shoubridge, and Claire T. Roberts. 2016. "Large Scale Gene Expression Meta-Analysis
1174 Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans." *Frontiers in Genetics* 7
1175 (October): 183.

1176 McHale, Cliona M., Luoping Zhang, Qing Lan, Roel Vermeulen, Guilan Li, Alan E. Hubbard,
1177 Kristin E. Porter, et al. 2011. "Global Gene Expression Profiling of a Population Exposed to
1178 a Range of Benzene Levels." *Environmental Health Perspectives* 119 (5): 628–34.

1179 Mondal, Nandan Kumar, Hirak Saha, Bidisha Mukherjee, Neetu Tyagi, and Manas Ranjan Ray.
1180 2018. "Inflammation, Oxidative Stress, and Higher Expression Levels of Nrf2 and NQO1
1181 Proteins in the Airways of Women Chronically Exposed to Biomass Fuel Smoke." *Molecular
1182 and Cellular Biochemistry* 447 (1-2): 63–76.

1183 Morrow, Jarrett D., Robert P. Chase, Margaret M. Parker, Kimberly Glass, Minseok Seo, Miguel
1184 Divo, Caroline A. Owen, et al. 2019. "RNA-Sequencing across Three Matched Tissues
1185 Reveals Shared and Tissue-Specific Gene Expression and Pathway Signatures of COPD."
1186 *Respiratory Research* 20 (1): 65.

1187 Na, Hyun-Kyung, Minju Kim, Seong-Sil Chang, Soo-Young Kim, Jong Y. Park, Myeon Woo
1188 Chung, and Mihi Yang. 2015. "Tobacco Smoking-Response Genes in Blood and Buccal
1189 Cells." *Toxicology Letters* 232 (2): 429–37.

1190 Obeidat, Ma'en, Yunlong Nie, Nick Fishbane, Xuan Li, Yohan Bossé, Philippe Joubert, David C.
1191 Nickle, et al. 2017. "Integrative Genomics of Emphysema-Associated Genes Reveals
1192 Potential Disease Biomarkers." *American Journal of Respiratory Cell and Molecular Biology*
1193 57 (4): 411–18.

1194 Okayama, Hirokazu, Takashi Kohno, Yuko Ishii, Yoko Shimada, Kouya Shiraishi, Reika

1195 Iwakawa, Koh Furuta, et al. 2012. "Identification of Genes Upregulated in ALK-Positive and
1196 EGFR/KRAS/ALK-Negative Lung Adenocarcinomas." *Cancer Research* 72 (1): 100–111.
1197 Oliva, Meritxell, Manuel Muñoz-Aguirre, Sarah Kim-Hellmuth, Valentin Wucher, Ariel D. H.
1198 Gewirtz, Daniel J. Cotter, Princy Parsana, et al. 2020. "The Impact of Sex on Gene
1199 Expression across Human Tissues." *Science* 369 (6509).
1200 <https://doi.org/10.1126/science.aba3066>.
1201 Pan, Feng, Tie-Lin Yang, Xiang-Ding Chen, Yuan Chen, Ge Gao, Yao-Zhong Liu, Yu-Fang Pei,
1202 et al. 2010. "Impact of Female Cigarette Smoking on Circulating B Cells in Vivo: The
1203 Suppressed ICOSLG, TCF3, and VCAM1 Gene Functional Network May Inhibit Normal
1204 Cell Function." *Immunogenetics* 62 (4): 237–51.
1205 Patsopoulos, Nikolaos A., Athina Tatsioni, and John P. A. Ioannidis. 2007. "Claims of Sex
1206 Differences: An Empirical Assessment in Genetic Associations." *JAMA: The Journal of the
1207 American Medical Association* 298 (8): 880–93.
1208 Paul, Sunirmal, and Sally A. Amundson. 2011. "Gene Expression Signatures of Radiation
1209 Exposure in Peripheral White Blood Cells of Smokers and Non-Smokers." *International
1210 Journal of Radiation Biology*. <https://doi.org/10.3109/09553002.2011.568574>.
1211 Paul, Sunirmal, and Sally A. Amundson. 2014. "Differential Effect of Active Smoking on Gene
1212 Expression in Male and Female Smokers." *Journal of Carcinogenesis & Mutagenesis* 5.
1213 <https://doi.org/10.4172/2157-2518.1000198>.
1214 Peng, Peike, Weicheng Wu, Junjie Zhao, Shushu Song, Xuefei Wang, Dongwei Jia, Miaomiao
1215 Shao, et al. 2016. "Decreased Expression of Calpain-9 Predicts Unfavorable Prognosis in
1216 Patients with Gastric Cancer." *Scientific Reports* 6 (July): 29604.
1217 Peng, Xian-E, Ying-Ying Jiang, Xi-Shun Shi, and Zhi-Jian Hu. 2013. "NQO1 609C>T
1218 Polymorphism Interaction with Tobacco Smoking and Alcohol Drinking Increases Colorectal
1219 Cancer Risk in a Chinese Population." *Gene*. <https://doi.org/10.1016/j.gene.2013.02.029>.
1220 Philibert, Robert A., Rory A. Sears, Linda S. Powers, Emma Nash, Thomas Bair, Alicia K.
1221 Gerke, Ihab Hassan, Christie P. Thomas, Thomas J. Gross, and Martha M. Monick. 2012.
1222 "Coordinated DNA Methylation and Gene Expression Changes in Smoker Alveolar
1223 Macrophages: Specific Effects on VEGF Receptor 1 Expression." *Journal of Leukocyte
1224 Biology* 92 (3): 621–31.
1225 Philibert, Robert, Meeshanthini Dogan, Steven R. H. Beach, James A. Mills, and Jeffrey D.
1226 Long. 2020. "AHRR Methylation Predicts Smoking Status and Smoking Intensity in Both
1227 Saliva and Blood DNA." *American Journal of Medical Genetics. Part B, Neuropsychiatric
1228 Genetics: The Official Publication of the International Society of Psychiatric Genetics* 183
1229 (1): 51–60.
1230 Port, Jeffrey L., Kentaro Yamaguchi, Baoheng Du, Mariana De Lorenzo, Mindy Chang, Paul M.
1231 Heerdt, Levy Kopelovich, et al. 2004. "Tobacco Smoke Induces CYP1B1 in the
1232 Aerodigestive Tract." *Carcinogenesis* 25 (11): 2275–81.
1233 Raman, Tina, Timothy P. O'Connor, Neil R. Hackett, Wei Wang, Ben-Gary Harvey, Marc A.
1234 Attiyeh, David T. Dang, Matthew Teater, and Ronald G. Crystal. 2009. "Quality Control in
1235 Microarray Assessment of Gene Expression in Human Airway Epithelium." *BMC Genomics*
1236 10 (October): 493.
1237 Ramasamy, Adaikalavan, Adrian Mondry, Chris C. Holmes, and Douglas G. Altman. 2008. "Key
1238 Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets." *PLoS
1239 Medicine* 5 (9): e184.
1240 Richter, Gesa M., Jochen Kruppa, Matthias Munz, Ricarda Wiehe, Robert Häslner, Andre
1241 Franke, Orlando Martins, et al. 2019. "A Combined Epigenome- and Transcriptome-Wide
1242 Association Study of the Oral Masticatory Mucosa Assigns CYP1B1 a Central Role for
1243 Epithelial Health in Smokers." *Clinical Epigenetics* 11 (1): 105.
1244 Risch, H. A., G. R. Howe, M. Jain, J. D. Burch, E. J. Holowaty, and A. B. Miller. 1993. "Are
1245 Female Smokers at Higher Risk for Lung Cancer than Male Smokers? A Case-Control

1246 Analysis by Histologic Type." *American Journal of Epidemiology* 138 (5): 281–93.
1247 Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon
1248 K. Smyth. 2015. "Limma Powers Differential Expression Analyses for RNA-Sequencing and
1249 Microarray Studies." *Nucleic Acids Research* 43 (7): e47.
1250 Rotunno, Melissa, Nan Hu, Hua Su, Chaoyu Wang, Alisa M. Goldstein, Andrew W. Bergen,
1251 Dario Consonni, et al. 2011. "A Gene Expression Signature from Peripheral Whole Blood
1252 for Stage I Lung Adenocarcinoma." *Cancer Prevention Research*.
1253 <https://doi.org/10.1158/1940-6207.capr-10-0170>.
1254 Schembri, Frank, Sriram Sridhar, Catalina Perdomo, Adam M. Gustafson, Xiaoling Zhang, Ayla
1255 Ergun, Jining Lu, et al. 2009. "MicroRNAs as Modulators of Smoking-Induced Gene
1256 Expression Changes in Human Airway Epithelium." *Proceedings of the National Academy of
1257 Sciences of the United States of America* 106 (7): 2319–24.
1258 Schröder, A., K. Klein, S. Winter, M. Schwab, M. Bonin, A. Zell, and U. M. Zanger. 2013.
1259 "Genomics of ADME Gene Expression: Mapping Expression Quantitative Trait Loci
1260 Relevant for Absorption, Distribution, Metabolism and Excretion of Drugs in Human Liver."
1261 *The Pharmacogenomics Journal* 13 (1): 12–20.
1262 Schwarzer, Guido, James R. Carpenter, and Gerta Rücker. 2015. *Meta-Analysis with R*.
1263 Springer.
1264 Shaykhiev, Renat, Anja Krause, Jacqueline Salit, Yael Strulovici-Barel, Ben-Gary Harvey,
1265 Timothy P. O'Connor, and Ronald G. Crystal. 2009. "Smoking-Dependent Reprogramming
1266 of Alveolar Macrophage Polarization: Implication for Pathogenesis of Chronic Obstructive
1267 Pulmonary Disease." *Journal of Immunology* 183 (4): 2867–83.
1268 Shaykhiev, Renat, Fouad Otaki, Prince Bonsu, David T. Dang, Matthew Teater, Yael Strulovici-
1269 Barel, Jacqueline Salit, Ben-Gary Harvey, and Ronald G. Crystal. 2011. "Cigarette Smoking
1270 Reprograms Apical Junctional Complex Molecular Architecture in the Human Airway
1271 Epithelium in Vivo." *Cellular and Molecular Life Sciences: CMLS* 68 (5): 877–92.
1272 Shaykhiev, Renat, Rui Wang, Rachel K. Zwick, Neil R. Hackett, Roland Leung, Malcolm A. S.
1273 Moore, Camelia S. Sima, et al. 2013. "Airway Basal Cells of Healthy Smokers Express an
1274 Embryonic Stem Cell Signature Relevant to Lung Cancer." *Stem Cells* 31 (9): 1992–2002.
1275 Silva, Constanza P., and Helen M. Kamens. 2021. "Cigarette Smoke-Induced Alterations in
1276 Blood: A Review of Research on DNA Methylation and Gene Expression." *Experimental
1277 and Clinical Psychopharmacology* 29 (1): 116–35.
1278 Spira, Avrum, Jennifer Beane, Vishal Shah, Gang Liu, Frank Schembri, Xuemei Yang, John
1279 Palma, and Jerome S. Brody. 2004. "Effects of Cigarette Smoke on the Human Airway
1280 Epithelial Cell Transcriptome." *Proceedings of the National Academy of Sciences of the
1281 United States of America* 101 (27): 10143–48.
1282 Sridhar, Sriram, Frank Schembri, Julie Zeskind, Vishal Shah, Adam M. Gustafson, Katrina
1283 Steiling, Gang Liu, et al. 2008. "Smoking-Induced Gene Expression Changes in the
1284 Bronchial Airway Are Reflected in Nasal and Buccal Epithelium." *BMC Genomics* 9 (May):
1285 259.
1286 Strulovici-Barel, Yael, Larsson Omberg, Michael O'Mahony, Cynthia Gordon, Charleen
1287 Hollmann, Ann E. Tilley, Jacqueline Salit, Jason Mezey, Ben-Gary Harvey, and Ronald G.
1288 Crystal. 2010. "Threshold of Biologic Responses of the Small Airway Epithelium to Low
1289 Levels of Tobacco Smoke." *American Journal of Respiratory and Critical Care Medicine*
1290 182 (12): 1524–32.
1291 Su, Ying-Chieh, Han Chang, Shih-Jung Sun, Cheng-Yi Liao, Ling-Yi Wang, Jiunn-Lang Ko, and
1292 Jinghua T. Chang. 2018. "Differential Impact of CX3CL1 on Lung Cancer Prognosis in
1293 Smokers and Non-Smokers." *Molecular Carcinogenesis* 57 (5): 629–39.
1294 Tannenbaum, Cara, Danielle Day, and Matera Alliance. 2017. "Age and Sex in Drug
1295 Development and Testing for Adults." *Pharmacological Research: The Official Journal of
1296 the Italian Pharmacological Society* 121 (July): 83–93.

1297 Tilley, Ann E., Ben-Gary Harvey, Adriana Heguy, Neil R. Hackett, Rui Wang, Timothy P.
1298 O'Connor, and Ronald G. Crystal. 2009. "Down-Regulation of the Notch Pathway in Human
1299 Airway Epithelium in Association with Smoking and Chronic Obstructive Pulmonary
1300 Disease." *American Journal of Respiratory and Critical Care Medicine* 179 (6): 457–66.
1301 Tilley, Ann E., Timothy P. O'Connor, Neil R. Hackett, Yael Strulovici-Barel, Jacqueline Salit,
1302 Nancy Amoroso, Xi Kathy Zhou, et al. 2011. "Biologic Phenotyping of the Human Small
1303 Airway Epithelial Response to Cigarette Smoking." *PloS One* 6 (7): e22798.
1304 Tilley, Ann E., Michelle R. Staudt, Jacqueline Salit, Benjamin Van de Graaf, Yael Strulovici-
1305 Barel, Robert J. Kaner, Thomas Vincent, et al. 2016. "Cigarette Smoking Induces Changes
1306 in Airway Epithelial Expression of Genes Associated with Monogenic Lung Disorders."
1307 *American Journal of Respiratory and Critical Care Medicine* 193 (2): 215–17.
1308 Titz, Bjoern, Alain Sewer, Thomas Schneider, Ashraf Elamin, Florian Martin, Sophie Dijon,
1309 Karsta Luettich, et al. 2015. "Alterations in the Sputum Proteome and Transcriptome in
1310 Smokers and Early-Stage COPD Subjects." *Journal of Proteomics*.
1311 <https://doi.org/10.1016/j.jprot.2015.08.009>.
1312 Toker, Lilah, Min Feng, and Paul Pavlidis. 2016. "Whose Sample Is It Anyway? Widespread
1313 Misannotation of Samples in Transcriptomics Studies." *F1000Research* 5 (August): 2103.
1314 Trabzuni, Daniah, Adaikalavan Ramasamy, Sabaena Imran, Robert Walker, Colin Smith,
1315 Michael E. Weale, John Hardy, Mina Ryten, and North American Brain Expression
1316 Consortium. 2013. "Widespread Sex Differences in Gene Expression and Splicing in the
1317 Adult Human Brain." *Nature Communications* 4: 2771.
1318 Tsai, Pei-Chien, Craig A. Glastonbury, Melissa N. Eliot, Sailalitha Bollepalli, Idil Yet, Juan E.
1319 Castillo-Fernandez, Elena Carnero-Montoro, et al. 2018. "Smoking Induces Coordinated
1320 DNA Methylation and Gene Expression Changes in Adipose Tissue with Consequences for
1321 Metabolic Health." *Clinical Epigenetics* 10 (1): 126.
1322 Turetz, Meredith L., Timothy P. O'Connor, Ann E. Tilley, Yael Strulovici-Barel, Jacqueline Salit,
1323 David Dang, Matthew Teater, Jason Mezey, Andrew G. Clark, and Ronald G. Crystal. 2009.
1324 "Trachea Epithelium as a 'Canary' for Cigarette Smoking-Induced Biologic Phenotype of the
1325 Small Airway Epithelium." *Clinical and Translational Science* 2 (4): 260–72.
1326 Vanni, Holly, Angeliki Kazeros, Rui Wang, Ben-Gary Harvey, Barbara Ferris, Bishnu P. De,
1327 Brendan J. Carolan, Ralf-Harto Hübner, Timothy P. O'Connor, and Ronald G. Crystal.
1328 2009. "Cigarette Smoking Induces Overexpression of a Fat-Depleting Gene AZGP1 in the
1329 Human." *Chest* 135 (5): 1197–1208.
1330 Vink, Jacqueline M., Rick Jansen, Andy Brooks, Gonneke Willemsen, Gerard van Grootenhuis,
1331 Eco de Geus, Jan H. Smit, Brenda W. Penninx, and Dorret I. Boomsma. 2017. "Differential
1332 Gene Expression Patterns between Smokers and Non-Smokers: Cause or Consequence?"
1333 *Addiction Biology*. <https://doi.org/10.1111/adb.12322>.
1334 Visbal, Antonio L., Brent A. Williams, Francis C. Nichols 3rd, Randolph S. Marks, James R. Jett,
1335 Marie-Christine Aubry, Eric S. Edell, Jason A. Wampfler, Julian R. Molina, and Ping Yang.
1336 2004. "Gender Differences in Non-Small-Cell Lung Cancer Survival: An Analysis of 4,618
1337 Patients Diagnosed between 1997 and 2002." *The Annals of Thoracic Surgery* 78 (1): 209–
1338 15; discussion 215.
1339 Walters, Matthew S., Bishnu P. De, Jacqueline Salit, Lauren J. Buro-Auriemma, Timothy
1340 Wilson, Allison M. Rogalski, Lindsay Lief, et al. 2014. "Smoking Accelerates Aging of the
1341 Small Airway Epithelium." *Respiratory Research* 15 (September): 94.
1342 Wang, Guoqing, Haixia Zhou, Yael Strulovici-Barel, Mohammed Al-Hijji, Xuemei Ou, Jacqueline
1343 Salit, Matthew S. Walters, Michelle R. Staudt, Robert J. Kaner, and Ronald G. Crystal.
1344 2017. "Role of OSGIN1 in Mediating Smoking-Induced Autophagy in the Human Airway
1345 Epithelium." *Autophagy* 13 (7): 1205–20.
1346 Wang, Rui, Joumana Ahmed, Guoqing Wang, Ibrahim Hassan, Yael Strulovici-Barel, Neil R.
1347 Hackett, and Ronald G. Crystal. 2011. "Down-Regulation of the Canonical Wnt β -Catenin

1348 Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD." *PLoS One*
1349 6 (4): e14793.

1350 Wang, Rui, Joumana Ahmed, Guoqing Wang, Ibrahim Hassan, Yael Strulovici-Barel, Jacqueline
1351 Salit, Jason G. Mezey, and Ronald G. Crystal. 2012. "Airway Epithelial Expression of TLR5
1352 Is Downregulated in Healthy Smokers and Smokers with Chronic Obstructive Pulmonary
1353 Disease." *Journal of Immunology* 189 (5): 2217–25.

1354 Wang, Rui, Guoqing Wang, Megan J. Ricard, Barbara Ferris, Yael Strulovici-Barel, Jacqueline
1355 Salit, Neil R. Hackett, Lorraine J. Gudas, and Ronald G. Crystal. 2010. "Smoking-Induced
1356 Upregulation of AKR1B10 Expression in the Airway Epithelium of Healthy Individuals." *Chest*
1357 138 (6): 1402–10.

1358 Wang, Xuting, Brian N. Chorley, Gary S. Pittman, Steven R. Kleeberger, John Brothers 2nd,
1359 Gang Liu, Avrum Spira, and Douglas A. Bell. 2010. "Genetic Variation and Antioxidant
1360 Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung
1361 Cancer." *PLoS One* 5 (8): e11934.

1362 GR Warnes, P Liu, and F Li. 2020. "ssize: Estimate microarray sample size." R package version
1363 1.64.0.

1364 Will, J. C., D. A. Galuska, E. S. Ford, A. Mokdad, and E. E. Calle. 2001. "Cigarette Smoking and
1365 Diabetes Mellitus: Evidence of a Positive Association from a Large Prospective Cohort
1366 Study." *International Journal of Epidemiology* 30 (3): 540–46.

1367 Woodruff, Prescott G., Homer A. Boushey, Gregory M. Dolganov, Chris S. Barker, Yee Hwa
1368 Yang, Samantha Donnelly, Almut Ellwanger, et al. 2007. "Genome-Wide Profiling Identifies
1369 Epithelial Cell Genes Associated with Asthma and with Treatment Response to
1370 Corticosteroids." *Proceedings of the National Academy of Sciences of the United States of
1371 America* 104 (40): 15858–63.

1372 Woodruff, Prescott G., Laura L. Koth, Yee Hwa Yang, Madeleine W. Rodriguez, Silvio Favoreto,
1373 Gregory M. Dolganov, Agnes C. Paquet, and David J. Erle. 2005. "A Distinctive Alveolar
1374 Macrophage Activation State Induced by Cigarette Smoking." *American Journal of
1375 Respiratory and Critical Care Medicine* 172 (11): 1383–92.

1376 Woo, Sangsoon, Hong Gao, David Henderson, Wolfgang Zacharias, Gang Liu, Quynh T. Tran,
1377 and G. L. Prasad. 2017. "AKR1C1 as a Biomarker for Differentiating the Biological Effects
1378 of Combustible from Non-Combustible Tobacco Products." *Genes* 8 (5).
1379 <https://doi.org/10.3390/genes8050132>.

1380 Wootton, Robyn E., Rebecca C. Richmond, Bobby G. Stuifzand, Rebecca B. Lawn, Hannah M.
1381 Sallis, Gemma M. J. Taylor, Gibran Hemani, et al. 2020. "Evidence for Causal Effects of
1382 Lifetime Smoking on Risk for Depression and Schizophrenia: A Mendelian Randomisation
1383 Study." *Psychological Medicine* 50 (14): 2435–43.

1384 Yanai, Itai, Hila Benjamin, Michael Shmoish, Vered Chalifa-Caspi, Maxim Shklov, Ron Ophir,
1385 Arren Bar-Even, et al. 2005. "Genome-Wide Midrange Transcription Profiles Reveal
1386 Expression Level Relationships in Human Tissue Specification." *Bioinformatics* 21 (5):
1387 650–59.

1388 Yang, Chen Xi, Henry Shi, Irving Ding, Stephen Milne, Ana I. Hernandez Cordero, Cheng Wei
1389 Tony Yang, Edward Kyoo-Hoon Kim, et al. 2019. "Widespread Sexual Dimorphism in the
1390 Transcriptome of Human Airway Epithelium in Response to Smoking." *Scientific Reports* 9
1391 (1): 17600.

1392 Yang, C. X., H. Shi, I. Ding, C. W. T. Yang, D. D. Sin, and M. Obeidat. 2019. "Widespread
1393 Sexual Dimorphism in the Transcriptome of Human Airway Epithelium in Response to
1394 Smoking." A61. *EPITHELIAL BIOLOGY*. https://doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2120.

1395 Yang, Ivana V., Christopher D. Coldren, Sonia M. Leach, Max A. Seibold, Elissa Murphy, Jia
1396 Lin, Rachel Rosen, et al. 2013. "Expression of Cilium-Associated Genes Defines Novel
1397 Molecular Subtypes of Idiopathic Pulmonary Fibrosis." *Thorax* 68 (12): 1114–21.

1399 Yang, Jing, Wu-Lin Zuo, Tomoya Fukui, Ionwa Chao, Kazunori Gomi, Busub Lee, Michelle R.
1400 Staudt, et al. 2017. "Smoking-Dependent Distal-to-Proximal Repatterning of the Adult
1401 Human Small Airway Epithelium." *American Journal of Respiratory and Critical Care
1402 Medicine* 196 (3): 340–52.

1403 Zhang, Yijing, Kathrin Klein, Aarathi Sugathan, Najlla Nassery, Alan Dombkowski, Ulrich M.
1404 Zanger, and David J. Waxman. 2011. "Transcriptional Profiling of Human Liver Identifies
1405 Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease."
1406 *PLoS One* 6 (8): e23506.

1407 Zhou, Haixia, Angelika Brekman, Wu-Lin Zuo, Xuemei Ou, Renat Shaykhiev, Francisco J.
1408 Agosto-Perez, Rui Wang, et al. 2016. "POU2AF1 Functions in the Human Airway
1409 Epithelium To Regulate Expression of Host Defense Genes." *Journal of Immunology* 196
1410 (7): 3159–67.

1411 Zhu, Yuelin, Sean Davis, Robert Stephens, Paul S. Meltzer, and Yidong Chen. 2008.
1412 "GEOmetadb: Powerful Alternative Search Engine for the Gene Expression Omnibus."
1413 *Bioinformatics* 24 (23): 2798–2800.