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ABSTRACT 11 

Smoking greatly reduces life expectancy in both men and women, but with different patterns of 12 

morbidity. After adjusting for smoking history, women have higher risk of respiratory effects and 13 

diabetes from smoking, while men show greater mortality from smoking-related cancers. While 14 

many smoking-related sex differences have been documented, the underlying molecular 15 

mechanisms are not well understood. To date, identification of sex differences in response to 16 

smoking has been limited to a small number of studies and the resulting smoking-related effects 17 

require further validation. Publicly available gene expression data present a unique opportunity 18 

to examine molecular-level sex and smoking effects across many tissues and studies. We 19 

performed a systematic search to identify smoking-related studies from healthy tissue samples 20 

and found 31 separate studies as well as an additional group of overlapping studies that in total 21 

span 2,177 samples and 12 tissues. These samples and studies were overall male-biased. In 22 

smoking, while effects appeared to be somewhat tissue-specific and largely autosomal, we 23 

identified a small number of genes that were consistently differentially expressed across tissues, 24 

including AHRR and GZMH.  We also identified one gene, AKR1C3, encoding an aldo-keto 25 

reductase, which showed strong opposite direction, smoking-related effects in blood and airway 26 

epithelium, with higher expression in airway epithelium and lower expression in blood of 27 

smokers versus non-smokers. By contrast, at similar significance thresholds, sex-related effects 28 

were entirely sex chromosomal and consistent across tissues, providing evidence of stronger 29 

effects of smoking than sex on autosomal expression. Due to sample size limitations, we only 30 

examined interaction effects in the largest study, where we identified 30 genes with sex 31 

differential effects in response to smoking, only one of which, CAPN9, replicated in a held-out 32 

analysis. Overall these results present a comprehensive analysis of smoking-related effects 33 

across tissues and an initial examination of sex differential smoking effects in public gene 34 

expression data.  35 

 36 
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INTRODUCTION 37 

In some areas of biomedical research, females are underrepresented and sex is still routinely 38 

left out of analyses, potentially leading to serious health consequences (Tannenbaum, Day, and 39 

Matera Alliance 2017). Many sex and gender differences have been reported in both smoking 40 

behaviors and health-related effects of smoking. Smoking is a major cause of premature death, 41 

and in the U.S. is estimated to cause more than 480,000 deaths annually (Centers for Disease 42 

Control, 2020). After adjusting for smoking history, women have been shown to have increased 43 

risk of respiratory symptoms (Langhammer et al. 2000), type 2 diabetes (Will et al. 2001), and 44 

lung cancer (Risch et al. 1993). Female smokers also are reported to be 50% more likely to 45 

develop COPD than male smokers (Barnes 2016). Despite a higher incidence of smoking-46 

related cancers in females, males have higher mortality from these cancers (Visbal et al. 2004) 47 

even though smoking shows a stronger effect on female patient survival (Allen, Oncken, and 48 

Hatsukami 2014). However, the biology underlying these differences is not well understood. 49 

Improved understanding of the molecular mechanisms behind these smoking-related 50 

differences can aid the development of biomarkers and treatments for smoking-related 51 

diseases, and may serve as a framework for examining sex differences in other chronic 52 

diseases and drug exposures. 53 

Gene expression data provide a unique opportunity to examine molecular level sex differences 54 

and dynamic biological responses to smoking. Comprehensive analyses of sex differentially 55 

expressed (DE) genes both across (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva 56 

et al. 2020) and within individual tissues (e.g. liver (Zhang et al. 2011), blood (Bongen et al. 57 

2019), brain (Trabzuni et al. 2013)) have found hundreds of sex differentially expressed (DE) 58 

genes. Additionally, multiple methods (Buckberry et al. 2014; Ellis et al. 2018; Giles et al. 2017; 59 

Toker, Feng, and Pavlidis 2016; Flynn, Chang, and Altman 2021) have been developed for 60 

inferring sex labels from gene expression data, leveraging the highly sexually dimorphic 61 

expression of X and Y chromosome genes. Smoking status also has a substantial impact on 62 

gene expression: previous studies have identified hundreds of DE genes between smokers and 63 

non-smokers in blood (Charlesworth et al. 2010; Na et al. 2015; Huan et al. 2016), airway 64 

epithelium (Chen Xi Yang et al. 2019; Boelens et al. 2009), lung (Landi et al. 2008; He et al. 65 

2018), and other tissues (Port et al. 2004; Na et al. 2015; Tsai et al. 2018). Researchers have 66 

found that many of these effects replicate across studies (Huan et al. 2016; Silva and Kamens 67 

2021), and gene signatures predicting smoking status have been identified for blood (Martin et 68 

al. 2015; Beineke et al. 2012) and lung tissue (Landi et al. 2008; Bossé et al. 2012).  69 

The impacts of sex and smoking on gene expression vary greatly throughout the body. In the 70 

case of sex, the majority of sex-differentially expressed autosomal genes have small, tissue-71 

specific effects, while sex-chromosomal genes generally show consistent differential expression 72 

across tissues (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva et al. 2020). By 73 

contrast, the tissue-specificity of smoking-related differential expression is less fully 74 

characterized. Several analyses have examined effects across tissues, but they focus on cancer 75 

(Alexandrov et al. 2016; Desrichard et al. 2018; Alisoltani et al., n.d) and may not extend to 76 

healthy tissues.  77 
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Characterizing smoking-induced gene expression changes across tissues helps not only with 78 

understanding the etiologies of smoking-related cancers, but also may allow for less invasive 79 

avenues for sampling. For instance, a blood sample or nasal swab could be used instead of a 80 

bronchial brushing or lung biopsy if tissues show substantial overlap in expression. Two studies 81 

examined a combination of bronchial epithelium and other epithelial tissues (nasal or nasal and 82 

buccal respectively), and found that while there was overlap between smoking-associated DE 83 

genes, the majority of DE genes were different between the tissues (Sridhar et al. 2008; 84 

Imkamp et al. 2018). Outside of these epithelial tissues, researchers have found less overlap. 85 

Morrow and colleagues (Morrow et al. 2019) demonstrated that across airway epithelium, 86 

alveolar macrophages, and peripheral blood, samples largely clustered by tissue and there were 87 

no shared DE genes; however, there was some overlap in pathway enrichment. Further work is 88 

thus required to comprehensively compare the overlap of smoking related effects across a 89 

larger number of tissues and studies. 90 

While many studies have examined how smoking and sex individually affect gene expression, to 91 

our knowledge, no studies have compared their relative impacts on expression and only a few 92 

have identified genes with sex-differential responses to smoking. Consideration and comparison 93 

of major drivers of variation is important in biological analysis, and sex differences are often 94 

understudied and overemphasized drivers (Patsopoulos, Tatsioni, and Ioannidis 2007). Some 95 

sex-related effects may not have clear clinical relevance, so comparison and evaluation of the 96 

relative impact of sex-related effects to other drivers of variation (such as smoking and disease 97 

states) may shed light on how these factors contribute to health and disease.  98 

In the case of sex-differential smoking effects (also known as sex-by-smoking interaction 99 

effects), Yang and colleagues (Chen Xi Yang et al. 2019) identified over 2,500 genes with sex-100 

specific responses to smoking in airway epithelium using data from 211 samples across 16 101 

overlapping studies. In blood, using data from 48 samples, Paul and Amundson (Paul and 102 

Amundson 2014) identified 80 genes with sex-differential smoking effects, many of which were 103 

associated with female sex hormone receptors (e.g. estrogen and progesterone), and 104 

Chatziioannou et al. (Chatziioannou et al. 2017) identified 26 genes with sex-differential effects 105 

in 344 blood samples. Identifying and replicating interaction effects is challenging: they are 106 

generally very small and require large sample sizes for identification. Across all 3 studies, there 107 

is limited overlap of identified genes, which is possibly due to tissue specificity, but further 108 

examination of these sex-differential smoking effects is required.  109 

Here, we leverage publicly available gene expression data to examine smoking and sex-related 110 

effects at scale and across multiple tissues to identify consistent, reproducible effects. We first 111 

perform a systematic search to identify smoking related studies, and then assess sex bias 112 

present in these studies. Next, across studies and tissues identified, we compare smoking and 113 

sex-related effects and assess the extent to which these effects are shared vs. tissue-specific. 114 

Following this, we perform an expanded re-analysis of an airway epithelium dataset to identify 115 

smoking, sex, and sex-differential smoking effects. Finally, we attempt to replicate identified 116 

sex-differential smoking effects using the largest of our identified studies. 117 

 118 
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METHODS 119 

1. Identification of smoking-related datasets 120 

 121 

1-1 Study search strategy 122 

We identified smoking-related microarray datasets by searching for mentions of the words 123 

<smoking/smoker/smoke=, <nicotine=, <tobacco=, or <cigarette= within study and sample metadata.  124 

We used a multi-pronged approach to identify smoking-related studies, examining studies from 125 

GEO (Edgar, Domrachev, and Lash 2002) and ArrayExpress (Brazma et al. 2003) separately. 126 

We used GEOmetadb (Zhu et al. 2008) (downloaded 11/8/2020) to identify GEO human studies 127 

and samples that mention a smoking-related term in the metadata. We restricted our sample 128 

search to single channel arrays containing either total or polyA RNA samples. We searched for 129 

mentions in the <title=, <summary=, or <overall_design= study fields and in the sample <title=, 130 

<source_name_ch1=, <treatment_protocol_ch1=, <description=, and <characteristics_ch1= fields. 131 

ArrayExpress is the European analog of GEO and contains a large number of expression 132 

studies. We searched for mentions of the smoking-related terms in the ArrayExpress browser 133 

and downloaded the resulting human studies, filtering for <RNA-seq= and <transcription profiling 134 

by array= and removing miRNA platforms. We combined the results of these two searches and 135 

removed studies with less than 10 samples. 136 

 137 

1-2 Manual Annotation and Filtering 138 

Based on the study title, abstract, and description, studies were manually annotated with tissue 139 

type and assigned to one of the following categories: 140 

1. Smokers vs non-smokers or smoking history provided (and at least 1 smoker and 141 

1 non-smoker) 142 

2. Treated cells exposed to smoke component 143 

3. All smokers (including current vs former) 144 

4. All non-smokers 145 

5. Not relevant (including cells with other exposures) or no smoking history provided 146 

 147 

1-3 Normalization and extraction of covariate data 148 

For smoking history studies, we extracted phenotypic data on sex, age, race/ethnicity/ancestry, 149 

BMI, and pack years, where available. Tissue annotations were manually assigned. We 150 

additionally extracted terms related to disease state (e.g. COPD, cancer) if they were present. 151 

Where present, the race/ethnicity/ancestry labels had highly variable annotations across 152 

studies. We made efforts to normalize these labels into a combined race/ethnicity/ancestry 153 

category, which included African, European, and Asian ancestries, and Hispanic/Latino 154 

ethnicity. 155 

 156 

2. Assessment of sex bias 157 

Our previously developed method for logistic regression-based models for sex labeling (Flynn, 158 

Chang, and Altman 2021) were trained on normalized data from the refine-bio database 159 

(Greene et al. n.d). This database consists of over 14,000 human studies from GEO, 160 

ArrayExpress, and SRA; however, it is not complete. Of the 176 smoking history studies, 139 161 

were contained in refine-bio. For application at scale, we restricted our assessment of sex bias 162 
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to these 139 studies. As in (Flynn, Chang, and Altman 2021), we grouped studies into the 163 

following categories based on the sample sex labels: 164 

1. Unlabeled: studies with either less than half of their samples labeled (for studies with up 165 

to 60 samples) or less than 30 samples labeled (for studies with more than 60 samples) 166 

2. Male-only: all male labels 167 

3. Female-only: all female labels 168 

4. Mostly-male: >80% of labeled samples are male 169 

5. Mostly-female: >80% of labeled samples are female 170 

6. Mixed sex:  80% of labeled samples belong to either sex 171 

 172 

To calculate the fraction of studies that are mixed sex or single sex, we exclude the <mostly= and 173 

unlabeled studies from the total and calculate the ratio: 174 

   frac_mixed_sex = n_mixed_sex / (n_female_only + n_male_only + n_mixed_sex) 175 

   frac_single_sex = (n_female_only + n_male_only)/(n_female_only + n_male_only + 176 

n_mixed_sex) 177 

 178 

 179 

3. Identification and processing of studies for follow up analysis 180 

 181 

3-1 Creation of an Airway Epithelium dataset 182 

There were a large number of airway epithelium studies (n=35) from the same lab and platform 183 

(GPL570), many of which contained some of the same sets of samples (Carolan et al. 2006; 184 

Harvey et al. 2007; Ammous et al. 2008; Carolan et al. 2008; Tilley et al. 2009; Vanni et al. 185 

2009; Hübner et al. 2009; Raman et al. 2009; Carolan et al. 2009; Leopold et al. 2009; Turetz et 186 

al. 2009; Dvorak et al. 2011; Strulovici-Barel et al. 2010; R. Wang et al. 2010; Shaykhiev et al. 187 

2011; Marcus W. Butler et al. 2011; M. W. Butler et al. 2011; R. Wang et al. 2011; Tilley et al. 188 

2011; Hackett et al. 2012; R. Wang et al. 2012; Buro-Auriemma et al. 2013; Shaykhiev et al. 189 

2013; Gao et al. 2014; Hessel et al. 2014; Walters et al. 2014; Tilley et al. 2016; Zhou et al. 190 

2016; J. Yang et al. 2017; G. Wang et al. 2017) (see Supplementary Table 1 for a list of study 191 

accessions and titles). We aggregated these samples into a Grouped Airway Epithelium 192 

(Grouped AE) dataset. Many of the samples contain covariate information related to age, 193 

race/ethnicity and pack-years (see Table 1A). The dataset contains both large and small airway 194 

epithelium samples, which largely cluster together in principal components space (see 195 

Supplementary Figure S6A). 196 

 197 

For processing, we first filtered to remove samples from subjects with COPD or asthma, and for 198 

subjects with repeated measures, we used the first sample from the subject. We then 199 

downloaded the raw expression data from GEO and used the R package affy (Gautier et al. 200 

2004) to load, normalize, and RMA transform the data. Many of the samples were direct 201 

duplicates across studies. For these samples, we combined their metadata, which exactly 202 

matched for sex and race with the exception of one sample which we excluded. Three samples 203 

contained different but nearby ages or pack-years; we took the average of the two values. We 204 
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also grouped by study participant ID (or <DGM= id in the metadata) and removed repeated 205 

samples with the same participant ID.  206 

 207 

Prior to covariate imputation and modeling, we grouped together categorical values with small n. 208 

For race-ethnicity labels, we assigned samples in race-ethnicity groups with less than 5 counts 209 

to <other race-ethnicity= for modeling purposes. Sample submission date correlated with 210 

expression, but contains 22 variables, many with small counts. For date groups with less than 211 

10 counts, we assigned the samples to the nearest submission date with more than 10 counts, 212 

resulting in 10 total submission date categorical variables. We chose to do this (rather than 213 

assigning all samples with small numbers of counts to an <other date= category) because 214 

samples appear to cluster together over time in PC space (see Supplementary Figure S6B 215 

and C for before and after date collapsing).  216 

 217 

3-2 Systematic Search for Smoking Studies across Tissues 218 

After removing the overlapping airway epithelium datasets, we focused on identifying studies 219 

using healthy tissues from at least 5 never smokers and current smokers at the time of sample 220 

selection. To do so, we downloaded the sample-level metadata for these studies in order to 221 

determine if there were sufficient samples. We included healthy tumor adjacent tissue from 222 

individuals with cancers, but excluded samples from individuals with COPD or other annotated 223 

diseases. We also removed studies from single sex tissues (prostate) or associated with 224 

pregnancy (placenta, umbilical cord). For studies with repeated samples from the same subject, 225 

we include only the first sample. We also did not include <ever= smokers unless additional 226 

information was present indicating that they were still smoking. 227 

 228 

For quality control, we inferred sample sex labels for candidate studies. While our penalized 229 

logistic regression model performs well at scale, clustering based methods are better for 230 

examining large mixed sex studies because they allow for visualization and examination of 231 

within-study clustering. Where expression levels for XIST, RPS4Y1, and KDM5D were 232 

available, we applied the Toker method (Toker, Feng, and Pavlidis 2016), otherwise we used 233 

massiR (Buckberry et al. 2014), which clusters based on the expression of Y chromosome 234 

genes. We manually checked each study to ensure clear separation and excluded six studies, 235 

and excluded mislabeled samples and studies without clear sex separation.  236 

 237 

3-3 Processing of Small Expression Studies 238 

MetaIntegrator (Haynes et al. 2017) was used to download the data as processed by the 239 

authors. MetaIntegrator performed log-transformation and quantile normalization if these steps 240 

were not already taken. 241 

 242 

4. Variance Decomposition 243 

We sought to examine the fraction of variance in each dataset associated with smoking and the 244 

sex-by-smoking interaction effects. To do this, we used principal variance components analysis 245 

(PVCA). Briefly, this method first performs PCA and then identifies the cumulative fraction of the 246 

variance explained by each of the covariates in a model across the first n PCs, where n is 247 

chosen based on the number of PCs that explain a cutoff fraction of the total variance. We used 248 
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0.8 for the cutoff fraction, but obtained similar results across a range of cutoffs (0.4-0.9). The R 249 

package variancePartition (Hoffman and Schadt 2016) was used to calculate the variance 250 

fractions. 251 

We ran PVCA with two models: 252 

1) baseline model: 253 

     PCi ~  sex + smoking + C 254 

2) interaction model: 255 

     PCi ~ sex + smoking + sex*smoking + C 256 

where C is the set of additional covariates, and PCi is the ith PC.  257 

The cumulative variance for covariate j is given by  3 (Xij * vi ) where Xij is the fraction of the 258 

variance in PCi  explained by covariate j and vi is the fraction of the total variance in the 259 

expression data explained by PCi. 260 

 261 

5. Differential expression analysis  262 

 263 

5-1 Differential expression model 264 

We performed differential expression analysis separately on each of the small datasets and the 265 

grouped airway epithelium dataset. The R package limma (Ritchie et al. 2015) was used for 266 

differential expression analysis, with the following model: 267 

      268 
 269 

Sex and sex*smoking covariates were excluded from single-sex datasets. We used the cutoffs 270 

FDR <0.05 and absolute effect size log fold change of  0.3 for identifying differentially 271 

expressed (DE) genes.  272 

 273 

5 - 2 Summarizing probes to genes  274 

Because the studies spanned a variety of platforms, identification of DE genes and comparison 275 

across studies was performed at the gene level.  276 

 277 

Probes were mapped to HGNC gene symbols using the appropriate Bioconductor package 278 

(hgu133plus2.db, hgu219.db, hgu133a.db, hgu133a2.db, hugene10sttranscriptcluster.db) for 279 

five platforms. For the remaining 7 platforms, the probe-to-gene mapping was downloaded 280 

directly from GEO.  281 

 282 

For meta-analysis, following model fitting at the probe-level, we used fixed effects inverse 283 

variance meta-analysis to summarize effect sizes to genes, as implemented in the R package 284 

meta (Schwarzer, Carpenter, and Rücker 2015).  285 

 286 

Due to the lack of ground truth, we chose to drop out portions of a dataset and apply these 287 

methods, where the <true= genes were the DE genes from the full dataset (where DE genes are 288 

the set of genes to which all DE probes mapped). We used the Grouped AE dataset as the full 289 

dataset, and smoking as the covariate examined. We examined the precision and recall of the 290 

three methods at two FDR cutoffs (< 0.01 and < 0.05) and across varying dropout fractions (0.3-291 

0.9), with fifteen random dropouts per fraction (see Supplementary Figure S9 for the results).  292 
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 293 

For this analysis, we wanted to be conservative in our estimates, and as a result, chose to use 294 

meta-analysis for summarization.  295 

 296 

5 - 3 Assessment of replication and overlap 297 

Genes identified in the Grouped AE dataset were replicated using the dataset GSE7895, which 298 

was selected for validation because it was the largest airway epithelium dataset present in the 299 

set of smaller studies. We identified lists of replicated genes, which we define as the subset of 300 

DE genes from the discovery that have a p-value < 0.05 in the validation and effect sizes in the 301 

same direction in the discovery and validation sets. We also examined the correlation between 302 

the effect sizes of the DE genes. 303 

 304 

For examining overlapping genes between 2 studies (rather than replication), we use the union 305 

of the DE genes (FDR < 0.05 , logFC  0.3), resulting in n overlapping genes. We identify 306 

overlapping significant genes as genes that have effect sizes in the same direction and p-value 307 

< 0.05/ngenes in both studies where ngenes is the number of overlapping genes. In order to 308 

examine the similarities between 2 studies related to their association with the variable of 309 

interest (smoking, sex), we examined the correlation of the effect sizes. We used a permissive 310 

cutoff for genes included (FDR < 0.10 in either study) and, if there were at least 30 genes 311 

remaining, we calculated the correlation coefficient across genes for mean effect sizes weighted 312 

by their standard deviations. We chose to use a weighted correlation coefficient in order to be 313 

less sensitive to the FDR cutoff, while ensuring that genes with smaller standard errors are 314 

weighted more highly. 315 

 316 

5-4 Examining tissue specificity 317 

We used  to examine tissue specificity of particular genes and compare the tissue-specificity 318 

between smoking- and sex-related analyses (Yanai et al. 2005). This metric  was designed for 319 

examining tissue-specificity of expression of a particular gene and results in a number 0 to 1 320 

where 0 is ubiquitously expressed and 1 is tissue-specific. We extend this to examine tissue-321 

specificity of differential expression by inputting the absolute log fold-change values instead of 322 

the log expression intensity to obtain the tissue-specificity of differential expression. The formula 323 

for  is given below: 324 

  325 
Where n is the number of tissues and we define xi as the median log-fold-change in tissue i. 326 

Importantly this does not distinguish between opposite direction effects, so it is important to also 327 

examine their presence.  328 

 329 

6. Between- and within-tissue meta-analyses 330 

We performed random effects meta-analysis using the DerSimonian-Laird estimator, first across 331 

studies and tissues, and then for blood and airway epithelium studies separately, examining 332 

both smoking and sex-related effects. The Grouped AE study was not included in the meta-333 

analysis because it is substantially larger than the other datasets and as a result may have a 334 
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strong impact on the results. We selected 4 validation studies: GSE7895 (airway epithelium), 335 

GSE27002 (alveolar macrophages), GSE21862 (PBMCs), and E-MTAB-5279 (whole blood).  336 

 337 

We included 6 whole blood and two PBMC studies in the blood meta-analysis. The B cell study 338 

was excluded because it represents a specific cell type in blood, while the others are a mixture 339 

(meta-analysis of all blood studies including the B cell study also shows similar results). For the 340 

airway epithelium meta-analysis, we included four airway epithelium studies and added the 341 

trachea epithelium study because trachea is an airway tissue and overlaps in PC space (we 342 

expect this may reflect differences in terminology), and the expression was highly correlated. 343 

 344 

We performed the smoking-related meta-analysis for genes present in at least 15 of the 27 345 

studies. For the sex-related meta-analysis, we selected a lower cutoff for number of studies 346 

(n=10 out of 24) because of the large number of missing sex chromosome probes. Finally, for 347 

blood and airway meta-analyses, we filtered for at least 5 blood and 4 airway studies 348 

respectively. 349 

  350 

For validation, we considered a gene validated in a particular study if the gene's effect size is in 351 

the same direction and has a p-value < 0.05 / (number of genes).  352 

 353 

7. Sample size calculation for interaction effects 354 

We examined the sample size required to detect an interaction effect in an expression dataset 355 

in the case where we have two binary covariates (smoking, sex) and under the assumption that 356 

the data is balanced. We used the R package ssize (Warnes et al. 2020) with a power of 0.80 357 

and FDR of 0.05. We assumed uniform standard deviations of probes, and used a value of 0.6 358 

based on the mean empirical standard deviation of probes across datasets included.  We then 359 

examined the sample size required for detecting absolute log effect sizes in the range of 0.1 to 360 

0.6, assuming 90%, 95%, and 99% of genes were not differentially expressed (see 361 

Supplementary Figure S10).  362 

 363 

RESULTS 364 

1. Systematic search for smoking-related studies  365 

We performed a systematic search of human gene expression studies in GEO and 366 

ArrayExpress to identify studies that have smoking-related information (see Supplementary 367 

Figure S1 for a diagram showing the systematic search approach). We searched both sample 368 

and study metadata and identified 530 studies (spanning 63,772 samples) that contained a 369 

smoking-related mention. We manually annotated the studies to identify the subset that have 370 

smoking history information (n=176 studies).   371 

 372 

To examine effects across tissues, we identified the subset of smoking history studies that 373 

contain samples from at least 5 healthy smokers and non-smokers (see Table 1B for the list 374 

and their sample breakdown). Thirty-five studies in airway epithelium were from the same lab, 375 

using the same microarray platform, and had many overlapping samples. We combined all of 376 
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these into a single larger study (further described as Grouped Airway Epithelium or Grouped 377 

AE), which contained 444 samples after deduplication (see Table 1A, Methods 3-3).  The 378 

additional airway epithelium studies are distinguished from the Grouped AE study in that they 379 

are either from another lab and/or on a different microarray platform.  380 

 381 

The remaining 31 studies (1754 samples) are majority blood or blood component (n=11), 382 

followed by airway epithelium (n=5), then lung and alveolar macrophages (n=3), and buccal 383 

mucosa (n=2), and 1 each of nasal epithelium, tracheal epithelium, oral cavity, sputum, kidney, 384 

liver, and brain (prefrontal cortex). While the lower bound was 5 smokers and non-smokers, the 385 

range for identified studies was 5 to 166 smokers and 5 to 56 non-smokers (medians = 21 and 386 

22 respectively). Seven studies had significantly more smokers (p= 1.6*10-13 to 4.7*10-2) while 3 387 

had significantly more non-smokers (p= 3.0*10-7 to 5.4*10-5).  388 

389 
Figure 1. Study schematic. We performed a search for human gene expression studies on smoking. 390 

This resulted in a set of 31 separate studies, as well as a group of overlapping airway epithelium (AE) 391 

studies we combined into a single grouped study. We examined the sex breakdown in these studies and 392 

perform both individual differential expression analyses as well as meta-analyses across studies and 393 

tissues in order to identify differentially expressed genes. We used the results of these analyses to 394 

compare the effects of smoking and sex across studies and tissues. 395 

 396 

2. Smoking-related samples are male-biased 397 

We additionally sought to examine sex bias overall in smoking-related studies. We focused on 398 

the 139 (out of 176) smoking history studies that were included in the refine-bio database by 399 

inferring sex labels from gene expression data using our previously published method (Flynn, 400 

Chang, and Altman 2021). For smoking history studies, 34.5% of samples and 38.8% of studies 401 

were missing metadata sex labels; this is much lower than seen across all human studies and 402 

samples (e.g. 70.7% of human microarray samples are missing sex labels (Flynn, Chang, and 403 
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Altman 2021)). The higher fraction of sex labels in smoking datasets may be related to the fact 404 

that smoking status is included, so sex is additionally likely to be recorded as a covariate. 405 

 406 

After inferring sex labels from expression, we found that smoking-related samples are slightly 407 

male-biased with 59.1% and 68.1% percent of labeled samples derived from males for smoking 408 

history and treated cell studies, respectively. This is in contrast to the overall pattern of human 409 

samples which is slightly female-biased (52.1%) but matches the pattern that more men smoke. 410 

The majority of smoking history studies are mixed sex (92% of labeled studies). The high 411 

fraction of mixed sex studies helps with follow up examination of sex-related effects (see 412 

Supplementary Figure 2 and Supplementary Table S2 for the sample and study sex 413 

breakdowns, respectively). 414 

 415 

Of the 31 studies included in our follow up analysis, 9 did not have metadata sex labels and 3 416 

studies were single sex. In addition to the higher proportion of males (59.4%, p < 4*10-15), male 417 

sex was also significantly associated with smoking status (p < 0.0007, see Supplementary 418 

Figure S3 for the sex and smoking breakdown of these studies). Seven studies contained a 419 

total of 23 samples where the inferred sex did not match the metadata sex, corresponding to 420 

1.3% of the samples examined (see Table 1B). The Grouped AE study was a higher fraction 421 

male (70%) and contained 2.4% mislabeled samples (see Table 1A, Supplementary Figure 422 

S7). Sample sex mismatches highlight the potential for mislabeled samples along other 423 

dimensions (e.g. smoking status), and were excluded from follow up analysis.  424 

 425 

3. Smoking effects are largely tissue-specific and autosomal but show some consistency 426 

across tissues, while sex-related effects are sex chromosomal and consistent across 427 

tissues 428 

 429 

We sought to examine the extent to which smoking-related effects are consistent across the 430 

tissues and the studies we examined. First, we performed differential expression analysis within 431 

each study across tissues (airway epithelium, lung, kidney, buccal mucosa, etc.) (see 432 

Supplementary Table S3 for a summary of results across studies), and summarized probes to 433 

genes with meta-analysis. Four studies showed no differentially expressed (DE) genes related 434 

to smoking, while the remaining studies had between 2 and 4357 DE genes, with a median of 435 

31. As expected, larger studies had more DE genes (for smoking: spearman9s =0.36, p = 436 

0.049, sex and sex-smoking n.s.) and more overlap between each other.  437 

 438 

Overlap and between-study correlations of smoking-related effects appear to cluster by tissue, 439 

with separate clusters of airway epithelium and blood studies (Figure 2A shows the counts of 440 

overlapping genes; Figure 2C contains the correlations of top genes between all pairs of 441 

studies). For example, Grouped AE showed the highest correlation with other airway epithelium 442 

studies ( =0.72, 0.57, and 0.55) and the trachea epithelium study ( = 0.584). By comparison, 443 

sex-related effects appear to correlate across studies and tissues (see Figure 2D). We 444 

separated out the autosomal (Figure 2E) genes, and found that the strong pattern of shared, 445 

consistent sex-related effects is largely limited to the sex chromosomes.  446 

 447 
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While the majority of overlap clustered by tissue, 7 DE genes were present in 5 studies 448 

spanning both an airway-related tissue (airway, sputum, oral, buccal, lung, or alveolar) and non-449 

airway tissue (blood, brain, kidney or liver): LRRN3, MS4A6A, GAPDH, RPLP0, CX3CL1, 450 

GPR15,  and AHRR (another 7 genes were present in 4 studies with both an airway and non-451 

airway), indicating the presence of some consistent smoking-related effects across tissues (see 452 

Supplementary Table S4A for full lists of smoking DE genes present in at least two studies).  453 

 454 

We also performed a meta-analysis across tissues using 27 out of 31 studies (see Methods 6), 455 

and identified 7 genes that showed significant smoking-related effects: the expression of AHRR, 456 

CYP1B1, NQO1, LRRN3 were significantly higher and ELOVL7, CCL4, and GZMH were 457 

significantly lower in current smokers as compared to non-smokers (see Supplementary Table 458 

S5 for their effect sizes). Figure 3A shows the study-level expression of these 7 genes as well 459 

as the pooled estimate. In our analysis, we identified LLRN3 and AHRR as genes that had an 460 

effect in both an airway and non-airway tissue. Two genes, GZMH and AHRR, appear to show 461 

relatively consistent effects across tissues, showing consistently lower and higher expression in 462 

smokers vs. non-smokers respectively. For the remainder of these genes, the effects appear to 463 

be tissue-dependent. NQO1 shows a strong association with smoking in airway epithelium, 464 

while LRRN3 appears to show a stronger association with smoking in blood (both have higher 465 

expression in smokers). CYP1B1 shows strongest association with smoking in airway 466 

epithelium (higher in smokers), while ELOVL7 and CCL4 appear to be strongest in alveolar 467 

macrophages and sputum (lower in smokers).  468 

 469 

We examined whether these genes were differentially expressed in four held-out validation 470 

datasets (GSE7895 - airway epithelium, GSE27002 - alveolar macrophages, and GSE21862 471 

and E-MTAB-5279 - blood). Four of the smoking-related genes were differentially expressed in 472 

the validation datasets, each in one study: LRRN3 (blood), AHRR (blood), NQO1 (airway 473 

epithelium), and CYP1B1 (alveolar macrophages). Interestingly, LRRN3 and NQO1 showed 474 

similar tissue-specificity to the discovery dataset. 475 

 476 

Although some genes showed consistent responses to smoking across tissues, looking 477 

within tissues highlights key genes involved in tissue-specific responses. We performed 478 

tissue specific meta-analyses for blood and airway epithelium studies. The blood analysis 479 

included two PBMC and five whole blood studies, while the airway epithelium analysis included 480 

four airway and one trachea epithelium study (see Supplementary Figure S4 for heatmaps and 481 

Supplementary Table S5 for the lists of genes). At an FDR of 0.05 and effect size cutoff of  482 

0.3, the blood meta-analysis identified 19 DE genes, while the airway epithelium analysis 483 

identified 66 DE genes. In airway epithelium, 21 out of the 66 DE genes validated in the held-out 484 

airway epithelium dataset (GSE7895). In blood, only 3 DE genes were replicated (SH2D1B, 485 

KLRF1, AKR1C3). Only 1 gene, AKR1C3, overlapped between the 2 meta-analyses and 486 

interestingly, it showed opposite direction effects in the 2 tissues (pooled effect size estimates: 487 

logFC=-0.32, p= 2.0*10-5 in blood and logFC=1.6, p = 6.2*10-10, both validated), as shown in the 488 

violin plot in Figure 4.    489 

 490 
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By contrast, most sex-DE genes were consistent across studies and tissues: forty-five genes 491 

were consistently DE in at least three studies (see Supplementary Table S4B). Only four of 492 

these genes were autosomal (EIF5B, ACTB, KLF6, LAPTM4B), and the sex-DE autosomal 493 

genes had higher expression in females. Six of the DE sex chromosomal genes were present in 494 

20 or more studies, including RPS4Y1, EIF1AY, DDX3Y, KDM5D, UTY, USP9Y, and XIST. We 495 

additionally saw little evidence of tissue specificity for the sex-related meta-analysis (Figure 496 

3B), which identified 22 X and Y chromosome genes with sex differences in expression: 12 497 

higher in males and 10 higher in females. All but 2 of these genes validated in a held-out 498 

dataset, and 11 validated in 2 or more datasets.  Tissue-specific, sex differences meta-analyses 499 

resulted in 32 genes in blood and 6 in airway epithelium. The majority of these genes were sex 500 

chromosomal; however, 15 genes in blood and 1 gene in airway epithelium were autosomal. 501 

Overall, 14 blood and 4 airway epithelium genes validated in the held-out datasets; all validated 502 

genes were sex chromosomal.  503 

 504 

It is important to note that for analysis, we inferred sex labels using the expression of a subset 505 

of X and Y chromosome genes (although there are many other X and Y genes that are DE).  In 506 

addition, when we examined the subset of studies with metadata sex labels (35 studies) and 507 

assumed that these labels were correct, we obtained similar patterns of significantly 508 

differentially expressed X and Y chromosome genes that were overlapping across studies and 509 

tissues. 510 

 511 
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 512 
Figure 2. Smoking and sex-related effects across tissues. Heatmaps showing the numbers of overlapping significant genes (A-B) and 513 

correlation of effect sizes (C-E) in each of the studies for smoking (A, C) and sex-related effects (B, D, E). Studies are organized by tissue, as 514 

indicated by the color bars on the side.  A-B) The number of overlapping genes is shown, with darker purple indicating larger numbers for smoking 515 

(A) and sex (B). C-E) Correlation plots colored by weighted Pearson correlation of the effect sizes (weighted by standard error) for top overlapping 516 

genes (FDR < 0.1 in either study).  Correlations are plotted for smoking-related effects (C) and for sex-related effects separated into sex 517 

chromosome (D) and autosomal effects (E). Orange indicates a positive correlation, white indicates no correlation, and purple is a negative 518 

correlation. Correlation was not calculated for pairs of studies with less than 30 overlapping genes; these are shown in gray.519 
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 520 
Figure 3. Meta-analysis of differential expression across studies for smoking (A) and sex (B).  Studies are organized by tissue, as indicated by the 521 

color bars on the left side of each heatmap. The color of the heatmap tiles show the log-fold change (logFC) of the association between the 522 

variable of interest (smoking or sex) and that gene in that specific study: gold is more highly expressed in smokers and turquoise is more highly 523 

expressed non-smokers, green is higher in females and purple is higher in males. Gray tiles indicate missing values.524 

https://doi.org/10.1101/2021.09.27.461968
http://creativecommons.org/licenses/by-nc/4.0/


 

16 

 525 

 526 

 527 

 528 
Figure 4.  Violin plot showing the distribution of AKR1C3 levels across smokers (gold) and non-smokers 529 

(teal) in airway and blood studies. The mean and 95% confidence interval are included for each 530 

study/smoking group, and the size of point corresponds to the overall study sample size. 531 

 532 

 533 

Genes associated with smoking show more tissue specificity than genes with similar 534 

effect sizes associated with sex.  We examined the subset of DE genes present in at least 3 535 

studies and 2 tissues, and adapted the t tissue-specificity metric (Yanai et al. 2005) to examine 536 

specificity of differential rather than absolute gene expression (see Methods 5-4). Across DE 537 

genes, smoking-related genes showed significantly more tissue-specificity than sex-related 538 

related genes (p= 4.92 * 10-10) (Figure 5A for the summary of these effects and 539 

Supplementary Figure S5 to visualize differences at the gene level). 540 

 541 

In addition to comparing tissue-specificity, we used variance components analysis (see 542 

Methods 4) to compare the contributions of sex and smoking to variation in gene expression. 543 

We found that, across studies, smoking explains a significantly larger portion of variation in 544 

autosomal gene expression than sex (p=0.015), highlighting the importance of considering 545 

extrinsic sources of variation in addition to sex (Figure 5B). 546 

 547 
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 548 
Figure 5. Comparison of sex and smoking effects. (A) Smoking-related genes (gold) show higher 549 

tissue-specificity than sex-related genes (purple). The y axis shows the tissue specificity using the  550 

metric, where 0 is ubiquitous across tissues, and 1 is tissue-specific, and each point is a different gene 551 

(see Supplementary Figure S5 for the individual genes). (B) Study proportions of variance in expression 552 

resulting from smoking-related autosomal effects are on average higher than that of sex-related 553 

autosomal effects. The y-axis shows the proportion of variation. Each point is the proportion of variance 554 

explained by that covariate (sex or smoking) in one study, colored by the location of the probes (orange 555 

for autosomal, blue for sex chromosomal). 556 

 557 

4. Airway epithelium shows strong patterns of smoking-related differential expression  558 

We first examined the grouped airway epithelium dataset for patterns of smoking and sex-559 

related differential expression. The airway epithelium dataset consists of 444 samples, which is 560 

an expanded version of the dataset analyzed by Yang et al (C. X. Yang et al. 2019) (n=211).   561 

 562 

We used principal variance components analysis (PVCA) (see Methods 4) to examine the 563 

overall contributions of the covariates sex, smoking, and a sex-by-smoking interaction effect to 564 

variance in expression. Similar to the analysis across tissues, we found that in the Grouped AE 565 

study, smoking-related autosomal genes explain a larger fraction of variance than sex-related 566 

autosomal genes (see Figure 6A). Additionally, here we see a larger proportion of sex-related 567 

variance due sex chromosomal genes versus autosomal genes.  568 

 569 
We used a model including sex, smoking, and a sex-by-smoking interaction term, in addition to 570 
the covariates race-ethnicity, pack-years, age, and submission date. This model is similar to that 571 
used by Yang et al. (C. X. Yang et al. 2019) but also includes submission date to account for 572 
batch effects (i.e. effect of non-biological factors) seen in the data (see Supplementary Figure 573 

S6). Using this model with an FDR cutoff of <0.05 and absolute log fold-change cutoff of g0.3, 574 

we identified 2625 probes differentially expressed related to smoking, 128 related to sex, and 1 575 

related with a significant interaction effect. Given that many probes map to the same gene, we 576 
sought to leverage these patterns of multi-mapping by meta-analyzing the values of the probes 577 
corresponding to each gene (see Methods 5-2). After summarizing probes to genes, the same 578 
cutoffs resulting in 932 DE genes related to smoking, 48 genes related to sex, and 30 with sex-579 
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differential smoking effects (see Supplementary Tables S5A-C).  Of these genes, 43 genes 580 
with smoking-related and 33 genes sex-related effects were located on the X or Y 581 
chromosomes. Volcano plots showing DE genes related to smoking and sex differential 582 
smoking effects are included in Figures 6B and C, respectively. Many of these genes were also 583 
identified by Yang et al (C. X. Yang et al. 2019) in their analysis, and show similar effect sizes 584 
(see Supplementary Figure S8 for a comparison of smoking-related genes).  585 
 586 

We then sought to assess the extent to which these DE genes were replicated in a held-out 587 

airway epithelium dataset. From our list of 21 studies, we selected GSE7895, which is the 588 

largest airway epithelium dataset (and was also used for replication by Yang et al (C. X. Yang et 589 

al. 2019)). This dataset was generated by the same lab as the Grouped AE dataset but was on 590 

a different platform and represents a different set of subjects. Figures 6D and E compare the 591 

effect sizes in the discovery (Grouped AE) dataset versus the replication (GSE7895) dataset for 592 

smoking and sex differential smoking effects respectively.  While 110 smoking DE and 18 sex-593 

DE genes replicated (same direction effect size and p-value < 0.05), only 1 of the interaction 594 

effect genes replicated: CAPN9. CAPN9 is higher in smokers than non-smokers, but appears to 595 

show a slightly stronger effect in females than in males; however, it is important to note that the 596 

GSE7895 dataset contains only 5 female non-smokers, so it is difficult to draw conclusions 597 

about whether this effect is truly replicated (see Figure 6F).  598 

 599 

In addition to examining the replication of particular genes, we also sought to examine the 600 

relationship of the effect sizes. Specifically, for DE genes identified in the discovery set, we 601 

determined whether the effect sizes in the discovery and validation were related. Between the 602 

discovery and validation, while there is a strong correlation in the effect sizes for smoking 603 

related effects (Pearson9s =0.63, p< 2*10-16), there is no correlation in the effect sizes for sex 604 

differential smoking effects (Pearson9s =-0.04, p=0.86). The lack of correlation as well as the 605 

single gene in the replication of the sex-differential smoking effects is likely due in part to the 606 

small sample size and unbalanced nature of the replication set, but also demonstrates a lack of 607 

concordance of effect sizes, even if they are not significant in the replication. 608 

 609 
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 610 
Figure 6. Results from grouped airway epithelium analysis. (A) Bar plot showing airway epithelium variance decomposition across smoking, 611 

sex, and smoking-by-sex covariates. The location of the probes is given by the color of the bars: orange is autosomal, blue is sex chromosomal, 612 

and gray is unmapped. (B,C) Volcano plots showing DE genes related to smoking (B) and the sex-by-smoking interaction effect (C). The x-axis is 613 

the log-fold change (logFC) in expression between smokers and non-smokers, and the y axis is the -log10 of the unadjusted p-value. Each point is 614 

a gene, colored according to significance: red indicates the genes are significantly up in non-smokers, blue indicates the genes are significantly up 615 

in smokers, genes in gray do not pass the significance threshold. The top 20 genes (lowest p-value) are labeled. (D,E) Replication of DE genes in 616 

held out airway epithelium dataset (GSE9875) for sex (D) and sex-differential smoking responses (E). Each point is a DE gene identified in the 617 

Grouped AE dataset. The x-axis shows the log fold change in discovery and the y-axis shows the log fold change in the replication dataset. A 618 

positive log-fold change corresponds to higher expression in smokers. Red dots indicate genes that pass the replication threshold in the validation 619 

dataset. Only the top 20 gene names are shown in (D) for ease of visualization. Dashed lines are at log-fold change zero. (F) Visualization of 620 

CAPN9 interaction effects in discovery and validation in female and male smokers (gold) and non-smokers (teal).621 
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5. The majority of smoking-related expression studies are underpowered to detect sex 622 

differences in smoking effects 623 

In addition to examining the effects of smoking across tissues, we were interested in assessing 624 

whether there are sex-differential responses to smoking. However, large sample sizes are 625 

required to have sufficient power to detect interaction effects, which are often very small. 626 

Assuming best case scenario where the datasets are balanced - i.e. ¼ each of male smokers, 627 

male non-smokers, female smokers, and female smokers - in order to have 80% power to 628 

detect absolute log effect sizes of 0.3 (i.e. 1.2-fold difference in expression levels) at an FDR of 629 

0.05, we would need at least 60 samples (see Supplementary Figure 10 for a visualization of 630 

these parameters and Methods 7 for an explanation of these calculations). It is expected that 631 

most interaction effects are smaller than that, and for log effect sizes of 0.2 and 0.1, we would 632 

need at least 140 and 525 samples, respectively. The Grouped AE study contains 444 samples, 633 

but with an uneven breakdown: the smallest category (female non-smokers) contains only 61 634 

samples (14%) and largest (male smokers) contains 200 samples (45%). 635 

 636 

The studies overall were highly imbalanced across sex and smoking categories. Across all 637 

studies, the median numbers of samples per category are 13.7, 9, 17.3 and 16 samples for 638 

female non-smokers, female smokers, male non-smokers, and male smokers, with totals of 424, 639 

279, 535, and 495 samples per category respectively. Only 4 of the 31 smoking-related studies 640 

contained at least 15 male and female samples per smoking category (E-MTAB-3604, 641 

GSE17913, E-MTAB-5278, GSE30272), and only 2 of these studies have more than 20 males 642 

and females per category (E-MTAB-5278, GSE30272, with 23 or more per category).  The 643 

remaining studies did not have sufficient samples for detecting genes with sex-differential 644 

smoking effects in standard interaction analyses. Given these power limitations, we focused on 645 

whether the interaction effects identified in the Grouped AE study replicated in the other studies. 646 

None of the 30 genes replicated at Bonferroni corrected p-value threshold (p < 0.05/30).  647 

Because this is conservative, we also examined the results at an uncorrected p-value threshold; 648 

however, this means that we expect they may be false positives, and all require further 649 

validation. 650 

 651 

Five of the 30 genes had an uncorrected p-value < 0.05 and same direction effects in the 652 

replication: SLC25A37 and OPN3 in the study E-MTAB-5278 (blood), and RALGDS, KCNJ1, 653 

and MS4A7 in GSE30272 (brain). The list of these genes and their p-values and effect sizes are 654 

included in Supplementary Table 7; see Supplementary Figure 11 for visualization of their 655 

effects. Briefly, in smokers relative to non-smokers, SLC25A37 is lower in males and KCNJ1 is 656 

lower in females. Two genes, OPN3, MS4A7, appear to be lower only in female non-smokers, 657 

while RALGDS shows opposite direction effects: higher in female smokers and lower in male 658 

smokers.  659 

 660 
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 661 

 662 

Table 1. Smoking and sex breakdown of airway epithelium data 663 

 Smokers Non-smokers 

total female* male total female male 

n 273 73 200 171 61 110 

age½ mean ± sd 42.6±7.4 41.3±8.9 43.1±6.8 40.3±10.2 37.9±11.3 41.6±9.4 

missing 79 19 60 30 13 17 

raceg Asian 0 0 0 4 4 0 

Black 119 33 86 67 20 47 

Black, 
Hispanic 

0 0 0 2 2 0 

Hispanic 32 7 25 20 8 12 

White 45 14 31 50 14 36 

missing  77 19 58 28 13 15 

pack 
yearsï 

mean ± sd 27.6±16.8 27.1±16.4 27.7±17.1 -- -- -- 

missing 81 20 61 -- -- -- 

 664 

*Sex is not significantly associated with smoking p = 0.059 (chi-squared test) 665 
½Age is associated with smoking status (p = 0.02) and sex is also associated with age (p=0.01). 666 

Missingness of age associated with smoking (p=0.009) but not sex (p=0.92). 667 
gRace-ethnicity is significantly associated with smoking status (chisq p = 0.03, removed 668 

categories with less than 5 counts total) but not sex (p=0.99). Missingness of race-ethnicity 669 

associated with smoking status (p=0.006) but not sex (p=1)  670 
ïPack-years is not associated with sex (p=0.8) (t-test) and missingness of pack-years is not 671 

associated with sex (p=0.29) or race (p=0.08) 672 

 673 

 674 
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Table 1B. Sex breakdown of smaller studies organized by tissue. The number of females in each category is included in 675 

parentheses. 676 

tissue study title (citation where available) platform smokers non- 

smokers 

sex label 

mismatch 

additional 

phenotypes 

airway 

epithelium 

GSE14633 Gene expression from bronchial 

epithelial cell samples of current 

and never smokers.(Schembri et 

al. 2009) 

GPL5175 11 (3) 11 (7) 0 race;  

pack years 

airway 

epithelium 

GSE19027 Antioxidant response gene 

expression in the bronchial airway 

epithelial cells of smokers at risk 

for lung cancer (X. Wang et al. 

2010) 

GPL96 22 (1) 7 (2) 2 age; race; 

pack years  

airway 

epithelium 

GSE4302 Genome-wide profiling of airway 

epithelial cells in asthmatics, 

smokers and healthy controls 

(Woodruff et al. 2007) 

GPL570 15 (2) 28 (16) no 

metadata 

NA 

airway 

epithelium 

GSE5056 Airway epithelium, large airways, 

phenotypically normal smokers vs 

non-smokers, MAS5 (HuGeneFL) 

(Carolan et al. 2006) 

GPL80 26 (8) 18 (4) 0 age; race; 

pack years 

airway 

epithelium 

GSE7895 Reversible and permanent effects 

of tobacco smoke exposure on 

airway epithelial gene expression 

(Beane et al. 2007) 

GPL96 52 (10) 21 (5) 0 age;  

pack years 

alveolar 

macrophages 

GSE13896 Smoking-dependent 

reprogramming of alveolar 

macrophage polarization: 

implication for pathogenesis of 

GPL570 50 (6) 43 (10) 4 age; race; 

pack years  
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COPD (Shaykhiev et al. 2009) 

alveolar 

macrophages 

GSE2125 Isolated alveolar macrophages 

(Woodruff et al. 2005) 

GPL570 13 (2) 15 (10) no 

metadata 

NA 

alveolar 

macrophages 

GSE27002 Chronic cigarette smoke exposure 

results in coordinated methylation 

and gene expression changes in 

human alveolar macrophages (R. 

A. Philibert et al. 2012) 

GPL5175 13 (4) 10 (5) no 

metadata 

NA 

blood - b cells GSE18723 Gene expression circulating B 

lymphocytes for smoking females 

(Pan et al. 2010) 

GPL96 38 (38) 40 (40) all female menopause 

blood - pbmcs GSE21862 Gene expression on 144 arrays 

representing 125 workers exposed 

to a range of benzene exposures 

(McHale et al. 2011) 

GPL6104 9 (1) 33 (24) 0 age; 

subject_id; 

batch (chip 

id) 

blood - pbmcs GSE42057 Peripheral blood mononuclear cell 

gene expression in chronic 

obstructive pulmonary disease 

(Bahr et al. 2013) 

GPL570 13 (7) 27 (13) 0 age; 

pack_years; 

fev1; bmi; 

activity 

blood - pbmcs GSE87072 Gene expression profiles from 

PBMCs collected from chronic 

smokers and moist snuff 

consumers (Arimilli et al. 2017) 

GPL570 40 (0) 40 (0) all male age 

blood - whole E-MTAB-5278 Transcription profiling of blood from 

smokers (with or without COPD), 

non-smokers and former smokers 

to identify gene expression 

GPL570 56 (23) 56 (23) 4 race; age 
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signature for cigarette smoke 

exposure response (Martin et al. 

2015) 

blood - whole E-MTAB-5279 Transcription profiling of blood from 

smokers, non-smokers and former 

smokers to identify gene 

expression signature for cigarette 

smoke exposure response (Martin 

et al. 2015) 

GPL570 27 (12) 28 (13) 0 race; age 

blood - whole GSE20189 A gene expression signature from 

peripheral whole blood for stage I 

lung adenocarcinoma (Rotunno et 

al. 2011) 

GPL571 27 (14) 21 (11) no 

metadata 

NA 

blood - whole GSE20681 Whole blood cell gene expression 

profiling in patients with coronary 

artery disease from the PREDICT 

trial (Elashoff et al. 2011) 

GPL4133 14 (3) 48 (16) 0 age 

blood - whole GSE23323 Transcriptomics in response to 

cigarette smoking in humans 

GPL6480 22 (10) 22 (10) no 

metadata 

NA 

blood - whole GSE23515 Radiation responses in peripheral 

white blood cells of smokers and 

non-smokers (Paul and Amundson 

2011) 

GPL6480 12 (6) 12 (6) 0 age 

blood - whole GSE56768 Whole blood and isolated blood 

cell transcriptomics in COPD 

GPL570 39 (19) 5 (3) no 

metadata 

NA 

brain - 

prefrontal 

cortex 

GSE30272 Temporal dynamics and genetic 

control of transcription in the 

human prefrontal cortex 

GPL4611 56 (23) 166 (52) 0 race; age; 

alcohol; 

postmortem 
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(Colantuoni et al. 2011) interval; 

batch 

buccal 

mucosa 

GSE16149 Examining smoking-induced 

differential gene expression 

changes in buccal mucosa (Kupfer 

et al. 2010) 

GPL570 9 (9) 9 (9) all female NA 

buccal 

mucosa 

GSE17913 Effects of cigarette smoke on the 

human oral mucosal transcriptome 

(Boyle et al. 2010) 

GPL570 35 (16) 33 (16) 9 NA 

kidney GSE46699 Smoking and obesity related 

molecular alterations in clear cell 

renal cell carcinoma (Eckel-

Passow et al. 2014) 

GPL570 21 (7) 37 (22) no 

metadata 

obesity 

liver GSE32504 Identification of expression 

quantitative trait loci (eQTL) in 

human liver (Schröder et al. 2013) 

GPL13376 28 (12) 115 (64) 2* race; age; 

alcohol; 

medication 

lung GSE103174 Expression data from lung tissue in 

mild-moderate COPD 

GPL13667 5 (2) 10 (9) 1 age; bmi; 

pack years; 

fev1; batch; 

cell types 

lung GSE31210 Gene expression data for 

pathological stage I-II lung 

adenocarcinomas (Okayama et al. 

2012) 

GPL570 11 (4) 7 (4) 0 age 

lung GSE32539 Molecular phenotyping of the 

idiopathic interstitial pneumonias 

identifies two subtypes of idiopathic 

pulmonary fibrosis (I. V. Yang et al. 

GPL6244 21 (11) 20 (5) 1 age; rin;  

pack years; 

batch 

(aliquot) 

https://doi.org/10.1101/2021.09.27.461968
http://creativecommons.org/licenses/by-nc/4.0/


 

26 

2013) 

nasal 

epithelium 

GSE8987 Expression data from buccal and 

nasal epithelium of current and 

never smokers (Sridhar et al. 2008) 

GPL571 7 (1) 8 (2) no 

metadata 

NA 

oral cavity GSE42743 Oral cavity cancer compared to 

adjacent "Normal" tissue [validation 

set] (Lohavanichbutr et al. 2013) 

GPL570 11 (3) 6 (2) 0 age/dxdate 

sputum E-MTAB-3604 Alterations in the sputum proteome 

and transcriptome in smokers and 

early-stage COPD patients (Titz et 

al. 2015) 

GPL570 40 (15) 45 (17) 0 race; age; 

pack years; 

bmi; fev/fvc 

trachea 

epithelium 

GSE994 Effects of cigarette smoke on the 

human airway epithelial cell 

transcriptome (Spira et al. 2004) 

GPL96 31 (7) 18 (4) no 

metadata 

NA 

 677 

*For comparison, we used the paper supplement metadata for this study, GEO metadata showed exactly the opposite sex labels. 678 
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DISCUSSION  679 

In this study, we sought to examine sex- and smoking-related effects across tissues in publicly 680 

available gene expression data. We performed a systematic search of publicly available gene 681 

expression datasets, and identified 31 smoking-related studies spanning 1754 samples and 12 682 

tissues as well as an additional group of overlapping airway epithelium studies consisting of 411 683 

samples (which we refer to as the Grouped Airway Epithelium study). The studies identified 684 

were overall male-biased and unbalanced across smoking and sex-related groups. Only 4 of the 685 

31 studies and the Grouped Airway Epithelium (AE) study contained at least 15 males and 686 

females per smoking category.  687 

 688 

To our knowledge, our analysis represents the first comprehensive examination of smoking-689 

related gene expression across tissues in publicly available data. Additionally, our analysis 690 

concomitantly considers sex-related effects, which are often ignored, and compares the relative 691 

impacts of these covariates. We examined smoking-related effects across 31 studies and 12 692 

tissues and found evidence for tissue-specific effects in smoking response, with separate 693 

clusters for airway epithelium (and related tissues) and blood. Despite within-tissue similarities, 694 

several genes appear to be key players across tissues, including 8 genes (LRRN3, MS4A6A, 695 

GAPDH, RPLP0, CX3CL1, GPR15, and AHRR) that were differentially expressed in both an 696 

airway-related and non-airway tissue. Many of these genes have been previously reported to be 697 

associated with smoking status. In blood, LRRN3, or leucine-rich repeat neuronal 3 gene, has 698 

been shown to have increased expression in smokers across multiple studies (Martin et al. 699 

2015; Maas et al. 2020; Huan et al. 2016; Baiju et al. 2021), as well as differential DNA 700 

methylation patterns (Guida et al. 2015; Huan et al. 2016). GPR15 expression is associated with 701 

smoking in blood (Huan et al. 2016), CX3CL1 is associated with lung cancer stage in smokers 702 

(Su et al. 2018), and MS4A6A is found to have altered DNA methylation in alveolar 703 

macrophages in response to smoking (R. A. Philibert et al. 2012). Interestingly, while GAPDH 704 

and RPLP0 are housekeeping genes, GAPDH has been reported to be differentially expressed 705 

in response to smoking in mouse lungs (Agarwal et al. 2012).  It is possible that differences in 706 

these housekeeping genes highlight differences in numbers and populations of cells, and future 707 

work is required to examine potential cell-type specific effects. 708 

 709 

By comparison, similar scale sex-related effects appeared to be consistent across studies and 710 

tissues. These effects were largely limited to sex chromosomes, which is not unexpected given 711 

study size and our use of conservative thresholds. Direct comparison of smoking and sex-712 

related effects highlighted that smoking has a larger impact on autosomal gene expression than 713 

sex in the tissues we examined. Many of these tissues were airway-related, so is possible (and 714 

likely) that examination of other tissues may show smaller magnitude smoking effects, and we 715 

do not know how these effects will compare to sex. Sex-related effects are often 716 

overemphasized, and these comparisons illustrate the importance of considering other 717 

covariates and disease states that may have larger or similar scale impacts on expression. 718 

 719 

In addition to examining overlapping sets of genes and correlations between studies, we used  720 
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meta-analysis to identify consistently DE genes across tissues, using 27 of the 31 studies as 721 

discovery and 4 studies for validation. From this meta-analysis, we identified 7 genes with 722 

smoking-related effects: AHRR, CYP1B1, NQO1, LRRN3 were significantly higher and 723 

ELOVL7, CCL4, and GZMH were significantly lower in current smokers as compared to non-724 

smokers (LRRN3 and AHRR were also identified from the study overlap analysis).  While the 725 

smoking-related genes appeared across studies, only AHRR and GZMH showed consistent 726 

effects across tissues, while the other genes were strongest in a particular tissue: airway 727 

epithelium for NQO1 and CYP1B1, blood for LRRN3, and alveolar macrophages and sputum for 728 

ELOVL7 and CCL4. Four of these genes validated in a held-out set and 4 genes were DE in the 729 

validation studies: LRRN3 (blood - similar tissue specificity), AHRR (blood), NQO1 (airway 730 

epithelium - similar tissue specificity), and CYP1B1 (alveolar macrophages).  For sex-related 731 

effects, we identified 22 genes, all of which were sex chromosomal and appeared consistent 732 

across tissues. 733 

 734 

All 7 genes have known associations with smoking. Multiple studies have shown that LRRN3 is 735 

consistently overexpressed in smokers specifically in blood (described above). NQO1 is 736 

overexpressed in airway tissue in response to biofuel smoke (Mondal et al. 2018), matching the 737 

possible tissue specificity seen above.  However, it has also been shown to be overexpressed in 738 

pancreatic tissue of smokers (Lyn-Cook et al. 2006), and a genetic variant located in this gene 739 

has an interaction effect with smoking that is associated with colorectal cancer risk (X.-E. Peng 740 

et al. 2013). Increased expression of CYP1B1 in the aerodigestive tract is associated with 741 

smoking (Port et al. 2004), and in oral mucosa CYP1B1 has increased expression and 742 

differential methylation in smokers vs. non-smokers (Richter et al. 2019). Neither CCL4 or 743 

ELOVL7 were replicated in our analysis, but have known smoking-related associations. Multiple 744 

genetic variants in this ELOVL7 are associated with smoking behavior (Liu et al. 2019; Wootton 745 

et al. 2020) and CCL4 expression is lowered in PBMCs of smokers (Arimilli et al. 2017). 746 

 747 

Multiple studies (Grieshober et al. 2020; Philibert et al. 2020) have found that hypomethylation 748 

of AHRR, which encodes the Aryl-Hydrocarbon Receptor Repressor, is strongly associated with 749 

smoking in several tissues. AHRR modulates responses to dioxin toxicity and is involved in 750 

regulation of cell growth. Similar to our analysis, additional studies have found that AHRR 751 

expression is increased in smokers, and decreases following smoking cessation (Bossé et al. 752 

2012).  GZMH encodes Granzyme H, which is a T and NK cell serine protease involved in lysing 753 

target cells. While one study in blood found decreased expression of GZMH in smokers  (Arimilli 754 

et al. 2017), matching our analysis, another study, also in blood, found significantly increased 755 

expression (Vink et al. 2017), so further investigation is required to replicate the direction of this 756 

effect. 757 

 758 

We performed 2 within-tissue meta-analyses for smoking-related effects in blood and airway 759 

epithelium, identifying 19 and 66 consistently DE genes, respectively. Interestingly, in airway 760 

epithelium, the only overlapping gene, AKR1C3, was significantly higher in smokers relative to 761 

non-smokers, but in blood, was significantly lower in smokers relative to non-smokers. The 762 

significance and direction of effects were replicated in held-out airway epithelium and blood 763 

studies, indicating that these opposite-direction effects are robust. To our knowledge, this 764 
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finding is a novel discovery of a gene that shows opposite-direction, tissue-specific responses to 765 

smoking; however, it is unclear why this is the case. Opposite direction effects in different 766 

tissues have been reported previously: Obeidat et al.(Obeidat et al. 2017) examined gene 767 

expression associations between emphysema in blood and lung, and found that 24 out of 29 768 

overlapping genes showed opposite direction effects across the two tissues. The gene AKR1C3 769 

encodes an aldo/keto reductase, which is a family of proteins known to be involved in cancers, 770 

including head and neck, bladder, prostate, uterine, breast, and ovarian cancer. Other members 771 

of the AKR1C family are known to be upregulated in response to smoking (Woo et al. 2017), 772 

and were similarly found differentially expressed in multiple tissues in our analysis. Examination 773 

of AKR1C3 regulation and tissue-specific expression of genes in nearby pathways may help 774 

elucidate this differential response. 775 

 776 

For the Grouped AE study, we found 932 significantly DE genes with smoking-related effects, 777 

48 DE genes related to sex, and 30 genes with sex-differential responses to smoking. This is an 778 

expanded re-analysis of the samples examined by Yang et al. (C. X. Yang et al. 2019) (n= 211 779 

samples). Despite our larger sample size, we identified fewer genes because we used more 780 

conservative thresholds and included an additional batch-related covariate. There was both 781 

substantial overlap and correlation between effect sizes for the smoking-related effects, but not 782 

for the sex-differential smoking effects. It is possible that we did not observe a correlation for the 783 

sex-differential smoking effects because the replication study was very small. Additionally, while 784 

110 smoking DE genes and 18 sex DE genes replicated, only 1 gene with a sex differential 785 

smoking effect, CAPN9, was replicated in the validation study. Both male and female smokers 786 

showed increased expression of CAPN9, but this increase appears to be slightly stronger in 787 

females relative to males; however, this effect is subtle and the replication dataset was 788 

unbalanced, with only 5 non-smoking females. CAPN9 encodes a calcium-dependent cysteine 789 

protease, which is activated in response to oxidative stress, and its expression is inversely 790 

associated with prognosis in gastric cancer (P. Peng et al. 2016). Additionally, a previous study 791 

found that CAPN9 was correlated with the expression of MUC5AC, which is a mucin gene 792 

known to respond to smoking (Goldfarbmuren et al., n.d.).  793 

 794 

We found that the majority of the remaining publicly available smoking studies were too small to 795 

identify sex-differential smoking (or sex-by-smoking) effects on gene expression. Additionally, 796 

most studies were unbalanced, decreasing power to detect these effects. Only 4 studies had at 797 

least 15 samples per sex/smoking category, with a maximum of 23 samples in the largest of 798 

these 2 studies.  Due to the limited sample sizes, we used these studies to examine replication 799 

of the 30 sex-differential smoking genes identified in Grouped AE. No genes were replicated 800 

after correcting for the number of tests (n=30). At a nominal p-value cutoff (uncorrected p < 801 

0.05), 5 genes were identified that showed the same patterns in the discovery and validation: 802 

SLC25A37 and OPN3 in the blood study and RALGDS, KCNJ1, and MS4A7 in the brain study. 803 

It is important to note that the studies were from various tissues (blood, brain, sputum, and 804 

buccal mucosa) and not airway epithelium, so it is possible that the lack of replication was in 805 

part due to tissue specificity; however, it may be due to sample size. We cannot draw 806 

conclusions about replicability or tissue-specificity of sex-related smoking effects without 807 

examining larger validation studies. 808 
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 809 

This work has several strengths. First, we performed a systematic search to identify and 810 

manually filter smoking-related studies available in public gene expression databases in order to 811 

construct our compendia of smoking studies. By performing such a search, we ensured that we 812 

obtained a comprehensive picture of smoking effects on gene expression, rather than cherry-813 

picking specific studies. We also leveraged our previously developed method (Flynn, Chang, 814 

and Altman 2021) to infer sex labels for these studies, without which, 9 of the 31 studies would 815 

not have been available for analysis. As part of this sex labeling process, we also discarded 816 

samples with mismatched metadata and inferred labels, which may also have other mislabeled 817 

metadata, thereby increasing the quality of our data.  818 

 819 

In our analysis of smoking and sex-related effects, we made conservative methodological 820 

choices in order to identify consistent, reproducible effects. Our cutoff for identifying DE genes 821 

consisted of both an effect size and FDR threshold. Additionally, we employed meta-analytic 822 

techniques to summarize probes to genes in our comparisons, which has been suggested 823 

before in the literature (Ramasamy et al. 2008), but to our knowledge not yet employed. We 824 

demonstrate that use of this technique decreases the number of false positives. It is important to 825 

note that meta-analysis also increases bias toward genes with more probes, which is a concern 826 

for consistent examination across genes; however, it does not present problems if concerned 827 

with true positive rate.  By making these choices, we expect that our analysis has false 828 

negatives and that we may have missed some subtle effects. 829 

 830 

Two additional strengths of our analysis are the examination of the correlation structure 831 

between studies and the side-by-side comparison of smoking and sex-related effects. Using a 832 

weighted correlation metric allowed us to better understand the overall pattern of replication 833 

without relying on specific significance cutoffs, which both require making decisions about a 834 

threshold and could potentially miss replicated genes because of small sample sizes. The 835 

concurrent analyses of smoking and sex-related effects allowed us to compare the tissue 836 

specificity of the two effects. Sex-related gene expression has been examined across tissues 837 

extensively (Gershoni and Pietrokovski 2017; Oliva et al. 2020; Mayne et al. 2016), and has 838 

been shown to have both strong, shared sex chromosomal effects and small tissue-specific 839 

autosomal effects. In our analysis, in part because of sample size and effect size cutoffs, we 840 

only saw sex chromosomal effects which were present across tissues. This is in contrast to the 841 

smoking-related effects that showed some tissue-specific patterns, which we identified in the 842 

same studies at the same significance thresholds.  843 

 844 

While the use of public data is a strength of our analysis, it also presents a limitation. Larger 845 

studies on which previous analyses have been performed (Bossé et al. 2012; Huan et al. 2016; 846 

Maas et al. 2020) are either not publicly available or missing sufficient metadata for re-analysis 847 

of sex-related effects. Public data is also biased toward specific tissues, and while we sought to 848 

examine effects across tissues, we were limited to the seven tissues with data available. The 849 

majority of the available tissues were airway-related or blood, which makes sense given the 850 

nature of smoking-related exposures and ease of sampling peripheral blood, but does not 851 

provide a complete picture. Additionally, with the exception of airway epithelium and blood, 852 
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which had at least 5 studies each, there were less than 3 studies per tissue and many tissues 853 

with only 1 study (e.g., brain, liver, kidney), which prevented an assessment of the extent to 854 

which some smoking-related effects are tissue (rather than study) specific. Much of the data 855 

were also generated by a single lab and on similar platforms. While this lack of heterogeneity 856 

makes the analysis less complex, increased heterogeneity in studies leads to identification of 857 

more robust, reproducible effects.  858 

 859 

We also relied on the author-processed expression data for each study, which helped us obtain 860 

data from a heterogeneous set of platforms. However, different processing pipelines are known 861 

to greatly affect microarray results (Ioannidis et al. 2009).  These effects are disproportionately 862 

on the sex chromosomes (Castagné et al. 2011), which may have led to an underestimation of 863 

sex chromosome contributions to variance. This also limited our analysis to studies with 864 

available processed data. Use of standardized processing steps will allow us to examine 865 

additional studies, and may reduce heterogeneity between studies due to processing artifacts.  866 

We also limited our analysis to samples from healthy tissues; however, future analyses may 867 

include disease samples, which may increase the search space and enable examination of 868 

additional questions. In the process of identifying the studies for our analysis, we also identified 869 

47 studies that involved cultured cells exposed to smoke components. While it is unclear 870 

whether sex-related effects identified in culture would translate to humans, use of these data, 871 

which have many replicates and show larger magnitude smoking responses could help identify 872 

sex-related smoking effects.  873 

  874 

Many studies were missing important covariate information, including age, race/ethnicity, pack-875 

years, and batch-related effects. Available covariates were included in our models; however, 876 

this may have led to inconsistencies across studies because of differing sets of covariates. For 877 

studies with missing covariate information, confounding may contribute to the identified genes, 878 

leading to incorrect associations. For example, because men smoke more heavily on average 879 

(Baumert et al. 2010), without pack-years information, effects attributable to smoking amount 880 

might be attributed to sex. In addition to variation in available covariates, studies have shown 881 

that self-reported data on smoking is often inaccurate (Gorber et al. 2009). Some studies use 882 

plasma or urine cotinine levels to confirm smoking status; however, only 1 study reported these 883 

levels. As a result, definitions of smoking may be inconsistent across studies and may include 884 

incorrect labels due to self-report or sample label mix ups (while our sex labeling method 885 

detects samples with swapped sex labels, we cannot detect mislabeling if it occurs between 886 

samples of the same sex). Future work may involve developing models to infer additional 887 

covariates and detection of mislabeled samples in other dimensions, such as for smoking 888 

status. A possible direction could involve training models to infer smoking status from 889 

expression data using either previously identified tissue-specific gene signatures (e.g. (Bossé et 890 

al. 2012; Martin et al. 2015)) and/or genes identified in our meta-analysis. This could allow us to 891 

expand our analysis to many additional studies that do not contain smoking metadata.  892 

 893 

Another limitation is that our study focuses on gene expression data: smoking-related effects 894 

occur on multiple biological levels, some of which have sex-related differences. In tumor 895 

microenvironments, changes in immune cell populations in response to smoking were more 896 
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pronounced in women than in men (Alisoltani et al., n.d.). DNA methylation shows sex-specific 897 

changes in response to smoking (Koo et al. 2020). Examination of these molecular data types in 898 

concert with expression data may help identify additional important insights into smoking and 899 

sex-related smoking effects.  900 

 901 

In conclusion, we performed a large-scale systematic analysis of smoking and sex-related 902 

smoking effects in healthy participants using publicly available gene expression samples from 903 

31 studies and 1 study compendium, spanning 12 tissues. This analysis is the first to examine 904 

these effects at this scale and in a sex-aware manner. Our results indicate that expression 905 

changes in response to smoking largely cluster by tissue while also showing consistent effects 906 

across tissues in a small number of genes. This is in contrast to similar magnitude sex-related 907 

effects, which appear to be consistent across tissues. Comparison of smoking and sex-related 908 

effects indicate that smoking has a larger impact on autosomal expression than sex in the 909 

tissues examined in this study. Our study also highlights the challenges of examining and 910 

replicating sex-differential smoking effects in publicly available data, which is in part due to 911 

sample size and sex bias. Expansion of this analysis to additional studies and samples may 912 

help to validate and further examine patterns of tissue-specificity and assess sex-differential 913 

smoking effects. 914 
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