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ABSTRACT

Smoking greatly reduces life expectancy in both men and women, but with different patterns of
morbidity. After adjusting for smoking history, women have higher risk of respiratory effects and
diabetes from smoking, while men show greater mortality from smoking-related cancers. While
many smoking-related sex differences have been documented, the underlying molecular
mechanisms are not well understood. To date, identification of sex differences in response to
smoking has been limited to a small number of studies and the resulting smoking-related effects
require further validation. Publicly available gene expression data present a unique opportunity
to examine molecular-level sex and smoking effects across many tissues and studies. We
performed a systematic search to identify smoking-related studies from healthy tissue samples
and found 31 separate studies as well as an additional group of overlapping studies that in total
span 2,177 samples and 12 tissues. These samples and studies were overall male-biased. In
smoking, while effects appeared to be somewhat tissue-specific and largely autosomal, we
identified a small number of genes that were consistently differentially expressed across tissues,
including AHRR and GZMH. We also identified one gene, AKR71C3, encoding an aldo-keto
reductase, which showed strong opposite direction, smoking-related effects in blood and airway
epithelium, with higher expression in airway epithelium and lower expression in blood of
smokers versus non-smokers. By contrast, at similar significance thresholds, sex-related effects
were entirely sex chromosomal and consistent across tissues, providing evidence of stronger
effects of smoking than sex on autosomal expression. Due to sample size limitations, we only
examined interaction effects in the largest study, where we identified 30 genes with sex
differential effects in response to smoking, only one of which, CAPNY, replicated in a held-out
analysis. Overall these results present a comprehensive analysis of smoking-related effects
across tissues and an initial examination of sex differential smoking effects in public gene
expression data.
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INTRODUCTION

In some areas of biomedical research, females are underrepresented and sex is still routinely
left out of analyses, potentially leading to serious health consequences (Tannenbaum, Day, and
Matera Alliance 2017). Many sex and gender differences have been reported in both smoking
behaviors and health-related effects of smoking. Smoking is a major cause of premature death,
and in the U.S. is estimated to cause more than 480,000 deaths annually (Centers for Disease
Control, 2020). After adjusting for smoking history, women have been shown to have increased
risk of respiratory symptoms (Langhammer et al. 2000), type 2 diabetes (Will et al. 2001), and
lung cancer (Risch et al. 1993). Female smokers also are reported to be 50% more likely to
develop COPD than male smokers (Barnes 2016). Despite a higher incidence of smoking-
related cancers in females, males have higher mortality from these cancers (Visbal et al. 2004)
even though smoking shows a stronger effect on female patient survival (Allen, Oncken, and
Hatsukami 2014). However, the biology underlying these differences is not well understood.
Improved understanding of the molecular mechanisms behind these smoking-related
differences can aid the development of biomarkers and treatments for smoking-related
diseases, and may serve as a framework for examining sex differences in other chronic
diseases and drug exposures.

Gene expression data provide a unique opportunity to examine molecular level sex differences
and dynamic biological responses to smoking. Comprehensive analyses of sex differentially
expressed (DE) genes both across (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva
et al. 2020) and within individual tissues (e.g. liver (Zhang et al. 2011), blood (Bongen et al.
2019), brain (Trabzuni et al. 2013)) have found hundreds of sex differentially expressed (DE)
genes. Additionally, multiple methods (Buckberry et al. 2014; Ellis et al. 2018; Giles et al. 2017;
Toker, Feng, and Pavlidis 2016; Flynn, Chang, and Altman 2021) have been developed for
inferring sex labels from gene expression data, leveraging the highly sexually dimorphic
expression of X and Y chromosome genes. Smoking status also has a substantial impact on
gene expression: previous studies have identified hundreds of DE genes between smokers and
non-smokers in blood (Charlesworth et al. 2010; Na et al. 2015; Huan et al. 2016), airway
epithelium (Chen Xi Yang et al. 2019; Boelens et al. 2009), lung (Landi et al. 2008; He et al.
2018), and other tissues (Port et al. 2004; Na et al. 2015; Tsai et al. 2018). Researchers have
found that many of these effects replicate across studies (Huan et al. 2016; Silva and Kamens
2021), and gene signatures predicting smoking status have been identified for blood (Martin et
al. 2015; Beineke et al. 2012) and lung tissue (Landi et al. 2008; Bossé et al. 2012).

The impacts of sex and smoking on gene expression vary greatly throughout the body. In the
case of sex, the majority of sex-differentially expressed autosomal genes have small, tissue-
specific effects, while sex-chromosomal genes generally show consistent differential expression
across tissues (Gershoni and Pietrokovski 2017; Mayne et al. 2016; Oliva et al. 2020). By
contrast, the tissue-specificity of smoking-related differential expression is less fully
characterized. Several analyses have examined effects across tissues, but they focus on cancer
(Alexandrov et al. 2016; Desrichard et al. 2018; Alisoltani et al., n.d) and may not extend to
healthy tissues.
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Characterizing smoking-induced gene expression changes across tissues helps not only with
understanding the etiologies of smoking-related cancers, but also may allow for less invasive
avenues for sampling. For instance, a blood sample or nasal swab could be used instead of a
bronchial brushing or lung biopsy if tissues show substantial overlap in expression. Two studies
examined a combination of bronchial epithelium and other epithelial tissues (nasal or nasal and
buccal respectively), and found that while there was overlap between smoking-associated DE
genes, the majority of DE genes were different between the tissues (Sridhar et al. 2008;
Imkamp et al. 2018). Outside of these epithelial tissues, researchers have found less overlap.
Morrow and colleagues (Morrow et al. 2019) demonstrated that across airway epithelium,
alveolar macrophages, and peripheral blood, samples largely clustered by tissue and there were
no shared DE genes; however, there was some overlap in pathway enrichment. Further work is
thus required to comprehensively compare the overlap of smoking related effects across a
larger number of tissues and studies.

While many studies have examined how smoking and sex individually affect gene expression, to
our knowledge, no studies have compared their relative impacts on expression and only a few
have identified genes with sex-differential responses to smoking. Consideration and comparison
of major drivers of variation is important in biological analysis, and sex differences are often
understudied and overemphasized drivers (Patsopoulos, Tatsioni, and loannidis 2007). Some
sex-related effects may not have clear clinical relevance, so comparison and evaluation of the
relative impact of sex-related effects to other drivers of variation (such as smoking and disease
states) may shed light on how these factors contribute to health and disease.

In the case of sex-differential smoking effects (also known as sex-by-smoking interaction
effects), Yang and colleagues (Chen Xi Yang et al. 2019) identified over 2,500 genes with sex-
specific responses to smoking in airway epithelium using data from 211 samples across 16
overlapping studies. In blood, using data from 48 samples, Paul and Amundson (Paul and
Amundson 2014) identified 80 genes with sex-differential smoking effects, many of which were
associated with female sex hormone receptors (e.g. estrogen and progesterone), and
Chatziioannou et al. (Chatziioannou et al. 2017) identified 26 genes with sex-differential effects
in 344 blood samples. Identifying and replicating interaction effects is challenging: they are
generally very small and require large sample sizes for identification. Across all 3 studies, there
is limited overlap of identified genes, which is possibly due to tissue specificity, but further
examination of these sex-differential smoking effects is required.

Here, we leverage publicly available gene expression data to examine smoking and sex-related
effects at scale and across multiple tissues to identify consistent, reproducible effects. We first
perform a systematic search to identify smoking related studies, and then assess sex bias
present in these studies. Next, across studies and tissues identified, we compare smoking and
sex-related effects and assess the extent to which these effects are shared vs. tissue-specific.
Following this, we perform an expanded re-analysis of an airway epithelium dataset to identify
smoking, sex, and sex-differential smoking effects. Finally, we attempt to replicate identified
sex-differential smoking effects using the largest of our identified studies.
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119 METHODS

120 1. Identification of smoking-related datasets

121

122  1-1 Study search strategy

123  We identified smoking-related microarray datasets by searching for mentions of the words
124  “smoking/smoker/smoke”, “nicotine”, “tobacco”, or “cigarette” within study and sample metadata.
125  We used a multi-pronged approach to identify smoking-related studies, examining studies from
126  GEO (Edgar, Domrachev, and Lash 2002) and ArrayExpress (Brazma et al. 2003) separately.
127  We used GEOmetadb (Zhu et al. 2008) (downloaded 11/8/2020) to identify GEO human studies
128 and samples that mention a smoking-related term in the metadata. We restricted our sample
129  search to single channel arrays containing either total or polyA RNA samples. We searched for
130  mentions in the “title”, “summary”, or “overall_design” study fields and in the sample “title”,

131  “source_name_ch1”, “treatment_protocol_ch1”, “description”, and “characteristics_ch1” fields.
132  ArrayExpress is the European analog of GEO and contains a large number of expression

133  studies. We searched for mentions of the smoking-related terms in the ArrayExpress browser
134  and downloaded the resulting human studies, filtering for “RNA-seq” and “transcription profiling
135 by array” and removing miRNA platforms. We combined the results of these two searches and
136  removed studies with less than 10 samples.

137

138  1-2 Manual Annotation and Filtering

139 Based on the study title, abstract, and description, studies were manually annotated with tissue

140 type and assigned to one of the following categories:

141 1. Smokers vs non-smokers or smoking history provided (and at least 1 smoker and
142 1 non-smoker)

143 2. Treated cells exposed to smoke component

144 3. All smokers (including current vs former)

145 4. All non-smokers

146 5. Not relevant (including cells with other exposures) or no smoking history provided

147

148  1-3 Normalization and extraction of covariate data

149  For smoking history studies, we extracted phenotypic data on sex, age, race/ethnicity/ancestry,
150  BMI, and pack years, where available. Tissue annotations were manually assigned. We

151  additionally extracted terms related to disease state (e.g. COPD, cancer) if they were present.
152  Where present, the race/ethnicity/ancestry labels had highly variable annotations across

153  studies. We made efforts to normalize these labels into a combined race/ethnicity/ancestry
154 category, which included African, European, and Asian ancestries, and Hispanic/Latino

155  ethnicity.

156

157 2. Assessment of sex bias

158  Our previously developed method for logistic regression-based models for sex labeling (Flynn,
159  Chang, and Altman 2021) were trained on normalized data from the refine-bio database

160 (Greene et al. n.d). This database consists of over 14,000 human studies from GEO,

161  ArrayExpress, and SRA; however, it is not complete. Of the 176 smoking history studies, 139
162  were contained in refine-bio. For application at scale, we restricted our assessment of sex bias
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163  to these 139 studies. As in (Flynn, Chang, and Altman 2021), we grouped studies into the
164  following categories based on the sample sex labels:

165 1. Unlabeled: studies with either less than half of their samples labeled (for studies with up
166 to 60 samples) or less than 30 samples labeled (for studies with more than 60 samples)
167 2. Male-only: all male labels

168 3. Female-only: all female labels

169 4. Mostly-male: >80% of labeled samples are male

170 5. Mostly-female: >80% of labeled samples are female

171 6. Mixed sex: < 80% of labeled samples belong to either sex

172

173  To calculate the fraction of studies that are mixed sex or single sex, we exclude the “mostly” and
174  unlabeled studies from the total and calculate the ratio:

175 frac_mixed_sex = n_mixed_sex/ (n_female_only + n_male_only + n_mixed_sex)
176 frac_single_sex = (n_female_only + n_male_only)/(n_female_only + n_male_only +
177  n_mixed_sex)

178

179

180 3. Identification and processing of studies for follow up analysis

181

182  3-1 Creation of an Airway Epithelium dataset

183  There were a large number of airway epithelium studies (n=35) from the same lab and platform
184  (GPL570), many of which contained some of the same sets of samples (Carolan et al. 2006;
185 Harvey et al. 2007; Ammous et al. 2008; Carolan et al. 2008; Tilley et al. 2009; Vanni et al.

186  2009; Hiubner et al. 2009; Raman et al. 2009; Carolan et al. 2009; Leopold et al. 2009; Turetz et
187  al. 2009; Dvorak et al. 2011; Strulovici-Barel et al. 2010; R. Wang et al. 2010; Shaykhiev et al.
188  2011; Marcus W. Butler et al. 2011; M. W. Butler et al. 2011; R. Wang et al. 2011; Tilley et al.
189  2011; Hackett et al. 2012; R. Wang et al. 2012; Buro-Auriemma et al. 2013; Shaykhiev et al.
190 2013; Gao et al. 2014; Hessel et al. 2014; Wallters et al. 2014; Tilley et al. 2016; Zhou et al.

191  2016; J. Yang et al. 2017; G. Wang et al. 2017) (see Supplementary Table 1 for a list of study
192  accessions and titles). We aggregated these samples into a Grouped Airway Epithelium

193  (Grouped AE) dataset. Many of the samples contain covariate information related to age,

194  racel/ethnicity and pack-years (see Table 1A). The dataset contains both large and small airway
195  epithelium samples, which largely cluster together in principal components space (see

196  Supplementary Figure S6A).

197

198  For processing, we first filtered to remove samples from subjects with COPD or asthma, and for
199  subjects with repeated measures, we used the first sample from the subject. We then

200 downloaded the raw expression data from GEO and used the R package affy (Gautier et al.

201  2004) to load, normalize, and RMA transform the data. Many of the samples were direct

202 duplicates across studies. For these samples, we combined their metadata, which exactly

203  matched for sex and race with the exception of one sample which we excluded. Three samples
204  contained different but nearby ages or pack-years; we took the average of the two values. We
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also grouped by study participant ID (or “DGM” id in the metadata) and removed repeated
samples with the same participant ID.

Prior to covariate imputation and modeling, we grouped together categorical values with small n.
For race-ethnicity labels, we assigned samples in race-ethnicity groups with less than 5 counts
to “other race-ethnicity” for modeling purposes. Sample submission date correlated with
expression, but contains 22 variables, many with small counts. For date groups with less than
10 counts, we assigned the samples to the nearest submission date with more than 10 counts,
resulting in 10 total submission date categorical variables. We chose to do this (rather than
assigning all samples with small numbers of counts to an “other date” category) because
samples appear to cluster together over time in PC space (see Supplementary Figure S6B
and C for before and after date collapsing).

3-2 Systematic Search for Smoking Studies across Tissues

After removing the overlapping airway epithelium datasets, we focused on identifying studies
using healthy tissues from at least 5 never smokers and current smokers at the time of sample
selection. To do so, we downloaded the sample-level metadata for these studies in order to
determine if there were sufficient samples. We included healthy tumor adjacent tissue from
individuals with cancers, but excluded samples from individuals with COPD or other annotated
diseases. We also removed studies from single sex tissues (prostate) or associated with
pregnancy (placenta, umbilical cord). For studies with repeated samples from the same subject,
we include only the first sample. We also did not include “ever” smokers unless additional
information was present indicating that they were still smoking.

For quality control, we inferred sample sex labels for candidate studies. While our penalized
logistic regression model performs well at scale, clustering based methods are better for
examining large mixed sex studies because they allow for visualization and examination of
within-study clustering. Where expression levels for XIST, RPS4Y1, and KDM5D were
available, we applied the Toker method (Toker, Feng, and Pavlidis 2016), otherwise we used
massiR (Buckberry et al. 2014), which clusters based on the expression of Y chromosome
genes. We manually checked each study to ensure clear separation and excluded six studies,
and excluded mislabeled samples and studies without clear sex separation.

3-3 Processing of Small Expression Studies

Metalntegrator (Haynes et al. 2017) was used to download the data as processed by the
authors. Metalntegrator performed log-transformation and quantile normalization if these steps
were not already taken.

4. Variance Decomposition

We sought to examine the fraction of variance in each dataset associated with smoking and the
sex-by-smoking interaction effects. To do this, we used principal variance components analysis
(PVCA). Briefly, this method first performs PCA and then identifies the cumulative fraction of the
variance explained by each of the covariates in a model across the first n PCs, where n is
chosen based on the number of PCs that explain a cutoff fraction of the total variance. We used
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249 0.8 for the cutoff fraction, but obtained similar results across a range of cutoffs (0.4-0.9). The R
250 package variancePartition (Hoffman and Schadt 2016) was used to calculate the variance

251  fractions.

252  We ran PVCA with two models:

253 1) baseline model:

254 PCi~ sex + smoking + C
255  2)interaction model:
256 PCi ~ sex + smoking + sex*smoking + C

257  where C is the set of additional covariates, and PC; is the ith PC.
258  The cumulative variance for covariate j is given by > (Xj * vi ) where Xj is the fraction of the

259 variance in PC; explained by covariate j and vi is the fraction of the total variance in the

260  expression data explained by PC..

261

262 5. Differential expression analysis

263

264  5-1 Differential expression model

265 We performed differential expression analysis separately on each of the small datasets and the
266  grouped airway epithelium dataset. The R package limma (Ritchie et al. 2015) was used for
267  differential expression analysis, with the following model:

268 Y = sex + smoking + sex x smoking + covariates

269

270  Sex and sex*smoking covariates were excluded from single-sex datasets. We used the cutoffs
271 FDR <0.05 and absolute effect size log fold change of = 0.3 for identifying differentially

272  expressed (DE) genes.

273

274  5-2 Summarizing probes to genes

275 Because the studies spanned a variety of platforms, identification of DE genes and comparison
276  across studies was performed at the gene level.

277

278  Probes were mapped to HGNC gene symbols using the appropriate Bioconductor package
279  (hgu133plus2.db, hgu219.db, hgu133a.db, hgu133a2.db, hugene10sttranscriptcluster.db) for
280 five platforms. For the remaining 7 platforms, the probe-to-gene mapping was downloaded

281  directly from GEO.

282

283  For meta-analysis, following model fitting at the probe-level, we used fixed effects inverse

284  variance meta-analysis to summarize effect sizes to genes, as implemented in the R package
285 meta (Schwarzer, Carpenter, and Ricker 2015).

286

287  Due to the lack of ground truth, we chose to drop out portions of a dataset and apply these
288 methods, where the “true” genes were the DE genes from the full dataset (where DE genes are
289 the set of genes to which all DE probes mapped). We used the Grouped AE dataset as the full
290 dataset, and smoking as the covariate examined. We examined the precision and recall of the
291  three methods at two FDR cutoffs (< 0.01 and < 0.05) and across varying dropout fractions (0.3-
292  0.9), with fifteen random dropouts per fraction (see Supplementary Figure S9 for the results).
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For this analysis, we wanted to be conservative in our estimates, and as a result, chose to use
meta-analysis for summarization.

5 - 3 Assessment of replication and overlap

Genes identified in the Grouped AE dataset were replicated using the dataset GSE7895, which
was selected for validation because it was the largest airway epithelium dataset present in the
set of smaller studies. We identified lists of replicated genes, which we define as the subset of
DE genes from the discovery that have a p-value < 0.05 in the validation and effect sizes in the
same direction in the discovery and validation sets. We also examined the correlation between
the effect sizes of the DE genes.

For examining overlapping genes between 2 studies (rather than replication), we use the union
of the DE genes (FDR < 0.05, logFC = 0.3), resulting in n overlapping genes. We identify
overlapping significant genes as genes that have effect sizes in the same direction and p-value
< 0.05/ngenes in both studies where ngenes is the number of overlapping genes. In order to
examine the similarities between 2 studies related to their association with the variable of
interest (smoking, sex), we examined the correlation of the effect sizes. We used a permissive
cutoff for genes included (FDR < 0.10 in either study) and, if there were at least 30 genes
remaining, we calculated the correlation coefficient across genes for mean effect sizes weighted
by their standard deviations. We chose to use a weighted correlation coefficient in order to be
less sensitive to the FDR cutoff, while ensuring that genes with smaller standard errors are
weighted more highly.

5-4 Examining tissue specificity

We used 7 to examine tissue specificity of particular genes and compare the tissue-specificity
between smoking- and sex-related analyses (Yanai et al. 2005). This metric = was designed for
examining tissue-specificity of expression of a particular gene and results in a number 0 to 1
where 0 is ubiquitously expressed and 1 is tissue-specific. We extend this to examine tissue-
specificity of differential expression by inputting the absolute log fold-change values instead of
the log expression intensity to obtain the tissue-specificity of differential expression. The formula

for 7 is given below:
i (=) ;

T=="—""0; = ————~
n—1 mazx(x;)

Where n is the number of tissues and we define x; as the median log-fold-change in tissue .

Importantly this does not distinguish between opposite direction effects, so it is important to also

examine their presence.

6. Between- and within-tissue meta-analyses

We performed random effects meta-analysis using the DerSimonian-Laird estimator, first across
studies and tissues, and then for blood and airway epithelium studies separately, examining
both smoking and sex-related effects. The Grouped AE study was not included in the meta-
analysis because it is substantially larger than the other datasets and as a result may have a
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strong impact on the results. We selected 4 validation studies: GSE7895 (airway epithelium),
GSE27002 (alveolar macrophages), GSE21862 (PBMCs), and E-MTAB-5279 (whole blood).

We included 6 whole blood and two PBMC studies in the blood meta-analysis. The B cell study
was excluded because it represents a specific cell type in blood, while the others are a mixture
(meta-analysis of all blood studies including the B cell study also shows similar results). For the
airway epithelium meta-analysis, we included four airway epithelium studies and added the
trachea epithelium study because trachea is an airway tissue and overlaps in PC space (we
expect this may reflect differences in terminology), and the expression was highly correlated.

We performed the smoking-related meta-analysis for genes present in at least 15 of the 27
studies. For the sex-related meta-analysis, we selected a lower cutoff for number of studies
(n=10 out of 24) because of the large number of missing sex chromosome probes. Finally, for
blood and airway meta-analyses, we filtered for at least 5 blood and 4 airway studies
respectively.

For validation, we considered a gene validated in a particular study if the gene's effect size is in
the same direction and has a p-value < 0.05 / (number of genes).

7. Sample size calculation for interaction effects

We examined the sample size required to detect an interaction effect in an expression dataset
in the case where we have two binary covariates (smoking, sex) and under the assumption that
the data is balanced. We used the R package ssize (Warnes et al. 2020) with a power of 0.80
and FDR of 0.05. We assumed uniform standard deviations of probes, and used a value of 0.6
based on the mean empirical standard deviation of probes across datasets included. We then
examined the sample size required for detecting absolute log effect sizes in the range of 0.1 to
0.6, assuming 90%, 95%, and 99% of genes were not differentially expressed (see
Supplementary Figure S10).

RESULTS

1. Systematic search for smoking-related studies

We performed a systematic search of human gene expression studies in GEO and
ArrayExpress to identify studies that have smoking-related information (see Supplementary
Figure S1 for a diagram showing the systematic search approach). We searched both sample
and study metadata and identified 530 studies (spanning 63,772 samples) that contained a
smoking-related mention. We manually annotated the studies to identify the subset that have
smoking history information (n=176 studies).

To examine effects across tissues, we identified the subset of smoking history studies that
contain samples from at least 5 healthy smokers and non-smokers (see Table 1B for the list
and their sample breakdown). Thirty-five studies in airway epithelium were from the same lab,
using the same microarray platform, and had many overlapping samples. We combined all of
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377  these into a single larger study (further described as Grouped Airway Epithelium or Grouped
378  AE), which contained 444 samples after deduplication (see Table 1A, Methods 3-3). The

379  additional airway epithelium studies are distinguished from the Grouped AE study in that they
380 are either from another lab and/or on a different microarray platform.

381

382  The remaining 31 studies (1754 samples) are majority blood or blood component (n=11),

383  followed by airway epithelium (n=5), then lung and alveolar macrophages (n=3), and buccal
384 mucosa (n=2), and 1 each of nasal epithelium, tracheal epithelium, oral cavity, sputum, kidney,
385 liver, and brain (prefrontal cortex). While the lower bound was 5 smokers and non-smokers, the
386 range for identified studies was 5 to 166 smokers and 5 to 56 non-smokers (medians = 21 and
387 22 respectively). Seven studies had significantly more smokers (p= 1.6*10" to 4.7*107?) while 3
388  had significantly more non-smokers (p= 3.0*10" to 5.4*10®).

Systematic search for human smoking studies

Data
31 smoking studies Grouped AE study
1754 samples 444 samples
Methods Breakdown? Meta-analysis DE analysis Variance
(all, by tissue) (individually) Decomposition
Results ns [ ns Sex-DE, Sex-DE, Sex-by- g
females males Smoking-DE Smoking-DE smoking g
genes genes DE genes -
Pz \ sex smok sex*smok
Compare across Examine Gene
studies, tissues Tissue-specificity

% * I\
\+,
389

390 Figure 1. Study schematic. We performed a search for human gene expression studies on smoking.
391 This resulted in a set of 31 separate studies, as well as a group of overlapping airway epithelium (AE)
392 studies we combined into a single grouped study. We examined the sex breakdown in these studies and
393 perform both individual differential expression analyses as well as meta-analyses across studies and
394  tissues in order to identify differentially expressed genes. We used the results of these analyses to

395 compare the effects of smoking and sex across studies and tissues.

396

397 2. Smoking-related samples are male-biased

398  We additionally sought to examine sex bias overall in smoking-related studies. We focused on
399 the 139 (out of 176) smoking history studies that were included in the refine-bio database by
400 inferring sex labels from gene expression data using our previously published method (Flynn,
401  Chang, and Altman 2021). For smoking history studies, 34.5% of samples and 38.8% of studies
402 were missing metadata sex labels; this is much lower than seen across all human studies and
403 samples (e.g. 70.7% of human microarray samples are missing sex labels (Flynn, Chang, and
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Altman 2021)). The higher fraction of sex labels in smoking datasets may be related to the fact
that smoking status is included, so sex is additionally likely to be recorded as a covariate.

After inferring sex labels from expression, we found that smoking-related samples are slightly
male-biased with 59.1% and 68.1% percent of labeled samples derived from males for smoking
history and treated cell studies, respectively. This is in contrast to the overall pattern of human
samples which is slightly female-biased (52.1%) but matches the pattern that more men smoke.
The majority of smoking history studies are mixed sex (92% of labeled studies). The high
fraction of mixed sex studies helps with follow up examination of sex-related effects (see
Supplementary Figure 2 and Supplementary Table S2 for the sample and study sex
breakdowns, respectively).

Of the 31 studies included in our follow up analysis, 9 did not have metadata sex labels and 3
studies were single sex. In addition to the higher proportion of males (59.4%, p < 4*10™"°), male
sex was also significantly associated with smoking status (p < 0.0007, see Supplementary
Figure S3 for the sex and smoking breakdown of these studies). Seven studies contained a
total of 23 samples where the inferred sex did not match the metadata sex, corresponding to
1.3% of the samples examined (see Table 1B). The Grouped AE study was a higher fraction
male (70%) and contained 2.4% mislabeled samples (see Table 1A, Supplementary Figure
S§7). Sample sex mismatches highlight the potential for mislabeled samples along other
dimensions (e.g. smoking status), and were excluded from follow up analysis.

3. Smoking effects are largely tissue-specific and autosomal but show some consistency
across tissues, while sex-related effects are sex chromosomal and consistent across
tissues

We sought to examine the extent to which smoking-related effects are consistent across the
tissues and the studies we examined. First, we performed differential expression analysis within
each study across tissues (airway epithelium, lung, kidney, buccal mucosa, etc.) (see
Supplementary Table S3 for a summary of results across studies), and summarized probes to
genes with meta-analysis. Four studies showed no differentially expressed (DE) genes related
to smoking, while the remaining studies had between 2 and 4357 DE genes, with a median of
31. As expected, larger studies had more DE genes (for smoking: spearman’s £=0.36, p =
0.049, sex and sex-smoking n.s.) and more overlap between each other.

Overlap and between-study correlations of smoking-related effects appear to cluster by tissue,
with separate clusters of airway epithelium and blood studies (Figure 2A shows the counts of
overlapping genes; Figure 2C contains the correlations of top genes between all pairs of
studies). For example, Grouped AE showed the highest correlation with other airway epithelium
studies (P=0.72, 0.57, and 0.55) and the trachea epithelium study (©= 0.584). By comparison,
sex-related effects appear to correlate across studies and tissues (see Figure 2D). We
separated out the autosomal (Figure 2E) genes, and found that the strong pattern of shared,
consistent sex-related effects is largely limited to the sex chromosomes.
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While the majority of overlap clustered by tissue, 7 DE genes were present in 5 studies
spanning both an airway-related tissue (airway, sputum, oral, buccal, lung, or alveolar) and non-
airway tissue (blood, brain, kidney or liver): LRRN3, MS4A6A, GAPDH, RPLPO, CX3CL1,
GPR15, and AHRR (another 7 genes were present in 4 studies with both an airway and non-
airway), indicating the presence of some consistent smoking-related effects across tissues (see
Supplementary Table S4A for full lists of smoking DE genes present in at least two studies).

We also performed a meta-analysis across tissues using 27 out of 31 studies (see Methods 6),
and identified 7 genes that showed significant smoking-related effects: the expression of AHRR,
CYP1B1, NQO1, LRRN3 were significantly higher and ELOVL7, CCL4, and GZMH were
significantly lower in current smokers as compared to non-smokers (see Supplementary Table
S5 for their effect sizes). Figure 3A shows the study-level expression of these 7 genes as well
as the pooled estimate. In our analysis, we identified LLRN3 and AHRR as genes that had an
effect in both an airway and non-airway tissue. Two genes, GZMH and AHRR, appear to show
relatively consistent effects across tissues, showing consistently lower and higher expression in
smokers vs. non-smokers respectively. For the remainder of these genes, the effects appear to
be tissue-dependent. NQO1 shows a strong association with smoking in airway epithelium,
while LRRN3 appears to show a stronger association with smoking in blood (both have higher
expression in smokers). CYP1B1 shows strongest association with smoking in airway
epithelium (higher in smokers), while ELOVL7 and CCL4 appear to be strongest in alveolar
macrophages and sputum (lower in smokers).

We examined whether these genes were differentially expressed in four held-out validation
datasets (GSE7895 - airway epithelium, GSE27002 - alveolar macrophages, and GSE21862
and E-MTAB-5279 - blood). Four of the smoking-related genes were differentially expressed in
the validation datasets, each in one study: LRRN3 (blood), AHRR (blood), NQO1 (airway
epithelium), and CYP1B1 (alveolar macrophages). Interestingly, LRRN3 and NQO17 showed
similar tissue-specificity to the discovery dataset.

Although some genes showed consistent responses to smoking across tissues, looking
within tissues highlights key genes involved in tissue-specific responses. We performed
tissue specific meta-analyses for blood and airway epithelium studies. The blood analysis
included two PBMC and five whole blood studies, while the airway epithelium analysis included
four airway and one trachea epithelium study (see Supplementary Figure S4 for heatmaps and
Supplementary Table S5 for the lists of genes). At an FDR of 0.05 and effect size cutoff of >
0.3, the blood meta-analysis identified 19 DE genes, while the airway epithelium analysis
identified 66 DE genes. In airway epithelium, 21 out of the 66 DE genes validated in the held-out
airway epithelium dataset (GSE7895). In blood, only 3 DE genes were replicated (SH2D18,
KLRF1, AKR1C3). Only 1 gene, AKR1C3, overlapped between the 2 meta-analyses and
interestingly, it showed opposite direction effects in the 2 tissues (pooled effect size estimates:
logFC=-0.32, p= 2.0*10° in blood and logFC=1.6, p = 6.2*107°, both validated), as shown in the
violin plot in Figure 4.
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By contrast, most sex-DE genes were consistent across studies and tissues: forty-five genes
were consistently DE in at least three studies (see Supplementary Table S4B). Only four of
these genes were autosomal (EIF5B, ACTB, KLF6, LAPTM4B), and the sex-DE autosomal
genes had higher expression in females. Six of the DE sex chromosomal genes were present in
20 or more studies, including RPS4Y1, EIF1AY, DDX3Y, KDM5D, UTY, USP9Y, and XIST. We
additionally saw little evidence of tissue specificity for the sex-related meta-analysis (Figure
3B), which identified 22 X and Y chromosome genes with sex differences in expression: 12
higher in males and 10 higher in females. All but 2 of these genes validated in a held-out
dataset, and 11 validated in 2 or more datasets. Tissue-specific, sex differences meta-analyses
resulted in 32 genes in blood and 6 in airway epithelium. The majority of these genes were sex
chromosomal; however, 15 genes in blood and 1 gene in airway epithelium were autosomal.
Overall, 14 blood and 4 airway epithelium genes validated in the held-out datasets; all validated
genes were sex chromosomal.

It is important to note that for analysis, we inferred sex labels using the expression of a subset
of X and Y chromosome genes (although there are many other X and Y genes that are DE). In
addition, when we examined the subset of studies with metadata sex labels (35 studies) and
assumed that these labels were correct, we obtained similar patterns of significantly
differentially expressed X and Y chromosome genes that were overlapping across studies and
tissues.

13
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Figure 2. Smoking and sex-related effects across tissues. Heatmaps showing the numbers of overlapping significant genes (A-B) and
correlation of effect sizes (C-E) in each of the studies for smoking (A, C) and sex-related effects (B, D, E). Studies are organized by tissue, as
indicated by the color bars on the side. A-B) The number of overlapping genes is shown, with darker purple indicating larger numbers for smoking
(A) and sex (B). C-E) Correlation plots colored by weighted Pearson correlation of the effect sizes (weighted by standard error) for top overlapping
genes (FDR < 0.1 in either study). Correlations are plotted for smoking-related effects (C) and for sex-related effects separated into sex
chromosome (D) and autosomal effects (E). Orange indicates a positive correlation, white indicates no correlation, and purple is a negative
correlation. Correlation was not calculated for pairs of studies with less than 30 overlapping genes; these are shown in gray.
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Figure 3. Meta-analysis of differential expression across studies for smoking (A) and sex (B). Studies are organized by tissue, as indicated by the
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Figure 4. Violin plot showing the distribution of AKR7C3 levels across smokers (gold) and non-smokers
(teal) in airway and blood studies. The mean and 95% confidence interval are included for each
study/smoking group, and the size of point corresponds to the overall study sample size.

Genes associated with smoking show more tissue specificity than genes with similar
effect sizes associated with sex. We examined the subset of DE genes present in at least 3
studies and 2 tissues, and adapted the 1 tissue-specificity metric (Yanai et al. 2005) to examine
specificity of differential rather than absolute gene expression (see Methods 5-4). Across DE
genes, smoking-related genes showed significantly more tissue-specificity than sex-related
related genes (p=4.92 * 10'%) (Figure 5A for the summary of these effects and
Supplementary Figure S5 to visualize differences at the gene level).

In addition to comparing tissue-specificity, we used variance components analysis (see
Methods 4) to compare the contributions of sex and smoking to variation in gene expression.
We found that, across studies, smoking explains a significantly larger portion of variation in
autosomal gene expression than sex (p=0.015), highlighting the importance of considering
extrinsic sources of variation in addition to sex (Figure 5B).
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Figure 5. Comparison of sex and smoking effects. (A) Smoking-related genes (gold) show higher
tissue-specificity than sex-related genes (purple). The y axis shows the tissue specificity using the 7
metric, where 0 is ubiquitous across tissues, and 1 is tissue-specific, and each point is a different gene
(see Supplementary Figure S5 for the individual genes). (B) Study proportions of variance in expression
resulting from smoking-related autosomal effects are on average higher than that of sex-related
autosomal effects. The y-axis shows the proportion of variation. Each point is the proportion of variance
explained by that covariate (sex or smoking) in one study, colored by the location of the probes (orange
for autosomal, blue for sex chromosomal).

4. Airway epithelium shows strong patterns of smoking-related differential expression
We first examined the grouped airway epithelium dataset for patterns of smoking and sex-
related differential expression. The airway epithelium dataset consists of 444 samples, which is
an expanded version of the dataset analyzed by Yang et al (C. X. Yang et al. 2019) (n=211).

We used principal variance components analysis (PVCA) (see Methods 4) to examine the
overall contributions of the covariates sex, smoking, and a sex-by-smoking interaction effect to
variance in expression. Similar to the analysis across tissues, we found that in the Grouped AE
study, smoking-related autosomal genes explain a larger fraction of variance than sex-related
autosomal genes (see Figure 6A). Additionally, here we see a larger proportion of sex-related
variance due sex chromosomal genes versus autosomal genes.

We used a model including sex, smoking, and a sex-by-smoking interaction term, in addition to
the covariates race-ethnicity, pack-years, age, and submission date. This model is similar to that
used by Yang et al. (C. X. Yang et al. 2019) but also includes submission date to account for
batch effects (i.e. effect of non-biological factors) seen in the data (see Supplementary Figure

S$6). Using this model with an FDR cutoff of <0.05 and absolute log fold-change cutoff of 20.3,

we identified 2625 probes differentially expressed related to smoking, 128 related to sex, and 1

related with a significant interaction effect. Given that many probes map to the same gene, we

sought to leverage these patterns of multi-mapping by meta-analyzing the values of the probes
corresponding to each gene (see Methods 5-2). After summarizing probes to genes, the same
cutoffs resulting in 932 DE genes related to smoking, 48 genes related to sex, and 30 with sex-
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differential smoking effects (see Supplementary Tables S5A-C). Of these genes, 43 genes
with smoking-related and 33 genes sex-related effects were located on the X or Y
chromosomes. Volcano plots showing DE genes related to smoking and sex differential
smoking effects are included in Figures 6B and C, respectively. Many of these genes were also
identified by Yang et al (C. X. Yang et al. 2019) in their analysis, and show similar effect sizes
(see Supplementary Figure S8 for a comparison of smoking-related genes).

We then sought to assess the extent to which these DE genes were replicated in a held-out
airway epithelium dataset. From our list of 21 studies, we selected GSE7895, which is the
largest airway epithelium dataset (and was also used for replication by Yang et al (C. X. Yang et
al. 2019)). This dataset was generated by the same lab as the Grouped AE dataset but was on
a different platform and represents a different set of subjects. Figures 6D and E compare the
effect sizes in the discovery (Grouped AE) dataset versus the replication (GSE7895) dataset for
smoking and sex differential smoking effects respectively. While 110 smoking DE and 18 sex-
DE genes replicated (same direction effect size and p-value < 0.05), only 1 of the interaction
effect genes replicated: CAPN9. CAPN9 is higher in smokers than non-smokers, but appears to
show a slightly stronger effect in females than in males; however, it is important to note that the
GSE7895 dataset contains only 5 female non-smokers, so it is difficult to draw conclusions
about whether this effect is truly replicated (see Figure 6F).

In addition to examining the replication of particular genes, we also sought to examine the
relationship of the effect sizes. Specifically, for DE genes identified in the discovery set, we
determined whether the effect sizes in the discovery and validation were related. Between the
discovery and validation, while there is a strong correlation in the effect sizes for smoking
related effects (Pearson’s £=0.63, p< 2*107'®), there is no correlation in the effect sizes for sex
differential smoking effects (Pearson’s #=-0.04, p=0.86). The lack of correlation as well as the
single gene in the replication of the sex-differential smoking effects is likely due in part to the
small sample size and unbalanced nature of the replication set, but also demonstrates a lack of
concordance of effect sizes, even if they are not significant in the replication.
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Figure 6. Results from grouped airway epithelium analysis. (A) Bar plot showing airway epithelium variance decomposition across smoking,
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the log-fold change (logFC) in expression between smokers and non-smokers, and the y axis is the -log10 of the unadjusted p-value. Each point is
a gene, colored according to significance: red indicates the genes are significantly up in non-smokers, blue indicates the genes are significantly up
in smokers, genes in gray do not pass the significance threshold. The top 20 genes (lowest p-value) are labeled. (D,E) Replication of DE genes in
held out airway epithelium dataset (GSE9875) for sex (D) and sex-differential smoking responses (E). Each point is a DE gene identified in the
Grouped AE dataset. The x-axis shows the log fold change in discovery and the y-axis shows the log fold change in the replication dataset. A
positive log-fold change corresponds to higher expression in smokers. Red dots indicate genes that pass the replication threshold in the validation
dataset. Only the top 20 gene names are shown in (D) for ease of visualization. Dashed lines are at log-fold change zero. (F) Visualization of
CAPNQ interaction effects in discovery and validation in female and male smokers (gold) and non-smokers (teal).
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5. The majority of smoking-related expression studies are underpowered to detect sex
differences in smoking effects

In addition to examining the effects of smoking across tissues, we were interested in assessing
whether there are sex-differential responses to smoking. However, large sample sizes are
required to have sufficient power to detect interaction effects, which are often very small.
Assuming best case scenario where the datasets are balanced - i.e. ¥4 each of male smokers,
male non-smokers, female smokers, and female smokers - in order to have 80% power to
detect absolute log effect sizes of 0.3 (i.e. 1.2-fold difference in expression levels) at an FDR of
0.05, we would need at least 60 samples (see Supplementary Figure 10 for a visualization of
these parameters and Methods 7 for an explanation of these calculations). It is expected that
most interaction effects are smaller than that, and for log effect sizes of 0.2 and 0.1, we would
need at least 140 and 525 samples, respectively. The Grouped AE study contains 444 samples,
but with an uneven breakdown: the smallest category (female non-smokers) contains only 61
samples (14%) and largest (male smokers) contains 200 samples (45%).

The studies overall were highly imbalanced across sex and smoking categories. Across all
studies, the median numbers of samples per category are 13.7, 9, 17.3 and 16 samples for
female non-smokers, female smokers, male non-smokers, and male smokers, with totals of 424,
279, 535, and 495 samples per category respectively. Only 4 of the 31 smoking-related studies
contained at least 15 male and female samples per smoking category (E-MTAB-3604,
GSE17913, E-MTAB-5278, GSE30272), and only 2 of these studies have more than 20 males
and females per category (E-MTAB-5278, GSE30272, with 23 or more per category). The
remaining studies did not have sufficient samples for detecting genes with sex-differential
smoking effects in standard interaction analyses. Given these power limitations, we focused on
whether the interaction effects identified in the Grouped AE study replicated in the other studies.
None of the 30 genes replicated at Bonferroni corrected p-value threshold (p < 0.05/30).
Because this is conservative, we also examined the results at an uncorrected p-value threshold;
however, this means that we expect they may be false positives, and all require further
validation.

Five of the 30 genes had an uncorrected p-value < 0.05 and same direction effects in the
replication: SLC25A37 and OPN3 in the study E-MTAB-5278 (blood), and RALGDS, KCNJ1,
and MS4A7 in GSE30272 (brain). The list of these genes and their p-values and effect sizes are
included in Supplementary Table 7; see Supplementary Figure 11 for visualization of their
effects. Briefly, in smokers relative to non-smokers, SLC25A37 is lower in males and KCNJ1 is
lower in females. Two genes, OPN3, MS4A7, appear to be lower only in female non-smokers,
while RALGDS shows opposite direction effects: higher in female smokers and lower in male
smokers.
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Table 1. Smoking and sex breakdown of airway epithelium data

Smokers Non-smokers
total female* male total female male
273 73 200 171 61 110
age” mean * sd 42.6+7.4 41.3+8.9 43.1+6.8 40.3+10.2 | 37.9+11.3 | 41.649.4
missing 79 19 60 30 13 17
racet Asian 0 0 0 4 4 0
Black 119 33 86 67 20 47
Black, 0 0 0 2 2 0
Hispanic
Hispanic 32 7 25 20 8 12
White 45 14 31 50 14 36
missing 77 19 58 28 13 15
pack mean *sd | 27.6x16.8 | 27.1£16.4 | 27.7x17.1 | -- -- --
years®
missing 81 20 61 -- -- --

*Sex is not significantly associated with smoking p = 0.059 (chi-squared test)
VAge is associated with smoking status (p = 0.02) and sex is also associated with age (p=0.01).
Missingness of age associated with smoking (p=0.009) but not sex (p=0.92).
*+Race-ethnicity is significantly associated with smoking status (chisq p = 0.03, removed

categories with less than 5 counts total) but not sex (p=0.99). Missingness of race-ethnicity

associated with smoking status (p=0.006) but not sex (p=1)

°Pack-years is not associated with sex (p=0.8) (t-test) and missingness of pack-years is not
associated with sex (p=0.29) or race (p=0.08)
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Table 1B. Sex breakdown of smaller studies organized by tissue. The number of females in each category is included in

parentheses.
tissue study title (citation where available) platform smokers | non- sex label | additional
smokers | mismatch | phenotypes
airway GSE14633 Gene expression from bronchial GPL5175 11 (3) 11 (7) 0 race;
epithelium epithelial cell samples of current pack years
and never smokers.(Schembri et
al. 2009)
airway GSE19027 Antioxidant response gene GPL96 22 (1) 7(2) 2 age; race;
epithelium expression in the bronchial airway pack years
epithelial cells of smokers at risk
for lung cancer (X. Wang et al.
2010)
airway GSE4302 Genome-wide profiling of airway GPL570 15 (2) 28 (16) no NA
epithelium epithelial cells in asthmatics, metadata
smokers and healthy controls
(Woodruff et al. 2007)
airway GSES5056 Airway epithelium, large airways, GPL80 26 (8) 18 (4) 0 age; race;
epithelium phenotypically normal smokers vs pack years
non-smokers, MASS5 (HuGeneFL)
(Carolan et al. 2006)
airway GSE7895 Reversible and permanent effects | GPL96 52 (10) 21 (5) 0 age;
epithelium of tobacco smoke exposure on pack years
airway epithelial gene expression
(Beane et al. 2007)
alveolar GSE13896 Smoking-dependent GPL570 50 (6) 43 (10) 4 age; race;
macrophages reprogramming of alveolar pack years
macrophage polarization:
implication for pathogenesis of
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COPD (Shaykhiev et al. 2009)

alveolar GSE2125 Isolated alveolar macrophages GPL570 13 (2) 15 (10) no NA
macrophages (Woodruff et al. 2005) metadata
alveolar GSE27002 Chronic cigarette smoke exposure | GPL5175 13 (4) 10 (5) no NA
macrophages results in coordinated methylation metadata
and gene expression changes in
human alveolar macrophages (R.
A. Philibert et al. 2012)
blood - b cells | GSE18723 Gene expression circulating B GPL96 38 (38) 40 (40) all female | menopause
lymphocytes for smoking females
(Pan et al. 2010)
blood - pbmcs | GSE21862 Gene expression on 144 arrays GPL6104 9(1) 33 (24) 0 age;
representing 125 workers exposed subject _id;
to a range of benzene exposures batch (chip
(McHale et al. 2011) id)
blood - pbmcs | GSE42057 Peripheral blood mononuclear cell | GPL570 13 (7) 27 (13) 0 age;
gene expression in chronic pack_years;
obstructive pulmonary disease fev1; bmi;
(Bahr et al. 2013) activity
blood - pbmcs | GSE87072 Gene expression profiles from GPL570 40 (0) 40 (0) all male age
PBMCs collected from chronic
smokers and moist snuff
consumers (Arimilli et al. 2017)
blood - whole [ E-MTAB-5278 | Transcription profiling of blood from | GPL570 56 (23) 56 (23) 4 race; age

smokers (with or without COPD),
non-smokers and former smokers
to identify gene expression
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signature for cigarette smoke
exposure response (Martin et al.
2015)

blood - whole

E-MTAB-5279

Transcription profiling of blood from
smokers, non-smokers and former
smokers to identify gene
expression signature for cigarette
smoke exposure response (Martin
et al. 2015)

GPL570

27 (12)

28 (13)

race; age

blood - whole

GSE20189

A gene expression signature from
peripheral whole blood for stage |
lung adenocarcinoma (Rotunno et
al. 2011)

GPL571

27 (14)

21 (11)

no
metadata

NA

blood - whole

GSE20681

Whole blood cell gene expression
profiling in patients with coronary
artery disease from the PREDICT
trial (Elashoff et al. 2011)

GPL4133

14 (3)

48 (16)

age

blood - whole

GSE23323

Transcriptomics in response to
cigarette smoking in humans

GPL6480

22 (10)

22 (10)

no
metadata

NA

blood - whole

GSE23515

Radiation responses in peripheral
white blood cells of smokers and
non-smokers (Paul and Amundson
2011)

GPL6480

12 ()

12 ()

0

age

blood - whole

GSE56768

Whole blood and isolated blood
cell transcriptomics in COPD

GPL570

39 (19)

5 (3)

no
metadata

NA

brain -
prefrontal
cortex

GSE30272

Temporal dynamics and genetic
control of transcription in the
human prefrontal cortex

GPL4611

56 (23)

166 (52)

0

race; age;
alcohol;
postmortem
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(Colantuoni et al. 2011) interval;
batch
buccal GSE16149 Examining smoking-induced GPL570 9(9) 9(9) all female | NA
mucosa differential gene expression
changes in buccal mucosa (Kupfer
et al. 2010)
buccal GSE17913 Effects of cigarette smoke on the GPL570 35 (16) 33 (16) 9 NA
mucosa human oral mucosal transcriptome
(Boyle et al. 2010)
kidney GSE46699 Smoking and obesity related GPL570 21 (7) 37 (22) no obesity
molecular alterations in clear cell metadata
renal cell carcinoma (Eckel-
Passow et al. 2014)
liver GSE32504 Identification of expression GPL13376 28 (12) 115 (64) | 2* race; age;
quantitative trait loci (eQTL) in alcohol;
human liver (Schréder et al. 2013) medication
lung GSE103174 Expression data from lung tissue in | GPL13667 5(2) 10 (9) 1 age; bmi;
mild-moderate COPD pack years;
fev1; batch;
cell types
lung GSE31210 Gene expression data for GPL570 11 (4) 7 (4) 0 age
pathological stage I-l lung
adenocarcinomas (Okayama et al.
2012)
lung GSE32539 Molecular phenotyping of the GPL6244 21 (11) 20 (5) 1 age; rin;
idiopathic interstitial pneumonias pack years;
identifies two subtypes of idiopathic batch
pulmonary fibrosis (I. V. Yang et al. (aliquot)
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678

2013)

transcriptome (Spira et al. 2004)

nasal GSES8987 Expression data from buccal and GPL571 7(1) 8 (2) no NA

epithelium nasal epithelium of current and metadata
never smokers (Sridhar et al. 2008)

oral cavity GSE42743 Oral cavity cancer compared to GPL570 11 (3) 6 (2) 0 age/dxdate
adjacent "Normal" tissue [validation
set] (Lohavanichbutr et al. 2013)

sputum E-MTAB-3604 | Alterations in the sputum proteome | GPL570 40 (15) 45 (17) 0 race; age;
and transcriptome in smokers and pack years;
early-stage COPD patients (Titz et bmi; fev/fvc
al. 2015)

trachea GSE994 Effects of cigarette smoke on the GPL96 31 (7) 18 (4) no NA

epithelium human airway epithelial cell metadata

*For comparison, we used the paper supplement metadata for this study, GEO metadata showed exactly the opposite sex labels.
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DISCUSSION

In this study, we sought to examine sex- and smoking-related effects across tissues in publicly
available gene expression data. We performed a systematic search of publicly available gene
expression datasets, and identified 31 smoking-related studies spanning 1754 samples and 12
tissues as well as an additional group of overlapping airway epithelium studies consisting of 411
samples (which we refer to as the Grouped Airway Epithelium study). The studies identified
were overall male-biased and unbalanced across smoking and sex-related groups. Only 4 of the
31 studies and the Grouped Airway Epithelium (AE) study contained at least 15 males and
females per smoking category.

To our knowledge, our analysis represents the first comprehensive examination of smoking-
related gene expression across tissues in publicly available data. Additionally, our analysis
concomitantly considers sex-related effects, which are often ignored, and compares the relative
impacts of these covariates. We examined smoking-related effects across 31 studies and 12
tissues and found evidence for tissue-specific effects in smoking response, with separate
clusters for airway epithelium (and related tissues) and blood. Despite within-tissue similarities,
several genes appear to be key players across tissues, including 8 genes (LRRN3, MS4A6A,
GAPDH, RPLPO, CX3CL1, GPR15, and AHRR) that were differentially expressed in both an
airway-related and non-airway tissue. Many of these genes have been previously reported to be
associated with smoking status. In blood, LRRN3, or leucine-rich repeat neuronal 3 gene, has
been shown to have increased expression in smokers across multiple studies (Martin et al.
2015; Maas et al. 2020; Huan et al. 2016; Baiju et al. 2021), as well as differential DNA
methylation patterns (Guida et al. 2015; Huan et al. 2016). GPR15 expression is associated with
smoking in blood (Huan et al. 2016), CX3CL1 is associated with lung cancer stage in smokers
(Su et al. 2018), and MS4AG6A is found to have altered DNA methylation in alveolar
macrophages in response to smoking (R. A. Philibert et al. 2012). Interestingly, while GAPDH
and RPLPO are housekeeping genes, GAPDH has been reported to be differentially expressed
in response to smoking in mouse lungs (Agarwal et al. 2012). It is possible that differences in
these housekeeping genes highlight differences in numbers and populations of cells, and future
work is required to examine potential cell-type specific effects.

By comparison, similar scale sex-related effects appeared to be consistent across studies and
tissues. These effects were largely limited to sex chromosomes, which is not unexpected given
study size and our use of conservative thresholds. Direct comparison of smoking and sex-
related effects highlighted that smoking has a larger impact on autosomal gene expression than
sex in the tissues we examined. Many of these tissues were airway-related, so is possible (and
likely) that examination of other tissues may show smaller magnitude smoking effects, and we
do not know how these effects will compare to sex. Sex-related effects are often
overemphasized, and these comparisons illustrate the importance of considering other
covariates and disease states that may have larger or similar scale impacts on expression.

In addition to examining overlapping sets of genes and correlations between studies, we used
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meta-analysis to identify consistently DE genes across tissues, using 27 of the 31 studies as
discovery and 4 studies for validation. From this meta-analysis, we identified 7 genes with
smoking-related effects: AHRR, CYP1B1, NQO1, LRRN3 were significantly higher and
ELOVL7, CCL4, and GZMH were significantly lower in current smokers as compared to non-
smokers (LRRN3 and AHRR were also identified from the study overlap analysis). While the
smoking-related genes appeared across studies, only AHRR and GZMH showed consistent
effects across tissues, while the other genes were strongest in a particular tissue: airway
epithelium for NQO1 and CYP1B1, blood for LRRN3, and alveolar macrophages and sputum for
ELOVL7 and CCLA4. Four of these genes validated in a held-out set and 4 genes were DE in the
validation studies: LRRN3 (blood - similar tissue specificity), AHRR (blood), NQO1 (airway
epithelium - similar tissue specificity), and CYP1B1 (alveolar macrophages). For sex-related
effects, we identified 22 genes, all of which were sex chromosomal and appeared consistent
across tissues.

All 7 genes have known associations with smoking. Multiple studies have shown that LRRN3 is
consistently overexpressed in smokers specifically in blood (described above). NQOT is
overexpressed in airway tissue in response to biofuel smoke (Mondal et al. 2018), matching the
possible tissue specificity seen above. However, it has also been shown to be overexpressed in
pancreatic tissue of smokers (Lyn-Cook et al. 2006), and a genetic variant located in this gene
has an interaction effect with smoking that is associated with colorectal cancer risk (X.-E. Peng
et al. 2013). Increased expression of CYP1B1 in the aerodigestive tract is associated with
smoking (Port et al. 2004), and in oral mucosa CYP1B1 has increased expression and
differential methylation in smokers vs. non-smokers (Richter et al. 2019). Neither CCL4 or
ELOVL7 were replicated in our analysis, but have known smoking-related associations. Multiple
genetic variants in this ELOVL?7 are associated with smoking behavior (Liu et al. 2019; Wootton
et al. 2020) and CCL4 expression is lowered in PBMCs of smokers (Arimilli et al. 2017).

Multiple studies (Grieshober et al. 2020; Philibert et al. 2020) have found that hypomethylation
of AHRR, which encodes the Aryl-Hydrocarbon Receptor Repressor, is strongly associated with
smoking in several tissues. AHRR modulates responses to dioxin toxicity and is involved in
regulation of cell growth. Similar to our analysis, additional studies have found that AHRR
expression is increased in smokers, and decreases following smoking cessation (Bossé et al.
2012). GZMH encodes Granzyme H, which is a T and NK cell serine protease involved in lysing
target cells. While one study in blood found decreased expression of GZMH in smokers (Arimilli
et al. 2017), matching our analysis, another study, also in blood, found significantly increased
expression (Vink et al. 2017), so further investigation is required to replicate the direction of this
effect.

We performed 2 within-tissue meta-analyses for smoking-related effects in blood and airway
epithelium, identifying 19 and 66 consistently DE genes, respectively. Interestingly, in airway
epithelium, the only overlapping gene, AKR1C3, was significantly higher in smokers relative to
non-smokers, but in blood, was significantly lower in smokers relative to non-smokers. The
significance and direction of effects were replicated in held-out airway epithelium and blood
studies, indicating that these opposite-direction effects are robust. To our knowledge, this
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finding is a novel discovery of a gene that shows opposite-direction, tissue-specific responses to
smoking; however, it is unclear why this is the case. Opposite direction effects in different
tissues have been reported previously: Obeidat et al.(Obeidat et al. 2017) examined gene
expression associations between emphysema in blood and lung, and found that 24 out of 29
overlapping genes showed opposite direction effects across the two tissues. The gene AKR71C3
encodes an aldo/keto reductase, which is a family of proteins known to be involved in cancers,
including head and neck, bladder, prostate, uterine, breast, and ovarian cancer. Other members
of the AKR1C family are known to be upregulated in response to smoking (Woo et al. 2017),
and were similarly found differentially expressed in multiple tissues in our analysis. Examination
of AKR1C3 regulation and tissue-specific expression of genes in nearby pathways may help
elucidate this differential response.

For the Grouped AE study, we found 932 significantly DE genes with smoking-related effects,
48 DE genes related to sex, and 30 genes with sex-differential responses to smoking. This is an
expanded re-analysis of the samples examined by Yang et al. (C. X. Yang et al. 2019) (n= 211
samples). Despite our larger sample size, we identified fewer genes because we used more
conservative thresholds and included an additional batch-related covariate. There was both
substantial overlap and correlation between effect sizes for the smoking-related effects, but not
for the sex-differential smoking effects. It is possible that we did not observe a correlation for the
sex-differential smoking effects because the replication study was very small. Additionally, while
110 smoking DE genes and 18 sex DE genes replicated, only 1 gene with a sex differential
smoking effect, CAPN9, was replicated in the validation study. Both male and female smokers
showed increased expression of CAPN9, but this increase appears to be slightly stronger in
females relative to males; however, this effect is subtle and the replication dataset was
unbalanced, with only 5 non-smoking females. CAPN9 encodes a calcium-dependent cysteine
protease, which is activated in response to oxidative stress, and its expression is inversely
associated with prognosis in gastric cancer (P. Peng et al. 2016). Additionally, a previous study
found that CAPN9 was correlated with the expression of MUC5AC, which is a mucin gene
known to respond to smoking (Goldfarbmuren et al., n.d.).

We found that the majority of the remaining publicly available smoking studies were too small to
identify sex-differential smoking (or sex-by-smoking) effects on gene expression. Additionally,
most studies were unbalanced, decreasing power to detect these effects. Only 4 studies had at
least 15 samples per sex/smoking category, with a maximum of 23 samples in the largest of
these 2 studies. Due to the limited sample sizes, we used these studies to examine replication
of the 30 sex-differential smoking genes identified in Grouped AE. No genes were replicated
after correcting for the number of tests (n=30). At a nominal p-value cutoff (uncorrected p <
0.05), 5 genes were identified that showed the same patterns in the discovery and validation:
SLC25A37 and OPN3 in the blood study and RALGDS, KCNJ1, and MS4A7 in the brain study.
It is important to note that the studies were from various tissues (blood, brain, sputum, and
buccal mucosa) and not airway epithelium, so it is possible that the lack of replication was in
part due to tissue specificity; however, it may be due to sample size. We cannot draw
conclusions about replicability or tissue-specificity of sex-related smoking effects without
examining larger validation studies.

29


https://doi.org/10.1101/2021.09.27.461968
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.461968; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

available under aCC-BY-NC 4.0 International license.

This work has several strengths. First, we performed a systematic search to identify and
manually filter smoking-related studies available in public gene expression databases in order to
construct our compendia of smoking studies. By performing such a search, we ensured that we
obtained a comprehensive picture of smoking effects on gene expression, rather than cherry-
picking specific studies. We also leveraged our previously developed method (Flynn, Chang,
and Altman 2021) to infer sex labels for these studies, without which, 9 of the 31 studies would
not have been available for analysis. As part of this sex labeling process, we also discarded
samples with mismatched metadata and inferred labels, which may also have other mislabeled
metadata, thereby increasing the quality of our data.

In our analysis of smoking and sex-related effects, we made conservative methodological
choices in order to identify consistent, reproducible effects. Our cutoff for identifying DE genes
consisted of both an effect size and FDR threshold. Additionally, we employed meta-analytic
techniques to summarize probes to genes in our comparisons, which has been suggested
before in the literature (Ramasamy et al. 2008), but to our knowledge not yet employed. We
demonstrate that use of this technique decreases the number of false positives. It is important to
note that meta-analysis also increases bias toward genes with more probes, which is a concern
for consistent examination across genes; however, it does not present problems if concerned
with true positive rate. By making these choices, we expect that our analysis has false
negatives and that we may have missed some subtle effects.

Two additional strengths of our analysis are the examination of the correlation structure
between studies and the side-by-side comparison of smoking and sex-related effects. Using a
weighted correlation metric allowed us to better understand the overall pattern of replication
without relying on specific significance cutoffs, which both require making decisions about a
threshold and could potentially miss replicated genes because of small sample sizes. The
concurrent analyses of smoking and sex-related effects allowed us to compare the tissue
specificity of the two effects. Sex-related gene expression has been examined across tissues
extensively (Gershoni and Pietrokovski 2017; Oliva et al. 2020; Mayne et al. 2016), and has
been shown to have both strong, shared sex chromosomal effects and small tissue-specific
autosomal effects. In our analysis, in part because of sample size and effect size cutoffs, we
only saw sex chromosomal effects which were present across tissues. This is in contrast to the
smoking-related effects that showed some tissue-specific patterns, which we identified in the
same studies at the same significance thresholds.

While the use of public data is a strength of our analysis, it also presents a limitation. Larger
studies on which previous analyses have been performed (Bossé et al. 2012; Huan et al. 2016;
Maas et al. 2020) are either not publicly available or missing sufficient metadata for re-analysis
of sex-related effects. Public data is also biased toward specific tissues, and while we sought to
examine effects across tissues, we were limited to the seven tissues with data available. The
majority of the available tissues were airway-related or blood, which makes sense given the
nature of smoking-related exposures and ease of sampling peripheral blood, but does not
provide a complete picture. Additionally, with the exception of airway epithelium and blood,
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which had at least 5 studies each, there were less than 3 studies per tissue and many tissues
with only 1 study (e.g., brain, liver, kidney), which prevented an assessment of the extent to
which some smoking-related effects are tissue (rather than study) specific. Much of the data
were also generated by a single lab and on similar platforms. While this lack of heterogeneity
makes the analysis less complex, increased heterogeneity in studies leads to identification of
more robust, reproducible effects.

We also relied on the author-processed expression data for each study, which helped us obtain
data from a heterogeneous set of platforms. However, different processing pipelines are known
to greatly affect microarray results (loannidis et al. 2009). These effects are disproportionately
on the sex chromosomes (Castagné et al. 2011), which may have led to an underestimation of
sex chromosome contributions to variance. This also limited our analysis to studies with
available processed data. Use of standardized processing steps will allow us to examine
additional studies, and may reduce heterogeneity between studies due to processing artifacts.
We also limited our analysis to samples from healthy tissues; however, future analyses may
include disease samples, which may increase the search space and enable examination of
additional questions. In the process of identifying the studies for our analysis, we also identified
47 studies that involved cultured cells exposed to smoke components. While it is unclear
whether sex-related effects identified in culture would translate to humans, use of these data,
which have many replicates and show larger magnitude smoking responses could help identify
sex-related smoking effects.

Many studies were missing important covariate information, including age, race/ethnicity, pack-
years, and batch-related effects. Available covariates were included in our models; however,
this may have led to inconsistencies across studies because of differing sets of covariates. For
studies with missing covariate information, confounding may contribute to the identified genes,
leading to incorrect associations. For example, because men smoke more heavily on average
(Baumert et al. 2010), without pack-years information, effects attributable to smoking amount
might be attributed to sex. In addition to variation in available covariates, studies have shown
that self-reported data on smoking is often inaccurate (Gorber et al. 2009). Some studies use
plasma or urine cotinine levels to confirm smoking status; however, only 1 study reported these
levels. As a result, definitions of smoking may be inconsistent across studies and may include
incorrect labels due to self-report or sample label mix ups (while our sex labeling method
detects samples with swapped sex labels, we cannot detect mislabeling if it occurs between
samples of the same sex). Future work may involve developing models to infer additional
covariates and detection of mislabeled samples in other dimensions, such as for smoking
status. A possible direction could involve training models to infer smoking status from
expression data using either previously identified tissue-specific gene signatures (e.g. (Bossé et
al. 2012; Martin et al. 2015)) and/or genes identified in our meta-analysis. This could allow us to
expand our analysis to many additional studies that do not contain smoking metadata.

Another limitation is that our study focuses on gene expression data: smoking-related effects

occur on multiple biological levels, some of which have sex-related differences. In tumor
microenvironments, changes in immune cell populations in response to smoking were more
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pronounced in women than in men (Alisoltani et al., n.d.). DNA methylation shows sex-specific
changes in response to smoking (Koo et al. 2020). Examination of these molecular data types in
concert with expression data may help identify additional important insights into smoking and
sex-related smoking effects.

In conclusion, we performed a large-scale systematic analysis of smoking and sex-related
smoking effects in healthy participants using publicly available gene expression samples from
31 studies and 1 study compendium, spanning 12 tissues. This analysis is the first to examine
these effects at this scale and in a sex-aware manner. Our results indicate that expression
changes in response to smoking largely cluster by tissue while also showing consistent effects
across tissues in a small number of genes. This is in contrast to similar magnitude sex-related
effects, which appear to be consistent across tissues. Comparison of smoking and sex-related
effects indicate that smoking has a larger impact on autosomal expression than sex in the
tissues examined in this study. Our study also highlights the challenges of examining and
replicating sex-differential smoking effects in publicly available data, which is in part due to
sample size and sex bias. Expansion of this analysis to additional studies and samples may
help to validate and further examine patterns of tissue-specificity and assess sex-differential
smoking effects.
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