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Abstract

Mammalian cells adapt their functional state in response to external signals in form of ligands that bind
receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network
of molecular interactions that govern transcription factor (TF) activity patterns. Computer simulations of
the information flow through this network could help predict cellular responses in health and disease.
Here we develop a recurrent neural network constrained by prior knowledge of the signaling network
with ligand concentrations as input, TF activity as output and signaling molecules as hidden nodes.
Simulations are assumed to reach steady state, and we regularize the parameters to enforce this. Using
synthetic data, we train models that generalize to unseen data and predict the effects of gene knockouts.
We also fit models to a small experimental data set from literature and confirm the predictions using cross
validation. This demonstrates the feasibility of simulating intracellular signaling at the genome-scale.
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Introduction

The healthy body continuously adapts to the environment by altering the molecular state of its cells. This
primarily occurs through binding of multiple types of ligands to receptors on the cell-surface, this acts as
signals that are propagated through molecular interactions culminating in activation of transcription
factors (TF) and subsequent transcription of genes. Rather than constituting independent paths from
receptors to specific genes, signaling is conducted through a complex network with spatial and temporal
components!. This enables the cell to compute a response to stimulation with multiple ligands*3, e.g. co-
stimulation of human macrophages gives rise to a spectrum of cellular activation states®. Disruptions to
the network can cause disease, e.g. activating mutations in the signaling protein BRAF is present in 40-
50% of all melanoma tumors®, i.e. skin cancer, and single target treatments are not always sufficient due
to cellular adaptations, e.g. tumors often acquire resistance to BRAF-inhibitors®. A systems perspective on
signaling is required to better understand responses to co-stimulation and predict the effects of drugs.
Such an understanding could be obtained through genome-scale computer simulations of signaling that
have long been anticipated®®.

By now, many requisites for genome-scale models of signaling are in place. The network topology has
been extensively characterized with thousands of biochemical interactions collected in databases® and
with visual maps available for many signaling pathways, e.g. through the Kyoto Encyclopedia of Genes and
Genomes (KEGG)*¥. Genome wide data can be generated using high-throughput methods, e.g. activities
of hundreds of TFs can be statistically inferred from transcriptomics data'! and cellular responses to
combinations of ligands, can be characterized through co-stimulation experiments?. For metabolism
genome-scale simulations are routinely performed using the flux balance analysis (FBA) framework, which
predicts intracellular fluxes using steady state assumptions, linear optimization and data on metabolic
exchange rates!?. It has been used to gain system level insight on a wide range of topics, e.g. the effect of
intercellular compartmentalization on the flux of glutamate in cancer®® or the influence of metabolic
trade-offs on oxygen consumption in muscle cells'*. However, the linear FBA methodology cannot be
applied to signaling, in which nonlinear relationships are typically important to capture and stoichiometric
constraints are less straightforward to impose.

Current signaling models are often based on ordinary differential equations (ODE) or logic rules’®% and

face challenges when expanding to the genome-scale’®. Yet, several of these have been overcome by
simplifying assumptions. Explicit enumeration of microstates, which has been successful for individual
proteins, is numerically intractable at the genome-scale!’ due to a combinatorial explosion of states from
posttranslational modifications and protein complexes. This is circumvented by models that omit
enumeration, e.g. signal flow models represent signaling as a signed directed graph with scalar activity
values for each signaling molecule®. Cellular activity occurs across multiple timescales, e.g.
conformational changes of proteins occurs much faster than signaling events, while protein translation
from mRNA occurs much slower. The requirement by network-wide models for simulation of long time-
courses at high resolution can be overcome using quasi-steady-state approximations'”!8 that assume that
faster processes are instantaneous and slower processes as constant. However, two major limitations
remain for reaching the genome-scale using current methods: predefined equations are needed for each
molecule, while the exact mechanism is often unknown; and parameter estimation may require
problematically long computational times for the largest models despite major advances®®. Therefore, an
alternative framework for modeling signaling may be warranted.

Advancements in artificial neural networks (ANN) have enabled large-scale models in many different
areas, including drug discovery and genomics®®. ANNs approximate unknown and highly complex
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functions through a sequence of linear matrix operations and non-linear transformations. These
approximations, sometimes containing millions of parameters, can be rapidly trained from paired samples
of input and output data using the backpropagation algorithm?®21, While ANNs excel at predictions, their
underlying mechanism is often elusive and therefore more interpretable ANNs based on prior knowledge
have been proposed for modeling biological systems??. For example, a feed forward neural network
(FFNN) with a network topology derived from known signaling interactions has been used to predict cell
types from gene expression data®’. However, FFNN do not allow feedback loops, which are frequent in
signaling, and therefore recurrent neural networks (RNN) may be a more suitable architecture for
modeling signaling networks. It has previously been shown that a an RNN without prior knowledge
constraints can recapitulate the output of a small ODE-model of signaling®.

Here we construct a framework for rapid parameterization and simulation of intracellular signaling using
RNNs. We first construct an activation function suitable for approximating the steady state behavior of
different molecular mechanisms. We then introduce a sparse RNN formalism that encodes the topology
of a known signaling network. The RNN uses ligand concentrations as input to predict steady state TF
activities and we construct a regularization function that ensures that steady state is reached. To test the
data requirements for training generalizable models, we generate synthetic data from a reference model
with computationally derived parameters. Models trained on modestly sized (400-800 samples) synthetic
datasets, accurately predict most randomly generated input-output pairs from the reference model.
Additionally, the trained model predicts the effect of simulated gene knock outs (KO). To demonstrate the
frameworks applicability to real world data, we fit a model using a small transcriptomics dataset from
literature involving macrophages stimulated with different combinations of ligands. We discuss how
genome-scale signaling models may leverage new types of high throughput data and facilitate
personalized medicine.

Results

Approximating molecular interactions at steady state

For the purpose of the signaling framework developed herein, molecular interactions are assumed to
always be at steady state. This can be justified by timescale separation, as these events are expected to
occur on the order of milliseconds compared to signal transduction that evolves over several minutes.
Molecular dynamics here signifies interactions between signaling molecules through a range of different
mechanisms, e.g. phosphorylation, binding, or conformational changes. The steady state assumption
implies that the activity of the target molecule of the interaction is a single valued function of its source
molecules that are considered constant at that instant. This activity depends on the specific molecular
mechanism (Fig. 1a) with the simplest arguably being independent activation and inhibition that may be
interpreted as phosphorylases and phosphatases respectively.

In many cases the exact molecular mechanism of a signaling interaction will be unknown, but its input-
output relation can be approximated by a neural network. Directed acyclic graphs, i.e. a FFNN, are
appropriate models for interactions that are assumed to instantaneously reach steady state!’ and for
independent activation and inhibition there is a direct mapping between their analytical steady state
solution and a FFNN with the Michaelis--Menten equation as activation function (Supplementary Fig. S1a).
Based on this we developed a problem-specific activation function, the Michalis-Menten like (MML)
activation function (Fig. 1b) with two main features; preventing negative states that would be non-
physiological; and preventing states >1 that are non-physiological assuming that this represents full
saturation. Physiological constraints are thus imposed at the level of the activation function, allowing
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weights and biases to take on arbitrary values. In practice the MML was taken as the leaky version of the
Rectified Linear Unit (ReLU) activation in its standard formulation?* for negative inputs. This prevents a
strict 0 gradient that may cause irrecoverable inactivation of nodes during training leading to blocked
signaling in sparse networks. The MML was taken as RelLU also for input values less than 0.5 to allow a
range where signaling states can be passed forward without alteration.

We found that a FFNN with this activation function and no hidden layers provided a good approximation
of independent activation/inhibition (Fig. 1c) outperforming the other activation functions that were
tested. The overall performance was acceptable also for other molecular mechanisms, although
prediction errors were not uniformly distributed (Supplementary Fig. S1b). An advantage of the MML
model without hidden layers was that the sign of weights directly corresponded to the mode of action
(MOA), activation (positive) or inhibition (negative). This allows for a straight forward implementation of
MOA-constraints. Additionally, it requires markedly less calculations than multilayered FFNNs. For FFNNs
with one hidden layer all of the tested activation functions produced excellent approximations (Fig. 1c).

Constraining a recurrent neural network with prior knowledge of signaling

Signaling involves a network of molecular interactions whose effects propagates over cellular distances
from receptors at the surface to TFs in the nucleus. In order to represent these interactions, which include
feedback loops, a sparse RNN formulation was developed as a model of cellular signaling. We constructed
a minimal signaling network to demonstrate the framework (Fig. 2a). The structure of this prior knowledge
network was encoded by a sparse matrix holding the weights of its molecular interactions (Fig. 2b). The
overall expression, also known as a first order non-linear difference equation, iteratively calculates the
signaling state from the state at the previous timestep and includes ligand concentrations as input and a
bias term, which may be interpreted as basal activation or thresholding. In this study molecular
interactions were modeled without hidden layers so that MOA could easily be constrained, but the
approximations of molecular interactions could have been made arbitrarily complex by adding
intermediary nodes between sources and targets.

It is here assumed that signaling activity reaches steady state after evolving for some predefined number
of timesteps (Fig. 2c) and TF-activities are projected from the steady state. Ligand-concentrations,
weights, and biases are all assumed to stay constant during the iterations. This can be motivated by time-
scale separation, although regulatory events, which take place over hours, are expected to result in
translation of proteins that are excreted as ligands or remodel the network interactions. Often RNNs are
used to fit time series or other sequence data, but here intermediate states are discarded resulting in a
one-to-one relation between ligand patterns and steady state TF activities. It can be noted that while
internally, a trajectory is computed from some initial state (here all zeros) to steady state, the steady state
does not explicitly depend on the initial state or any of the intermediary steps and these are therefore not
required to reflect biologically relevant transitions. Two other implications of the steady state assumption
are; that any oscillations exhibited by the network are dampened; and that switch-like behavior, where
network responses depend on the initial state, must be encoded as differences in weights or biases.

When training a model using this framework, any potential prediction errors can be back propagated to
adjust the model parameters. The unrolling of an RNN into discrete timesteps is commonly referred to as
backpropagation through time (BPTT)®. Here the BPTT expression is simplified by the steady state
assumption and the assumption of constant input (Fig. 2c). Due to these assumptions the gradients only
depend on the steady state values and due to vanishing of gradients from early timesteps, the back-
propagated error can be assumed to reach a steady state that is independent from the trajectory by which


https://doi.org/10.1101/2021.09.24.461703
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461703; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

it is computed (See Supplementary Fig. 2 for a numerical comparison and Supplementary methods for
derivation). It can be noted that BPTT, for this restricted RNN, strongly resembles loopy belief propagation
that is used for Bayesian inference on cyclic graphs?®, where error messages are propagated until
convergence.

Models can be constructed on training data, then tested for generalization on previously unseen data.
The data, containing ligand—TF activity pairs, was generated from a reference model (Fig. 2d) with
manually assigned parameters. A model was trained using this data, i.e. without direct access to the
parameter values. Terms were added to the loss function to constrain weights by their MOA and constrain
biases at ligand positions to zero, since their concentration was assumed to be provided as input (see
methods for implementation). Additionally, regularization terms controlling the L2 norm of the
parameters were added to prevent overfitting, as is common practice. The model was trained using the
ADAM optimizer?” with a cosine learning rate schedule and warm restarts, as has been proposed by
others?®. Using this setup, it was possible to train (Fig. 2e) a model to a near perfect accuracy, both on
data used for training (80%), and on test data (20%) that was left out of the training set at random (Fig.
2f). We tested the methods sensitivity to non-uniformly distributed training data by adversely selecting
samples that were left out of training (supplementary Fig. 3a) and this reduced generalization marginally,
e.g. removing the bottom left quadrant reduced the correlation (Pearson) of predictions to 0.85.

For this particular model structure, the trained model accurately recovered the original parameter values
(Fig. 2g). However, it was possible to construct a network, with sequential nodes without branching,
where this did not occur (Supplementary Fig. S3b) even though the network generalized perfectly to test
data, i.e. the parameters were not identifiable. Nevertheless, there was a strong correlation between the
predicted state vector of trained- and reference-model, suggesting that the learned model may be able
to accurately predict the effects of perturbating states, despite the inconsistent parametrization.

Constraining the spectral radius to enforce steady state

Feedback loops can prevent an RNN from reaching steady state. The formulation above assumes that a
steady state is reached within a specified number of timesteps. However, depending on the
parametrization this may not occur. To not reach steady state, could yield non-sensical output and may
also be detrimental to gradient calculations, preventing training convergence. The requirement to reach
steady state can be expressed formally using eigenvalue analysis of the linearized difference equation (Fig.
3a). For the model to eventually reach steady state, the absolute value of the largest eigenvalue of the
transition matrix, i.e. the spectral radius, must be less than 1 (See supplementary methods for derivation).
Similar ideas have previously been explored for linear systems? and for RNNs3%31,

It is possible to constrain the spectral radius. Its partial derivatives can be computed (for a numerical
demonstration see supplementary Fig. S4) since it is a locally smooth function of the weights®2. We
introduced a regularization term to control the spectral radius using gradient decent (Fig. 3b) and with
marginal effects on the magnitudes of the weights (Fig. 3c) it ensures steady state behavior (Fig. 3d). The
introduction of the spectral radius in the loss function can be viewed as imposing a prior on the temporal
complexity of the model. It should be noted that while the spectral radius regularization ensures that all
conditions in the training data reach steady state, it does not guarantee that this holds for arbitrary
conditions, i.e. untested conditions may be unstable. With this, we had the prerequisites to simulate
networks of arbitrary size and wiring.
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Parameterizing a large model for synthetic data generation

To put the framework to the test, we reconstructed a more comprehensive signaling network. For this,
we turned to an online database, OmniPath?, that collects evidence of signaling interactions in human
cells. The full set of interactions in OmniPath is very comprehensive and includes both well-characterized
interactions and results from single high-throughput experiments. To ensure a model of high-quality, we
used a subset of interactions that listed KEGG° as reference database and for which the MOA was a known
(Fig. 4a). Nodes were labeled as ligands, receptors, signaling molecules or TFs, based on annotation in
OmniPath (see methods).

We set up a reference model to generate synthetic data. To parameterize such a large model by hand
would be daunting, in particular as the output of a meaningful model should involve complex integration
of the input. To overcome this, we devised a setup to automatically generate parameters based on desired
properties of the model (see methods). Briefly, using randomly generated input, an objective function was
optimized to simultaneously minimize; mean correlation between conditions and TFs; the L2 norm of
biases and weights; and deviations from a uniform distribution of activities for TFs and conditions.
Additionally, the spectral radius, MOA of weights and the bias term on ligands were constrained. The
resulting model generated rich synthetic data with biologically plausible TF activity patterns (Fig. 4b).
Principal component analysis of the models TF-patterns showed that increasing the number of ligands
increased the covered space (Fig. 4c), consistent with complex interactions and emergent states. This was
also supported by generalized linear modeling of the patterns (Fig. 4d) that showed a decreasing fit for
increasing number of simultaneous inputs. This parameterized reference model demonstrates the
computational capacity that lays latent in the topology of the signaling network.

The time complexity of the framework affects its practical feasibility to learn large networks. Network size
can be characterized by the number of signaling nodes (n) or by the number of non-zero interactions (z)
and the bottleneck involves sparse matrix multiplication between the weight matrix and the state vector
with a naive complexity of zn?, meaning that simulation time increases linearly with the number of
interactions but that doubling the number of nodes requires 4 times longer simulation time. For
biologically relevant networks with between 1000 and 19000 nodes and ~10 interactions per node, we
observe a linear increase in wall time from 0.02 to 0.2 seconds per pass (Supplementary Fig. 5). However,
the purpose of the algorithm is to train generalizable models from data, and the amount of data and
number of epochs of training required may also depend on the network size (see supplementary methods
for a more in-depth analysis). So, while the complexity is well defined for simulating a condition, i.e. a
forward pass, the complexity of training a generalizable model, so far remains an empirical question,
although polynomial bounds on the number of epochs have been established for some classification tasks
using RNNs*,

Training generalizable models on synthetic data

To test the data requirements for generating generalizable models, we trained models on synthetic data
generated from the reference model (Fig. 5a). To aid in the generalization and prevent the model from
getting stuck in local minima during training several regularization techniques were applied (see
methods). Briefly, the state variable was regularized to have approximately uniform distribution and a
non-negative max value across conditions; weights were regularized to have non-zero values and L2
regularization was applied to all parameters; gaussian noise was added to the state variable with the level
of noise decayed throughout the training in proportion to the learning rate. Training with noise could be
considered a more biologically realistic alternative to drop-out, a regularization technique that aims to
decreases the dependency on specific nodes by removing them at random. Experiments with drop-out on
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knowledge primed neural networks by others?? showed that a much lower dropout rate than the default
(50%) is required, presumably due to the likelihood of complete blockage when the number of possible
paths are limited.

With these techniques we fit models that generalized to a quite favorable extent. The amount of data
required for this was investigated by training models with increasing amounts of randomly generated
conditions for different numbers of simultaneous ligands (Fig. 5b). More simultaneous ligands improved
generalization, and excellent performance was attained at the highest data settings. As expected, training
models without spectral radius regularization caused training to diverge, resulting in poor fits
(Supplemental Fig. S6a). A low, but non-zero, correlation was attained for models trained on data with
scrambled order of conditions (Supplementary Fig. S6b). This could be due to the model learning general
differences between distributions of individual TFs and was corroborated by an even higher correlation
from taking the average of each TFs as prediction. We were concerned about potential information
leakage from the reference model, since some of the regularization terms were shared with the
parameterization algorithm, but training a model using only regularization terms (without fitting to data)
did not perform better than predicting the average of each TF (Supplementary Fig. S5b), suggesting that
leakage was not substantial.

For the best model the predicted TF values generally fell on the line of identity when comparing to
reference (Fig. 5¢). There were however some notable exceptions, these corresponded to a few poorly
predicted conditions with correlations as low as 0.2 whereas the correlations of individual TFs were all
above 0.9 (Supplementary Fig. S6c¢). Training with additional data could potentially alleviate this issue,
since a larger state space would be sampled, but the saturating trend in generalization after 400 samples
(Fig. 5a) suggests that perhaps further improvements to the regularization may be more economical. We
found that, in general, parameters were not identical between reference and trained models
(Supplementary Fig. S6d), presumably due to lack of identifiability, but that most of the state variables
were still highly correlated between trained and reference models (Fig. 5d).

We hypothesized that the fitted model would predict in silico knock outs (KO) of signaling molecules in
the reference model without training on such data. If successful, this would mean that the trained models
had acquired the same structural dependencies as the reference model. For models trained on data from
living cells, this would correspond to the ability to predict systemic effects of mutations or drugs. We
simulated KO of each of the signaling molecules under several different conditions, i.e. in presence of
different ligands. Although many KOs had limited impact on most TFs, the predicted difference in TF
activity was similar between reference and fitted models (Fig. 5e), meaning that KO events were in general
successfully predicted.

Predicting signaling in ligand stimulated macrophages

In order to apply the framework to actual experimental cell biology data, TF activities must be estimated
for each condition of cell stimulation or perturbation. For this we used a gene set enrichment based
method, Dorothea®?, that estimates probabilities of TF activities from mRNA concentrations of their target
genes. Given that the lifetime of mRNA is expected to be much shorter than regulatory changes in
transcription rates®*, mRNA concentrations can be expected to be proportional to their formation rates
and thus reflect the activity of the TFs that regulate their expression. A potential limitation with this
approach is that the statically inferred probabilities of activation may not have a direct biological
interpretation. Here they are taken as fractional activation that may affect the rate of transcription
through time-occupancy at TF binding sites or by recruitment of polymerases, which may depend on
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multiple factors e.g. binding affinity, concentration, signaling state. It can be expected that there exists
some relation between these activities and the probabilities inferred from differences in mRNA
concentrations, however, this relation may be non-linear and noisy, which may partially be accounted for
by the parametrization of the RNN model.

A transcriptomics dataset from ligand-stimulated macrophages was retrieved from literature®. Dorothea
was applied to estimate probabilities of TF activation (Fig. 6a). There was in general good agreement
among the biological replicates, but for four TFs the activities across replicates were deemed too noisy,
and they were excluded from further analysis, notably STAT2 and IRF9 (Supplementary Fig. S7a). Some
differences in variability were also observed among conditions (Supplementary Fig. S7b) but none were
excluded. The inferred activity patterns appear to largely agree with known biology. For example, the
transcription factors RelA and RelB are part of the NF-kB signaling cascade and induced by inflammatory
ligands, e.g. interferons, lipopolysaccharide (LPS) and TNFa®®. The ligands 114 and IL13 display similar TF-
activity profiles and are opposed to the inflammatory ligands, which is expected since they both signal
through IL4R and are known to induce an anti-inflammatory (M2) response3®. The presence of these
ligands is here associated with SMAD3 activity, which may be a secondary effect from secreted TGFB1%®.
The observed differences in TF-patterns between standard (LPSc) and ultra-pure (upLPS) LPS-qualities, are
somewhat unexpected, but may potentially be explained by activation of TLR2 by impurities alongside the
expected TLR4 activation®’. Differences in signaling outcome for these two receptors have previously been
noted*”.

For the signaling network to accommodate the set of ligands used in the experimental study it was
expanded with interactions from an immune system specific resource, InnateDB3® (see Methods). With
this the model fit the data (Fig. 6b) with high accuracy. The data set was too small (23 samples x 58 TFs =
1334 datapoints compared to 7000> parameters) to be expected to generalize well, yet leave-one-out
cross validation (LOOCV) showed that models trained on this data produced significantly better
predictions than chance (Fig. 6¢) or models trained on data in scrambled order (Fig. 6d). The generalization
performance for these data was better than for synthetic data of comparable size, which may be due to
denser sampling from a restricted region of the ligand stimulation space. We noticed IL4 among the
conditions with poorer generalization, potentially due to confounding interactions with LPS*® that were
not properly learned from the single condition available in the LOOCV setting. For some of the TFs the
model did not produce acceptable fits (Fig. 6e), presumably due to limitations in the TF activity estimation
or incompleteness of the signaling network.

In spite of these shortcomings, we simulated the effect of gene KOs on RelA under the TNFa stimulated
condition (Fig. 6f), which is known to elicit long lasting effects on NF-kB signaling®. As could be expected,
the TNF receptor was predicted to have the largest effect, but a number of NF-kB activating proteins were
also identified, e.g. CHUK, IKBKB and RIPK1, in good agreement with prior knowledge, showcasing how
biological relevance can be learned by this integrative approach. Still, the notable discrepancies between
models suggests that much larger datasets are required.

Discussion

We have demonstrated here that genome-scale simulation of intracellular signaling is now attainable. We
developed a computational framework based on RNNs, constrained by prior knowledge of network
interactions, to rapidly train predictive models of signaling using ligand-TF data pairs. In particular the
model’s ability to predict the effects of KO's is highly advantageous and cannot easily be matched by black-
box based models. For models trained on real world data this would have important clinical implications,

8


https://doi.org/10.1101/2021.09.24.461703
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461703; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

since many drugs act by blocking the activity of signaling molecules. We demonstrated the practical
applicability of the framework on literature data and although this particular dataset contained too few
conditions to generate reliable predictions, it showed how consistency between data and known biology
can be enquired and highlighted some limitations with the prior knowledge networks. Our experiments
with synthetic data suggest that the framework, in combination with larger datasets, could be used to
train highly generalizable genome-scale models to further our understanding of intracellular signaling.

Presently, many high-throughput methods are being developed that will synergize with the framework,
including large-scale transcriptomic screenings, e.g. the L1000%°. These will enable profiling of numerous
ligand-combinations to explore the space of possible signaling states and models trained on such data will
provide a succinct and actionable representation of the acquired knowledge. The framework is not limited
to study ligand-stimulation, our gene KO-simulations demonstrate how intracellular perturbations could
be incorporated. Perturbations and KOs are of great interest for studying signaling!®*' and can help
resolve identifiability issues, where multiple pathways fit the data equally well. Innovative use of
nucleotide barcoding has enabled simultaneous construction of KO cells and sequencing of their gene
expression®?, albeit so far this was only applied to TFs, not signaling proteins. Identifiability issues could
also be resolved by collecting data on the internal signaling states of select proteins, these data could be
projected from the state vector and fitted analogously to TF data. High-throughput methods for
generating multimodal data are currently under development, e.g. coupled profiling of transcriptome and
protein activity®® and barcoding states of phosphoproteins using antibodies*. Alternatively, such data may
be acquired using proteome level quantification of phosphorylation states’.

Transcriptomics is a strong technology for generating genome-scale data to train signaling models both in
terms of cost and availability. Transcriptome based TF-activity estimates, provides a much larger set of
observables than high level phenotype data, e.g. cell viability!®°, which is an alternative for large-scale
signaling models. The connectivity of TFs throughout the signaling network also helps offset the increase
in number of parameters with increasing network size by a matching increase in number of TFs, i.e.
observed datapoints. The use of transcriptomics data to infer TF activity requires reliable estimation-
methods. While many activities inferred using statistical methods are of high quality?, our understanding
of gene regulation is continuously improving and more advanced computational methods are being
developed, e.g. auto encoders that fit TF activities as latent variables informed by prior knowledge of TF-
gene relations* and mechanism-based deep learning models*. There is also development of sequencing
based methods that simultaneously profile chromatin accessibility, intra-nuclear proteins, and gene
expression®®, which could aid in acquiring more accurate TF activity estimates. There are presently several
methods that strive to infer signaling patterns from transcriptomics data and prior knowledge of the
signaling- and regulatory networks, e.g. CARNIVAL*” and NicheNet*. However, these aim to provide
qualitative descriptions of possible network wirings for individual condition as opposed to generating a
predictive model consistent with all conditions as the one developed herein.

The framework relies strictly on prior knowledge of the signaling network and does not attempt to identify
novel interactions. This is advantageous since it strongly reduces the solution space, alleviating the data
requirements while at the same time enforcing biological plausibility. It also maps the hidden nodes to
corresponding signaling molecules that allow KO events to be simulated. However, since it is not likely
that the complete signaling network has already been characterized, the setup forces solutions to align
with existing knowledge. At best this may result in inability to completely fit the test data, which may help
highlight signaling interactions that require further attention and research, but incorrect relations may
also be learned. One potential solution would be to allow the model to use a limited number of
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interactions supported by prior knowledge of sub-standard quality or that are completely novel, which
could result in data driven discovery. This may be particularly relevant when expanding the framework to
other mammals, since their prior knowledge networks often are mere homolog based extrapolations® of
the human signaling network. Contrarily, removing interactions from the prior knowledge network for
non-expressed signaling molecules could aid the generation of cell type specific models.

We here aspire to model the effect of ligand stimulation in a single cell type and differentiation state. This
is encoded in the constant weights and biases, but a natural generalization would be to let these
parameters depend on external factors, e.g. cell type or test subject. Assuming that the wiring is mostly
conserved, these parameters could be made into regularized functions of easily quantifiable properties,
e.g. genotypes, allowing personalized parametrizations that still leverage data from other experiments.
Subsets of parameters could even be pretrained using data from molecular studies, which corresponds to
transfer learning that has been successful in other ANN applications, e.g. mammograms have been
analyzed by appending a classifier to a network pretrained on regular images*. This would be particularly
useful for analyzing subpopulation-specific responses among cells within a single experiment, that are
now being inquired with single cell sequencing techniques. It is of much interest to discern the root cause
of these differences e.g. differences in ligand concentrations, basal activity or network wiring. Single cell
sequencing has founded an atlas of cell types at various stages of differentiation, and a fruitful
continuation of this work, in particular for immune cells®®, could involve comparisons of their dynamic
responses to stimulation in through differences between parameterized models. Our framework relies
on steady state assumptions motivated by time scale separation. From biological perspective it seems
plausible that evolution would favor reproducible responses, i.e. that a given signaling pattern converges
to the same state each time, although there are certainly exceptions, where sustained oscillations are
instead desirable, e.g. the circadian rhythm or the cardiac cycle. Due to the steady state assumption the
framework is not suitable to simulate such dynamics, although the RNN internally calculates a trajectory
for each condition, these cannot be directly interpreted as time-series predictions. This is partly due to
the initialization at zero, a biologically implausible state from which even the control condition, without
ligand stimulation, is driven by basal activity from the bias term. But also, because no observations are
provided along the trajectory before reaching steady state. For practical purposes this is not a concern,
since the model predictions do not depend on the trajectories, but cellular dynamics may still be of
interest for some applications. Time-series data could in principle be accommodated by the framework
by fitting states at particular time steps, however, they would likely be better accommodated by a
continuous time RNNs. Such RNNs have obvious similarities with ODE models and discussions on bridging
the gap between RNNs and ODEs are ongoing?®®, notably a direct correspondence has been established
between RNNs with a specific architecture and a common numerical ODE solver®?.

Our regularization of the spectral radius ensures that all conditions in the training data reach steady state,
but does not guarantee that this holds for arbitrary conditions. The pursuit of methods to enforce global
stability for non-linear systems is an ongoing®?, but it is not clear if global stability should be required for
biological systems that may be unstable for conditions that are never encountered. Interestingly, if
evolution is viewed as an optimization algorithm that has learned cellular parameters from conditions
that are encountered, then by analogy turbulent states could be expected to occur for untrained
conditions, which may be an interpretation of the chain-of-events in some diseases e.g. the detrimental
immune responses known as cytokine storms>,

The challenge to learn parameters of a model with known structure from data is not limited to biology. In
control theory, it has been proven that stochastic gradient decent (SGD) can learn linear dynamical
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systems®*, which corresponds to an RNN with linear activation function. The RNN developed herein is an
example of a sparse ANN. It has been recognized?! that for fully connected ANNSs trained on image data,
most parameters can be set to zero without marked loss in performance. After removing theses
interactions, the sparse models can sometimes be retrained to the same level of performance as the
original, since the learned structure remains encoded in the sparse connections. For the signaling network,
sparsity has been learned by evolution. The ongoing development of new algorithms and hardware for
training ANNs assures that the future will provide further improvements in model sizes, and training and
execution times, e.g. sparse matrix multiplication is parallelizable and can be efficiently calculated on
graphic processing units (GPU)*.

There are many avenues to expand the framework to further accommodate realistic simulations. One
would be to allow molecules in different cellular compartment to have distinct signaling states. This would
add a spatial component to the model and could be implemented directly through the prior knowledge
network without changes to the framework. The intrinsic modularity of ANNs allow for intuitive
integration with other networks, this seems immediately promising for integration with ANNs of
regulatory processes, but it is also conceivable that cell-cell interactions could be modeled by chaining
together multiple networks. The use of executable models in cancer research has shown how submodules
with varying levels of abstraction can be integrated into a computer program that can be formally
verified®®. The rapid execution of trained models in consort with databases of drug-interaction partners®’
opens up for genome-wide in silico screening of drug responses. This, together with personalized signaling
models could provide individualized predictions of drug responses and side effects at the level of
individual cell types.

Methods

Ordinary differential equations of molecular dynamics

ODEs were formulated for the different reaction schemas (See Fig. 1a) assuming mass action kinetics (See
supplementary Fig. S1 for an example). The rate constants were manually parametrized (See
Supplementary Table S1 for values) to yield sensible output. The differential equations were solved
numerically using an initial value problem solver for systems of ODEs (scipy.integrate.solve_ivp>8in python
3.7.10). State variables were initialized as 1/[total number of states] and the activity after 100 time units
was taken as the steady state value. For convenience the system was solved once with high resolution, a
50x50 linearly spaced grid, and linear gridded interpolation (scipy.interpolate.interpn) was used to down-
sample to the indicated operational resolution.

Neural network simulations of molecular interactions

Neural networks where constructed and trained using the pytorch framework®. This includes the
autograd functionality, i.e. automatic differentiation, that retains the computation graph and uses it to
automatically calculates gradients of the loss function. For the sigmoid activation the default formulation
was used (torch.sigmoid), for ReLU the leaky version was used (torch.nn.functional.leaky_relu), and the
MML function was manually implemented (as specified in Fig. 1b). For the fully connected layer
(torch.nn.Linear) 5 hidden nodes were used. A trainable scaling factor was added to the output of the
functions to accommodate normalization of activities. The neural networks were trained for 5000 epochs
using the ADAM optimizer (torch.optim.Adam) with a learning rate of 0.002 and the built in L2 weight
decay (factor 10°). Default initialization of weights and biases was used.
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Structure of prior knowledge network files and ligand input and TF-output files

The signaling network structures were stored in list format with each entry containing a source node, a
target node, the mode of action, and references to databases and PubMed ids, where applicable. Signaling
nodes were identified by their uniprot identifier. This structure is similar to the format used by OmniPath?,
but unlike OmniPath, all interactions were considered directed from source to target and reversible
interactions were represented by an additional entry with source and target nodes exchanged. The
signaling network file was accompanied by an annotation file, that for each of the signaling nodes specified
their function, e.g. ligand or transcription factor, and a human readable synonym, e.g. gene name or small
molecule acronym. For storage of trained networks pytorch serialized objects (torch.save) were used and
a human readable plain text format was also developed where each entry contained the parameter type
(bias, weight, input projection or output projection), parameter value, source node and target node (only
used for weights). For the macrophage dataset input and output data for the network were stored as tab
separated tables with conditions as rows and ligands and TF levels respectively as columns.

Projections of matrices from input to state and from state to output

Input consists of a [s X i] matrix where s is the number of samples (in total or in the mini-batch) and i is
the number of ligands in the input, the output consists of a [s X 0] matrix, where o is the number of TFs
in the output. The recurrent neural network calculates a state matrix, [s X n], where n is the number of
state variables. To accommodate size differences between input, output and state matrixes the RNN is
proceeded by a projection layer that inserts the elements of the input at their corresponding position in
a zero-padded matrix [s X n] with elements ordered as in the state matrix. Similarly, the state vector is
projected to an output matrix by selecting the corresponding TF elements from the state matrix and
placing them in an order that matches the order of TFs in the data. Scaling factors for each element are
included in the projections and for the output projection these are made trainable parameters.

Recurrent neural network formulation

The recurrent neural network takes a matrix b;;, as input and returns a matrix x,; as output both with the
structure [s X n], with s and n defined as above. The function is parameterized by trainable weight and
bias vectors. The structure of the signaling network (A) is provided as a sparse row matrix
(scipy.sparse.csr_matrix) with values of the non-zero elements given by the weight vector. The columns
of the matrix correspond to sources and the rows to targets. The state vector is initialized as all 0 and
iterated for a finite number of steps, set to 150 in this study. The RNN function was implanted as a manual
autograd function (torch.autograd.Function) with both forward and backward pass specified manually
(see Algorithm 1 in Supplementary methods) using numpy® operations. The spectral radius of the
transition matrix for the backward pass is assumed to be less than 1, meaning that the magnitudes of the
back propagated gradients are bounded. However, since it cannot be excluded that this constraint
occasionally will be violated during training, gradient clipping is applied at each iteration. To prevent
clipping under regular conditions, the clipping function was constructed with a linear segment between
two saturating tanh regions (See supplementary materials algorithm 1).

Initialization of weights, biases and scaling factors

Weights are initialized as u(0, 0.1) + 0.1, where u is a uniformly sampled random number on the specified
interval. Weights corresponding to inhibitory interactions are made negative by multiplication by —1. All
weights are scaled by a factor 0.8/p(A4), where p(A) is the spectral radius of the matrix A to ensure that
p(A) < 1. Biases are initialized at a value of 0.001 except for biases corresponding to nodes that only
have inhibitory inputs, in which case they are initialized at 1 to accommodate dynamic node states in the
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positive regime. The scaling factors for elements in input and output projections are initialized by the
same value, 3 for input projections (which corresponds to a state of ~0.92 after applying the activation
function) and 1.2 for output projection.

Soft constraints for weight sign and ligand bias

To impose soft constraints, barrier functions were constructed, multiplied by a constant and added to the
loss function. For interactions with known mode of action, activation or inhibition, the sign of the
corresponding weight was constrained to be positive or negative respectively. This was imposed by adding
the sum of absolute values of weights where the sign conflicted with prior knowledge. For biases
associated with ligands, the model was prevented from learning large values, since knowledge about
ligand concentrations is expected to be available and provided as input. Here, the barrier function was
constructed as the sum of squares of biases belonging to ligands.

State and parameter regularization and application of state noise

To aid in generalization and prevent the model from getting stuck in local minima, several regularization
techniques were applied. To prevent parameters from taking on extreme values, L2 regularization of
weight and bias parameters was implemented by adding the sum of squares of these vectors multiplied
by a coefficient, 1078, to the loss function. For training on the synthetic dataset and the macrophage data
an additional term was added to the weight loss to prevent weights from getting stuck at zero,

1
w?+0.5°

loss =Y,

Regularization of the state variables was implemented to ensure that they remained active with a wide
dynamic range during training, with similar objective as batch normalization. The goal was for each of the
states to have a uniform distribution across conditions, and this was implemented by regularizing some
of the statistical properties to match the corresponding properties of a uniform distribution on the interval
[ab],i.e.

u(x) = l%“ o?(x) = 1—12(19 — @)%, min(x) = a, max(x) = b.

To be operational independent of batch size, the properties were calculated across all conditions, and for
conditions that were not in the present batch their latest calculated values were used, however these
were detached (torch.tensor.detach) from the computation graph and only gradients from the current
batch were back propagated. The regularization was implemented by calculating the deviation of the
empirical property across conditions from the ideal property calculated for the interval [0.01, 0.99]. The
sum of squares of deviations was applied as barrier function. Additional regularization was added to
prevent negative max values, the sum of negative max values was used as barrier function. The sum of
these contributions was multiplied by a factor, 1073, and added to the loss function.

In addition to regularization, gaussian noise was added to the b vector for each forward pass, to ensure
that the fitted parameters were robust to small deviations. The level of noise was made proportional to
the learning rate (Ir)as b = b + 10 - Ir - norm(0,1), where norm is sampling from a normal distribution
with 0 mean and 1 variance.

Spectral radius regularization
An exponential barrier function was used to constrain the spectral radius (p)

loss = a-exp(k - p),
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1
" exp(k-[target p])’

log10~*
150

[target p] = exp( ) = 0.94,

with k = 21 and a scaling factor a, where 10 is the target precision and 150 the number of steps in the
RNN. To be able to backpropagate this function, we constructed a manual autograd function for the
gradient of the spectral radius (see supplemental methods Algorithm 2). It made use of made use of a
sparse eigenvalue solver (scipy.sparse.linalg.eigs). Since both left and right eigenvectors are required for
the gradient calculation and only right eigen vectors are returned by the sparse solver, the matrix was
transposed and solved a second time with the predicted eigenvalue from the first pass as target. To
conserve computations, a single steady state was selected at random for regularization from each batch.

Model reconstruction

The most recent interaction database was retrieved from the OmniPath® website
(archive.omnipathdb.org, retrieved 2021-06-21). Only human interactions from the OmniPath core set
were included. The interactions were divided into 3 subsets, Ligand-Receptor (LR) interactions, regulatory
interactions and signaling interactions (see supplementary table S3 for details on the queries). The LR and
signaling interaction were further reduced to only include interactions that referenced KEGG among the
sources. A few reactions were removed based on manual curation; interactions between IL6R and JAK1,
STAT3 and SRC were removed, since IL6R only signals through its interaction with gp130 (IL6ST)®!; the
interaction between TLR4 and IRAK4 and CD14 were removed from receptor-ligand interactions, since
IRAK4 and CD14 are not considered ligands based on their uniprot annotation®?. All interactions that were
listed as reversible were duplicated and reversed and their interactions were set as unidirectional. To
avoid duplicate interaction, all interactions present in LR were removed from the signaling set. Any
conflicts in mode of action, i.e. listed as both activating and inhibitory, were resolved by removing the
mode of action information. And nodes without mode of action information were removed. Nodes that
were not listed in Uniprot®? were also removed. Nodes were classified as ligands if they were listed as
sources in LR, as receptors if they were listed as targets in LR and TFs if they were listed as sources in the
regulatory interactions. The LR and signaling interactions were merged. Nodes where considered dead
ends and removed from the network if there for the node was no path from any ligand or to any TF.
Additionally, nodes were considered redundant and removed if they had only a single source and target
that both were the same node. Network plot was drawn using MATLAB 2020a.

The same procedure was followed for the network intended for the experimental data, but InnateDB was
also included as an approved source. Furthermore, the RL interactions were manually defined
(supplementary table S3) based on the ligands available in the experimental data based on uniprot®?
annotation. The list of TFs was restricted to the ones with experimental data available.

Synthetic data generation and analysis

To fit parameters that result in non-trivial and biologically plausible predictions, an objective function was
defined including several terms. For each epoch the model was provided with 200 conditions containing
5 randomly selected ligands per condition with uniformly sampled concentrations, these were resampled
for each evaluation. The predicted TF activities were regularized to follow a uniform distribution both
across conditions and across different TFs, this was implemented in the same way as state regularization
(See above) but without dependency on states from previous epochs. The mean correlations were
minimized across both conditions and TFs, this was implemented by calculating the average of the
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correlation coefficients of the output matrix and its transpose. Spectral radius regularization was applied
with a coefficient of 102 and L2 norm on weights and biases was applied with a coefficient of 10°®. Sign
and ligand constraints were applied as specified above. To preempt information leakage, parameters were
initialized differently than for the trained models; weights were initialized uniformly at random from the
interval [0, 3] and their sign was assigned based on mode of action, and scaled to a spectral radius of 0.8;
bias was assigned by sampling uniformly from the interval [0, 0.01].

The complexity of the synthetic data was studied by PCA analysis of predicted output from 2000 randomly
generated conditions with different numbers of simultaneous ligands. Linear models
(sklearn.linear_model.LinearRegression)®® were fitted to the synthetic data for each simultaneous ligand
level, and prediction performance was evaluated wusing 10 fold cross validation
(sklearn.model_selection.KFold). The performance of the model trained on single ligand data was also
evaluated.

In silico knock outs

The predicted effects of in silico KO were studied by adding a strong negative bias (-5) to the node of
interest, resulting in near zero node states after applying the activation function. The change in TF activity
compared to the control condition without KO was used as metric since most TFs are not expected to be
affected by most KOs. For the KO predictions under the TNF condition, the KO was applied to all nodes in
each of the models that were generated for the LOOCV, and nodes were ranked by the average of the
predicted effect on RelA.

Inference of TF activity

Literature data® was retrieved from the ArrayExpress® database (ebi.ac.uk/arrayexpress), accession
number E-GEOD-46903. Genes without any detected signal (min p>0.01) or without variance ([std] < 10°®
[mean]) were removed from further analysis. The log-transformed data (5203 genes and 384 samples)
was centered and TF activities were inferred using Dorothea’!, an enrichment based statistical method.
Only TFs with a confidence score of A or B and interacting with at least 5 genes were included. Conditions
were filtered to only contain data from GM-CSF cultured macrophages from the same time point (72 h)
amounting to 103 samples including biological replicates. The Dorothea reported log odds ratios were
transformed to probabilities using the inverse logit function, i.e. the logistic function. The average was
taken among replicates resulting in 23 unique conditions. Standard deviation among replicates for each
TF within each condition were inspected and TFs were discarded if their 75" percentile of standard
deviations exceeded 0.2 corresponding to 4 TFs (See supplemental Fig. S7a).

Hardware for simulations

Simulations were performed on a Dell Precision 3530 laptop with an Intel i7 CPU @ 2.60 GHz with 6 cores
(12 logic processors) and 16 GB ram. For convenience, evaluation of data requirement and cross-validation
was carried out on a singled threaded computer cluster (Intel Xeon CPU @ 2.60GHz) that allowed job
scheduling (using Slurm) with 16 parallel jobs.

Data and code availability
The code and scripts the to reproduce the simulated data are made available through a public repository
(github.com/Lauffenburger-Lab/Artificial-Signaling-Network).
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Figure 1 Modeling molecular mechanisms using a FFNN. a) The steady state for different mechanisms involving two
source molecules (A and B) at constant concentration and a target molecule with an inactive state (X) and active
state (Xat). Results were attained by running ODE simulations until steady state, reaction rates (1-4) were
parameterized manually (values in Supplemental Table S1), maximum activity was scaled to 1. b) The Michaelis-
Menten-like (MML) activation function is designed as a monotonously increasing, continuous function with a
maximum of 1 and continuous first derivative (except at 0). It is composed of three segments; a leaky; a linear; and
a saturating. The leaky and linear segments correspond to the leaky RelLU activation function, as the Michaelis
Menten equation is not defined for negative input. The saturating segment is composed of a shifted and scaled
Michaelis-Menten equation. ¢) FFNNs models of molecular mechanisms with different activation functions and
number of layers. Model were trained on steady state activity for a grid of 7x7 linearly spaced source concentrations
and tested on a 20x20 grid, the Pearson correlation between prediction and test data was calculated (mean of three
runs). A black outline marks the performance of MML for independent activation and inhibition with no hidden

layers.
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Figure 2 Modeling a simple signaling network using an RNN. a) A simple signaling network including ligands (L1, L2)
receptors (R1, R2), signaling proteins (S1, S2) and a TF (T1) interconnected by 8 interactions (wi, ..., wg). b) The
difference equation calculates the state (x,) at timestep n from the previous time step. The matrix A holds the
interaction weights and the bias term (bp;,s) and input term (b;,) are added, the activation function (o) is applied
at each timestep. c) Calculations are repeated until a steady state (x,) is reached and the predicted TF activity () is
projected (p) from the steady state. Loss (L) is calculated by comparison to reference data (y), e.g. as mean square
error (MSE). It is back propagated to provide the partial derivatives with respect to weights and biases at steady
state. Here (© is element wise multiplication. To prevent potential exploding gradients, the loss is clipped at each
step (see methods). d) Reference data generated by a parameterized model. e) A model trained on the reference
data by minimizing the loss using stochastic gradient decent. Loss from predicting the mean value for comparison
(dashed line). f) Perfect fit (Train) and generalization (Test) to reference data. g) Parameters in in agreement between
fit and reference.
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Figure 3 Stability of each steady state is controlled by the spectral radius of a transition matrix. a) Linearization of
the difference equation (first order Taylor expansion) around a steady state (x,) and shift of coordinates with the
steady state as origin yields a homogeneous linear difference equation with transition matrix (T), here I is the identity
matrix. Stability requires that a deviation (Ax,) from steady state tends to O for repeated multiplication by T. This
occurs only if the spectral radius (p) of T, i.e. the eigenvalue (A) of T with largest absolute value, is less than 1. A
regularization term (L,) is constructed to constrain the spectral radius. Its gradient is a function of the eigen value
and left (w) and right (v) eigenvectors. Note that the imaginary component of this function is orthogonal to the
radius and can be ignored. The Re function elementwise returns the real part of complex numbers. b) All eigenvalues
of a 100x100 transition matrix before and after a reduction of the spectral radius with the loss function using gradient
decent for 200 steps. Matrix parametrized at random with 20% non-zeros. c) Strong similarity between matrix
weights before and after reduction suggesting that the regularization will cause minimal disruption to the learning.
d) Trajectories are stable after shrinking the transition matrix, here the trajectory of the first element.
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Figure 4 Synthetic data from automatically parameterized model. a) A large signaling model was reconstructed and
automatically parameterized by maximizing an objective function. b) Synthetic data (N=100) generated from the
model for combinations of 5 different ligands. c) Increasing combinations of ligands increases the area of TF-patterns
in principal component space, 2000 randomly sampled conditions per combination-level. d) TF activity is not a linear
combination of the activity of individual ligands. Extrapolation of a linear model trained on single ligands and best

fit linear models trained on data from multiple ligands (20-fold cross validated).
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Figure 5 A model trained on modest amounts of synthetic data generalizes well. a) Synthetic training data was
generated from a reference model and used to train an independent model. b) Training data with different numbers
of conditions (10, 50, 100, 400, 800) and simultaneous ligands (2, 3, 5). Generalization performance was evaluated
on 1000 independently generated test conditions as the Pearson correlation between prediction and reference. A
non-zero correlation was attained for predicting the average of each TF. Training was conducted for 10000 epochs
with a batch-size of 5. ¢) Comparison of model prediction and reference for the best performing model. Histogram
truncated at 50 to emphasize exceptions. d) Mostly high correlation between states of model and reference, here
only internal nodes, i.e. excluding ligands and TFs, were evaluated since they are not directly provided by the data.
e) KO of a signaling node was simulated by applying a strong negative bias to the node, resulting in their state being
close to zero after applying the activation function. f) Independent KO of 253 internal nodes under 100 random
conditions. The change in TF activity for KO compared to no KO (control) was in good agreement between model
and reference. For predictions to be off by more than 1 (marked in orange) both KO and control must be incorrectly
predicted. Histogram truncated at 100.
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Figure 6 Model applied to experimental data from literature. a) An experimental dataset was retrieved from
literature consisting of 23 conditions with combinations of 12 different ligands. Activity was estimated for 58
transcription factors and a model was reconstructed to fit the data consisting of 1069 signaling nodes and 5886
interactions. b) A good fit (r = Pearson correlation) was attained within 35 min wall time on a laptop. c) Leave one
out cross validation (LOOCV) for conditions where all ligands were present in at least two conditions (20 of 23)
showed significant Pearson correlation between prediction and data. d) The correlation within conditions for LOOCV
was consistently lower than the train fits but significantly outperformed models trained with scrambled condition
labels, statistic calculated using two sided Mann—Whitney U test (n=20). e) The model was unable to fit some of the
TFs and these also performed poorly under cross validation. f) Predicted effect on RELA activity in response to
simulated KO under the TNFa stimulated condition using the LOOCV models to estimate consistency, top 10 KOs by
average effect size, whiskers. Abbreviations: glucocorticoids (GC), ultrapure lipopolysaccharide (upLPS), standard
LPS (LPSc), immune complexes (IC), Pam3CSK4 (P3C) and prostaglandin E2 (PGE2).
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