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Abstract 
Mammalian cells adapt their functional state in response to external signals in form of ligands that bind 
receptors on the cell‐surface. Mechanistically, this involves signal‐processing through a complex network 
of molecular interactions that govern transcription factor (TF) activity patterns. Computer simulations of 
the  information flow through this network could help predict cellular responses  in health and disease. 
Here we develop a recurrent neural network constrained by prior knowledge of the signaling network 
with  ligand  concentrations  as  input,  TF  activity  as  output  and  signaling  molecules  as  hidden  nodes. 
Simulations are assumed to reach steady state, and we regularize the parameters to enforce this. Using 
synthetic data, we train models that generalize to unseen data and predict the effects of gene knockouts. 
We also fit models to a small experimental data set from literature and confirm the predictions using cross 
validation. This demonstrates the feasibility of simulating intracellular signaling at the genome‐scale. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.24.461703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461703
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Introduction 
The healthy body continuously adapts to the environment by altering the molecular state of its cells. This 
primarily occurs through binding of multiple types of ligands to receptors on the cell‐surface, this acts as 
signals  that  are  propagated  through molecular  interactions  culminating  in  activation  of  transcription 
factors  (TF) and  subsequent  transcription of genes. Rather  than  constituting  independent paths  from 
receptors to specific genes, signaling is conducted through a complex network with spatial and temporal 
components1. This enables the cell to compute a response to stimulation with multiple ligands2,3, e.g. co‐
stimulation of human macrophages gives rise to a spectrum of cellular activation states4. Disruptions to 
the network can cause disease, e.g. activating mutations in the signaling protein BRAF is present in 40‐
50% of all melanoma tumors5, i.e. skin cancer, and single target treatments are not always sufficient due 
to cellular adaptations, e.g. tumors often acquire resistance to BRAF‐inhibitors5. A systems perspective on 
signaling is required to better understand responses to co‐stimulation and predict the effects of drugs. 
Such an understanding could be obtained through genome‐scale computer simulations of signaling that 
have long been anticipated6�8. 

By now, many requisites for genome‐scale models of signaling are  in place. The network topology has 
been extensively characterized with thousands of biochemical  interactions collected  in databases9 and 
with visual maps available for many signaling pathways, e.g. through the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)10. Genome wide data can be generated using high‐throughput methods, e.g. activities 
of hundreds of TFs  can be  statistically  inferred  from  transcriptomics data11  and  cellular  responses  to 
combinations  of  ligands,  can  be  characterized  through  co‐stimulation  experiments2.  For  metabolism 
genome‐scale simulations are routinely performed using the flux balance analysis (FBA) framework, which 
predicts  intracellular  fluxes using steady state assumptions,  linear optimization and data on metabolic 
exchange rates12. It has been used to gain system level insight on a wide range of topics, e.g. the effect of 
intercellular  compartmentalization on  the  flux of glutamate  in  cancer13 or  the  influence of metabolic 
trade‐offs on oxygen consumption  in muscle cells14. However,  the  linear FBA methodology cannot be 
applied to signaling, in which nonlinear relationships are typically important to capture and stoichiometric 
constraints are less straightforward to impose.  

Current signaling models are often based on ordinary differential equations (ODE) or logic rules7,8,15 and 
face challenges when expanding to the genome‐scale7,16. Yet, several of these have been overcome by 
simplifying assumptions. Explicit enumeration of microstates, which has been successful  for  individual 
proteins, is numerically intractable at the genome‐scale17 due to a combinatorial explosion of states from 
posttranslational  modifications  and  protein  complexes.  This  is  circumvented  by  models  that  omit 
enumeration, e.g. signal flow models represent signaling as a signed directed graph with scalar activity 
values  for  each  signaling  molecule15.  Cellular  activity  occurs  across  multiple  timescales,  e.g. 
conformational changes of proteins occurs much faster than signaling events, while protein translation 
from mRNA occurs much slower. The requirement by network‐wide models for simulation of long time‐
courses at high resolution can be overcome using quasi‐steady‐state approximations17,18 that assume that 
faster processes are  instantaneous and slower processes as constant. However,  two major  limitations 
remain for reaching the genome‐scale using current methods: predefined equations are needed for each 
molecule,  while  the  exact  mechanism  is  often  unknown;  and  parameter  estimation  may  require 
problematically long computational times for the largest models despite major advances19. Therefore, an 
alternative framework for modeling signaling may be warranted. 

Advancements  in  artificial neural networks  (ANN) have enabled  large‐scale models  in many different 
areas,  including  drug  discovery  and  genomics20.  ANNs  approximate  unknown  and  highly  complex 
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functions  through  a  sequence  of  linear  matrix  operations  and  non‐linear  transformations.  These 
approximations, sometimes containing millions of parameters, can be rapidly trained from paired samples 
of input and output data using the backpropagation algorithm20,21. While ANNs excel at predictions, their 
underlying mechanism is often elusive and therefore more interpretable ANNs based on prior knowledge 
have  been  proposed  for modeling  biological  systems22.  For  example,  a  feed  forward  neural  network 
(FFNN) with a network topology derived from known signaling interactions has been used to predict cell 
types from gene expression data22. However, FFNN do not allow feedback loops, which are frequent in 
signaling,  and  therefore  recurrent  neural  networks  (RNN)  may  be  a  more  suitable  architecture  for 
modeling  signaling  networks.  It  has  previously  been  shown  that  a  an  RNN without  prior  knowledge 
constraints can recapitulate the output of a small ODE‐model of signaling23. 

Here we construct a framework for rapid parameterization and simulation of intracellular signaling using 
RNNs. We first construct an activation function suitable for approximating the steady state behavior of 
different molecular mechanisms. We then introduce a sparse RNN formalism that encodes the topology 
of a known signaling network. The RNN uses  ligand concentrations as  input  to predict steady state TF 
activities and we construct a regularization function that ensures that steady state is reached. To test the 
data requirements for training generalizable models, we generate synthetic data from a reference model 
with computationally derived parameters. Models trained on modestly sized (400‐800 samples) synthetic 
datasets,  accurately  predict most  randomly  generated  input‐output  pairs  from  the  reference model. 
Additionally, the trained model predicts the effect of simulated gene knock outs (KO). To demonstrate the 
frameworks applicability to real world data, we fit a model using a small transcriptomics dataset from 
literature  involving macrophages  stimulated with  different  combinations  of  ligands. We  discuss  how 
genome‐scale  signaling  models  may  leverage  new  types  of  high  throughput  data  and  facilitate 
personalized medicine. 

Results 
Approximating molecular interactions at steady state 
For  the purpose of  the signaling  framework developed herein, molecular  interactions are assumed  to 
always be at steady state. This can be justified by timescale separation, as these events are expected to 
occur on the order of milliseconds compared to signal transduction that evolves over several minutes. 
Molecular dynamics here signifies interactions between signaling molecules through a range of different 
mechanisms,  e.g.  phosphorylation,  binding,  or  conformational  changes.  The  steady  state  assumption 
implies that the activity of the target molecule of the interaction is a single valued function of its source 
molecules that are considered constant at that  instant. This activity depends on the specific molecular 
mechanism (Fig. 1a) with the simplest arguably being independent activation and inhibition that may be 
interpreted as phosphorylases and phosphatases respectively. 

In many cases the exact molecular mechanism of a signaling interaction will be unknown, but its input‐
output  relation  can  be  approximated  by  a  neural  network. Directed  acyclic  graphs,  i.e.  a  FFNN,  are 
appropriate models  for  interactions  that are assumed  to  instantaneously  reach steady  state17 and  for 
independent activation and  inhibition  there  is a direct mapping between  their analytical  steady  state 
solution and a FFNN with the Michaelis‐‐Menten equation as activation function (Supplementary Fig. S1a). 
Based  on  this we  developed  a  problem‐specific  activation  function,  the Michalis‐Menten  like  (MML) 
activation  function  (Fig.  1b) with  two main  features;  preventing  negative  states  that would  be  non‐
physiological;  and  preventing  states  >1  that  are  non‐physiological  assuming  that  this  represents  full 
saturation. Physiological constraints are  thus  imposed at  the  level of  the activation  function, allowing 
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weights and biases to take on arbitrary values. In practice the MML was taken as the leaky version of the 
Rectified Linear Unit (ReLU) activation in its standard formulation24 for negative inputs. This prevents a 
strict 0 gradient  that may cause  irrecoverable  inactivation of nodes during  training  leading  to blocked 
signaling in sparse networks. The MML was taken as ReLU also for input values less than 0.5 to allow a 
range where signaling states can be passed forward without alteration. 

We found that a FFNN with this activation function and no hidden layers provided a good approximation 
of  independent  activation/inhibition  (Fig. 1c) outperforming  the other  activation  functions  that were 
tested.  The  overall  performance  was  acceptable  also  for  other  molecular  mechanisms,  although 
prediction errors were not uniformly distributed  (Supplementary Fig. S1b). An advantage of  the MML 
model without hidden layers was that the sign of weights directly corresponded to the mode of action 
(MOA), activation (positive) or inhibition (negative). This allows for a straight forward implementation of 
MOA‐constraints. Additionally, it requires markedly less calculations than multilayered FFNNs. For FFNNs 
with one hidden layer all of the tested activation functions produced excellent approximations (Fig. 1c). 

Constraining a recurrent neural network with prior knowledge of signaling 
Signaling involves a network of molecular interactions whose effects propagates over cellular distances 
from receptors at the surface to TFs in the nucleus. In order to represent these interactions, which include 
feedback loops, a sparse RNN formulation was developed as a model of cellular signaling. We constructed 
a minimal signaling network to demonstrate the framework (Fig. 2a). The structure of this prior knowledge 
network was encoded by a sparse matrix holding the weights of its molecular interactions (Fig. 2b). The 
overall expression, also known as a first order non‐linear difference equation,  iteratively calculates the 
signaling state from the state at the previous timestep and includes ligand concentrations as input and a 
bias  term,  which  may  be  interpreted  as  basal  activation  or  thresholding.  In  this  study  molecular 
interactions were modeled without  hidden  layers  so  that MOA  could  easily  be  constrained,  but  the 
approximations  of  molecular  interactions  could  have  been  made  arbitrarily  complex  by  adding 
intermediary nodes between sources and targets. 

It is here assumed that signaling activity reaches steady state after evolving for some predefined number 
of  timesteps  (Fig.  2c)  and  TF‐activities  are  projected  from  the  steady  state.  Ligand‐concentrations, 
weights, and biases are all assumed to stay constant during the iterations. This can be motivated by time‐
scale  separation,  although  regulatory  events, which  take  place  over  hours,  are  expected  to  result  in 
translation of proteins that are excreted as ligands or remodel the network interactions. Often RNNs are 
used to fit time series or other sequence data, but here intermediate states are discarded resulting in a 
one‐to‐one relation between  ligand patterns and steady state TF activities.  It can be noted  that while 
internally, a trajectory is computed from some initial state (here all zeros) to steady state, the steady state 
does not explicitly depend on the initial state or any of the intermediary steps and these are therefore not 
required to reflect biologically relevant transitions. Two other implications of the steady state assumption 
are; that any oscillations exhibited by the network are dampened; and that switch‐like behavior, where 
network responses depend on the initial state, must be encoded as differences in weights or biases. 

When training a model using this framework, any potential prediction errors can be back propagated to 
adjust the model parameters. The unrolling of an RNN into discrete timesteps is commonly referred to as 
backpropagation  through  time  (BPTT)25.  Here  the  BPTT  expression  is  simplified  by  the  steady  state 
assumption and the assumption of constant input (Fig. 2c). Due to these assumptions the gradients only 
depend on  the  steady  state values and due  to vanishing of gradients  from early  timesteps,  the back‐
propagated error can be assumed to reach a steady state that is independent from the trajectory by which 
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it  is computed (See Supplementary Fig. 2 for a numerical comparison and Supplementary methods for 
derivation). It can be noted that BPTT, for this restricted RNN, strongly resembles loopy belief propagation 
that  is  used  for  Bayesian  inference  on  cyclic  graphs26,  where  error  messages  are  propagated  until 
convergence. 

Models can be constructed on training data, then tested for generalization on previously unseen data. 
The  data,  containing  ligand�TF  activity  pairs,  was  generated  from  a  reference  model  (Fig.  2d)  with 
manually assigned parameters. A model was  trained using  this data,  i.e. without direct access  to  the 
parameter values. Terms were added to the loss function to constrain weights by their MOA and constrain 
biases at  ligand positions to zero, since their concentration was assumed to be provided as  input (see 
methods  for  implementation).  Additionally,  regularization  terms  controlling  the  L2  norm  of  the 
parameters were added to prevent overfitting, as is common practice. The model was trained using the 
ADAM optimizer27 with a  cosine  learning  rate  schedule and warm  restarts,  as has been proposed by 
others28. Using this setup, it was possible to train (Fig. 2e) a model to a near perfect accuracy, both on 
data used for training (80%), and on test data (20%) that was left out of the training set at random (Fig. 
2f). We tested the methods sensitivity to non‐uniformly distributed training data by adversely selecting 
samples that were left out of training (supplementary Fig. 3a) and this reduced generalization marginally, 
e.g. removing the bottom left quadrant reduced the correlation (Pearson) of predictions to 0.85. 

For this particular model structure, the trained model accurately recovered the original parameter values 
(Fig. 2g). However,  it was possible  to  construct a network, with  sequential nodes without branching, 
where this did not occur (Supplementary Fig. S3b) even though the network generalized perfectly to test 
data, i.e. the parameters were not identifiable. Nevertheless, there was a strong correlation between the 
predicted state vector of trained‐ and reference‐model, suggesting that the learned model may be able 
to accurately predict the effects of perturbating states, despite the inconsistent parametrization. 

Constraining the spectral radius to enforce steady state 
Feedback loops can prevent an RNN from reaching steady state. The formulation above assumes that a 
steady  state  is  reached  within  a  specified  number  of  timesteps.  However,  depending  on  the 
parametrization this may not occur. To not reach steady state, could yield non‐sensical output and may 
also be detrimental to gradient calculations, preventing training convergence. The requirement to reach 
steady state can be expressed formally using eigenvalue analysis of the linearized difference equation (Fig. 
3a). For the model to eventually reach steady state, the absolute value of the largest eigenvalue of the 
transition matrix, i.e. the spectral radius, must be less than 1 (See supplementary methods for derivation). 
Similar ideas have previously been explored for linear systems29 and for RNNs30,31. 

It  is possible  to constrain  the spectral  radius.  Its partial derivatives can be computed  (for a numerical 
demonstration  see  supplementary  Fig.  S4)  since  it  is  a  locally  smooth  function  of  the weights32. We 
introduced a regularization term to control the spectral radius using gradient decent (Fig. 3b) and with 
marginal effects on the magnitudes of the weights (Fig. 3c) it ensures steady state behavior (Fig. 3d). The 
introduction of the spectral radius in the loss function can be viewed as imposing a prior on the temporal 
complexity of the model. It should be noted that while the spectral radius regularization ensures that all 
conditions  in  the  training data  reach  steady  state,  it does not guarantee  that  this holds  for arbitrary 
conditions,  i.e. untested conditions may be unstable. With  this, we had  the prerequisites  to  simulate 
networks of arbitrary size and wiring. 
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Parameterizing a large model for synthetic data generation 
To put the framework to the test, we reconstructed a more comprehensive signaling network. For this, 
we turned to an online database, OmniPath9, that collects evidence of signaling  interactions  in human 
cells. The full set of interactions in OmniPath is very comprehensive and includes both well‐characterized 
interactions and results from single high‐throughput experiments. To ensure a model of high‐quality, we 
used a subset of interactions that listed KEGG10 as reference database and for which the MOA was a known 
(Fig. 4a). Nodes were  labeled as  ligands, receptors, signaling molecules or TFs, based on annotation  in 
OmniPath (see methods). 

We set up a reference model to generate synthetic data. To parameterize such a  large model by hand 
would be daunting, in particular as the output of a meaningful model should involve complex integration 
of the input. To overcome this, we devised a setup to automatically generate parameters based on desired 
properties of the model (see methods). Briefly, using randomly generated input, an objective function was 
optimized  to simultaneously minimize; mean correlation between conditions and TFs;  the L2 norm of 
biases  and  weights;  and  deviations  from  a  uniform  distribution  of  activities  for  TFs  and  conditions. 
Additionally,  the spectral  radius, MOA of weights and  the bias  term on  ligands were constrained. The 
resulting model generated  rich  synthetic data with biologically plausible TF activity patterns  (Fig. 4b). 
Principal component analysis of the models TF‐patterns showed that  increasing the number of  ligands 
increased the covered space (Fig. 4c), consistent with complex interactions and emergent states. This was 
also supported by generalized linear modeling of the patterns (Fig. 4d) that showed a decreasing fit for 
increasing  number  of  simultaneous  inputs.  This  parameterized  reference  model  demonstrates  the 
computational capacity that lays latent in the topology of the signaling network. 

The time complexity of the framework affects its practical feasibility to learn large networks. Network size 
can be characterized by the number of signaling nodes (n) or by the number of non‐zero interactions (z) 
and the bottleneck involves sparse matrix multiplication between the weight matrix and the state vector 
with  a  naïve  complexity  of  zn2, meaning  that  simulation  time  increases  linearly with  the  number  of 
interactions  but  that  doubling  the  number  of  nodes  requires  4  times  longer  simulation  time.  For 
biologically relevant networks with between 1000 and 19000 nodes and ~10 interactions per node, we 
observe a linear increase in wall time from 0.02 to 0.2 seconds per pass (Supplementary Fig. 5). However, 
the purpose of  the algorithm  is  to  train generalizable models  from data, and  the amount of data and 
number of epochs of training required may also depend on the network size (see supplementary methods 
for a more  in‐depth analysis). So, while the complexity  is well defined for simulating a condition,  i.e. a 
forward pass,  the complexity of  training a generalizable model,  so  far  remains an empirical question, 
although polynomial bounds on the number of epochs have been established for some classification tasks 
using RNNs33. 

Training generalizable models on synthetic data 
To test the data requirements for generating generalizable models, we trained models on synthetic data 
generated from the reference model (Fig. 5a). To aid in the generalization and prevent the model from 
getting  stuck  in  local  minima  during  training  several  regularization  techniques  were  applied  (see 
methods). Briefly, the state variable was regularized to have approximately uniform distribution and a 
non‐negative max  value  across  conditions; weights were  regularized  to have non‐zero  values  and  L2 
regularization was applied to all parameters; gaussian noise was added to the state variable with the level 
of noise decayed throughout the training in proportion to the learning rate. Training with noise could be 
considered a more biologically realistic alternative to drop‐out, a regularization technique that aims to 
decreases the dependency on specific nodes by removing them at random. Experiments with drop‐out on 
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knowledge primed neural networks by others22 showed that a much lower dropout rate than the default 
(50%) is required, presumably due to the likelihood of complete blockage when the number of possible 
paths are limited. 

With these techniques we fit models that generalized to a quite favorable extent. The amount of data 
required  for  this was  investigated by  training models with  increasing amounts of  randomly generated 
conditions for different numbers of simultaneous ligands (Fig. 5b). More simultaneous ligands improved 
generalization, and excellent performance was attained at the highest data settings. As expected, training 
models  without  spectral  radius  regularization  caused  training  to  diverge,  resulting  in  poor  fits 
(Supplemental Fig. S6a). A low, but non‐zero, correlation was attained for models trained on data with 
scrambled order of conditions (Supplementary Fig. S6b). This could be due to the model learning general 
differences between distributions of individual TFs and was corroborated by an even higher correlation 
from  taking  the  average  of  each  TFs  as  prediction. We were  concerned  about  potential  information 
leakage  from  the  reference  model,  since  some  of  the  regularization  terms  were  shared  with  the 
parameterization algorithm, but training a model using only regularization terms (without fitting to data) 
did not perform better than predicting the average of each TF (Supplementary Fig. S5b), suggesting that 
leakage was not substantial. 

For  the best model  the predicted  TF  values  generally  fell on  the  line of  identity when  comparing  to 
reference (Fig. 5c). There were however some notable exceptions, these corresponded to a few poorly 
predicted conditions with correlations as  low as 0.2 whereas the correlations of  individual TFs were all 
above 0.9 (Supplementary Fig. S6c). Training with additional data could potentially alleviate this  issue, 
since a larger state space would be sampled, but the saturating trend in generalization after 400 samples 
(Fig. 5a) suggests that perhaps further improvements to the regularization may be more economical. We 
found  that,  in  general,  parameters  were  not  identical  between  reference  and  trained  models 
(Supplementary Fig. S6d), presumably due to lack of identifiability, but that most of the state variables 
were still highly correlated between trained and reference models (Fig. 5d). 

We hypothesized that the fitted model would predict in silico knock outs (KO) of signaling molecules in 
the reference model without training on such data. If successful, this would mean that the trained models 
had acquired the same structural dependencies as the reference model. For models trained on data from 
living cells,  this would correspond  to  the ability  to predict systemic effects of mutations or drugs. We 
simulated KO of each of the signaling molecules under several different conditions,  i.e.  in presence of 
different  ligands. Although many KOs had  limited  impact on most TFs,  the predicted difference  in TF 
activity was similar between reference and fitted models (Fig. 5e), meaning that KO events were in general 
successfully predicted. 

Predicting signaling in ligand stimulated macrophages 
In order to apply the framework to actual experimental cell biology data, TF activities must be estimated 
for each  condition of  cell  stimulation or perturbation. For  this we used a gene  set enrichment based 
method, Dorothea11, that estimates probabilities of TF activities from mRNA concentrations of their target 
genes. Given  that  the  lifetime  of mRNA  is  expected  to  be much  shorter  than  regulatory  changes  in 
transcription rates34, mRNA concentrations can be expected to be proportional to their formation rates 
and  thus  reflect  the activity of  the TFs  that  regulate  their expression. A potential  limitation with  this 
approach  is  that  the  statically  inferred  probabilities  of  activation  may  not  have  a  direct  biological 
interpretation. Here  they  are  taken  as  fractional  activation  that may  affect  the  rate  of  transcription 
through  time‐occupancy at TF binding  sites or by  recruitment of polymerases, which may depend on 
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multiple factors e.g. binding affinity, concentration, signaling state. It can be expected that there exists 
some  relation  between  these  activities  and  the  probabilities  inferred  from  differences  in  mRNA 
concentrations, however, this relation may be non‐linear and noisy, which may partially be accounted for 
by the parametrization of the RNN model. 

A transcriptomics dataset from ligand‐stimulated macrophages was retrieved from literature4. Dorothea 
was applied  to estimate probabilities of TF activation  (Fig. 6a). There was  in general good agreement 
among the biological replicates, but for four TFs the activities across replicates were deemed too noisy, 
and they were excluded from further analysis, notably STAT2 and IRF9 (Supplementary Fig. S7a). Some 
differences in variability were also observed among conditions (Supplementary Fig. S7b) but none were 
excluded. The  inferred activity patterns appear  to  largely agree with known biology. For example,  the 
transcription factors RelA and RelB are part of the NF‐»B signaling cascade and induced by inflammatory 
ligands, e.g. interferons, lipopolysaccharide (LPS) and TNFα35. The ligands Il4 and IL13 display similar TF‐
activity profiles and are opposed to the  inflammatory  ligands, which  is expected since they both signal 
through  IL4R and are  known  to  induce an anti‐inflammatory  (M2)  response36. The presence of  these 
ligands is here associated with SMAD3 activity, which may be a secondary effect from secreted TGFβ136. 
The observed differences in TF‐patterns between standard (LPSc) and ultra‐pure (upLPS) LPS‐qualities, are 
somewhat unexpected, but may potentially be explained by activation of TLR2 by impurities alongside the 
expected TLR4 activation37. Differences in signaling outcome for these two receptors have previously been 
noted35. 

For  the  signaling network  to  accommodate  the  set of  ligands  used  in  the  experimental  study  it was 
expanded with interactions from an  immune system specific resource, InnateDB38 (see Methods). With 
this the model fit the data (Fig. 6b) with high accuracy. The data set was too small (23 samples x 58 TFs = 
1334 datapoints compared to 7000> parameters) to be expected to generalize well, yet  leave‐one‐out 
cross  validation  (LOOCV)  showed  that  models  trained  on  this  data  produced  significantly  better 
predictions than chance (Fig. 6c) or models trained on data in scrambled order (Fig. 6d). The generalization 
performance for these data was better than for synthetic data of comparable size, which may be due to 
denser  sampling  from a  restricted  region of  the  ligand  stimulation  space. We noticed  IL4 among  the 
conditions with poorer generalization, potentially due to confounding interactions with LPS39 that were 
not properly  learned from the single condition available  in the LOOCV setting. For some of the TFs the 
model did not produce acceptable fits (Fig. 6e), presumably due to limitations in the TF activity estimation 
or incompleteness of the signaling network.  

In spite of these shortcomings, we simulated the effect of gene KOs on RelA under the TNFα stimulated 
condition (Fig. 6f), which is known to elicit long lasting effects on NF‐»B signaling35. As could be expected, 
the TNF receptor was predicted to have the largest effect, but a number of NF‐»B activating proteins were 
also identified, e.g. CHUK, IKBKB and RIPK1, in good agreement with prior knowledge, showcasing how 
biological relevance can be learned by this integrative approach. Still, the notable discrepancies between 
models suggests that much larger datasets are required.  

Discussion 
We have demonstrated here that genome‐scale simulation of intracellular signaling is now attainable. We 
developed  a  computational  framework  based  on  RNNs,  constrained  by  prior  knowledge  of  network 
interactions, to rapidly train predictive models of signaling using  ligand‐TF data pairs.  In particular the 
model�s ability to predict the effects of KO�s is highly advantageous and cannot easily be matched by black‐
box based models. For models trained on real world data this would have important clinical implications, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.24.461703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461703
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

since many drugs  act by blocking  the  activity of  signaling molecules. We demonstrated  the practical 
applicability of the framework on literature data and although this particular dataset contained too few 
conditions to generate reliable predictions, it showed how consistency between data and known biology 
can be enquired and highlighted some limitations with the prior knowledge networks. Our experiments 
with synthetic data suggest that the framework,  in combination with  larger datasets, could be used to 
train highly generalizable genome‐scale models to further our understanding of intracellular signaling. 

Presently, many high‐throughput methods are being developed that will synergize with the framework, 
including large‐scale transcriptomic screenings, e.g. the L100040. These will enable profiling of numerous 
ligand‐combinations to explore the space of possible signaling states and models trained on such data will 
provide a succinct and actionable representation of the acquired knowledge. The framework is not limited 
to study ligand‐stimulation, our gene KO‐simulations demonstrate how intracellular perturbations could 
be  incorporated.  Perturbations  and  KOs  are  of  great  interest  for  studying  signaling16,41  and  can  help 
resolve  identifiability  issues,  where  multiple  pathways  fit  the  data  equally  well.  Innovative  use  of 
nucleotide barcoding has enabled simultaneous construction of KO cells and sequencing of their gene 
expression42, albeit so far this was only applied to TFs, not signaling proteins. Identifiability issues could 
also be resolved by collecting data on the internal signaling states of select proteins, these data could be 
projected  from  the  state  vector  and  fitted  analogously  to  TF  data.  High‐throughput  methods  for 
generating multimodal data are currently under development, e.g. coupled profiling of transcriptome and 
protein activity43 and barcoding states of phosphoproteins using antibodies44. Alternatively, such data may 
be acquired using proteome level quantification of phosphorylation states7. 

Transcriptomics is a strong technology for generating genome‐scale data to train signaling models both in 
terms of cost and availability. Transcriptome based TF‐activity estimates, provides a much  larger set of 
observables than high level phenotype data, e.g. cell viability16,19, which is an alternative for large‐scale 
signaling models. The connectivity of TFs throughout the signaling network also helps offset the increase 
in number of parameters with  increasing network  size by  a matching  increase  in number of TFs,  i.e. 
observed datapoints. The use of  transcriptomics data  to  infer TF activity  requires  reliable estimation‐
methods. While many activities inferred using statistical methods are of high quality11, our understanding 
of  gene  regulation  is  continuously  improving  and  more  advanced  computational methods  are  being 
developed, e.g. auto encoders that fit TF activities as latent variables informed by prior knowledge of TF‐
gene relations45 and mechanism‐based deep learning models34. There is also development of sequencing 
based  methods  that  simultaneously  profile  chromatin  accessibility,  intra‐nuclear  proteins,  and  gene 
expression46, which could aid in acquiring more accurate TF activity estimates. There are presently several 
methods  that  strive  to  infer  signaling patterns  from  transcriptomics data and prior knowledge of  the 
signaling‐  and  regulatory  networks,  e.g.  CARNIVAL47  and NicheNet48. However,  these  aim  to  provide 
qualitative descriptions of possible network wirings for individual condition as opposed to generating a 
predictive model consistent with all conditions as the one developed herein. 

The framework relies strictly on prior knowledge of the signaling network and does not attempt to identify 
novel interactions. This is advantageous since it strongly reduces the solution space, alleviating the data 
requirements while at the same time enforcing biological plausibility. It also maps the hidden nodes to 
corresponding signaling molecules that allow KO events to be simulated. However, since  it  is not  likely 
that the complete signaling network has already been characterized, the setup forces solutions to align 
with existing knowledge. At best this may result in inability to completely fit the test data, which may help 
highlight signaling  interactions that require further attention and research, but  incorrect relations may 
also  be  learned.  One  potential  solution  would  be  to  allow  the  model  to  use  a  limited  number  of 
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interactions supported by prior knowledge of sub‐standard quality or that are completely novel, which 
could result in data driven discovery. This may be particularly relevant when expanding the framework to 
other mammals, since their prior knowledge networks often are mere homolog based extrapolations9 of 
the human signaling network. Contrarily, removing  interactions from the prior knowledge network for 
non‐expressed signaling molecules could aid the generation of cell type specific models. 

We here aspire to model the effect of ligand stimulation in a single cell type and differentiation state. This 
is  encoded  in  the  constant  weights  and  biases,  but  a  natural  generalization  would  be  to  let  these 
parameters depend on external factors, e.g. cell type or test subject. Assuming that the wiring is mostly 
conserved, these parameters could be made into regularized functions of easily quantifiable properties, 
e.g. genotypes, allowing personalized parametrizations that still leverage data from other experiments. 
Subsets of parameters could even be pretrained using data from molecular studies, which corresponds to 
transfer  learning  that  has  been  successful  in  other  ANN  applications,  e.g.  mammograms  have  been 
analyzed by appending a classifier to a network pretrained on regular images49. This would be particularly 
useful  for analyzing subpopulation‐specific responses among cells within a single experiment, that are 
now being inquired with single cell sequencing techniques. It is of much interest to discern the root cause 
of these differences e.g. differences in ligand concentrations, basal activity or network wiring. Single cell 
sequencing  has  founded  an  atlas  of  cell  types  at  various  stages  of  differentiation,  and  a  fruitful 
continuation of this work, in particular for immune cells50, could involve comparisons of  their dynamic 
responses to stimulation in  through differences between parameterized models. Our framework relies 
on steady state assumptions motivated by time scale separation. From biological perspective  it seems 
plausible that evolution would favor reproducible responses, i.e. that a given signaling pattern converges 
to the same state each time, although there are certainly exceptions, where sustained oscillations are 
instead desirable, e.g. the circadian rhythm or the cardiac cycle. Due to the steady state assumption the 
framework is not suitable to simulate such dynamics, although the RNN internally calculates a trajectory 
for each condition, these cannot be directly interpreted as time‐series predictions. This is partly due to 
the initialization at zero, a biologically implausible state from which even the control condition, without 
ligand stimulation, is driven by basal activity from the bias term. But also, because no observations are 
provided along the trajectory before reaching steady state. For practical purposes this is not a concern, 
since  the model predictions do not depend on  the  trajectories, but  cellular dynamics may  still be of 
interest for some applications. Time‐series data could in principle be accommodated by the framework 
by  fitting  states  at  particular  time  steps,  however,  they would  likely  be  better  accommodated  by  a 
continuous time RNNs. Such RNNs have obvious similarities with ODE models and discussions on bridging 
the gap between RNNs and ODEs are ongoing16, notably a direct correspondence has been established 
between RNNs with a specific architecture and a common numerical ODE solver51.  

Our regularization of the spectral radius ensures that all conditions in the training data reach steady state, 
but does not guarantee that this holds for arbitrary conditions. The pursuit of methods to enforce global 
stability for non‐linear systems is an ongoing52, but it is not clear if global stability should be required for 
biological  systems  that  may  be  unstable  for  conditions  that  are  never  encountered.  Interestingly,  if 
evolution  is viewed as an optimization algorithm that has  learned cellular parameters from conditions 
that  are  encountered,  then  by  analogy  turbulent  states  could  be  expected  to  occur  for  untrained 
conditions, which may be an interpretation of the chain‐of‐events in some diseases e.g. the detrimental 
immune responses known as cytokine storms53. 

The challenge to learn parameters of a model with known structure from data is not limited to biology. In 
control  theory,  it  has  been  proven  that  stochastic  gradient  decent  (SGD)  can  learn  linear  dynamical 
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systems54, which corresponds to an RNN with linear activation function. The RNN developed herein is an 
example of a sparse ANN. It has been recognized21 that for fully connected ANNs trained on image data, 
most  parameters  can  be  set  to  zero  without  marked  loss  in  performance.  After  removing  theses 
interactions,  the  sparse models can  sometimes be  retrained  to  the  same  level of performance as  the 
original, since the learned structure remains encoded in the sparse connections. For the signaling network, 
sparsity has been learned by evolution. The ongoing development of new algorithms and hardware for 
training ANNs assures that the future will provide further improvements in model sizes, and training and 
execution  times, e.g.  sparse matrix multiplication  is parallelizable and can be efficiently calculated on 
graphic processing units (GPU)55. 

There are many avenues  to expand the  framework to  further accommodate realistic simulations. One 
would be to allow molecules in different cellular compartment to have distinct signaling states. This would 
add a spatial component to the model and could be implemented directly through the prior knowledge 
network  without  changes  to  the  framework.  The  intrinsic  modularity  of  ANNs  allow  for  intuitive 
integration  with  other  networks,  this  seems  immediately  promising  for  integration  with  ANNs  of 
regulatory processes, but  it  is also conceivable that cell‐cell  interactions could be modeled by chaining 
together multiple networks. The use of executable models in cancer research has shown how submodules 
with  varying  levels  of  abstraction  can  be  integrated  into  a  computer  program  that  can  be  formally 
verified56. The rapid execution of trained models in consort with databases of drug‐interaction partners57 
opens up for genome‐wide in silico screening of drug responses. This, together with personalized signaling 
models  could  provide  individualized  predictions  of  drug  responses  and  side  effects  at  the  level  of 
individual cell types. 

Methods 
Ordinary differential equations of molecular dynamics 
ODEs were formulated for the different reaction schemas (See Fig. 1a) assuming mass action kinetics (See 
supplementary  Fig.  S1  for  an  example).  The  rate  constants  were  manually  parametrized  (See 
Supplementary  Table  S1  for  values)  to  yield  sensible  output.  The  differential  equations were  solved 
numerically using an initial value problem solver for systems of ODEs (scipy.integrate.solve_ivp58 in python 
3.7.10). State variables were initialized as 1/[total number of states] and the activity after 100 time units 
was taken as the steady state value. For convenience the system was solved once with high resolution, a 
50x50 linearly spaced grid, and linear gridded interpolation (scipy.interpolate.interpn) was used to down‐
sample to the indicated operational resolution. 

Neural network simulations of molecular interactions 
Neural  networks  where  constructed  and  trained  using  the  pytorch  framework59.  This  includes  the 
autograd functionality, i.e. automatic differentiation, that retains the computation graph and uses it to 
automatically calculates gradients of the loss function. For the sigmoid activation the default formulation 
was used (torch.sigmoid), for ReLU the leaky version was used (torch.nn.functional.leaky_relu), and the 
MML  function  was  manually  implemented  (as  specified  in  Fig.  1b).  For  the  fully  connected  layer 
(torch.nn.Linear) 5 hidden nodes were used. A trainable scaling factor was added to the output of the 
functions to accommodate normalization of activities. The neural networks were trained for 5000 epochs 
using the ADAM optimizer (torch.optim.Adam) with a  learning rate of 0.002 and the built  in L2 weight 
decay (factor 10‐5). Default initialization of weights and biases was used. 
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Structure of prior knowledge network files and ligand input and TF‐output files 
The signaling network structures were stored in list format with each entry containing a source node, a 
target node, the mode of action, and references to databases and PubMed ids, where applicable. Signaling 
nodes were identified by their uniprot identifier. This structure is similar to the format used by OmniPath9, 
but  unlike OmniPath,  all  interactions were  considered  directed  from  source  to  target  and  reversible 
interactions  were  represented  by  an  additional  entry with  source  and  target  nodes  exchanged.  The 
signaling network file was accompanied by an annotation file, that for each of the signaling nodes specified 
their function, e.g. ligand or transcription factor, and a human readable synonym, e.g. gene name or small 
molecule acronym. For storage of trained networks pytorch serialized objects (torch.save) were used and 
a human readable plain text format was also developed where each entry contained the parameter type 
(bias, weight, input projection or output projection), parameter value, source node and target node (only 
used for weights). For the macrophage dataset input and output data for the network were stored as tab 
separated tables with conditions as rows and ligands and TF levels respectively as columns. 

Projections of matrices from input to state and from state to output 
Input consists of a ሾý ൈ  ÿሿ matrix where ý is the number of samples (in total or in the mini‐batch) and ÿ is 
the number of ligands in the input, the output consists of a ሾý ൈ  ýሿ matrix, where ý is the number of TFs 
in the output. The recurrent neural network calculates a state matrix, ሾý ൈ  ÿሿ , where n is the number of 
state variables. To accommodate size differences between input, output and state matrixes the RNN is 
proceeded by a projection layer that inserts the elements of the input at their corresponding position in 
a zero‐padded matrix ሾý ൈ  ÿሿ with elements ordered as in the state matrix. Similarly, the state vector is 
projected  to an output matrix by  selecting  the corresponding TF elements  from  the  state matrix and 
placing them in an order that matches the order of TFs in the data. Scaling factors for each element are 
included in the projections and for the output projection these are made trainable parameters. 

Recurrent neural network formulation 
The recurrent neural network takes a matrix ÿ௜௡ as input and returns a matrix ý௦௦ as output both with the 
structure ሾý ൈ  ÿሿ, with ý and ÿ defined as above. The function is parameterized by trainable weight and 
bias  vectors.  The  structure  of  the  signaling  network  (ý)  is  provided  as  a  sparse  row  matrix 
(scipy.sparse.csr_matrix) with values of the non‐zero elements given by the weight vector. The columns 
of the matrix correspond to sources and the rows to targets. The state vector  is  initialized as all 0 and 
iterated for a finite number of steps, set to 150 in this study. The RNN function was implanted as a manual 
autograd  function  (torch.autograd.Function) with both  forward and backward pass specified manually 
(see  Algorithm  1  in  Supplementary  methods)  using  numpy60  operations.  The  spectral  radius  of  the 
transition matrix for the backward pass is assumed to be less than 1, meaning that the magnitudes of the 
back  propagated  gradients  are  bounded.  However,  since  it  cannot  be  excluded  that  this  constraint 
occasionally will be violated during  training, gradient  clipping  is applied at each  iteration. To prevent 
clipping under regular conditions, the clipping function was constructed with a linear segment between 
two saturating tanh regions (See supplementary materials algorithm 1). 

Initialization of weights, biases and scaling factors 
Weights are initialized as ÿሺ0, 0.1ሻ ൅ 0.1, where ÿ is a uniformly sampled random number on the specified 
interval. Weights corresponding to inhibitory interactions are made negative by multiplication by െ1. All 
weights are scaled by a factor 0.8 ÿሺýሻÚ , where ÿሺýሻ is the spectral radius of the matrix A to ensure that ÿሺýሻ ൏ 1. Biases are  initialized at a value of 0.001 except for biases corresponding to nodes that only 
have inhibitory inputs, in which case they are initialized at 1 to accommodate dynamic node states in the 
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positive regime. The scaling  factors  for elements  in  input and output projections are  initialized by  the 
same value, 3 for input projections (which corresponds to a state of ~0.92 after applying the activation 
function) and 1.2 for output projection. 

Soft constraints for weight sign and ligand bias 
To impose soft constraints, barrier functions were constructed, multiplied by a constant and added to the 
loss  function.  For  interactions  with  known  mode  of  action,  activation  or  inhibition,  the  sign  of  the 
corresponding weight was constrained to be positive or negative respectively. This was imposed by adding 
the  sum  of  absolute  values  of  weights  where  the  sign  conflicted  with  prior  knowledge.  For  biases 
associated with  ligands,  the model was prevented  from  learning  large values,  since knowledge about 
ligand concentrations is expected to be available and provided as input. Here, the barrier function was 
constructed as the sum of squares of biases belonging to ligands. 

State and parameter regularization and application of state noise 
To aid in generalization and prevent the model from getting stuck in local minima, several regularization 
techniques were applied. To prevent parameters  from  taking on extreme values,  L2  regularization of 
weight and bias parameters was implemented by adding the sum of squares of these vectors multiplied 
by a coefficient, 10ି଼, to the loss function. For training on the synthetic dataset and the macrophage data 
an additional term was added to the weight loss to prevent weights from getting stuck at zero, ýýýý ൌ ∑ ଵ௪೔మା଴.ହ. 
Regularization of the state variables was implemented to ensure that they remained active with a wide 
dynamic range during training, with similar objective as batch normalization. The goal was for each of the 
states to have a uniform distribution across conditions, and this was implemented by regularizing some 
of the statistical properties to match the corresponding properties of a uniform distribution on the interval 
[a b], i.e.  ÿሺýሻ ൌ ௕ି௔ଶ , ÿଶሺýሻ ൌ ଵଵଶ ሺÿ െ ÿሻଶ,  minሺýሻ ൌ ÿ,  maxሺýሻ ൌ ÿ. 
To be operational independent of batch size, the properties were calculated across all conditions, and for 
conditions that were not  in the present batch their  latest calculated values were used, however these 
were detached (torch.tensor.detach) from the computation graph and only gradients from the current 
batch were back propagated. The  regularization was  implemented by calculating  the deviation of  the 
empirical property across conditions from the ideal property calculated for the interval [0.01, 0.99]. The 
sum of  squares of deviations was applied as barrier  function. Additional  regularization was added  to 
prevent negative max values, the sum of negative max values was used as barrier function. The sum of 
these contributions was multiplied by a factor, 10ିହ, and added to the loss function.  

In addition to regularization, gaussian noise was added to the ÿ vector for each forward pass, to ensure 
that the fitted parameters were robust to small deviations. The level of noise was made proportional to 
the learning rate (lr) as ÿ ൌ ÿ ൅ 10 ∙ ýÿ ∙ ÿýÿÿሺ0,1ሻ, where norm is sampling from a normal distribution 
with 0 mean and 1 variance. 

Spectral radius regularization 
An exponential barrier function was used to constrain the spectral radius (ÿሻ 

 ýýýý ൌ ÿ ∙ ÿýýሺý ∙ ÿሻ,  
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ÿ ൌ ଵ௘௫௣ሺ௞∙ሾ௧௔௥௚௘௧ ఘሿሻ,  ሾýÿÿýÿý ÿሿ ൌ exp ቀ୪୭୥ ଵ଴షరଵହ଴ ቁ ൌ 0.94, 

with ý ൌ 21 and a scaling factor ÿ, where 10‐4 is the target precision and 150 the number of steps in the 
RNN. To be able  to backpropagate  this  function, we  constructed a manual autograd  function  for  the 
gradient of the spectral radius (see supplemental methods Algorithm 2). It made use of made use of a 
sparse eigenvalue solver (scipy.sparse.linalg.eigs). Since both left and right eigenvectors are required for 
the gradient calculation and only right eigen vectors are returned by the sparse solver, the matrix was 
transposed and  solved a  second  time with  the predicted eigenvalue  from  the  first pass as  target. To 
conserve computations, a single steady state was selected at random for regularization from each batch. 

Model reconstruction 
The  most  recent  interaction  database  was  retrieved  from  the  OmniPath9  website 
(archive.omnipathdb.org, retrieved 2021‐06‐21). Only human  interactions  from the OmniPath core set 
were included. The interactions were divided into 3 subsets, Ligand‐Receptor (LR) interactions, regulatory 
interactions and signaling interactions (see supplementary table S3 for details on the queries). The LR and 
signaling interaction were further reduced to only include interactions that referenced KEGG among the 
sources. A few reactions were removed based on manual curation; interactions between IL6R and JAK1, 
STAT3 and SRC were removed, since  IL6R only signals through  its  interaction with gp130 (IL6ST)61; the 
interaction between TLR4 and  IRAK4 and CD14 were removed from receptor‐ligand  interactions, since 
IRAK4 and CD14 are not considered ligands based on their uniprot annotation62. All interactions that were 
listed as reversible were duplicated and reversed and  their  interactions were set as unidirectional. To 
avoid  duplicate  interaction,  all  interactions  present  in  LR were  removed  from  the  signaling  set. Any 
conflicts  in mode of action,  i.e.  listed as both activating and  inhibitory, were resolved by removing the 
mode of action information. And nodes without mode of action information were removed. Nodes that 
were not  listed  in Uniprot62 were also removed. Nodes were classified as  ligands  if they were  listed as 
sources in LR, as receptors if they were listed as targets in LR and TFs if they were listed as sources in the 
regulatory  interactions. The LR and signaling  interactions were merged. Nodes where considered dead 
ends and removed  from  the network  if  there  for  the node was no path  from any  ligand or  to any TF. 
Additionally, nodes were considered redundant and removed if they had only a single source and target 
that both were the same node. Network plot was drawn using MATLAB 2020a.  

The same procedure was followed for the network intended for the experimental data, but InnateDB was 
also  included  as  an  approved  source.  Furthermore,  the  RL  interactions  were  manually  defined 
(supplementary  table S3) based on  the  ligands available  in  the experimental data based on uniprot62 
annotation. The list of TFs was restricted to the ones with experimental data available. 

Synthetic data generation and analysis 
To fit parameters that result in non‐trivial and biologically plausible predictions, an objective function was 
defined including several terms. For each epoch the model was provided with 200 conditions containing 
5 randomly selected ligands per condition with uniformly sampled concentrations, these were resampled 
for each evaluation. The predicted TF activities were regularized to  follow a uniform distribution both 
across conditions and across different TFs, this was implemented in the same way as state regularization 
(See  above)  but  without  dependency  on  states  from  previous  epochs.  The  mean  correlations  were 
minimized  across  both  conditions  and  TFs,  this  was  implemented  by  calculating  the  average  of  the 
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correlation coefficients of the output matrix and its transpose. Spectral radius regularization was applied 
with a coefficient of 10‐2 and L2 norm on weights and biases was applied with a coefficient of 10‐6. Sign 
and ligand constraints were applied as specified above. To preempt information leakage, parameters were 
initialized differently than for the trained models; weights were initialized uniformly at random from the 
interval [0, 3] and their sign was assigned based on mode of action, and scaled to a spectral radius of 0.8; 
bias was assigned by sampling uniformly from the interval [0, 0.01].   

The complexity of the synthetic data was studied by PCA analysis of predicted output from 2000 randomly 
generated  conditions  with  different  numbers  of  simultaneous  ligands.  Linear  models 
(sklearn.linear_model.LinearRegression)63 were fitted to the synthetic data for each simultaneous ligand 
level,  and  prediction  performance  was  evaluated  using  10  fold  cross  validation 
(sklearn.model_selection.KFold). The performance of the model trained on single  ligand data was also 
evaluated. 

In silico knock outs 
The predicted effects of  in silico KO were studied by adding a strong negative bias  (‐5) to the node of 
interest, resulting in near zero node states after applying the activation function. The change in TF activity 
compared to the control condition without KO was used as metric since most TFs are not expected to be 
affected by most KOs. For the KO predictions under the TNF condition, the KO was applied to all nodes in 
each of the models that were generated for the LOOCV, and nodes were ranked by the average of the 
predicted effect on RelA. 

Inference of TF activity 
Literature  data4  was  retrieved  from  the  ArrayExpress64  database  (ebi.ac.uk/arrayexpress),  accession 
number E‐GEOD‐46903. Genes without any detected signal (min p>0.01) or without variance ([std] < 10‐6 
[mean]) were removed from further analysis. The  log‐transformed data (5203 genes and 384 samples) 
was centered and TF activities were inferred using Dorothea11, an enrichment based statistical method. 
Only TFs with a confidence score of A or B and interacting with at least 5 genes were included. Conditions 
were filtered to only contain data from GM‐CSF cultured macrophages from the same time point (72 h) 
amounting to 103 samples  including biological replicates. The Dorothea reported  log odds ratios were 
transformed to probabilities using the  inverse  logit function,  i.e. the  logistic function. The average was 
taken among replicates resulting in 23 unique conditions. Standard deviation among replicates for each 
TF within  each  condition were  inspected  and  TFs were  discarded  if  their  75th  percentile  of  standard 
deviations exceeded 0.2 corresponding to 4 TFs (See supplemental Fig. S7a). 

Hardware for simulations 
Simulations were performed on a Dell Precision 3530 laptop with an Intel i7 CPU @ 2.60 GHz with 6 cores 
(12 logic processors) and 16 GB ram. For convenience, evaluation of data requirement and cross‐validation 
was carried out on a singled threaded computer cluster  (Intel Xeon CPU @ 2.60GHz) that allowed  job 
scheduling (using Slurm) with 16 parallel jobs. 

Data and code availability 
The code and scripts the to reproduce the simulated data are made available through a public repository 
(github.com/Lauffenburger‐Lab/Artificial‐Signaling‐Network).  
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Figures 

 
Figure 1 Modeling molecular mechanisms using a FFNN. a) The steady state for different mechanisms involving two 
source molecules (A and B) at constant concentration and a target molecule with an  inactive state (X) and active 
state  (Xact).  Results  were  attained  by  running  ODE  simulations  until  steady  state,  reaction  rates  (1‐4)  were 
parameterized manually  (values  in Supplemental Table S1), maximum activity was scaled to 1. b) The Michaelis‐
Menten‐like  (MML)  activation  function  is  designed  as  a  monotonously  increasing,  continuous  function  with  a 
maximum of 1 and continuous first derivative (except at 0). It is composed of three segments; a leaky; a linear; and 
a  saturating. The  leaky and  linear  segments  correspond  to  the  leaky ReLU activation  function, as  the Michaelis 
Menten equation  is not defined  for negative  input. The saturating segment  is composed of a shifted and scaled 
Michaelis‐Menten  equation.  c)  FFNNs models of molecular mechanisms with different  activation  functions  and 
number of layers. Model were trained on steady state activity for a grid of 7x7 linearly spaced source concentrations 
and tested on a 20x20 grid, the Pearson correlation between prediction and test data was calculated (mean of three 
runs). A black outline marks  the performance of MML  for  independent activation and  inhibition with no hidden 
layers.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.24.461703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461703
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

 
Figure 2 Modeling a simple signaling network using an RNN. a) A simple signaling network including ligands (L1, L2) 
receptors  (R1, R2), signaling proteins  (S1, S2) and a TF  (T1)  interconnected by 8  interactions  (w1, �, w8). b) The 
difference equation calculates  the state  (ý௡) at  timestep n  from  the previous  time step. The matrix A holds  the 
interaction weights and the bias term (ÿ௕௜௔௦)  and input term (ÿ௜௡) are added, the activation function (ÿሻ is applied 
at each timestep. c) Calculations are repeated until a steady state (ý௦௦) is reached and the predicted TF activity (ÿො) is 
projected (p) from the steady state. Loss (L) is calculated by comparison to reference data (y), e.g. as mean square 
error (MSE).  It  is back propagated to provide the partial derivatives with respect to weights and biases at steady 
state. Here ⊙ is element wise multiplication. To prevent potential exploding gradients, the loss is clipped at each 
step (see methods). d) Reference data generated by a parameterized model. e) A model trained on the reference 
data by minimizing the loss using stochastic gradient decent. Loss from predicting the mean value for comparison 
(dashed line). f) Perfect fit (Train) and generalization (Test) to reference data. g) Parameters in in agreement between 
fit and reference. 
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Figure 3 Stability of each steady state is controlled by the spectral radius of a transition matrix. a) Linearization of 
the difference equation (first order Taylor expansion) around a steady state (ý௦௦) and shift of coordinates with the 
steady state as origin yields a homogeneous linear difference equation with transition matrix (T), here ý is the identity 
matrix. Stability requires that a deviation (∆ý଴) from steady state tends to 0 for repeated multiplication by T. This 
occurs only  if the spectral radius (ÿ) of T,  i.e. the eigenvalue (¼) of T with  largest absolute value,  is  less than 1. A 
regularization term (ÿఘ) is constructed to constrain the spectral radius. Its gradient is a function of the eigen value 
and  left  (ý) and right  (ÿ) eigenvectors. Note that the  imaginary component of this  function  is orthogonal to the 
radius and can be ignored. The Re function elementwise returns the real part of complex numbers. b) All eigenvalues 
of a 100x100 transition matrix before and after a reduction of the spectral radius with the loss function using gradient 
decent  for 200  steps. Matrix parametrized  at  random with 20% non‐zeros.  c)  Strong  similarity between matrix 
weights before and after reduction suggesting that the regularization will cause minimal disruption to the learning. 
d) Trajectories are stable after shrinking the transition matrix, here the trajectory of the first element. 
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Figure 4 Synthetic data from automatically parameterized model. a) A large signaling model was reconstructed and 
automatically parameterized by maximizing an objective  function. b) Synthetic data  (N=100) generated  from the 
model for combinations of 5 different ligands. c) Increasing combinations of ligands increases the area of TF‐patterns 
in principal component space, 2000 randomly sampled conditions per combination‐level. d) TF activity is not a linear 
combination of the activity of individual ligands. Extrapolation of a linear model trained on single ligands and best 
fit linear models trained on data from multiple ligands (20‐fold cross validated).   
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Figure 5 A model trained on modest amounts of synthetic data generalizes well. a) Synthetic training data was 
generated from a reference model and used to train an independent model. b) Training data with different numbers 
of conditions (10, 50, 100, 400, 800) and simultaneous ligands (2, 3, 5). Generalization performance was evaluated 
on 1000 independently generated test conditions as the Pearson correlation between prediction and reference. A 
non‐zero correlation was attained for predicting the average of each TF. Training was conducted for 10000 epochs 
with a batch‐size of 5. c)  Comparison of model prediction and reference for the best performing model. Histogram 
truncated at 50 to emphasize exceptions. d) Mostly high correlation between states of model and reference, here 
only internal nodes, i.e. excluding ligands and TFs, were evaluated since they are not directly provided by the data. 
e) KO of a signaling node was simulated by applying a strong negative bias to the node, resulting in their state being 
close to zero after applying the activation  function.  f)  Independent KO of 253  internal nodes under 100 random 
conditions. The change in TF activity for KO compared to no KO (control) was in good agreement between model 
and reference. For predictions to be off by more than 1 (marked in orange) both KO and control must be incorrectly 
predicted. Histogram truncated at 100.   
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Figure 6 Model  applied  to  experimental data  from  literature.  a) An  experimental dataset was  retrieved  from 
literature  consisting  of  23  conditions with  combinations  of  12  different  ligands.  Activity was  estimated  for  58 
transcription  factors and a model was reconstructed to  fit the data consisting of 1069 signaling nodes and 5886 
interactions. b) A good fit (r = Pearson correlation) was attained within 35 min wall time on a laptop. c) Leave one 
out cross validation  (LOOCV)  for conditions where all  ligands were present  in at  least  two conditions  (20 of 23) 
showed significant Pearson correlation between prediction and data. d) The correlation within conditions for LOOCV 
was consistently lower than the train fits but significantly outperformed models trained with scrambled condition 
labels, statistic calculated using two sided Mann�Whitney U test (n=20). e) The model was unable to fit some of the 
TFs and  these also performed poorly under  cross validation.  f) Predicted effect on RELA activity  in  response  to 
simulated KO under the TNFα stimulated condition using the LOOCV models to estimate consistency, top 10 KOs by 
average effect size, whiskers. Abbreviations: glucocorticoids  (GC), ultrapure  lipopolysaccharide  (upLPS), standard 
LPS (LPSc), immune complexes (IC), Pam3CSK4 (P3C) and prostaglandin E2 (PGE2). 
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