

1

1 Bio-hybrid Soft Robotic Bioreactors for Mimicking 2 Multi-Axial Femoropopliteal Artery Mechanobiology

3 **Cody Fell¹, Trent L Brooks-Richards¹, Maria Ann Woodruff¹ and Mark C Allenby^{1,2}**

4 ¹ School of Mechanical, Medical & Process Engineering, Centre for Biomedical
5 Technologies, Queensland University of Technology, Brisbane, Australia

6 ² School of Chemical Engineering, University of Queensland, St. Lucia, Australia

7
8 Address for correspondence:
9 Mark C Allenby, PhD: m.allenby@uq.edu.au

10 11 **Abstract**

12 The emerging field of soft robotics aims to emulate dynamic physiological locomotion. Soft robotics' mimicry of naturally complex biomechanics makes them ideal platforms for exerting mechanical stimuli for patient-specific tissue maturation and disease modeling applications. Such platforms are essential for emulating highly flexible tissues such as the kneecap's femoropopliteal artery (FPA), one of the most flexible arteries in the body, which flexes and bends during walking, standing, and crouching movements. The FPA is a frequent site of disease, where 80% of all peripheral artery diseases manifest, affecting over 200 million people worldwide. The complex biomechanical and hemodynamic forces within the FPA have been implicated in the frequent occurrence of PAD and lead to debilitating morbidities, such as limb-threatening ischemia. To better mimic these complex biomechanics, we developed an *in-vitro* bio-hybrid soft robot (BSR). First, Platsil OO-20 was identified as an ideal hyperelastomer for both cell culture and BSR fabrication using 3D printed molds. Then, employing a simulation-based design workflow, we integrated pneumatic network (PneuNet) actuators cast with Platsil OO-20, which extend in angular, longitudinal, and radial dimensions. Pressurizing the BSR PneuNets enabled a range of mechanical stimuli to be dynamically applied during tissue culture to mimic normal and diseased FPA flexions during daily walking and sitting poses, the most extreme being radial distensions of 20% and angular flexions of 140°. Finally, these designed, manufactured, and programmed vascular BSRs were seeded with mesenchymal stem cells and conditioned for 24 hours to highlight the effect of dynamic conditioning on cultured cell alignment, as well as type IV collagen production and the upregulation of smooth muscle phenotypes. Soft robotic bioreactor platforms that accurately mimic patient-, disease-, and lifestyle-specific mechanobiology will develop fundamental disease understanding, preoperative laboratory simulations for existing therapeutics, and biomanufacturing platforms for tissue-engineered implants.

34 **Keywords:** Soft robotics, mechanobiology, bioreactors, femoropopliteal artery, mesenchymal stem cells.

35

36

37

38

39

40 **1. Introduction**

41 Soft robotics is a relatively new field of bioinspired robotics that aims to emulate physiologic
42 locomotion. The movement of pneumatic network (PneuNet) actuated soft robots is controlled by
43 pressurizing intelligently designed networks incorporated within an elastomer body to induce gradual
44 actuation [1]. Recent examples of bioinspired PneuNets mimic the complex biomechanics of anatomical
45 systems, such as fingers or octopus tentacles [2, 3]. In addition, devices designed to interface with
46 biology and medicine are underway, from biohybrid robots that actuate via contractile cell tension to
47 implantable soft robots designed to support heart function [4-6]. Characteristically composed of soft
48 elastomeric materials that are often biocompatible, soft robots are an enabling technology for advanced
49 bioreactors that mimic the complexities of soft tissue mechanobiology.

50 Bioreactor platforms that impart mechanical stimuli on growing cells *in vitro* enable more functional
51 tissue regeneration when compared to static cultures. For example, tissue-engineered vascular grafts
52 (TEVGs) matured with cyclic radial stretch have improved cell organization and higher extracellular
53 matrix (ECM) deposition and alignment [7, 8]. Furthermore, cells respond differently when exposed to
54 different modes, frequencies, and magnitudes of mechanobiological stimuli. For example, mesenchymal
55 stem cells (MSCs) exposed to shear stress express endothelial phenotypes, whereas MSCs exposed to
56 uniaxial stretch but not equiaxial stretch express vascular smooth muscle cell (SMC) phenotypes [9-11].
57 Similarly, stretch frequency up to 1 Hz induces a contractile phenotype in MSCs and SMCs, whereas
58 static conditions and higher frequencies do not [12-15]. In addition to influencing MSC differentiation,
59 the deposition of ECM factors like elastin and collagen is commensurate with defined mechanobiological
60 stimuli. For example, circumferential MSC conditioning increases elastin content, whereas uniaxial
61 stretch increases collagen content, thereby altering the flexibility or stiffness of the tissue, respectively
62 [16, 17]. Thus, mimicking *in-vivo* strain direction, frequency, and magnitude will result in more accurate
63 *in-vitro* tissue development and is critical for modeling tissues subject to unique biomechanical
64 environments.

65 The femoropopliteal artery (FPA) is one of the most flexible arteries in the body, accommodating a
66 range of radial, axial, and angular contortions that combine during standing, walking, and crouching
67 movements [18, 19]. Moreover, the FPA's dynamic biomechanics during limb flexion and its impact on
68 hemodynamics have been implicated in the FPA's frequent formation of atherosclerotic plaques and
69 occlusive disease progression [18, 20]. Correspondingly, the FPA is also the most likely tissue to be
70 afflicted by peripheral artery disease (PAD), harboring 80% of the 200 million global cases, and disease
71 management treatments exhibit dismal long-term success rates, as low as 39% after five years [21, 22].
72 A bio-hybrid soft robotic (BSR) bioreactor platform that emulates dynamic FPA biomechanics *in-vitro* will
73 enable researchers to investigate the mechanobiological mechanisms that lead to PAD, access more
74 relevant treatment simulations to improve currently high therapy failure rates, and manufacture tissue
75 engineering vascular grafts (TEVGs) *ex vivo*.

76 A 3D-printed BSR bioreactor is a promising vessel to mature vascular tissue under patient-, disease-, and
77 lifestyle- specific mechanical stimuli, resulting in personalized tissue shapes and structures that
78 optimally fit and function alongside surrounding vessels. While lab-grown TEVGs have the potential to
79 overcome poor synthetic graft patency rates and alleviate shortages in autograft tissue availability that

80 exclude 40% of patients, there are still many challenges to overcome regarding TEVG durability and
81 mechanical mismatch [23, 24]. Recent venous clinical trials indicate that current TEVGs are prone to
82 spontaneous stenosis due to mechanical mismatches [25]. Previously, TEVGs have been
83 biomanufactured to match the tensile and burst strength of autologous tissue [26-28]. Manufacturing of
84 TEVGs that are suitably compliant for use in environments prone to flexion, such as the FPA, remains
85 elusive. Mimicking native vascular tissue morphology at both the cellular and ECM levels is crucial to
86 growing mechanically robust TEVGs capable of long-term homeostasis [29, 30].

87 In this project, by developing a first of its kind BSR bioreactor, we demonstrate soft robotics' potential
88 for conditioning tissues. Using 3D printable materials and a simulation-based design approach, our BSR
89 bioreactors were rapidly developed and personalized, making them befitting for use in patient-specific
90 medicine and research, where no two clinical presentations are the same. We identified Platsil OO-20 as
91 a biocompatible hyperelastomeric silicone suited for both cell culture and PneuNet soft robot
92 fabrication. Characterization of our BSRs actuation modalities revealed that the devices emulate
93 physiologically relevant environmental forces zonally exerted on the FPA, such as angular flexion (AF; 0°
94 to 140°) and radial distension (RD; 0% to 22%), or a combination of angular flexion and radial distension
95 (AR) [19, 31]. Finally, the manufactured BSRs were programmed with angular flexion, radial distension,
96 and angular-radial conditioning regimens and applied to mechanically stimulate MSC monolayers over
97 24 hours. Analysis of cytoskeletal actin filament orientation revealed that each conditioning regimen
98 induced distinct cellular alignment and high coherency compared to static controls. Similarly, type IV
99 collagen production and phenotypic switching of MSCs to alpha-smooth muscle actin expressing (α -
100 SMA $^+$) cells were upregulated in conditioned groups versus static controls. Ultimately, we show that
101 PneuNet soft robots can be used to impart dynamic multi-axial mechanobiological stimuli which induce
102 distinct MSC orientations and smooth muscle cell phenotypes.

103 **2. Materials & Methods**

104 **2.1 Silicone Preparation**

105 Poly(dimethylsiloxane) (PDMS, Dow Corning; Midland, USA) was prepared by combining Sylgard 184 and
106 its curing agent at a 10:1 ratio, respectively, as per the manufacturer's instructions. PDMS was then
107 degassed in a vacuum chamber for 30 minutes at 0.8 MPa to remove air bubbles created during the
108 mixing process. Platsil OO-20 (Polytek; Easton, USA) was prepared by mixing curing agents A and B at a
109 1:1 ratio, then degassing for 10 minutes at 0.8 MPa.

110 **2.2 Silicone Disk Fabrication**

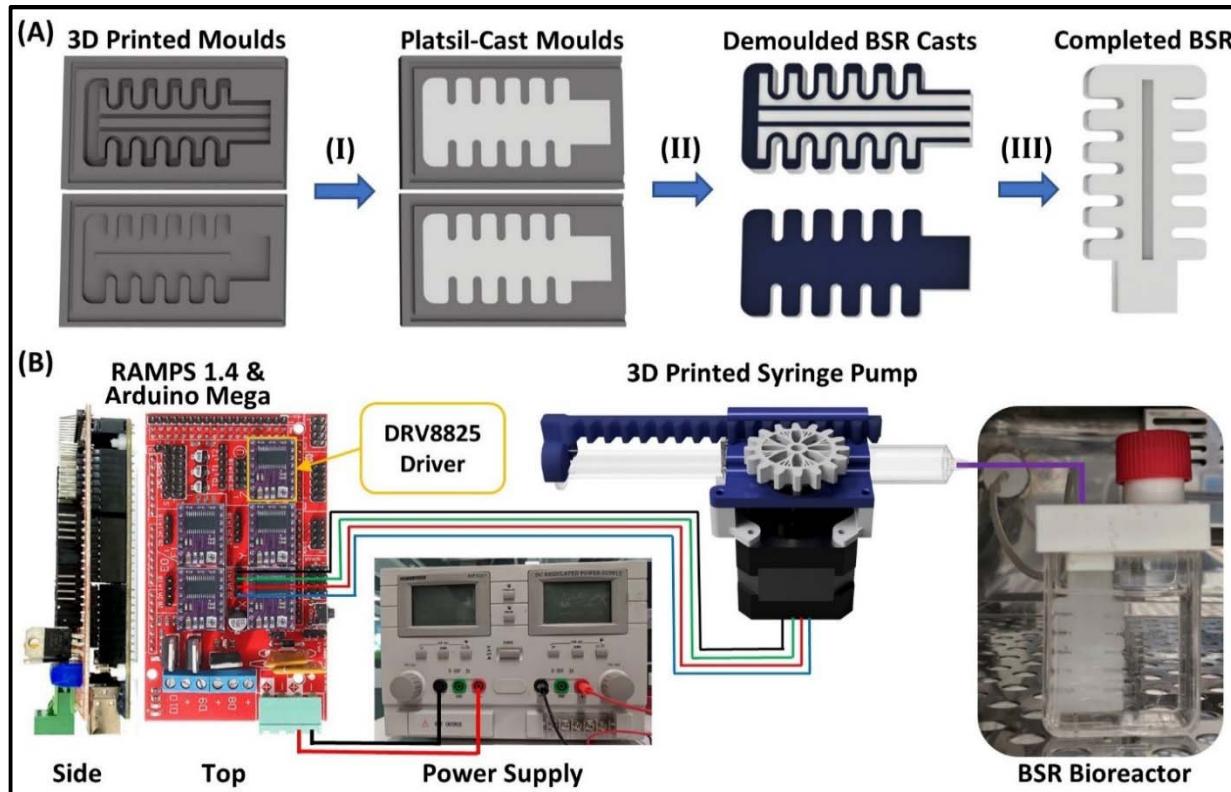
111 To screen PDMS, Platsil-20, and Visijet M2-Elastomeric Natural (ENT, 3D Systems; Rock Hill, USA) as
112 potential soft robotic cell culture candidates, each material was molded (Platsil-20 & PDMS) or printed
113 (ENT) into 500 μ m tall, 6 mm diameter disks. Molds for casting PDMS and Platsil-20 discs were printed
114 from polylactic acid (PLA; Filaform, Adelaide, AU) filament using fused deposition modeling (FDM; Prusa
115 MK3s, Prague, Czech Republic) and a 0.1 mm layer height. After preparation, PDMS and Platsil-20
116 silicones were cast into the disk molds and cured for 2 hours at 80°C and 60°C, respectively. ENT cell
117 viability disks were printed with a Projet MJP 2500 (3D Systems, Rock Hill, USA) multijet 3D printer. The
118 wax support material was removed via a 1hr steam bath followed by a 1hr heated mineral oil
119 submersion bath. After the oil bath, prints were thoroughly cleaned with hot water and dish soap. In
120 preparation for cell culture, all silicone disk and BSR samples were sterilized by submersion in 70%
121 ethanol for 10 minutes, then exposed to UV light for 20 minutes, and washed with sterile PBS.

122 **2.3 Cell Culture**

123 Human adipose-derived mesenchymal stem cells (MSCs, #SCRC-4000; ATCC, Manassas, USA) were used
124 in both viability and BSR cellular conditioning experiments. MSCs were cultured in MSC basal medium
125 (#PCS-500-030; ATCC) mixed with MSC growth kit (#PCS-500-040; ATCC) and 200 µg/ml G418 antibiotic
126 (Thermo Fisher, Seventeen Mile Rocks, Australia). Cells were cultured in a humidified incubator at 37°C
127 and 5% CO₂ for cell expansion, viability, and conditioning experiments under QUT human research
128 ethical approval #1900000907.

129 **2.4 Cell Attachment and Viability on Silicone Elastomers**

130 PDMS, Platsil-20, and ENT were each subject to a cellular attachment and cytotoxicity study to
131 determine which materials were suitable for bio-hybrid soft robot fabrication. To promote cellular
132 attachment, PDMS, Platsil-20, and ENT silicone elastomer disks were incubated with or without 10
133 µg/ml fibronectin (#33010-018, Invitrogen; Carlsbad, USA) and suspended in phosphate-buffered saline
134 (PBS) for 24 hours at 37°C. After fibronectin treatment, discs were washed with PBS and transferred to a
135 fresh 48-well plate. MSCs were suspended with each silicone disc at a density of 10,000 cells/cm² for
136 two hours. After two hours, cell-seeded discs were washed with PBS to remove unattached cells, and
137 fresh media was administered. After incubating for 24 hours, cells were live-dead stained with 2 µM
138 calcein acetoxyethyl and 4 µM ethidium homodimer-1 (#L3224, Thermo Fisher) and imaged using
139 fluorescent microscopy to compare cell density and viability between each silicone substrate.
140 Fibronectin-mediated cell attachment and silicone live-dead experiments were carried out in triplicate.
141 Live and dead cells were counted using ImageJ and analyzed with Prism-GraphPad to compare cell
142 adhesion and viability between groups.


143 **2.5 Bio-hybrid Soft Robot Design & Simulation**

144 Autodesk Fusion360 (Mill Valley, USA) was used for both computer-aided design (CAD) and finite
145 element analysis (FEA) in a simulation-based iterative design workflow prioritizing angular actuator
146 displacement. Publicly available material properties of Platsil-20 & Ecoflex OO-20 (Smooth-On Inc,
147 Easton, USA) were used to create a profile for a hyperelastic rubber-like material. Fusion360 defines
148 hyperelastic materials as incompressible and fully elastic using the 2-constant standard Mooney-Rivlin
149 model where the distortional constants A01 and A10 define the deformation constant (D1) through the
150 formula $D1 = (A10 + A01) \times 10^3$.

151 **2.6 Bio-hybrid Soft Robot Fabrication**

152 BSRs made of Platsil-20 were cast using a two-part 3D printed mold. Molds for casting BSRs were printed
153 from 3D Tuff resin (Monocure 3D, Sydney, Australia) using a digital light projection printer (DLP; Creality
154 LD-002R, Shenzhen, China). Molds were post-processed after printing with an 8-minute wash in 95%
155 isopropyl alcohol followed by 4-minutes of additional curing under a 405 nm ultraviolet light.

156 Once prepared, Platsil-20 silicone was poured into top and bottom BSR component molds and placed
157 onto a hotplate at 60°C for at least 2 hours. When solidified, the top and bottom Platsil-20 BSR
158 components were gently separated from their molds and adhered to one another with a thin layer of
159 silicone, then combined and placed back onto the hotplate for an additional 2 hours (Fig 1B).

160
161 **Figure 1. Bio-hybrid soft robots (BSRs) are fabricated using 3D printed molds and computer-controlled through**
162 **pneumatic flexion from custom syringe pumps.** Part A outlines a step-by-step process for manufacturing BSRs
163 from Platsil-20 (white) using 3D printed molds (gray). (I) Platsil-20 parts A & B are mixed, degassed, and poured in
164 the BSR molds. (II) The top and bottom BSR components are cured on a hotplate at 60°C for 2 hours and removed
165 from the molds. (III) Each component's inner face is then pressed together and placed on the hotplate to be fused,
166 resulting in a completed BSR. Part B illustrates the core components of the BSR control unit and cell culture
167 apparatus. The control unit comprises an Arduino Mega 2560 microcontroller fitted with a Ramps 1.4 shield and
168 DRV8825 stepper drivers used to control a 3D printed syringe pump. A custom cell culture apparatus was made
169 from a T25 culture flask modified with a 3D printed lid incorporating BSR and filtered cap attachment ports.

170 **2.7 Imaging of DLP-printed moulds and resultant silicone structures**

171 Scanning electron microscopy was performed on DLP resin printed moulds used for creating the BSRs.
172 DLP-printed moulds were sputter-coated with 4 nm platinum (Leica EM ACE600, Wetzlar, Germany) And
173 imaged with a Phenom XL G2 Desktop SEM (Thermo Fisher Scientific, Thermo Fisher, Waltham,
174 Massachusetts) at a 6mm working distance at 5 kV.

175 To visualise the microgrooves created via the moulding process, DLP-printed resin moulds and cast
176 silicone BSRs were visualised under a Nikon SMZ25 stereo zoom microscope (Nikon, Tokyo, Japan) with
177 a 1x objective at 2.5x and 7x zoom and captured with a Nikon DS-R12 (Nikon, Tokyo, Japan) 16.25
178 megapixel mounted camera.

179 **2.8 Bio-Hybrid Soft Robot Control**

180 BSR actuators were pressurized by rack-and-pinion syringe pump that was FDM 3D printed from
181 acrylonitrile butadiene styrene (ABS; Filaform, Adelaide, AU) filament. The pump was printed from ABS
182 to prevent warping due to high temperatures generated by the stepper motor from continuous use. The
183 syringe pump was controlled by an Arduino MEGA 2560 (Ivrea, Italy) and a RAMPS 1.4 shield (Maker

184 Store, Melbourne, Australia) fitted with DRV8825 stepper drivers (Maker Store, Melbourne, Australia)
185 (Fig 1B). Initial prototypes printed from PLA did not maintain structural integrity over long periods and
186 warped due to the stepper motor heating above the glass transition temperature of PLA (60°C).
187 However, due to its higher glass transition temperature (105°C), components printed from ABS
188 functioned for back-to-back 24-hour sessions without overheating and failure.

189 To house the BSRs, a custom culture chamber was made from a modified T25 flask, and FDM 3D printed
190 thermoplastic polyurethane (TPU; Ninjatek, Manheim, USA) lid (Fig 1B). The lid incorporates a port that
191 is compatible with a T25 filter cap for media changes and to facilitate sterile air diffusion. In addition, an
192 extended pneumatic port built into the lid ensures that the BSR remains in place over long periods of
193 flexion.

194 **2.9 Bio-hybrid Soft Robot Cell Culture & Staining**

195 BSRs were coated with 10 µg/ml of fibronectin for 24 hours prior to seeding with MSCs. In addition, a
196 recessed region on the surface of the BSR was created to improve fibronectin & MSC coating/seeding
197 accuracy. The recessed region possessed a surface area of 0.6 cm² and was seeded with a density of
198 4x10⁴ MSCs/cm² suspended in 300 µl of media for 2 hours. After 2 hours, seeded BSRs were washed
199 with PBS to remove unattached cells and placed into a custom culture flask, and expanded for 3 days.
200 After 3 days, cells on RD, AF, and AR devices were conditioned for 24 hours (Table 1). Cells undergoing
201 RD conditioning were subject to a 13% stretch cyclically at 0.67 Hz. Cells conditioned with AF were
202 subject to a 153° angle of actuation cyclically at 0.5 Hz. Static control (SC) and tissue culture plastic (TCP)
203 controls underwent identical media change and material processing steps as the conditioned groups but
204 remained static and were not actuated.

205 After culture, cells were fixed with 4% paraformaldehyde (PFA) for 20 minutes at room temperature
206 and washed with PBS (3x). Before adding primary antibodies, fixed cells were permeabilized with 0.1%
207 Triton X-100 for 10 minutes, then washed with PBS (2x) and incubated in PBS + 3% fetal bovine serum
208 (FBS) for 20 minutes at room temperature. A primary antibody incubation of rabbit anti-human Col IV
209 (1:1000; AbCam, ab6586, Cambridge, United Kingdom) and goat anti-human α-SMA (1:1000; AbCam,
210 ab21027) in PBS + 1% FBS was applied for 18 hours. Cells were then washed in PBS and treated with a
211 secondary antibody incubation containing donkey anti-rabbit AlexaFluor 555 (1:500; Invitrogen), donkey
212 anti-goat AlexaFluor 647 (1:1000; Invitrogen), and phalloidin AlexaFluor 488 (5 U/ml; Invitrogen) in PBS +
213 3% FBS for 2 hours. Cells were once again washed with PBS (3x) and counterstained with DAPI (1:1000)
214 for 5 minutes at room temperature. After a final series of PBS washes (3x), cells were imaged using
215 confocal microscopy (Nikon A1R, Tokyo, Japan).

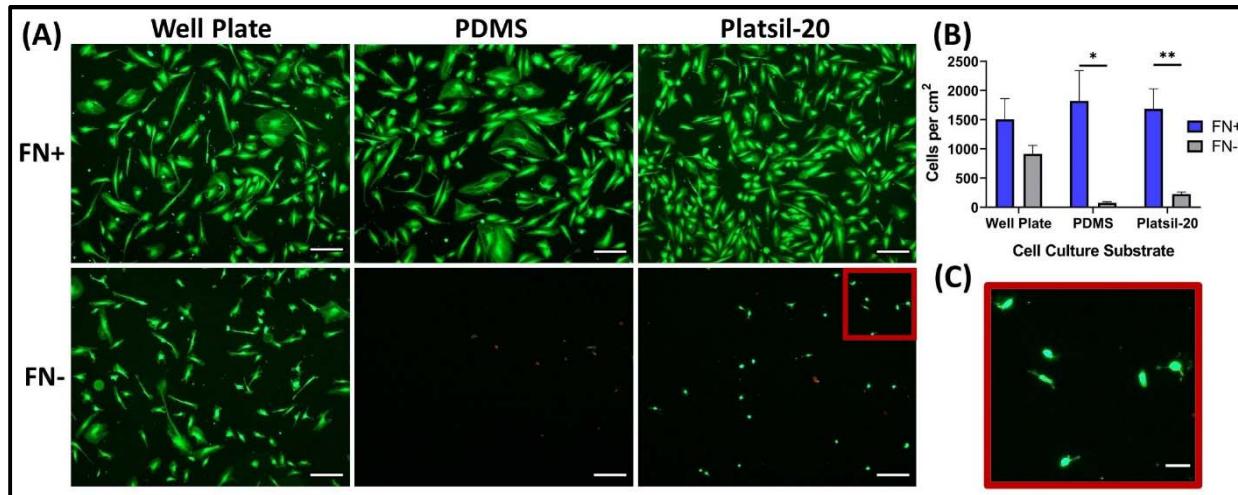
216 Table 1: **Bio-hybrid soft robot culture conditions**: bending angle, percent radial distension, and rate of actuation
217 (Hz), with 3 independent cultures for each BSR condition.

BSR Group	Banding Angle / Frequency (Hz)	Percent Radial Distension / Frequency (Hz)
Static Control (SC)	0° / 0.0 Hz	0% / 0.0 Hz
Angular Flexion (AF)	153° / 0.5 Hz	0% / 0.0 Hz
Radial Distension (RD)	0° / 0.0 Hz	13% / 0.67 Hz
Angular + Radial (AR)	153° / 0.5 Hz	13% / 0.67 Hz

218 **2.10 Image Analysis**

219 The orientation and distribution of MSC cytoskeletal actin filament were analyzed using the ImageJ
220 plugin, OrientationJ [32]. Images of phalloidin-stained actin filaments were separated from merged z-
221 stacks and analyzed with a cubic spline gradient and local α window of 2 pixels. Type IV collagen and α -
222 SMA expression between conditioning regimens was analyzed by comparing normalized fluorescent
223 intensity. Min-max normalization $(I - I_{\min}) / (I_{\max} - I_{\min})$ was used to rescale intensity values between 0 and 1,
224 enabling comparison of replicates imaged with alternate microscope settings, as performed previously
225 [33]. The particle analysis tool in ImageJ was used to count DAPI-stained nuclei for cell density
226 quantification.

227 **2.11 Statistical Analysis**

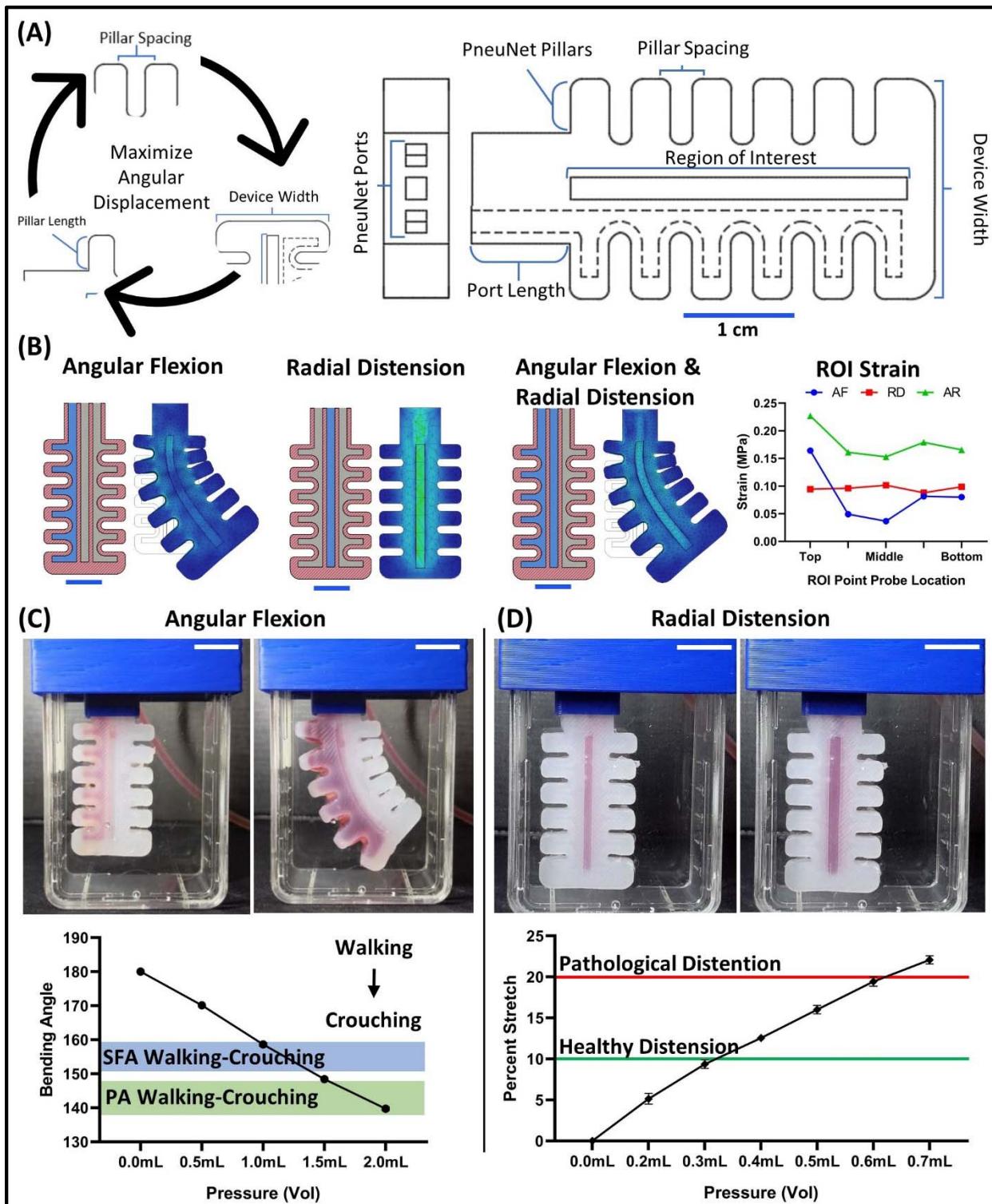

228 Differences between cell viability ($n = 4$), BSR angular flexion ($n = 3$) and radial distension ($n = 6$)
229 characterization, nuclear density ($n = 3$), and immunofluorescence ($n = 3$) experimental groups were
230 evaluated via unpaired t-test and statistical significance was defined as $P < 0.05$.

231 **3. Results & Discussion**

232 **3.1 Elastomer Characterization**

233 Poly(dimethylsiloxane) (PDMS) is the most common elastomer in microfluidic cell culture applications
234 due to its cytocompatibility and optical clarity. A range of mechanobiological devices already employ
235 PDMS as a stretchable cell culture substrate [35-37]. However, PDMS is not ideal for soft robotics
236 applications due to a poor elongation at break ($\sim 140\%$) [38]. In addition to PDMS, we identified Platsil-
237 20 and ENT as potential candidates for their ideal mechanical properties and ease of manufacture.
238 Platsil-20 has a shore hardness of 00-20 and elongation at break of 964%, but Platsil-20 becomes
239 opaque when cured, preventing live cell imaging in 3D culture platforms. Alternatively, ENT is an
240 elastomeric resin from 3D systems which can be directly 3D printed using a Projet MJP 2500 MultiJet
241 Printer. Being a 3D printable elastomer, ENT could allow for the fabrication of more complex and
242 microscale PneuNets. Moreover, anatomical surface geometries for highly relevant mechanobiological
243 stimuli would be much easier to include in device design and fabrication workflows. Unfortunately, the
244 elongation before break of ENT is much lower than Platsil-20 at 160-230%, and ENT's optical clarity is
245 also not suitable for imaging in a 3D culture format.

246 Platsil-20 and ENT have not been previously documented for use in cell culture. Therefore, we
247 characterized the biocompatibility of these materials through the attachment and viable growth of
248 MSCs. MSCs are relevant to vascular tissue physiology and remodeling because they can differentiate
249 into multiple somatic cell types, such as smooth muscle cells (SMCs), which are critical for maintaining
250 vascular tone and generating collagen IV and elastin ECM components [17, 30, 39]. To assess their
251 potential, we conducted a series of cell viability and attachment assays in which MSCs were seeded onto
252 6mm discs of each material with and without fibronectin coating. Positive controls included cells
253 cultured on well plates with and without fibronectin coating. After a 24-hour incubation period, each
254 group was live-dead stained and imaged (Fig 2).



255
256 Figure 2. **Fibronectin treated silicone supports MSC culture.** (A) Representative images of live-dead stained MSCs
257 cultured on the surface of either a 48-well plate, 6 mm PDMS disc, or 6 mm Platsil-20 disc coated with or without
258 fibronectin (scale bar = 100 μ m). (B) A bar graph showing the number of live cells counted on each surface with
259 (blue) and without fibronectin (grey) ($n = 4$). P values were obtained via an unpaired t-test. (C) A magnified region
260 of MSCs lightly attached to and spreading on Platsil-20 without fibronectin (scale bar = 25 μ m).

261 When coated with fibronectin, MSCs attached to the tissue culture plates, Platsil-20, and PDMS with
262 equal efficiency (Fig 2A, 2B). However, without fibronectin coating, fewer cells were attached to the
263 tissue culture plate, and virtually no cells were attached to Platsil-20 or PDMS (Fig 2A, 2B). Cellular
264 attachment to Platsil-20 without fibronectin appeared very weak, as the cells are mostly rounded with
265 slight body elongation (Fig 2C). Both PDMS and Platsil-20 possessed the same cytocompatibility as the
266 well plate control with fibronectin, producing adhered, confluent monolayers comprised of cell
267 viabilities near 100%. Conversely, ENT was cytotoxic, with no live cells attached to the material's surface
268 or on the well plate adjacent to the silicone disc (Fig S1). Moreover, ENT was noticeably autofluorescent,
269 making cell imaging difficult. Altogether, fibronectin-coated Platsil-20 possessed a suitable cellular
270 attachment and cytocompatibility to be used as a cell culture substrate in BSR experiments.

271 **3.2 Bio-hybrid Soft Robot Design & Characterization**

272 Previous biomechanical investigations into the effects of limb flexion on FPA tortuosity have highlighted
273 angular flexion (AF), cyclic radial distension (RD), torsion, and axial stretch as the four primary modes of
274 mechanical stimuli on arterial tissue [19, 20, 40]. We aimed to include as many of these modalities into a
275 single device as possible using a simulation-based iterative strategy (Fig 3A). Published soft pneumatic
276 actuator designs were assessed for their ability to emulate key vascular stress modalities, ease of
277 fabrication, and practical cell culture functionality [1, 4, 41, 42]. Ultimately, a multichannel pillared
278 PneuNet design was selected for its ability to emulate popliteal AF (Fig 3B & 3C). Moreover, axial stretch
279 can be achieved in our device if both PneuNets are pressurized simultaneously. A third modality was
280 incorporated by placing a hollow space between the two pillared PneuNets that, when pressurized,
281 expands to create RD (Fig 3B & 3D). Future advancements in soft robotic design and fabrication, such as
282 rapid fiber-reinforced actuators, will broaden the biomimicry applications of BSR bioreactors to new
283 tissue and organ systems [43]. Additionally, improvements in BSR miniaturization will increase the
284 feasibility of high throughput *in-vitro* models by reducing experimental material costs.

285

286

287

288

289

290

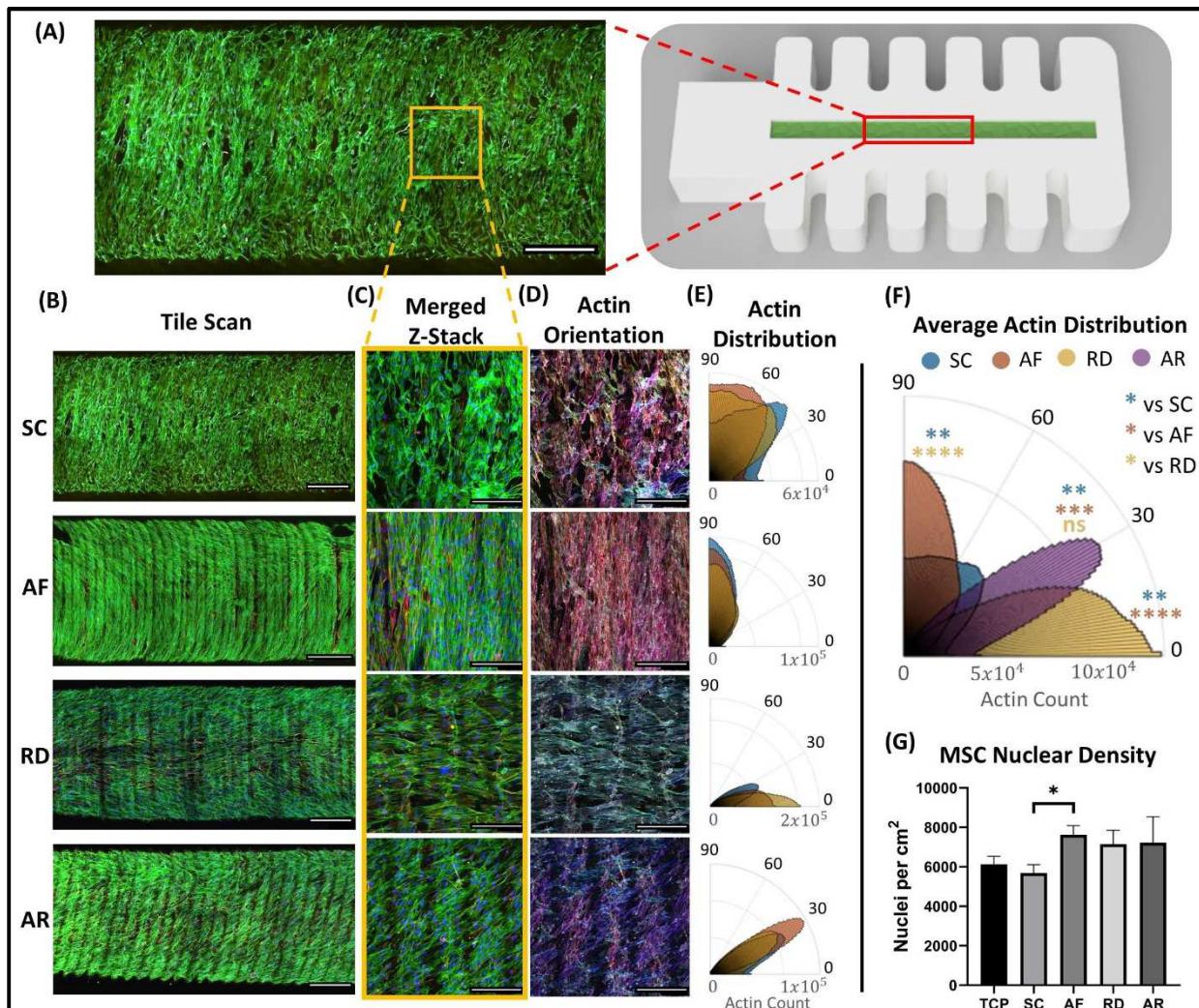

291

Figure 3. BSRs were designed and optimized using a simulation-based iterative workflow that enables multi-axial actuation to emulate femoropopliteal physiology. (A) Geometric and design parameters, including pillar length, pillar spacing, and device and PneuNet width were optimized to achieve the highest potential BSR angular displacement. The final design exhibited a reduced volume and recessed ROI to concentrate cellular attachment. (B) Angular flexion (AF), radial distension (RD), and combined (AR) actuation modes were simulated and analyzed with five evenly spaced simulation ROIs to assess relative differences in strain. The PneuNet channel pressurized to

292 achieve each respective actuation mode is highlighted in blue. (C) A linear relationship between the volume of
293 injected air and the bending angle was found and used to design later conditioning studies. AF of the BSR ranges
294 between 180° to 140.6° from PneuNet pressurization of 0 to 2 ml of air, respectively (n = 3). The range of bending
295 angles across the SFA between walking, sitting, and crouching movements are highlighted in blue. Similarly, the
296 same range of PA bending angles are highlighted in green. (D) We show that healthy (10%) and pathological (20%)
297 RD can be achieved by pressurizing the device with 0.3 ml to 0.7 ml of air (n = 6). All scale bars = 1 cm.

298 A simulation-based iterative workflow was utilized to optimize BSR design for maximum angular
299 displacement while constraining total BSR volume to fit within a T25 culture flask. We found that pillar
300 spacing, minimal radial PneuNet width, and high PneuNet length to width ratio had the greatest effect
301 on maximizing angular displacement. Next, we extruded a recessed channel over the surface of the BSR
302 to better control fibronectin coating and cell seeding on a hydrophilic surface. By employing a
303 simulation-based iterative strategy, the silicone required to fabricate each BSR was reduced from 5.5 ml
304 to 3.1 ml, resulting in a 43% BSR volume reduction compared to initial prototypes. FEA simulations of
305 AF, RD and AR actuation were used to gain insight into differences in mechanical strain across the BSR
306 region of interest (ROI) for each conditioning modality. Strain measurements for each mode were
307 acquired from five pointprobes spaced evenly across the BSR ROI and graphed in Figure 3B. The AF and
308 RD modes simulated a flexion of 153° and 10% radial stretch, respectively, whereas the AR mode
309 simulated a simultaneous combination of AF and RD. We found that strain remained consistent across
310 the RD ROIs but fluctuated across the AF ROIs. The AR simulation indicated the highest overall strain
311 with but with less fluctuation between point probes than the AF mode. While the combined AR
312 simulations applied angular and radial actuation simultaneously, cyclic radial and angular actuations are
313 not synchronised in human physiology nor in our experiments. Still, these simulations provide insight
314 showing that AF creates a spectrum of strain that will produce unique mechanobiological stimuli on the
315 conditioned cells. Asynchronous cyclic simulations could provide future insight into how multi-axial
316 strain directions and magnitudes affect heterogeneous tissue maturation.

317 To design conditioning regimens for BSR cell culture experiments, we first characterized physiological
318 bending angles from actuating the AF PneuNet and percent radial stretch from the RD PneuNet (Fig 3C &
319 3D). The bending angle was characterized by pressurizing one of the peripheral PneuNets with various
320 volumes of air and measuring the resultant angle formed between three centerline points evenly spaced
321 across the top, middle, and bottom of the BSR ROI. A line was digitally drawn between the top and
322 middle points and the bottom and middle points using ImageJ. Then, the bending angle was calculated
323 as the angle formed at the intersection of each line on the middle point. By pressurizing devices with 0
324 to 2 ml of air, we achieved a bending angle of 180° to 140°, respectively (Fig 3C). Previous literature
325 identifies acute bending angles across the FPA during walking and sitting limb flexion ranging between
326 141° and 158° [19]. Thus, our results indicate that the BSRs are capable of emulating acute FPA bends
327 during knee flexion. In addition, RD under various applied air pressures was determined by measuring
328 the change in radial width of dots across the BSR ROI. Our results show that pressurizing the RD PneuNet
329 with 0 ml to 0.7 ml of air induced a 0% to 22% RD (Fig 3D). FPA RD of 10% is typical during a normal
330 cardiac cycle for healthy individuals, whereas pathologies such as hypertension can result in distensions
331 exceeding 20% [31]. Therefore, the BSRs can apply both healthy and pathological stimuli to cells by
332 pressurizing the center PneuNet with 0.3 ml to 0.7 ml of air.

333
334 Figure 4. **BSR conditioning affects MSC cytoskeletal orientation after only 24 hours.** (A) A 3D rendering showing
335 that tile scans, and focused 10x and 20x images used for actin analysis were acquired from the centerline of the
336 BSR ROI (scale bar = 500 μ m). (B) Tile scan z-stacks of MSCs cultured on BSRs conditioned by static control (SC),
337 angular flexion (AF), radial distension (RD), and angular with radial (AR) conditioning types. The z-stacks merge four
338 channels to show actin filament orientation (green), cell nuclei (blue), type IV collagen (red) and α -SMA (yellow)
339 (scale bars = 500 μ m). (C) Representative merged 20x z-stacks of MSCs cultured in each conditioning regimen
340 (scale bars = 100 μ m). (D) Orientation analysis of actin filament for each conditioning type in which the actin
341 filament have been digitally stained corresponding to filament orientation (scale bars = 100 μ m). (E) Distribution
342 analysis of actin filament from 10x images for each conditioning type (n = 3). (F) A graph showing the average actin
343 filament distribution and significance comparisons between each condition type. (G) Nuclear density of MSC
344 cultured in each conditioning type (n = 3).

345 **3.3 Cytoskeletal Orientation & Distribution**

346 Figure 4 shows immunofluorescent z-stack confocal images of MSCs cultured on SC, AF, RD, and AR BSR
347 conditioning regimens. All samples were seeded with 4×10^4 MSCs/cm 2 , expanded for 3 days, then
348 subject to their perspective conditioning regimen for 24 hours. The functional alignment of cells can be
349 precisely measured by analyzing their cytoskeletal orientation. Here we used the OrientationJ tool to
350 visualize and quantify the orientation and distribution of cytoskeletal actin filaments (phalloidin staining)
351 for each BSR conditioning regimen [32]. The actin filaments are digitally colored based on their

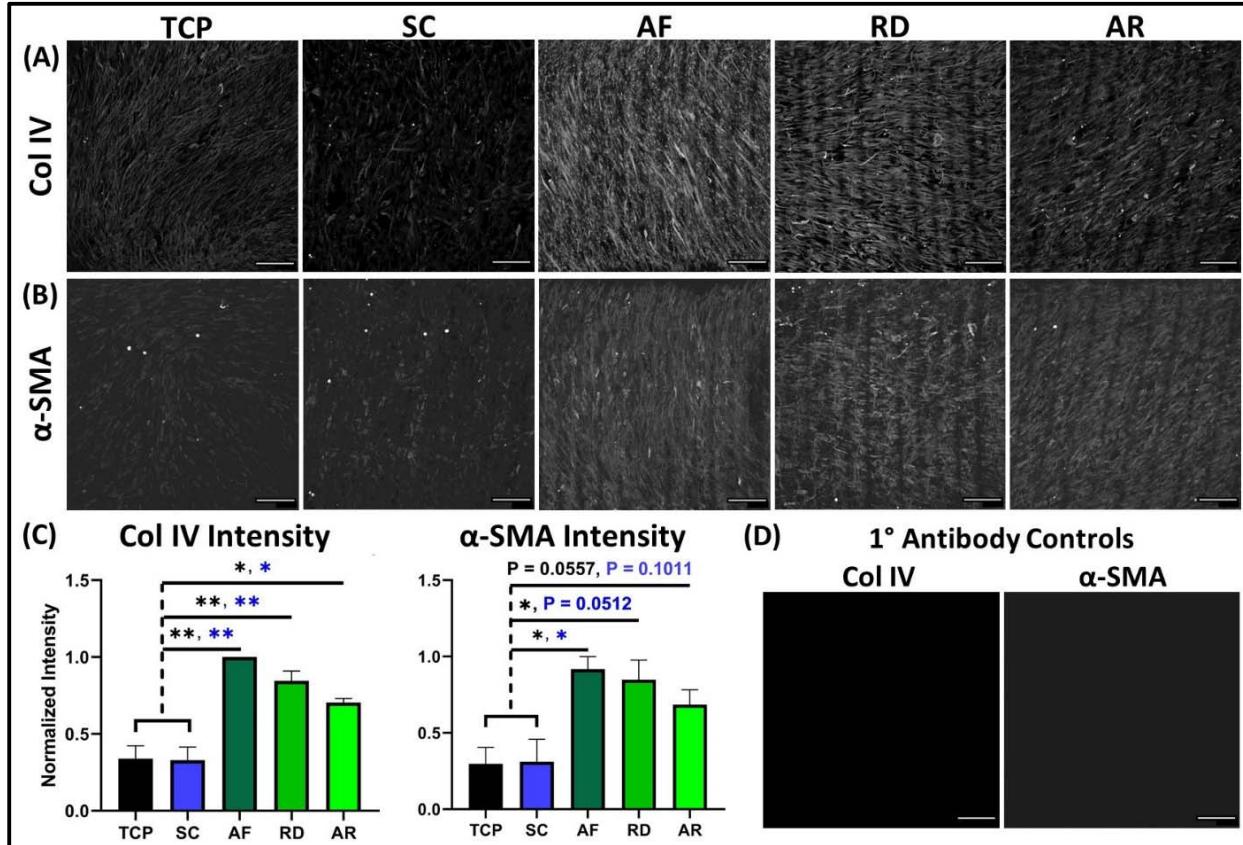
352 alignment, with those aligned in a similar direction being visible in a similar color (Fig 4D). The
353 discordant color pattern in the SC image of Figure 4D shows that the cytoskeleton of statically cultured
354 MSCs is disordered and does not cohesively align in one direction. In comparison, images of the AF, RD,
355 and AR conditioned MSCs show that each regimen induces a unique cytoskeletal orientation. While RD
356 conditioned MSCs aligned longitudinally to the ROI, AF conditioned MSCs have a circumferential
357 cytoskeletal alignment that mimics what would traditionally be expected by SMCs within the arterial
358 tunica media [30, 39, 44]. Furthermore, MSCs from the AR conditioning regimen possess a diagonal
359 cytoskeletal alignment within the ROI, showing that multi-axial AF and RD actuation can be combined to
360 produce tight distributions of any desired cell orientation.

361 Actin filament distribution data in Figure 4E shows that each BSR conditioning regimen induced highly
362 ordered cytoskeletal alignment. Moreover, the mean actin distribution angle was significantly different
363 between the SC and all conditioned groups, except for the RD to AR comparison (Fig 4F). As expected,
364 the SC group displayed the highest level of disorder, with a mean actin orientation of 65.8° and a
365 standard deviation of actin filament orientation of 33.4°. We also observed that the actin filament of AF,
366 RD, and AR groups were oriented with unique dominant alignments of 87.7°, 13.6°, and 32.4°,
367 respectively. Interestingly, the level of disorder between conditioned groups decreased progressively,
368 with the mean standard deviation of actin filament orientation decreasing from 29.6° to 20.2° between
369 AF and RD regimens. Ultimately, the AR conditioning regimen resulted in the lowest disorder, with a
370 mean actin filament deviation of 17.7°.

371 Longitudinal actin alignment in the RD regimen corroborates previous observations that cells will align
372 perpendicularly to the direction of uniaxial stretch [13, 14]. Therefore, the circumferentially aligned cells
373 from the AF regimen could have instead been expected from cyclic axial stretch, and perhaps suggests
374 the BSR's angular component did not distinctly augment cell alignment versus linear extension alone.
375 Recent literature shows that SMC orientation in the tunica media does not express a perfect
376 circumferential alignment but orients in a helical or spiral-like pattern around a vessel that varies
377 depending on the vessel being studied [45]. Thus, the diagonal cell orientation observed from AR
378 conditioning could be leveraged to mimic these helical structures more closely than uniaxial stretch.
379 Moreover, while each BSR's cell orientation ROIs were selected from the flat center of its fibronectin-
380 coated recess, the curved and vertical sides of the recesses contained more horizontal cell orientations
381 (Fig 3B). Therefore, the combination of mechanical stresses with various surface topologies may enable
382 the fabrication of more complex 3D tissue structures in future studies (Fig S2). The additively
383 manufactured BSR molds resulted in microscale 3D printing layer lines across the BSR and its recesses
384 and imaged ROIs. Previous studies have shown that similar microscale topological features can affect
385 cellular morphology and alignment [46, 47]. However, no significant cell alignment due to these layer
386 lines was observed for static culture (SC) replicates. Future investigations into how cells respond to
387 competing mechanobiological stimuli would aid decision-making when choosing the most effective
388 methods for guiding tissue maturation.

389 A similar density of MSCs was found between AF, RD, and AR conditioning groups by counting the
390 number of nuclei present in each image (Fig 4G). While conditioning groups had greater nuclear
391 densities than static and tissue culture plastic control groups, only the AF group had significantly greater
392 nuclear densities than the SC group ($P < 0.05$). Cells within the SC group appear to have a spread-out
393 synthetic morphology, while cells from the conditioned groups were more elongated and spindle-like.
394 The higher density of nuclei in the conditioned regimens could result from elongated morphologies that

395 enable cells to pack tightly together. Similar observations have been reported in other cell stretching
396 studies, in which mechanically conditioned tissue monolayers contained elongated morphologies and
397 greater numbers of cells [48]. To clearly delineate effects of different condition regimes on cell
398 proliferation, mechanical stimulation experiments should be performed on cell monolayers for longer
399 periods of time.


400 Closer analysis of cellular morphology across new regions of the BSR ROI, and employment of alternate
401 conditioning regimens is needed to determine whether stimulating MSCs with AF is identical to a
402 uniaxial stretch. Regardless, these results indicate that the BSRs create multimodal conditioning
403 regimens that induce unique MSC alignment, highlighting their potential for disease modeling and tissue
404 engineering. Moving forward, comparisons of cytoskeletal alignment at unique stress points across the
405 AF ROI could yield findings on how tissues develop in response to gradients of stress, such as those
406 found within the popliteal artery [49]. Moreover, alternative regimens could be created to investigate
407 the effects of different stretch magnitudes, frequencies, and rest periods.

408 **3.4 Collagen IV & α -SMA Production**

409 To further investigate the effects of the BSR conditioning on MSC function and differentiation, we
410 assessed α -SMA and type IV collagen production after either 4 days of static culture (TCP and SC control
411 groups) or 3 days of static culture followed by 24 hours of conditioning (AF, RD, and AR groups) using
412 immunofluorescent staining. Increased α -SMA production indicates that MSCs are progressing towards a
413 contractile phenotype commonly expressed by smooth muscle cells (SMCs) [50]. Similarly, the
414 production of ECM factors, like type IV collagen after 24 hours of cyclic stretch, further demonstrates
415 MSC phenotypic switching towards SMCs [17, 50, 51]. While differentiating MSCs into SMCs using
416 growth factors like TGF-B is well documented, the use of mechanical stimuli alone to promote SMC
417 differentiation has also been described [52]. Given the high cost of growth factors, vascular tissue
418 engineering methods that employ mechanobiological tools could provide efficient bioreactor platforms
419 for aligned MSC-derived SMC differentiation and vascular tissue manufacturing.

420 Indeed, our results showed a distinct increase in both type IV collagen and α -SMA⁺ production between
421 mechanically-conditioned and static control groups after only 24 hours of BSR conditioning (Fig 5A &
422 5B). Furthermore, all conditioned groups expressed significantly more type IV collagen than both static
423 control groups. However, when comparing α -SMA, only the AF group had a significantly higher pixel
424 intensity than static control groups. These data indicate that MSCs begin shifting towards an SMC
425 phenotype after 24 hours of BSR conditioning for all actuation types. Counterintuitively, this data also
426 indicates that multi-axial AR conditioning has the lowest collagen IV and α -SMA expression of all
427 mechanical conditioning groups. Previous research investigating MSC mechanobiology has shown that
428 cells conditioned with equiaxial stress produce less α -SMA than cells conditioned with uniaxial stress,
429 which could explain this behavior [9]. Altogether, these data suggest that the unique mechanobiology
430 within vascular structures located in high flexion or uniaxial stretching regions could induce altered
431 cellular function. Future studies will investigate aspects of BSR tissue maturation over extended periods
432 where we expect to see a more exacerbated difference between cells conditioned with different types
433 of stress. For example, a reduced expression of stiff matrix proteins from equiaxial stress, such as
434 collagen IV, would result in less rigid arterial structures that may be more suitable in environments like
435 the popliteal artery. Moreover, widening the scope of ECM protein analysis could show increased elastin
436 content in AR conditions compared to stiff AF and RD tissues with elevated collagen content. Finally,

437 extended conditioning regimens will likely further differentiate MSCs towards vascular SMC phenotypes
438 but also reduce cellular proliferation compared to the static control groups.

439
440 Figure 5. **24 hours of BSR conditioning increases collagen IV and α-SMA production in MSCs.** (A) Representative
441 images showing type IV collagen and (B) α-SMA presence between control and test groups after 24 hours
442 of conditioning. (C) Graphs comparing type IV collagen and α-SMA intensity between BSR control and conditioning
443 regimens. Type IV collagen intensities for tissue culture plastic (TCP) and static control (SC) cultures were
444 significantly different from mechanically-conditioned groups, while α-SMA intensity of the TCP control differed
445 significantly from AF and RD groups, but not the AR group. (D) Type IV collagen and α-SMA primary antibody
446 control. All scale bars = 200 μm, n = 3.

447 4. Conclusion

448 In this investigation, we developed a novel approach for mechanically conditioning cells that leverages
449 bio-hybrid soft robotics (BSR) to induce MSC differentiation and alignment. First, we showed that Plasticsil
450 OO-20, a hyperelastomer ideal for soft robotics fabrication, is biocompatible and supports strong cell
451 adhesion when coated with fibronectin. Then we described the methods by which BSRs can be
452 fabricated using widely available 3D printing tools and materials. By characterizing BSR actuation, we
453 showed that our devices emulate bending angles experienced in the FPA during daily limb flexion, from
454 140° to 180°. We also showed that the same BSR recreates healthy and pathological arterial radial
455 distension (RD) by pressurizing a central PneuNet located below the ROI. Finally, we carried out a cell
456 culture study comparing the effects of typical cell culture against BSRs exerting static, RD, angular
457 flexion (AF), and a combination of angular flexion and radial distension (AR) conditions on MSC
458 cytoskeletal alignment, type IV collagen production, and α-SMA production. Orientation and distribution

15

459 analysis of MSC cytoskeleton revealed that conditioning regimes could be combined to align cells into
460 any desired tissue orientation, with the AR group possessing the tightest alignment. Interestingly, the
461 production of type IV collagen and α -SMA among the mechanically-conditioned groups was highest after
462 AF and lowest after a multi-axial AR actuation regime.

463 This study is the first application of a hyperelastomer substrate in a bio-hybrid soft robotic bioreactor
464 that directs highly ordered organization and phenotypic switching of MSCs by combining a series of
465 pneumatic networks for multi-axial actuation using advanced manufacturing techniques. While this BSR
466 may replicate aspects of femoropopliteal mechanics, it does not form a cylindrical or patient-specific
467 vessel structure, which can be designed and cast from personalized 3D printed molds in future
468 iterations. Future BSRs will integrate a hollow vessel model and medium perfusion to create a shear
469 stress modality and perform long-term culture studies for biomanufactured vascular grafts and *in vitro*
470 testbeds for medical and surgical treatments on patient-specific femoropopliteal arteries, disease
471 modeling, biomechanical testing of endovascular and medical therapies, and the biomanufacturing of
472 tissue-engineered vascular grafts.

473 **Acknowledgments**

474 The author would like to thank Mitchell Johnson for assistance with programming the pneumatic control
475 unit, Sabrina Schoenborn and Ryan Daley for productive additive manufacturing and experimental
476 design discussions, A/Prof Dr. Yi-Chin Toh for providing PDMS and silicone tubing, and the QUT Central
477 Analytical Research Facility for assistance with microscopy. This research was supported by an Advance
478 Queensland Fellowship (AQIRF1312018) and fruitful discussions with Dr. Robyn Stokes, Dr. Jeremy Farr-
479 Wharton, and Bionics Queensland.

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495 **References**

1. Manns, M., J. Morales, and P. Frohn, *Additive manufacturing of silicon based PneuNets as soft robotic actuators*. Procedia CIRP, 2018. **72**: p. 328-333.
2. Connolly, F., C.J. Walsh, and K. Bertoldi, *Automatic design of fiber-reinforced soft actuators for trajectory matching*. 2016: p. 201615140.
3. Laschi, C., et al., *Soft Robot Arm Inspired by the Octopus*. Advanced Robotics, 2012. **26**(7): p. 709-727.
4. Polygerinos, P., et al. *Towards a soft pneumatic glove for hand rehabilitation*. in *2013 IEEE/RSJ International Conference on Intelligent Robots and Systems*. 2013.
5. Roche, E.T., et al., *Soft robotic sleeve supports heart function*. 2017. **9**(373): p. eaaf3925.
6. Park, S.-J., et al., *Phototactic guidance of a tissue-engineered soft-robotic ray*. Science (New York, N.Y.), 2016. **353**(6295): p. 158-162.
7. Wolf, F., et al., *VascuTrainer: A Mobile and Disposable Bioreactor System for the Conditioning of Tissue-Engineered Vascular Grafts*. Annals of Biomedical Engineering, 2018. **46**(4): p. 616-626.
8. Luo, J., et al., *Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs*. Cell Stem Cell, 2020. **26**(2): p. 251-261.e8.
9. Park, J.S., et al., *Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells*. Biotechnol Bioeng, 2004. **88**(3): p. 359-68.
10. Rashidi, N., et al., *Morphology and contractile gene expression of adipose-derived mesenchymal stem cells in response to short-term cyclic uniaxial strain and TGF-β1*, in *Biomedical Engineering / Biomedizinische Technik*. 2018. p. 317.
11. Dong, J.-d., et al., *Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts*. Acta Pharmacologica Sinica, 2009. **30**(5): p. 530-536.
12. Qu, M.-J., et al., *Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain*. 2007. **44**(5): p. 345-353.
13. Rabbani, M., et al., *Cyclic Stretch Effects on Adipose-Derived Stem Cell Stiffness, Morphology and Smooth Muscle Cell Gene Expression*. Tissue Engineering and Regenerative Medicine, 2017. **14**(3): p. 279-286.
14. Lévesque, L., et al., *Incrementing the Frequency of Dynamic Strain on SMC-Cellularised Collagen-Based Scaffolds Affects Extracellular Matrix Remodeling and Mechanical Properties*. ACS Biomaterials Science & Engineering, 2018. **4**(11): p. 3759-3767.
15. Rothdiener, M., et al., *Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition*. Scientific Reports, 2016. **6**(1): p. 35840.
16. Ryan, A.J. and F.J. O'Brien, *Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells*. Biomaterials, 2015. **73**: p. 296-307.
17. Wanjare, M., N. Agarwal, and S. Gerecht, *Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells*. American Journal of Physiology-Cell Physiology, 2015. **309**(4): p. C271-C281.
18. Klein, A.J., et al., *Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement*. Catheter Cardiovasc Interv, 2009. **74**(5): p. 787-98.
19. Poulson, W., et al., *Limb flexion-induced axial compression and bending in human femoropopliteal artery segments*. J Vasc Surg, 2018. **67**(2): p. 607-613.

539 20. Colombo, M., et al., *Impact of lower limb movement on the hemodynamics of femoropopliteal*
540 *arteries: A computational study*. Medical engineering & physics, 2020. **81**: p. 105-117.

541 21. Vartanian, S.M. and M.S. Conte, *Surgical Intervention for Peripheral Arterial Disease*. Circulation
542 Research, 2015. **116**(9): p. 1614-1628.

543 22. Shu, J. and G. Santulli, *Update on peripheral artery disease: Epidemiology and evidence-based*
544 *facts*. Atherosclerosis, 2018. **275**: p. 379-381.

545 23. Taylor, L.M., et al., *Autogenous reversed vein bypass for lower extremity ischemia in patients*
546 *with absent or inadequate greater saphenous vein*. The American Journal of Surgery, 1987.
547 **153**(5): p. 505-510.

548 24. Pashneh-Tala, S., S. MacNeil, and F. Claeysens, *The Tissue-Engineered Vascular Graft—Past,*
549 *Present, and Future*. Tissue Engineering Part B: Reviews, 2015. **22**(1): p. 68-100.

550 25. Drews, J.D., et al., *Spontaneous reversal of stenosis in tissue-engineered vascular grafts*. Science
551 Translational Medicine, 2020. **12**(537): p. eaax6919.

552 26. Abdal-hay, A., et al., *Electrospun biphasic tubular scaffold with enhanced mechanical properties*
553 *for vascular tissue engineering*. Materials Science and Engineering: C, 2018. **82**: p. 10-18.

554 27. Bergmeister, H., et al., *Biodegradable, thermoplastic polyurethane grafts for small diameter*
555 *vascular replacements*. Acta Biomaterialia, 2015. **11**: p. 104-113.

556 28. Lee, S.J., et al., *The use of thermal treatments to enhance the mechanical properties of*
557 *electrospun poly(ϵ -caprolactone) scaffolds*. Biomaterials, 2008. **29**(10): p. 1422-1430.

558 29. Bracaglia, L.G. and J.P. Fisher, *Extracellular Matrix-Based Biohybrid Materials for Engineering*
559 *Compliant, Matrix-Dense Tissues*. Advanced healthcare materials, 2015. **4**(16): p. 2475-2487.

560 30. van Haaften, E.E., C.V.C. Bouting, and N.A. Kurniawan, *Vascular Mechanobiology: Towards*
561 *Control of In Situ Regeneration*. Cells, 2017. **6**(3): p. 19.

562 31. Anwar, M.A., et al., *The effect of pressure-induced mechanical stretch on vascular wall*
563 *differential gene expression*. J Vasc Res, 2012. **49**(6): p. 463-78.

564 32. Rezakhaniha, R., et al., *Experimental investigation of collagen waviness and orientation in the*
565 *arterial adventitia using confocal laser scanning microscopy*. Biomechanics and Modeling in
566 Mechanobiology, 2012. **11**(3): p. 461-473.

567 33. Goedhart, J., et al., *Structure-guided evolution of cyan fluorescent proteins towards a quantum*
568 *yield of 93%*. Nature Communications, 2012. **3**(1): p. 751.

569 34. Portfolio, N. *Image integrity and standards*. [cited 2021 May 6th]; Available from:
570 <https://www.nature.com/nature-portfolio/editorial-policies/image-integrity>.

571 35. Imboden, M., et al., *High-speed mechano-active multielectrode array for investigating rapid*
572 *stretch effects on cardiac tissue*. Nature Communications, 2019. **10**(1): p. 834.

573 36. Livne, A., E. Bouchbinder, and B. Geiger, *Cell reorientation under cyclic stretching*. Nature
574 Communications, 2014. **5**(1): p. 3938.

575 37. Kreutzer, J., et al., *Pneumatic unidirectional cell stretching device for mechanobiological studies*
576 *of cardiomyocytes*. Biomechanics and Modeling in Mechanobiology, 2020. **19**(1): p. 291-303.

577 38. Park, S., et al., *Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184*. ACS Appl
578 Mater Interfaces, 2018. **10**(13): p. 11261-11268.

579 39. Mozafari, H., C. Zhou, and L. Gu, *Mechanical contribution of vascular smooth muscle cells in the*
580 *tunica media of artery*. Nanotechnology Reviews, 2019. **8**(1): p. 50-60.

581 40. Malekis, K., et al., *Comparison of femoropopliteal artery stents under axial and radial*
582 *compression, axial tension, bending, and torsion deformations*. Journal of the Mechanical
583 Behavior of Biomedical Materials, 2017. **75**: p. 160-168.

584 41. Zhang, Y.-F., et al., *Miniature Pneumatic Actuators for Soft Robots by High-Resolution*
585 *Multimaterial 3D Printing*. 2019. **4**(10): p. 1900427.

586 42. Overvelde, J.T.B., et al., *Amplifying the response of soft actuators by harnessing snap-through*
587 *instabilities*. 2015. **112**(35): p. 10863-10868.

588 43. Hutmacher, D., et al., *Ultrafast Soft Actuators*. 2021, Research Square.

589 44. Peters, M.W., P.B. Canham, and H.M. Finlay, *Circumferential Alignment of Muscle Cells in the*
590 *Tunica media of the Human Brain Artery*. Journal of Vascular Research, 1983. **20**(5): p. 221-233.

591 45. Cordoba, C.G. and C.J. Daly, *The organisation of vascular smooth muscle cells; a quantitative*
592 *Fast Fourier Transform (FFT) based assessment*. Translational Research in Anatomy, 2019. **16**: p.
593 100047.

594 46. Lind, J.U., et al., *Instrumented cardiac microphysiological devices via multimaterial three-*
595 *dimensional printing*. Nature Materials, 2017. **16**(3): p. 303-308.

596 47. Callens, S.J.P., et al., *Emergent collective organization of bone cells in complex curvature fields*.
597 bioRxiv, 2020: p. 2020.10.28.358572.

598 48. Walters, B., et al., *Engineering the geometrical shape of mesenchymal stromal cells through*
599 *defined cyclic stretch regimens*. Scientific Reports, 2017. **7**(1): p. 6640.

600 49. Desyatova, A., et al., *Effect of aging on mechanical stresses, deformations, and hemodynamics in*
601 *human femoropopliteal artery due to limb flexion*. Biomechanics and Modeling in
602 Mechanobiology, 2018. **17**(1): p. 181-189.

603 50. Dan, P., et al., *The role of mechanical stimuli in the vascular differentiation of mesenchymal stem*
604 *cells*. Journal of Cell Science, 2015. **128**(14): p. 2415-2422.

605 51. Turner, A.W., et al., *Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for*
606 *coronary artery disease*. Atherosclerosis, 2015. **242**(2): p. 543-552.

607 52. Khani, M.-M., et al., *Mechanical characterization of human mesenchymal stem cells subjected to*
608 *cyclic uniaxial strain and TGF- β 1*. Journal of the Mechanical Behavior of Biomedical Materials,
609 2015. **43**: p. 18-25.

610

611

612

613

614

615

616

617

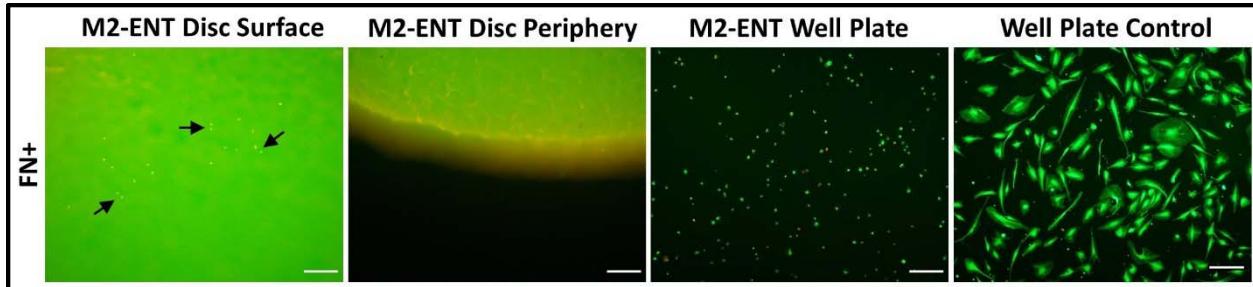
618

619

620

621

622

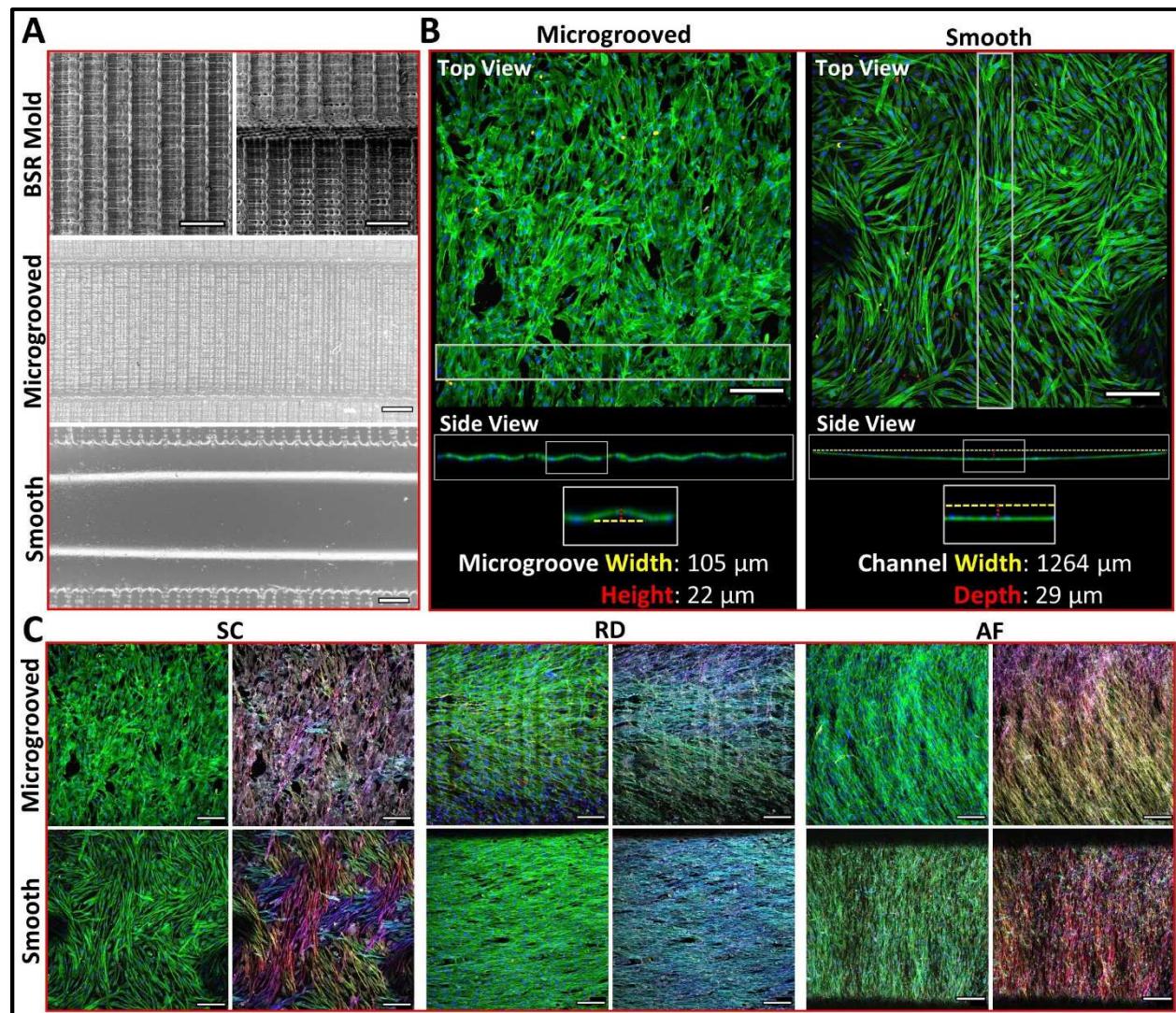

623

19

624

625

626 **Supplementary**



627
628

629 **Figure S1. M2 ENT is cytotoxic towards MSCs.** ENT is autofluorescent, as well as cytotoxic to MSCs
630 directly on its surface and in the adjacent well-plate. Arrows on the first image point to dead cell
631 clusters resting on the surface of the ENT disc. The final image in the ENT series shows dead MSCs
632 resting adjacent to the ENT disk, at the bottom of the well-plate. Scale bars = 100 μ m.


20

633

634

635 **Figure S2. 3D printed microgroove topology influences cytoskeletal morphology.** (A) Scanning electron
636 microscopy of the microgrooved resin BSR mold and stereo zoom microscopy of the microgrooved and
637 smoothed silicone BSRs images show that unmodified BSRs recapitulate the layer line topology of the 3D
638 printed molds from which they are cast, creating a series of rough microgrooves perpendicular to the
639 ROI. Modified BSRs with a smooth surface were made to determine if 3D printed microgroove topology
640 affects MSC cell culture (scale bars = 300 μ m). (B) Here, confocal images show top and side profile views
641 of statically cultured MSCs on microgrooved and smooth BSRs. The side profile views show that MSCs
642 adhere to and match the shape of each perspective surface topology, while the top view shows that
643 MSCs statically cultured on smooth BSRs ($n = 1$) have larger and more elongated morphologies than the
644 microgrooved BSRs (scale bars = 200 μ m). (C) Visually comparing the cytoskeletal morphology of MSCs
645 cultured in static (SC) and mechanical conditions (RD and AF) show that morphological differences are
646 less pronounced between the microgrooved and smooth ($n = 1$) BSRs than statically cultured samples.
647 However, the actin orientation of MSCs in smooth RD and AF groups appears to be more uniformly
648 aligned than their microgrooved counterparts (scale bars = 200 μ m).

649
650 **Figure S3. A combination of angular radial (AR) conditioning reduces actin distribution and increases**
651 **orientation coherency.** (A) TCP and SC control groups present large standard deviations in actin filament
652 orientation in comparison to AF, RD, and AR conditioned groups. The actin filament of RD and AF groups
653 express the lowest deviation, respectively. (B) Similarly, analysis of actin filament dominant orientation
654 coherency from each group shows that TCP and SC control groups were highly disordered in comparison
655 to the conditioned groups. Furthermore, actin filament in the AR groups were the most coherent, with
656 the largest percentage of actin filament being aligned in the dominant orientation, $n = 3$.