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Abstract

Computational predictors can help interpret pathogenicity of human genetic variants,
especially for the majority of variants where no experimental data are available.
However, because we lack a high-quality unbiased test set, identifying the
best-performing predictors remains a challenge. To address this issue, we evaluated
missense variant effect predictors using genotypes and traits from a prospective cohort.
We considered 139 gene-trait combinations with rare-variant burden association based
on at least one of four systematic studies using phenotypes and whole-exome
sequences from ~200K UK Biobank participants. Using an evaluation set of 35,525 rare
missense variants and the relevant associated traits, we assessed the correlation of
participants’ traits with scores derived from 20 computational variant effect predictors.
We found that two predictors—VARITY and REVEL—outperformed all others according
to multiple performance measures. We expect that this study will help in selecting
variant effect predictors, for both research and clinical purposes, while providing an
unbiased benchmarking strategy that can be applied to additional cohorts and

predictors.
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Introduction

Rapidly increasing availability and use of sequencing in research and clinical genetic
diagnostics has yielded millions of rare human genetic variants. Of particular interest
are missense variants, which alter the coding sequence of human proteins, potentially

altering protein functions' and thus contributing to human diseases?.

Where genetic disease is suspected, clinical variant interpretation commonly uses the
American College of Medical Genetics and Genomics/Association for Molecular
Pathology (ACMG/AMP) framework, in which variants are classified as benign, likely
benign, likely pathogenic, pathogenic, or of uncertain significance®. Of the 4.6 million
missense variants in gnomAD*, only 2% have been clinically interpreted. The majority of
these have been classified as a variant of uncertain significance (VUS)?, which,
according to the ACMG/AMP guidelines?®, should not be included in clinical decision
making. Moreover, most VUS variants are missense variants, highlighting an unmet
need for reliable evidence to support unambiguous clinical interpretation and thereby

guide the diagnosis and treatment of disease®’.

Well-established functional assays can provide strong evidence for classification of a
variant as either pathogenic or benign®#, but such results are typically unavailable for
rare missense variants. Although “variant effect mapping” technologies have been
established to proactively determine the functional effects of many variants in
parallel®", a variant effect map is available for only ~1% of human disease-associated

proteins'2.
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A less resource-intensive means of proactively assembling evidence for all possible
variants is computational variant effect prediction. Widely used computational variant
effect predictors developed over the last two decades include PROVEAN',
PolyPhen-2'* and SIFT'. More recently, a new wave of variant effect predictors, e.g.
DeepSequence’® and PrimateAl'”, has benefited from advances in deep learning. Some
‘meta-predictors’, e.g. REVEL' and VARITY'®, have benefited in large part by
combining the results of many evidence sources, including the results of other

prediction algorithms.

Current ACMG/AMP guidelines consider computational prediction methods to (at best)
provide weak evidence for clinical interpretation®. However, as predictors improve,
objective evaluation of evidentiary value may justify increased reliance on computational

prediction and thus ultimately enable improved clinical interpretation.

Although there have been several benchmarking studies?*??, it has been difficult to
address certain challenges inherent to the assessment of computational predictors.
Chief among these is the establishment of “ground truth” test sets that are independent
of the data used in training the predictors being assessed. Where test data have
previously been used in training, performance estimates for a computational model may

be artificially inflated®,

To avoid this circularity issue, Livesey and Marsh® used variants measured by variant
effect mapping experiments, but could only assess variant predictions for a few dozen
proteins for which variant effect maps were available. Furthermore, they had limited

ability to evaluate predictors (e.g., DeepSequence) that had been optimized using
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variant effect map data. Although Livesey and Marsh found that variant effect maps
were typically more accurate predictors of pathogenicity than any computational
method, using variant effect maps as a source of ground truth does have the caveat that
functional assays carried out in cultured cells may not perfectly capture variant impacts

on human traits.

Population-based cohorts with genotyped and phenotyped participants have the
potential to provide independent data that have not previously been used in training
predictors. For example, the UK Biobank®* has assembled in-depth genetic and trait
information for a prospective cohort of 500,000 participants. Whole-exome sequences
for >200,000 participants have been released widely to researchers, and information on
>7,000 traits is available for a large fraction of participants. Because no variant effect
predictors have yet been trained on these data, using the UK Biobank dataset as a
source of “ground truth” human trait data sidesteps the risk of performance inflation due

to circularity.

Here, as shown in Figure 1, we examined 139 gene-trait combinations (involving 35,525
rare missense variants in 99 genes, and 56 traits) for which it has been reported that the
burden of rare missense variation in the gene depends on the trait>>-?%. For each
gene-trait combination, we assessed the correspondence between variant scores and
human phenotypes for 20 computational predictors. Results were then compiled to
identify computational methods that were top performers for the greatest number of

gene-trait combinations.
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Material and methods
Gene-trait combinations

We assembled gene-trait combinations for which a significant burden-of-variation
association had been reported by at least one of four systematic ‘burden scan’
studies?*?® of the UK Biobank cohort. From the initial set of 162 gene trait combinations,
we excluded combinations for which the trait had been ascertained in fewer than 10
participants or for which the gene IDs are currently unrecognized or not linked to any
proteins in Ensembl database version 104?°, We also excluded the TTN gene as

non-representative given its extreme size and enormous number of reported variants.

Human Variants

This study was conducted with whole-exome sequencing data from 200,619 participants
in the UK Biobank cohort, for which variants were retrieved from the OQFE version® of
the whole-exome VCF files (field ID: 23156). The canonical isoform of each gene
product we examined was defined according to the Ensembl database (GRCh38)%°, with
coding exonic regions defined according to the CCDS database®'. Coding variants
corresponding to these coding regions were extracted from raw VCF files. Adapting the
filtering criteria used by the UK Biobank®?, we examined only coding single-nucleotide
variants (SNVs) having a Phred quality score > 20, individual missingness < 10%,
minimum read coverage depth of 7, and carried by at least one participant passed the
allele balance threshold (i.e. the proportion of reads covering a variant’s location that
support the variant) > 0.15. Because evidence to support clinical interpretation is

typically more abundant for common variants (e.g., from genome-wide association
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studies), the most critical context for computational predictors to perform well is for rare
variation. Therefore, we further restricted our analysis to rare variants, as defined here
by having a global MAF < 0.1% in gnomAD?,. If a variant was not found in the gnomAD

database, we assumed it to be rare (MAF < 0.1%).

Variant effect predictions

We considered 20 computational variant effect predictors (Table S1). Scores for
predictors were obtained either from a pre-existing repository**, or by running the
predictor code directly. If a predictor did not provide predictions for at least 10 rare
missense variants of the gene for a given gene-trait combination, it was not included in

the comparison for that combination.
Predictors comparison

We first split the 139 gene-trait combinations into two categories, depending on whether
the associated traits are binary or quantitative (i.e. where measurements are

continuous).

Gene-trait combinations where the trait was binary were subjected to precision vs. recall
analysis, where precision at a given score threshold is defined as fraction of variants
that were correctly assigned as having come from an individual with the trait, and recall
is the fraction of variants from individuals with the trait that were identified as such.
Because precision depends on the prior probability, i.e., the prevalence of the trait, we
used balanced precision (the precision expected if the test set were to have been
balanced) and calculated the area under the balanced precision-recall curve

(AUBPRC)™.
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For each variant effect predictor and gene-trait combination, we rescaled predictor
scores to range from 0 to 1 (with 0 corresponding to neutral variants and 1
corresponding to damaging variants). To reduce the impact of outliers, we set the lowest

and highest 5% of scores to 0 and 1, respectively.

We subsequently computed a person-centric variant score: the sum of all variant scores
for a given participant. For each predictor, this allowed us to rank participants by the
participant-centric variant score, plot a balanced precision-recall curve, and calculate
AUBPRC for each gene-trait combination. To better understand uncertainty in the
calculated AUBPRC values, we used 1000-iteration bootstrapping (random sampling of
variants with replacement) to compute a distribution of AUBPRCs for each predictor
with each gene-trait combination. We then empirically determined the mean AUBPRC
and the 95% confidence interval of the resampled distribution. We compared variant
effect predictors in terms of mean AUBPRCs, and calculated an empirical p-value for
each pair of computational predictors, i.e., the fraction of pairs of resampled AUBPRC
distributions, one from each predictor, in which one predictor achieved a higher
AUBPRC than the other predictor. From the p-values, false discovery rates (FDRs) were
subsequently calculated to account for multiple hypotheses testing®. For each
gene-trait combination, predictors were ranked by performance and any predictor that
was not significantly different from the numerically best-performing predictor (using an
FDR threshold of 10%) was considered tied for best. We then ranked predictors by the

number of gene-trait combinations for which the predictor was tied for best.

In contrast, for gene-trait combinations with quantitative traits, we employed the

Pearson correlation coefficient (PCC) to compare predictor performance. Where
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multiple participants carried the same variant, we averaged their quantitative trait
values. Each variant effect predictor was examined individually. For each predictor and
a given gene-trait combination, we examined variants for which the trait was measured
and a variant effect score was available. To better understand uncertainty in the
calculated PCC values, we used 1000-iteration bootstrapping (i.e. random sampling of
variants with replacement) to compute a distribution of PCCs for each predictor with
each gene-trait combination. We then empirically determined the mean PCC and the
95% confidence interval of the resampled distribution. To eliminate negative values, we
used PCC? instead of PCC, and calculated an empirical p-value (i.e., the fraction of
pairs of resampled PCC distributions, one from each predictor, in which one predictor
achieved a higher PCC? than the other predictor) for each pair of computational
predictors. To account for multiple hypothesis testing, we next derived FDRs from these
empirical p-values®. For each gene-trait combination, predictors were ranked by
performance and any predictor that was not significantly different from the numerically
best-performing predictor (FDR < 10%) was considered tied for best. We then ranked
predictors by the number of gene-trait combinations in which the predictor was tied for

best.

To assess the statistical significance of performance differences between methods
considering all gene-trait combinations, we carried out a two-tailed Wilcoxon
signed-rank test comparing the arrays of performance measures (AUBPRC or PCC?) for

each pair of predictors. FDR values for each comparison were derived as above.
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Results
Extracting rare missense variants from the UK Biobank cohort for trait-associated genes

To select gene-trait combinations for which rare (MAF < 0.1%) variation is associated
with traits, we compiled a set of 139 gene-trait combinations that were collectively
identified by four systematic burden testing studies performed using data from the UK
Biobank cohort®*?%, Table S2 lists the genes and the associated traits in the format of
the UK Biobank field ID (FID). Of the 99 trait-associated genes, 73 (74%) were
associated with only one trait. The remaining 26 genes were linked to multiple traits. For
example, LDLR, a gene that encodes the low-density lipoprotein (LDL) receptor and is
associated with autosomal dominant familial hypercholesterolemia (FH [MIM:
143890])*, was previously found to be associated with five traits: 1) blood LDL
cholesterol level (mmol/L; FID: 30780); 2) self-reported high cholesterol (FID:
20002-1473); 3) taking atorvastatin (a cholesterol-lowering drug; FID:
20003-1141146234); 4) taking any cholesterol-lowering medication (FID: 6153-1); and

5) atherosclerotic heart disease of native coronary artery (FID: 41270-125.1).

Having obtained whole-exome sequencing data released for over 200K participants in
the UK Biobank cohort (transfer of human data was approved and overseen by The UK
Biobank Ethics Advisory Committee [Project ID: 51135]), we extracted SNVs for the 99
associated genes. We focused all subsequent analyses on the subset of rare variants
(MAF < 0.1%). Because classifications of rare clinical variants are more likely to be VUS
and would therefore benefit from improved computational predictor evidence®, we were

primarily interested in predictor performance for these variants. To determine whether
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the variant alters the amino acid sequence of the encoding protein, we mapped each
variant to the canonical transcript of its corresponding gene in the Ensembl and CCDS
database®¥, yielding an evaluation set of 35,525 rare human missense variants from

170,368 UK Biobank participants.

Assessing the performance of computational variant effect predictors

For each rare human missense variant, we obtained variant effect scores from 20
computational variant effect predictors (see Table S1 for a complete list of predictors
compared in this study). Some predictors (e.g. PROVEAN) assign low scores to
predicted-damaging variants, while others (e.g. PolyPhen-2) assign high scores to such
variants. To better compare rankings from different predictors, we negated scores of the
former type so that the highest scores always corresponded to the most

predicted-damaging variants.

For 12 (60%) of the 20 predictors we examined, scores were available for every
missense variant in our evaluation set. For over 90% of the genes of interest, all
predictors provided scores for at least 10 variants. Table S3 shows the prediction
coverage for the 99 genes included in this study. To reduce the effect of extreme values
on this performance evaluation, we applied a floor and ceiling at 5" and 95" percentile
predictor scores, respectively, and applied a transformation to give all variant effect

predictors the same 0-1 range of score values.

Next, we deployed two approaches to assess the performance of variant effect

predictors, depending on whether the trait was binary or quantitative.

11
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For gene-trait combinations with binary traits (including categorical traits that could be
simplified and considered binary), we applied an AUBPRC approach. Because binary
trait measurements were made on the participant level, i.e. one measurement per
participant in the UK Biobank cohort, we wished to obtain a participant level summary of
predicted variant effects. On average, about 1% of participants had more than one
variant in a given gene (Figure S1). Therefore, we summed the total predictor score for
all missense variants observed in each gene of interest in each participant. We note that
this approach models variant effects as additive, e.g., two mildly damaging variants
(score = 0.5) combined will show a more damaging effect (total score = 1.0). To illustrate
this approach with the computational predictor VARITY, Figure 2 shows that UK Biobank
participants taking cholesterol-lowering medication (FID: 6153-1) are three times more

likely to have a damaging (=1) total missense variant impact than those that are not.

For every gene-trait combination and each predictor, we analyzed the tradeoff between
precision (i.e. fraction of participants above a given total variant impact score threshold
that had the trait value associated with heightened rare-variant burden) and recall (i.e.
fraction of all participants with the rare-variant-burden-associated trait value that were
detected at a given total variant impact score threshold). More specifically, because
precision depends on the prior probability of the trait value, we evaluated balanced
precision, which represents precision where the prior probability of the trait value is
50%". This enabled us to evaluate, for each combination of gene and binary trait, the

AUBPRC for each computational predictor.

Because AUBPRC analysis is only appropriate for binary traits, we examined

quantitative traits using a PCC-based approach, by which we assessed the

12
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correspondence between variant impact score and trait value. Where multiple
participants carried the same variant, we averaged the quantitative trait values. Variant

predictors were considered better performing if they had a higher PCC value.

Thus, for each gene-trait combination, we obtained either a PCC or AUBPRC measure
of performance. To estimate uncertainty in each performance measure, we carried out
bootstrap resampling in which variants of a given gene were resampled with
replacement and PCC or AUBPRC values were re-calculated for each sample. For each
gene-trait combination, this yielded a distribution of either PCC or AUBPRC values for
each computational predictor. From each of these distributions, we extracted a mean
and a 95% confidence interval (Cl) that reflects our uncertainty in the performance

measure.

To illustrate this approach, Figure 3 shows AUBPRC and PCC values and Cls for each
of 20 computational predictors for each of the five gene-trait combinations involving
LDLR. Here, the numerically top-performing variant effect predictors were VARITY and
MPC. To assess whether numerical differences were statistically significant, we
computed empirical p-values between every pair of computational predictors for each
gene-trait combination, and used the distribution of p-values for each gene-trait
combination to derive corresponding FDR values. We considered a predictor Y to

significantly outperform a predictor X if the comparison exhibited an FDR < 10%.

As an illustration, FDRs for all predictor pairs are shown for the gene-trait combination
of LDLR with the binary trait of whether the participant was taking cholesterol-lowering

medication (Figure 4). Although VARITY exhibited the highest AUBPRC, a larger group

13
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of predictors (VARITY, REVEL, MutationAssessor, Eigen, MPC, SIFT, PolyPhen-2,
CADD, MetalLR and PrimateAl) were statistically indistinguishable and therefore all

considered as best-performing predictors for this gene-trait combination.

To summarize similar comparisons over all 139 gene-trait combinations, we counted the
number of combinations in which a computational predictor was considered
best-performing (Figure 5). These results showed that VARITY performed best across
the largest number of gene-trait combinations: 135 (97%) of 139, while the next best
predictor, REVEL, was a top predictor for 129 (93%) of 139 gene-trait combinations.
The performance among the remaining 18 predictors ranged from 66 to 88%, with mean
71%. The best variant predictor according to this ranking was VARITY ", followed by
REVEL' and Eigen®. Because VARITY or REVEL were statistically indistinguishable
(FDR = 0.32; Wilcoxon signed-rank test), we considered both VARITY and REVEL to be
the best performing in this evaluation. Similar analysis (Figure S2) showed that both

VARITY and REVEL each significantly (FDR < 0.1) out-performed all other methods.
Discussion

We used a large UK Biobank cohort to assess the performance of 20 computational
predictors of missense variant effects. Combining four systematic burden-test studies,
collectively based on whole-exome sequences of the 50K and 200K participants in the
UK Biobank cohort, yielded a large set of gene-trait combinations (139) to enable a

robust comparison of predictors.

Because none of the computational predictors we examined had been trained using UK

Biobank data, our evaluation approach has the marked advantage of independence and

14
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avoidance of the performance inflation that can arise when predictors are assessed
using training data. Although every predictor was a top predictor for at least one
gene-trait combination, counting the number of gene-trait combinations in which a

predictor was best enabled an overall ranking.

It is interesting that the top three predictors overall — VARITY', REVEL', and Eigen® —
are all meta-predictors, i.e., they combine prediction scores from other variant effect
predictors. For meta-predictors, it can be especially difficult to establish ground truth
sets of variants that had not been used for training any of the input predictors. That said,
VARITY only exploited scores from other predictors that were unsupervised, i.e., made
no direct use of variant pathogenicity annotations. The fourth-ranked predictor, MPC?°,
exploited observations of depleted missense variation within particular sub-genic
regions. That none of the top-three-ranked predictors exploited this kind of information

suggests the possibility that combining these approaches could yield still-better results.

One limitation of our study was that we did not evaluate all published computational
variant effect predictors. This was in part due to the vast number of such predictors but
many predictors were excluded due to non-functional websites. We were particularly
interested in evaluating EVmutation*® given its excellent reported performance.
However, EVmutation provided a score for only 7,021 (20%) of the 35,525 missense
variants we examined, perhaps because the EVmutation method requires a deep
multiple sequence alignment. However, we were able to examine variant effect
predictors that are 1) widely used to predict variant effects (e.g. PolyPhen2, PROVEAN)

and 2) novel and claimed better-performing than conventional predictors (e.g.
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PrimateAl, REVEL). We suggest that this analysis should be repeated periodically to

benchmark and test evaluate predictors as they emerge.

Another limitation of this study is that we did not consider correlations between traits.
For example, multiple gene-trait combinations involved LDLR, and these traits were
correlated with one another, so our analysis was influenced by some genes and traits
more than others. That said, body mass index (BMI; FID: 21001) was the most recurrent
trait (appearing in 22 combinations) and LDLR was the most recurrent gene (appearing
in 5 gene-trait combinations). Thus, no one gene or trait dominated the collection of 139

gene-trait combinations examined here.

We also did not adjust trait values to account for dependencies on other participant
variables. For example, LDL cholesterol levels are known to correlate with both age and
sex*'. In future analyses, LDL cholesterol measures adjusted for age and sex, or more
precise variables such as apolipoprotein B, could have a variation that is more
attributable to genetic variation and therefore show greater correlation with predictor
scores. However, because the same adjusted LDL cholesterol values would be used to
evaluate all predictors, such an adjustment would be expected to have limited impact on

the relative rankings amongst predictors.

One possible criticism of our study is that the UK Biobank dataset we used contains
variants that may have been used in training predictors. For this reason, we considered
excluding variants that had been previously reported as pathogenic or benign, e.g. in
ClinVar*?, or as disease-associated or disease-causing by the Human Gene Mutation

Database (HGMD)*}, as many predictors will have trained on variants from these
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resources. However, vanishingly few of the variants used in predictor training sets will
have been deposited in HGMD or ClinVar on the basis of analysis of the UK Biobank
data, especially given that we have excluded common variants from our analysis. More
obviously, neither the selection of UK Biobank participants, nor their traits or genotypes,

was determined by variant annotations in ClinVar, HGMD or elsewhere.

Our analysis should in future be expanded to evaluate additional burden-test associated
gene-trait combinations beyond the 139 examined here, as they emerge. Moreover,
release of whole-exome sequences for an additional 250,000 UK Biobank participants is
expected in 2022, and it will be important to revisit these comparisons with the

expanded dataset.

In conclusion, this study provides an independent assessment of several computational
variant effect predictors based on their correspondence with human traits in a large
prospective cohort. Given the critical need for improving performance of computational
predictors for both clinical and research applications, our benchmarking method is likely
to be applicable to future human cohorts and methods for inferring the pathogenic

impact of human genetic variants.
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Figure 1. A schematic overview of the study. 139 gene-trait combinations were selected
from the UK Biobank and used to assess the accuracy of 20 computational variant

effect predictors (see Methods for detail).
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Figure 2. Percentages of UK Biobank participants with different sums of variant
predictor scores for participants either taking or not taking cholesterol-lowering
medication. This example used commonly-scaled VARITY scores in which higher

scores indicate more damaging variants. Error bars represent one standard error of

proportions.
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Figure 3. The performance of twenty computational methods in predicting the effect of rare LDLR missense variants.

Performance comparisons used mean AUBPRC for binary traits and mean PCC values for quantitative traits, respectively.

Error bars indicate the 95% confidence intervals of performance measures.
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Figure 4. Example summary of comparisons between all pairs of computational
predictors, evaluating how well predictor scores for rare LDLR missense variants
correspond to whether the participant is taking cholesterol-lowering medication. Variant
effect predictors are ranked top-to-bottom and right-to-left based on decreasing
performance (AUBPRC). Comparisons in which one predictor Y outperforms another

predictor X (with FDR < 0.1) are indicated in blue.
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