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Abstract 

Variation in DNA methylation (DNAm) is associated with multiple biological processes that 

track growth and development, ageing and age-related diseases. However, there is little 

understanding of what constitutes typical patterns of DNAm variation and how these patterns change 

across the life course. In this study, we synthesised a map of the human methylome across the life 

course, focussing on changes in variability and mean DNAm. 

Harmonizing DNAm datasets across eight longitudinal and cross-sectional UK-based studies, 

we meta-analysed n=13,215 blood samples from n=7,037 unique individuals from birth to 98 years of 

age. Changes in CpG-specific variability and means were described across the life course using a meta-

regression framework. CpG-specific associations of variability or mean DNAm in relation to the 

likelihood of association with 100 traits linked to environmental exposures, health and disease were 

tested within and across ten developmental age bins across the life course.  

Age was linked to DNAm variability at 29,212 CpG sites. On average, we observed a 1.26 fold 

increase in DNAm variability per year across the life course. 33,730 CpGs displayed changes in mean 

DNAm, with 64% of these loci showing decreases in DNAm over time. CpG sites linked to traits were 

in general more variable across the life course. 

Our study provides, for the first time, a map of the human methylome across the life course, 

which is publicly accessible through a searchable online database. This resource allows researchers to 

query CpG-specific trajectories from birth to old age and link these to health and disease. 
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Introduction 

A wealth of research has emphasized the importance of epigenetic mechanisms, such as 

DNA methylation (DNAm), in both developmental processes and a range of diseases, including 

cancer and neuropsychiatric outcomes (Baglietto et al., 2017; Barker et al., 2018; Smith and 

Meissner, 2013). Perhaps surprisingly, DNAm displays a strong association with aging to such a 

degree that we are now able to derive reliable and accurate predictors of chronological age in 

children and adults using DNAm alone (Hannum et al., 2013; Horvath, 2013; Ryan et al., 2020). 

However, there is still no clear understanding of what constitutes normative or healthy (versus 

atypical or disease-linked) patterns of DNAm variation and change across the life course.  

There is substantial evidence for both intra- and inter-individual CpG-specific variability and 

change over time in healthy individuals (Milnik et al., 2016; Oh and Petronis, 2021; Wang et al., 

2012). Currently, the largest study focussing on methylation trajectories from birth to late 

adolescence, Mulder et al. (2021) pooled data from two birth cohorts with a combined sample size 

of 2,348 participants and identified widespread and often non-linear changes in DNAm throughout 

childhood. Investigating CpG-specific associations with age in adulthood, McCartney et al. utilised 

data from the Generation Scotland study, including a discovery sample of 2,586 unrelated individuals 

and a replication sample of 4,450 individuals aged 18 to 93 (2019). Using this cross-sectional, adult-

only sample, researchers identified age associations in up to 31% of the CpGs analysed, where age 

was found to associate with some measurable degree of DNAm variability.  Notably, previous studies 

were either cross-sectional, or focussed predominantly on age associations with changes in mean 

levels of methylation. Restricted by the age range of the underlying study sample, they also 

characterised methylation over a more restricted time period. 

We aimed to build a map of the human methylome across the whole life course (birth to 100 

years of age) by leveraging data from multiple longitudinal and cross-sectional UK-based studies. To 
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do so, we developed harmonization protocols to ensure comparability of methylation data across 

studies, allowing us to derive meaningful conclusions about the life course methylome. We 

characterize this map in terms of changes in variability as well as mean changes across the life 

course. Results are fully searchable through our online resource MATL (8Methylation across the life 

course9) at http://browser.ariesepigenomics.org.uk/.  With this tool, we enable researchers to query 

CpG-specific methylation patterns from birth to old age to 1) assess the dynamic nature of the 

human methylome at specific developmental periods and across the life course; 2) narrow their own 

analysis search space to CpG sites that show changes in variability over the life course; and 3) link 

these patterns to traits of health and disease.  

 

Methods 

Sample Descriptions 

 We pooled ten datasets from eight birth or population-based UK-based cohort studies (Table 

1 and SM section 1.1), for a total of n=13,215 blood-based DNAm samples from n=7,037 unique 

individuals. Age ranged from birth to 98 years. 

Five of these eight cohorts were longitudinal in design with at least two repeated measures of DNAm 

available (range: 2 to 7 time points of DNAm). Four studies included females or males only; the 

remaining studies contained a roughly equal ratio of males:females. DNAm data were generated 

using Illumina EPIC or 450k HumanMethylation BeadChip arrays. 

The two cross-sectional, non-birth cohort studies (TwinsUK and Understanding Society) spanned 

several age decades and were therefore split into ten-year age bins, resulting in a total of 33 

datasets used for analysis in the current study (Table 1). 
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Cohort Age in years (mean±SD) N Sex (%female) Array Tissue type Repeated 

measures 

Reference 

ALSPAC offspring  overall unique n = 981    Cord and peripheral blood Yes Boyd et al., (2013) 

Fraser et al., (2013) 

Relton et al., (2015) 

  0.0 (0.0) 914 51 450k    

  3.6 (0.0) 85 51 450k    

  5.2 (0.1) 33 45 450k    

  7.5 (0.2) 979 50 450k    

  9.8 (0.3) 376 50 450k    

  17.1 (1.0) 981 52 450k    

  24.3 (0.7) 575 56 EPIC    

ALSPAC mothers  overall unique n = 992 

 

   Peripheral blood Yes Boyd et al., (2013) 

Fraser et al., (2013) 

Relton et al., (2015)   28.7 (4.4) 987 100 450k    

  46.9 (4.7) 992 100 450k    

ALSPAC fathers 53.3 (5.3) 588 0 450k Peripheral blood No Boyd et al., (2013) 

Fraser et al., (2013) 

Relton et al., (2015) 

1958 44.0 (0.0) 231 54 EPIC Peripheral blood No Power & Elliott, (2006) 

Maddock et al., (2019) 

Christiansen et al., (2021) 

1970 46.0 (0.0) 226 57 EPIC Peripheral blood No Elliott & Shepherd, (2006) 

Christiansen et al., (2021) 

SABRE  overall unique n = 1391    Peripheral blood Yes Tillin et al., (2012) 

Jones et al., (2020)   52.6 (7.1) 1391 0 450k    

  69.4 (6.1) 591 0 450k    

TwinsUK  overall unique n = 114    Peripheral blood No Verdi et al., (2019) 

Maddock et al., (2019) 

Christiansen et al., (2021) 

  48.1 (1.3) 9 100 EPIC    

  56.1 (3.0) 28 100 EPIC    

  64.8 (2.7) 45 100 EPIC    

  75.0 (3.0) 28 100 EPIC    

  83.9 (3.1) 4 100 EPIC    

LBC21  overall unique n = 435    Peripheral blood Yes Deary et al., (2012) 

Taylor & Deary, (2018)   79.1 (0.6) 430 62 450k    

  86.7 (0.4) 171 54 450k    

  90.2 (0.1) 77 57 450k    

LBC36  overall unique n = 904    Peripheral blood Yes Deary et al., (2012) 

Taylor & Deary, (2018)   69.6 (0.8) 899 49 450k    

  72.5 (0.7) 785 48 450k    

  76.3 (0.7) 615 48 450k    

Understanding Society  overall unique n = 1175    Peripheral blood No Benzeval et al. (2014)  

Platt et al., (2020) 

 

  28.5 (0.5) 15 47 EPIC    

  35.1 (2.8) 137 66 EPIC    

  44.9 (2.7) 233 61 EPIC    

  54.3 (3.0) 223 56 EPIC    

  64.7 (2.7) 284 59 EPIC    

  74.4 (2.7) 198 55 EPIC    

  82.9 (2.5) 72 54 EPIC    

  93.5 (2.9) 13 54 EPIC    

Table 1. Sample descriptives of the eight UK-based cohort studies, split into 33 datasets for the current study. 
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DNA methylation data preprocessing and harmonization 

 We used meffil (Min et al., 2018), an R package designed for efficient quality control, 

normalization and epigenome-wide association studies of large samples of Illumina Methylation 

BeadChip microarrays to pre-process methylation data for nine datasets. Understanding Society data 

was already pre-processed externally (see SM section 1.1). By harmonizing pre-processing we were 

able to reduce heterogeneity across cohorts due to diverse pre-processing pipelines (SM section 

1.4).  

 Importantly, meffil allows users to normalize datasets together using an approach called 

functional normalization without needing to share individual-level data. The meffil workflow divides 

functional normalization into three steps: 1) creation of raw data summaries and exclusion of DNAm 

samples failing quality control within each dataset; 2) pooling and normalization of the data 

summaries across all datasets and 3) normalization of each dataset using normalized summaries and 

exclusion of CpG sites failing quality control. Functional normalization preserves mean and variance 

structure of the data. For further details, see SM section 1.2. For numbers of samples and CpG sites 

excluded from each cohort, see SM Table 1. Detailed scripts are available at 

https://github.com/stegosaurusrox/Lifecourse_Methylome. 

 

Statistical analysis 

For a flow chart of our analysis protocol, see SM Figure 2. We extracted seven summary 

statistics per CpG across all individuals in a given dataset, using the quantile and the stats.desc 

functions in the pastecs R package: minimum, maximum, median, mean, standard deviation, 25th 

and 75th percentiles. 

Our main aim was to describe CpG-specific changes in variability and mean tendency across 

the life course and therefore, we focussed on the following two summary statistics in particular - 
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standard deviation (SD) and mean. Users can visualize these two characteristics using MATL 

(8Methylation across the life course9), the developed online tool available under 

http://browser.ariesepigenomics.org.uk/. Users are also provided with a table listing all seven 

descriptive statistics including the median and interquartile range. 

 

Change in variability and mean DNA methylation over the life course 

To assess trends in the variability of DNAm over the life course (indexed by the standard 

deviation; SD), we conducted meta-regressions of SD DNAm (outcome) on age (predictor) for each 

CpG site using summary statistics. We used a multi-level meta-regression model to account for two 

potential sources of correlation within measures of DNAm at the same CpG site. The first source 

considered was correlation within a cohort, due to the presence of repeated measures on the same 

individuals within a cohort. The second source considered was correlation between cohorts within 

the same study (e.g. mothers, fathers and offspring within ALSPAC) due to i) the possibility of within-

study similarities in pre-processing that was not fully removed during harmonization, and ii) inter-

generational relationships between individuals within the same study. Full details of the model are 

given in Supplementary Material section 1.5. 

The multi-level model is specified such that the fixed effects, random effects, and error 

terms can be either positive or negative. On the other hand, the dependent variable measures, the 

standard deviations, are always positive. We applied a log transformation to the standard 

deviations, so that both sides of the model could match. Throughout this study, we refer to the log 

transformed SD as SDDNAm for simplicity. In this model, we controlled for effects of mean methylation 

levels due to the assumption that the variance is influenced by the mean (but not vice versa).  

We also carried out meta-regressions of mean DNAm on age for each CpG site using 

summary statistics. In this model, the dependent variable measures, the mean methylation levels, 
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are a proportion. We applied a logit transformation to mean methylation levels so that both sides of 

the model could match. For full details, see SM section 1.5. 

In our main analyses, we did not control for cell type composition, as cell type changes have 

been shown to be a meaningful component of the ageing process (Valiathan et al., 2016) and 

correcting for cell type might remove these ageing effect, which we sought to explicitly model here. 

However, we also report cell-type adjusted results throughout the results and in the supplementary 

materials as a sensitivity analysis. 

To test for sex-specific associations, we fitted separate random-effects models in males and 

females. To ascertain sex-interaction effects, we combined the two single-sex subsets using a fixed-

effects model, because the (residual) heterogeneity within each subset has already been accounted 

for by fitting random-effects models above. Fitting separate single-sex models also allowed the 

amount of heterogeneity within each set to be different (Rubio-Aparicio et al., 2020). The Y 

chromosome was excluded from these analyses. 

Forty-nine percent of all assessed CpG sites (n=899,096) were present in all 33 cohorts (as 

well as in all 30 all-female and 26 all-male cohorts), with a further 45% present in all 16 cohorts (as 

well as in all 16 all-female and 11 all-male cohorts; SM Table 4). Epigenome-wide levels of 

significance were defined as p < 1*10-7. 

Gene ontology analyses were carried out using the gometh function in the missMethyl R 

package (version 1.20.4), which takes into account the probability of significant differential 

methylation due to numbers of probes per gene. 

Enrichment for methylation quantitative trait loci (mQTLs) was tested using mQTL summary 

data available for 420,509 CpGs through the GoDMC database (http://mqtldb.godmc.org.uk/). 

Clumped cis mQTLs were defined based on a threshold of p<1*10-8, while trans associations were 

based on p<1*10-14. The observed counts of age-associated CpGs with mQTLs (versus all age-
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associated CpGs) was contrasted to the expected counts, based on all mQTL-linked CpGs 

(n=190,102) versus all tested CpGs in GoDMC.  

 

Age-specific enrichment of trait-associated CpGs 

 To investigate if CpG sites, which have been linked to environmental exposures, health and 

disease traits on an epigenome-wide level, have an age-specific profile compared to un-associated 

CpGs, we downloaded the EWAS catalogue (http://www.ewascatalog.org/; accessed Jul 19, 2019) 

and selected probes that have been linked to at least one trait at an epigenome-wide level (p < 1*10-

7) in blood tissue (referred to as CpGEWAS). We then grouped these CpGs into 12 time bins (birth, 0.1-

5 years, 6-10 years and then every decade), according to the mean age of the study that reported 

the finding. No associations were listed for any age group +80y, leaving 10 time bins for analysis. We 

identified 128 unique EWAS with a sample size of at least 100 individuals, reporting 103,456 unique 

associations for 100 traits. There were more publications focussing on birth and on samples between 

the age of 40-70 years than on any other age period. Studies on these age periods were also the 

largest in sample size and reported the greatest number of associations (SM Figure 11 and SM Table 

5). As all listed studies were based on the 450k array, our analyses were restricted to probes on this 

array only. 

 

Results 

Widespread increase in CpG-specific variability across the life course  

 Our main focus was to investigate how SDDNAm, a measure of  CpG-specific variability, 

changed across the life course. An epigenome-wide meta-regression of SDDNAm on age revealed wide-

spread age associations across the genome. Specifically, 29,212 CpGs (3.25% of all tested probes) 

passed a significance threshold of 1*10-7 (lambda = 3.02; Figure 1A, SM Figure 6A and SM Table 6). 
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The majority of these associations (98.74%) were positive, indicating an increase in CpG-specific 

variability over the life course (Figure 1A and 1B). On average, we observed a 1.26 fold increase in 

SDDNAm per year over and above any increase expected from concurrent changes in mean 

methylation. This average effect estimate decreased to 1.23 once controlling for cellular 

composition (SM section 2.1).  

The largest increase in variability across all 33 datasets, after correcting for changes in mean 

methylation, was observed for cg08173692 (blog(SD)= 0.64; 95% CI: [0.47; 0.80] corresponding to a 

1.89 fold increase per year; Figure 1B). This CpG is located proximal to the Proline-rich Protein gene 

PRR18. We also found evidence for a functional link between cg08173692 and PRR18. Thirty-three of 

the 46 mQTLs for cg08173692 listed in the GoDMC database were also eQTLs for PRR18 (SM Table 

7). The association between age and SDDNAm was slightly stronger for overall more variable CpG sites 

(rho=0.32, SM Figure 8A). In other words, higher overall variability related to increased variability 

over time.    

Age cohort effects did not explain all variance in SDDNAm with residual heterogeneity 

remaining for 86.55% of probes overall (mean tau2=0.11) and for 67.51% of those associated with 

age (mean tau2=0.05). Residual heterogeneity was largely reduced once controlling for cell type 

(mean tau2=0.008). Gene ontology analysis indicated processes such as synaptic signalling to be 

linked to changes in SDDNAm (SM Table 8). SDDNAm-associated CpGs were not enriched for or depleted 

of mQTLs (�2=0.35, p=0.55), suggesting statistically indiscernible genetic contribution to age-related 

methylation variability. 
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Figure 1. On the left, Miami plots of age associations with A) SDDNAm levels and C) meanDNAm levels 

across the lifecourse with chromosome position on the x-axis and -log(p-value)*sign(β) on the y-axis. 

On the right, mean methylation (±SD) of selected CpG sites showing changes in B) SDDNAm levels or D) 

meanDNAm levels across the lifecourse. 
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Widespread changes in mean methylation levels across the life course 

 Age was associated with meanDNAm in n=33,730 CpG sites (3.75% of all probes; Figure 1C, SM 

Table 9). As expected, associations were widespread with high genomic inflation (lambda = 3.41) 

(SM Figure 6B). Mean methylation changes in probes were largest in infancy, changing on average by 

3% percentage points per year compared to 0.1% in adulthood. See Figure 1D for examples of CpGs 

sites with age associations on meanDNAm. MeanDNAm decreased with age in 64.33% of these probes. 

The effect estimate of the association between age and meanDNAm was very weakly (yet negatively) 

correlated with meanDNAm (rho=-0.22; SM Figure 8B), possibly representing floor or ceiling effects. 

That is, age associated with meanDNAm slightly more positively (or less negatively) for less methylated 

CpG sites, but slightly more negatively (or less positively) for highly methylated CpG sites.  Residual 

heterogeneity between studies was present for almost all age-associated CpGs (99.03%, mean tau2 = 

0.06) but slightly lower compared to all probes on the array (mean tau2 = 0.10). Additionally 

correcting for cellular composition further decreased these heterogeneity levels (mean tau2=0.005; 

SM section 2.1 and SM Table 9). Gene ontology analyses highlighted processes linked to nervous 

system development (SM Table 8). MeanDNAm-associated CpGs were depleted of mQTLs (�2=710.9, 

p=1.28*10-156), suggesting that age-associated CpG sites are under less genetic control than CpG 

sites overall. Overall, these results indicate widespread, but small changes in mean methylation 

across the life course, with a trend towards a decrease in methylation with age, rather than an 

increase.  

 

Age associations with mean methylation confirm previous findings 

 The proportion of CpGs associated with age was much smaller than reported elsewhere (e.g. 

3.75% versus 18.96% in McCartney et al. (2019) and 51.6% in Mulder et al. (2021)). We therefore 

undertook a more detailed comparison with associations reported in one of these previous studies, 
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which were obtained from a large, non-overlapping sample of adults from GenerationScotland 

(2019).  

Regression coefficients for our 33,730 age-associated CpG sites correlated very highly 

between studies (replication.1: rho=0.93; replication.2: rho=0.92; SM Section 2.2). The reverse was 

also true: regression coefficients of age-associated CpG sites reported in McCartney et al. (2019)  

correlated strongly between studies (replication.1: rho=0.88; replication.2: rho=0.87). The strength 

of these correlations decreased slightly once controlling for cellular composition in our analysis 

(rho9s between 0.74 to 0.81; see SM section 2.2 and SM Figure 7). Furthermore, the proportion of 

probes with decreasing meanDNAm  over time was largely consistent across studies (64.33% versus 

55.66% in McCartney et al. (2019)).  

These findings suggest our identified CpGs reflect a subset of true positives, though we were 

possibly slightly underpowered to detect small associations due to a meta-regression approach 

based on summary data from multiple studies compared to an individual-level analysis performed in 

a single study by McCartney et al (2019).  

 

Age associations are independent of probe-specific reliability 

 Our meta-analysis results were based on data measured on two different microarrays (450k 

and EPIC), previously shown to display a mean inter-array reliability as low as 0.21 across CpG sites 

(Sugden et al., 2020). We therefore assessed – using reliability measures as reported in Sugden et al. 

(2020) – the degree to which our findings could be influenced by low probe-specific reliability. 

Within each of the 33 cohorts, we could replicate previous findings, namely 1) a positive association 

between the SD (untransformed) and reliability and 2) an inverse-U shaped relationship between 

mean methylation (untransformed) and reliability (SM Figure 9A and 9B). However, our meta-

regression results of SDDNAm and meanDNAm on age across cohorts were independent of reliability 
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estimates (SM Figure 9C and 9D), indicating that our results were not driven by low inter-array 

reliability. 

 

Little evidence for sex-specific effects on DNAm levels and variability 

 Separate analysis in females revealed 15,385 CpGs (versus 15,259 in males) linked to SDDNAm 

with a moderate degree of overlap (SM Figure 10A). Age-by-sex-interaction effects were only 

detected in 112 CpG sites. Roughly a third of these were located on the X chromosome, where the 

association between age and SDDNAm was generally weaker in males (mean betamales=-0.29 

corresponding to a 25% relative decrease in the age effect in males). Across the autosomes, 

associations were overall larger in males (mean betamales=0.56, corresponding to a 75% relative 

increase in the age effect in males compared to females; SM Table 10). 

 For meanDNAm, we discovered slightly more age-associated CpGs in males (nCpG=31,537) than 

in females (nCpG=19,963; SM Figure 10B). Testing formally for an age-by-sex-interaction effect 

identified 1,279 CpG sites, of which 81.86% displayed a more positive (i.e. sharper increase in mean 

level over the life course) age association in males compared to females (SM Table 11). We did not 

observe the same clustering of effects on the X chromosome, as we did for SDDNAm. 

 Together, these findings suggest few sex-specific associations between age and SDDNAm, 

which were mainly localized to the X chromosome. Sex-specific age associations with meanDNAm were 

more widespread across chromosomes, but still somewhat rare. 

 

Age-specific enrichment of trait-associated CpGs 

 As a final step, we investigated if CpG sites associated with traits have different levels of 

SDDNAm and meanDNAm than non-trait associated CpGs. We similarly asked if age associations with 

SDDNAm or meanDNAm differed between trait- and non-trait associated CpGs.  
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First, we found that trait-associated CpG sites tended to have higher SDDNAm at most ages 

except in childhood and middle age (50s; Figure 3A and SM Table 12). In other words, trait-

associated CpG sites were more variable, but not consistently so across all ages.  

The patterns for all other associations were more complex. Although trait-associated CpGs 

were generally more variable, they showed both further increases, but also decreases in variability 

over the life course compared to unlinked CpGs. The same was true for meanDNAm levels (Figure 3B, 

SM Figure 12A and 12B and SM Table 12). 
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Figure 3. A) SDDNAm (intercept) and B) the change in SDDNAm (slope) across the life course in CpGs 

reported in EWAS versus un-reported CpGs by age period (in panels). Values on the y-axis refer to a 

regression with log(SD) as an outcome. Larger values indicate an increase in variability. Trait-

associated CpGs were identified using the EWAS catalog database (http://ewascatalog.org/). 

  

Lifecourse Methylome Browser 

 We made all summary results openly available through our online resource MATL at 

http://browser.ariesepigenomics.org.uk/. Researchers can query CpG-specific trajectories from birth 

to old age, for example to narrow their own analysis search space to CpG sites that show changes in 

variability over the life course. 

 

Discussion 

Summary of findings 

The main finding of this study is that age-linked changes in DNA methylation variability and 

mean levels occur across the methylome. DNA methylation variation changes with age at 3.25% of 

CpG sites, almost always increasing with age. DNA methylation levels change across the life-course at 

3.75% of CpG sites, two-thirds of these decreasing with age. Genetic influences shaped age-related 

mean methylation levels, but not methylation variability. Sites with changing variation were more 

likely to have been linked to traits than those with more constant variation. However, there was a 

large degree of residual heterogeneity between studies suggesting that individual CpG sites are 

characterised by unique patterns of variability across the life course.  Our study provides, for the first 

time, a map of the human methylome across the life course, which is publicly accessible through a 

searchable online database at http://browser.ariesepigenomics.org.uk/. With this resource, 
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researchers can query CpG-specific trajectories from birth to old age, link these to health and disease 

traits and assess the dynamic nature of the human methylome at specific developmental periods and 

across the life course.  

  

Age associations with SD DNA methylation 

We found that the vast majority of probes showed a positive association between age and 

SD of DNA methylation, indicating an increase in CpG-specific variability across the lifespan, in line 

with previous studies (Slieker et al., 2016; Talens et al., 2012). This variability could have important 

downstream transcriptional effects, as a recent study reported that promoters with increased 

methylation heterogeneity related to increased transcriptional heterogeneity of their associated 

genes (Hernando-Herraez et al., 2019). 

Findings from two studies suggest that the increase in DNA methylation variability with age 

might be driven by an increase of environmental or stochastic influences over time, rather than a 

decrease in stable genetic influences. Gaunt et al. (2016) showed that the average SNP heritability 

decreased only slightly from 24% in childhood to 21% in middle age; and Talens et al. (2012) 

reported that methylation variability increased with age in 230 MZ twin pairs (18-89 years), further 

suggesting that environmental (or stochastic) factors might contribute to these phenomena. It is 

possible that our findings of increased variability relate to epigenetic drift, which is often considered 

a hallmark of ageing and thought to be driven by the loss in fidelity of epigenetic marks over time 

(Mendelsohn and Larrick, 2017). Future studies should assess the degree to which increases in 

variability (and epigenetic drift) are a contributor to biological ageing or merely a bystander 

phenomenon.   
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The largest increase in variability in a single CpG site was observed at cg08173692 proximal 

and functionally linked to the Proline-rich Protein 18 (PRR18) gene. Interestingly, this gene is linked 

to genetic variation associated with human longevity (Yashin et al., 2010).  

Similarly, a study of age-by-sex-specific variability in DNA methylation found marked sex 

differences in another Proline-rich Protein gene coding for PRR4 which diverged further with age 

(Yusipov et al., 2020). Proline is known to pay an important role in the immune response, and 

proline supplementation has shown to increase life expectancy in microbial populations (Canfield 

and Bradshaw, 2019). The proline-rich Akt substrate is the inhibitory subunit of the mTOR complex 1 

(mTORC1). The inhibition of this complex is currently the only mechanism known for increasing 

lifespan in all model organisms studied (Saxton and Sabatini, 2017). Future studies are needed to 

further investigate the role of DNA methylation as an aging mechanism that regulates proline-rich 

proteins in the mTOR signalling hub.  

 

Age associations with mean DNA methylation  

Over the lifespan, mean methylation of a considerable proportion of probes changed with 

age. Slightly more CpG sites showed a decrease in methylation than an increase, consistent with 

previous research (McCartney et al., 2019; Mulder et al., 2021). However, the overall proportion of 

probes we identified was much smaller than in these previous studies (3.75% versus 20% and 51.6% 

respectively). It is possible that our meta-regression approach was underpowered to detect small 

associations compared to an individual-level analysis applied in McCartney et al. (2019) and Mulder 

et al. (2021). However, it is also possible that CpG-specific changes are more developmentally 

specific. CpGs that fluctuate in mean methylation during childhood might not continue to do so in 

adulthood and vice versa. In fact, recent research suggests that age-related CpG-specific changes are 

logarithmic, with steep changes in childhood that taper off in adulthood (Snir et al., 2019). As 
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previous research was confined to specific stages in the life course, either the period from birth to 

adolescence (Mulder et al., 2021) or adulthood only, (McCartney et al., 2019), these studies might 

have been better able to detect these developmentally specific changes, which our models did not 

explicitly examine. Together with the large degree of heterogeneity, reported in the current study, 

this suggests that the human methylome might not change linearly throughout the life course, 

further emphasizing the need to map methylomic patterns with more granularity.     

 

Sex-specificity 

           We found weak age-by-sex interaction effects on mean DNA methylation or variability 

across the life course, which partially aligns with previous findings. The Copenhagen puberty cohort 

found that 457 methylation sites – similar to the number we report – are tightly associated with 

pubertal transition and altered hormone levels, with stronger associations in boys than in girls 

(Almstrup et al., 2016). However, Han et al. (2019) reported age-by-sex interaction in around 13.17% 

of probes during puberty, which is a much higher estimate than what we found. It might be that 

these changes are specific to puberty or narrow during later developmental stages such as 

menopause and hence do not remain detectable across the life course. A study analysing 

methylation data of 703 newborns (one of the datasets used in the current work) also reported 

weak sex effects on variability in only 240 CpGs (Staley et al., 2020),  further highlighting the need 

for a life course approach to study the dynamic nature of the human DNA methylation. 

 

Developmental enrichment of trait-associated CpGs 

It was evident that CpGs, which have already been linked to traits, were consistently more 

variable in most developmental stages throughout the life course compared to CpG sites that have 
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not yet been linked to phenotypes. This aligns with Sugden et al. (2020), who showed that CpG sites 

with increased reliability (which itself was correlated with methylation variance) were more 

consistently associated with smoking across several studies. Our study extended that finding by 

showing that the link between increased variance and trait-associability might hold for traits other 

than smoking and across the life course.  In contrast, however, we observed some independence 

from CpG reliability. It is also possible that our finding represents a statistical by-product (or 

8survival9 effect) as only CpGs that show discernible inter-individual variation would be detected as 

having an association with a particular trait, while largely invariant probes would go undetected. 

We were unable to see the same consistent associations with mean methylation levels, 

suggesting that studying variability – rather than mean differences in methylation – might be an 

additional aspect that could be considered when assessing the degree to which DNA methylation 

links to traits across the life course. 

 

Overlapping trends 

We observed roughly similar numbers of CpG sites with age-associated DNA methylation 

levels or variance. These two sets of CpG sites were largely non-overlapping, which is partially due to 

design as age association with variability were controlled for concurrent changes in mean methylation. 

This is only partially in line with reports by Slieker et al. (2016), who reported i) four times as many 

probes linked to mean levels than to variability and ii) a 48.2% overlap between CpGs sites that were 

age-related variably methylated and at the same time showed a change in mean methylation levels 

with age. In their study, the authors covaried for cell type and sex effects, which might account for the 

observed differences and suggests that some of the age effects on variability, but not on mean 

methylation, might relate to changes in cell type composition or sex.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.18.460916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460916
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Limitations 

Our findings should be considered in light of the following limitations. The genomic inflation 

factor, the deviation in the distribution of the observed and expected test statistic, was shown to be 

elevated.  In this study, this is probably explained by a poly-epigenic signal that is shared across many 

CpG across the genome, in line with previous reports (McCartney et al., 2019).  However, high genomic 

inflation factors can also be caused by population stratification or strong associations between CpG 

sites. 

In our main analysis, we did not control for cellular composition, as changes in cell type are 

part of the aging process (Valiathan et al., 2016). In line with this, we observed an attenuation of effect 

estimates (especially on mean methylation) and a reduction in residual between-cohort 

heterogeneity, when controlling for cell type. However, the overall patterns of increased variability 

and more widespread decreases than increases in mean methylation across the life course remained 

similar. Yuan et al. (2015) - using data from 656 samples from individuals aged 19 to 101y – also 

demonstrated that the age-associated increase in variability in methylation is largely independent of 

the DNA methylation variations found between blood cell types with 69% of methylation sites 

remaining stably associated with age, after cell type adjustment. Even higher concordance rates of 

78.4% were observed comparing sets of variably methylated probes, obtained from whole blood vs 

purified monocytes (Slieker et al., 2016). Furthermore, our uncorrected results correlated strongly 

with those of McCartney et al. (2019), which were controlled for cell type. 

Lastly, our analyses were based on pooling data from two different microarrays and previous 

studies have shown low inter-array reliability of methylation measurement (Bose et al., 2014; Dugué 

et al., 2016; Sugden et al., 2020). We developed a rigorous harmonization protocol to minimize these 

effects and subsequently found little evidence that our results were affected by low reliability, but this 

needs further validation as more and more studies across the age ranges are becoming available using 

the EPIC array. 
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Conclusion 

In summary, by drawing together harmonized DNA methylation data from eight longitudinal 

and cross-sectional UK-based studies with a total of n=13,215 samples from n=7,037 unique 

individuals aged 0 to 98, we mapped the human methylome across the life course and described 

widespread changes in variability and mean methylation across the life course, which were largely sex-

independent. Trait-associated CpGs, identified from previously published EWAS studies, tended to be 

more variable. Our data have been curated as an openly accessible and searchable online database, 

allowing researchers to query CpG-specific trajectories from birth to old age, moving forward research 

in the field of life course epigenetics.  
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