

1 **MetaTrass: High-quality metagenome assembly on the human
2 gut microbiome by co-barcoding sequencing reads**

3 Yanwei Qi^{1,2,3#}, Shengqiang Gu^{1,4#}, Yue Zhang¹, Lidong Guo^{1,4}, Mengyang Xu^{1,2,3,5},
4 Xiaofang Cheng^{5,6}, Ou Wang^{5,6}, Jianwei Chen¹, Xiaodong Fang^{5,7}, Xin Liu^{1,2,3}, Li
5 Deng^{1,2,3*}, Guangyi Fan^{1,2,3,5*}

6

7 ¹ *BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China*

8 ² *State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083,
9 China*

10 ³ *China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China*

11 ⁴ *College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049,
12 China*

13 ⁵ *BGI-Shenzhen, Shenzhen 518083, China*

14 ⁶ *MGI, BGI-Shenzhen, Shenzhen 518083, China*

15 ⁷ *BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China*

16

17

18 [#]These authors contributed equally to this work.

19 ^{*}Corresponding authors (Guangyi Fan, email: fanguangyi@genomics.cn; Li Deng,
20 email: dengli1@genomics.cn.)

21

22 **Running title: Qi Y et al / Metagenome assembling of the human gut microbiome**

23

24

25

26

27

28

29

30 **Abstract**

31 With the development of sequencing technologies and computational analysis in
32 metagenomics, the genetic diversity of non-conserved regions has been receiving
33 intensive attention to unravel the human gut microbial community. However, it
34 remains a challenge to obtain enough microbial draft genomes at a high resolution
35 from a single sample. In this work, we presented MetaTrass with a strategy of binning
36 first and assembling later to assemble high-quality draft genomes based on
37 metagenomics co-barcoding reads and the public reference genomes. We applied the
38 tool to the single tube long fragment reads datasets for four human faecal samples,
39 and generated more high-quality draft genomes with longer contiguity and higher
40 resolution than the common combination strategies of genome assembling and
41 binning. A total of 178 high-quality genomes was successfully assembled by
42 MetaTrass, but the maximum of 58 was generated by the optimal common
43 combination strategy in our tests. These high-quality genomes paved the way for
44 genetic diversity and lineage analysis among different samples. With the high
45 capability of assembling high-quality genomes of metagenomics datasets, MetaTrass
46 will facilitate the study of spatial characters and dynamics of complex microbial
47 communities at high resolution. The open-source code of MetaTrass is available at
48 <https://github.com/BGI-Qingdao/MetaTrass>.

49

50 **KEYWORDS:** Metagenome assembly, Synthetic long reads, Taxonomic binning,
51 Microbiome composition, Phylogenetic trees

52

53

54 **Introduction**

55 Through sequencing and analyzing the DNA of microbial communities directly from
56 the environment, metagenomics has showed important roles in advancing the study of
57 uncultured microbiomes [1, 2]. Comprehensive databases of metagenome-assembled
58 genomes, especially for the human gut microbiome, are massively expanded to

59 completely understand the genomic taxonomic structure of different microbiome
60 communities according to genetic similarity [3, 4]. The progresses in metagenomics
61 have shed new light on the study of spatial distribution and dynamics of complex
62 microbial communities from the human gut [5, 6].

63 Based on the function mining of high-quality strain-resolved genomes, it is
64 realized that genotypic differences among strains are strongly correlated with their
65 phenotypic differences [7, 8]. The importance of intra-species non-homologous genes
66 have been intensively studied in the field of pathogenicity, and many new species
67 with both pathogenic and commensal strains have been found [9-11]. Indeed, the
68 percentage of conserved intra-species homologous genes shared between strains is as
69 low as 40% [12], and the large part of non-conservation region is thought of as the
70 genetic origin of phenotypic diversity. Thus, complete draft genomes from a
71 microbiome sample at the species level will enable a more comprehensive study of
72 intra-species genome diversity, but it is still a challenge to generate sufficient high-
73 quality genomes from metagenomic datasets.

74 Most of current approaches to analyze the microbiome communities are based on
75 high-throughput and low-cost next-generation sequencing (NGS) reads. Many highly
76 modularized computational tools have been developed such as genome assemblers,
77 genome binners, taxonomic binners and taxonomic profilers [13-15]. The
78 combinations of assembling first and binning later have been commonly used to
79 generate metagenome-assembled genomes. In these strategies, a mass of short reads
80 from a microbial community are firstly assembled to generate longer sequences by
81 metagenomics assemblers with the consideration of uneven coverage depths of
82 different microbial species [16-18]. Then the assembled sequences are grouped into
83 individual genomes by genome binners based on similar *K-mer* composition and read
84 coverage [19-21]. As a result, draft genomes with non-conserved genes are retrieved
85 from various microbial communities. However, it is impossible to solve the
86 assembling problem of the long inter-species repeats by the short NGS reads, so the
87 contiguity of the draft genomes assembled by NGS reads is still not enough long for
88 studying the long structural variations in metagenomics.

89 Various sequencing technologies with long-range information accompanied by
90 specialized computational tools are promised to overcome the problem of long repeats.
91 Third-generation single-molecule real-time sequencing (TGS) technologies developed
92 by Pacific Biosciences and Oxford Nanopore Technology (ONT) can produce
93 contiguous reads with lengths up to hundreds of kb, and show great potential to
94 generate complete genomes from both cultured and uncultured microbial communities
95 [22-24]. With using the chromatin-level contact probability information generated by
96 high-throughput chromosome conformation capture (Hi-C) technology, more high-
97 quality genome bins with improved contiguity can be retrieved [25]. Additionally, the
98 co-abundance of species in multiple samples with the common *K-mer* composition are
99 also used to improve the capability to retrieve high-quality genome bins for NGS
100 datasets [26]. However, there are limitations for these approaches. The high
101 sequencing error rate in TGS long reads hampers the distinction between true
102 variations and sequencing errors. An effective contact map with Hi-C library can only
103 be established for a draft genome with preferable contiguity. Constructing co-
104 abundance in multiple samples ignores the genome characteristics of a single sample
105 and increase the sequencing cost.

106 The co-barcoding sequencing library [27-31], an improved short-read sequencing
107 with long-range genomic information, can provide an alternative way to improve
108 metagenomics analyzing. In a co-barcoding library construction, long fragments
109 sheared from DNA samples are firstly distributed into different isolated partitions, and
110 then short-read fragments from the long fragment in the same partition are labeled
111 with a unique barcode sequence, finally the co-barcoded fragments are sequenced by
112 standard short-read sequencing platforms. For different co-barcoding libraries such as
113 BGI's single tube long fragment reads (stLFR) library [30], 10X Genomics' linked-
114 reads library [32] and Illumina's contiguity preserving transposase sequencing library
115 [28], different technical metrics in the total barcode number and the short-read
116 coverage of the long fragment have a great impact on their powers in the downstream
117 analysis [33-36]. The co-barcoding correlation on the draft sequences or the
118 assembled graph have been successfully applied to improve the contiguity of

119 assembled genomes for both large eukaryotic genomes [37-39] and metagenomes [29,
120 40, 41]. All these methods are still the common combination strategy in principle,
121 leaving the inherent problem of long repeats among species with uneven abundance
122 unsolved in efficiently constructing high-quality draft genomes for complex microbial
123 communities.

124 In this work, we introduced a pipeline of **Metagenomics Taxonomic Read**
125 **Assembly of Single Species** (MetaTrass) based on co-barcoding sequencing data and
126 references. Different from the common strategies, MetaTrass was a strategy of
127 binning first and assembling later. The co-barcoding information was used not only to
128 improve the assemblies by implementing co-barcoding assemblies, but also to
129 simplify the dataset before assembling using microbial references with the help of
130 taxonomic binning. We apply MetaTrass to stLFR datasets of a mock metagenome
131 community and four real gut microbiome communities to evaluate its capability of
132 producing high-quality draft genomes with high contiguity and high taxonomic
133 resolution. The results were benchmarked by comparing to the common combinations
134 of several mainstream tools. Meanwhile, the microbiome composition and genetic
135 diversity in the four human gut samples were quantitatively analyzed with using the
136 high-quality draft genomes assembled by MetaTrass. We expected that the high-
137 quality draft genomes with taxonomic information at the species level assembled by
138 our tools would be convenient to make more extensively use to investigate various
139 microbial communities.

140

141 **Materials and methods**

142 **Datasets**

143 A mock microbial and four gut microbial communities were analyzed to evaluate the
144 efficiency of MetaTrass. The mock microbial community (ZymoBIOMICSTM
145 Microbial Community DNA Standard) consists of 8 isolated bacteria with the
146 abundance of about 12% and 2 fungi with the abundance of about 2%. The four gut
147 microbial DNA samples include faeces of three healthy volunteers and one patient

148 with inflammatory bowel disease. The stLFR libraries were constructed according to
149 the standard protocol [30]. The DNA samples were firstly sheared into long fragments,
150 and then the long fragments were captured into a magnetic microbead with a unique
151 barcode sequence. Finally, each long fragment was broken and hybridized with a
152 unique barcode by the Tn5 transposase on the surface of the microbead. The stLFR
153 libraries of the mock and the patient sample were sequenced on BGISEQ500 platform,
154 and those of healthy samples were sequenced on MGISEQ2000 platform. The read
155 length in the read pair was 100 bp for all datasets. The mock and three healthy sample
156 libraries were individually allocated to a half lane, and a total of about 50 Gb raw
157 reads were generated. The patient library was allocated to a full lane, generating about
158 100 Gb raw reads. Barcode sequences were extracted from the end of read2 and then
159 replaced by numerical symbols in the read names in the FASTQ file with an in-house
160 script. SOAPfilter_v2.2 with parameters (-y -F
161 *CTGTCTCTTATACACATCTTAGGAAGACAAGCACTGACGACATGA* -R
162 *TCTGCTGAGTCGAGAACGTCTCTGTGAGCCAAGGAGTTGCTCTGG* -p -M 2 -f -I
163 -Q 10) was used to clean out low-quality raw reads with adaptors, excessive confused
164 bases, and high duplications. Finally, 55.65 Gb clean data were retained for the mock
165 microbiome, 34.48 Gb for the first healthy sample (H_Gut_Meta01), 35.33 Gb for the
166 second (H_Gut_Meta02), 37.88 Gb for the third (H_Gut_Meta03), and 97.20 Gb for
167 the patient sample (P_Gut_Meta01).

168

169 **Taxonomic binning**

170 We adopted Kraken2 (version 2.0.9-beta) [42] to classify stLFR reads into different
171 species. Firstly, a customized reference databases were constructed according to the
172 microbial community. Specially, references attached to the ZYMO product were used
173 for the mock sample. The Kraken2 database of the Unified Human Gastrointestinal
174 Genomes (UHGG) collection [3] was used to study the gut samples, and which
175 included 4542 representative genomes at the species level. Then, the corresponding
176 stLFR reads were classified with default parameters.

177

178 **Co-barcoding reads refining**

179 Since a taxonomic tree of references was established to reduce the number of multiple
180 hits of a *K-mer* from inter-species homologous sequences in Kraken2, the reads from
181 these regions were classified into the lowest common ancient (LCA) rank higher than
182 its corresponding species. Several works tried to reallocate these reads to species by
183 statistical inferences using the coverage depth or co-barcoding information of intra-
184 species homologous region of a species [43, 44]. In MetaTrass pipeline, the co-
185 barcoding correlation between reads classified into a species and those classified into
186 high LCA ranks was used to reduce the false negative of reads classified into high
187 LCA rank. Reads classified into a species level is defined as the taxonomic reads of
188 the species. In this step, we collected and refined reads for each barcode according to
189 the number of reads in the taxonomic reads (*Num_T*) and the ratio of these reads to
190 the total reads (*Ratio_T*). Barcodes appearing in the taxonomic reads were firstly
191 extracted as candidates. Then, we ranked candidates first in order of *Num_T* from
192 large to small, and then *Ratio_T* for those with the same *Num_T*. Finally, reads with a
193 barcode of *Ratio_T* larger than a threshold were chose based on the barcode rank.
194 Since sufficient read coverage is required for assembling a complete genome, only the
195 read sets of one species with abundance higher than 10 \times were refined by co-barcoding
196 information. The abundance of each species was roughly calculated according to the
197 coverage depth of the taxonomic reads on the reference. Meanwhile, we set a data size
198 threshold of the refined reads to reduce the computational consumption for species
199 with extremely high abundance (e.g., 300 \times). Paired-end reads were extracted by Seqtk
200 (version 1.3-r114-dirty) according to the barcode-related read names from the FASTQ
201 file of clean reads. Note that there were still some false positive reads, although
202 *Ratio_T* was set to reduce them caused by the collision of long fragments from
203 different species in the same microbead. Sequences assembled by these reads would
204 be further filtered as following description in the section of sequences purifying.

205

206 **Co-barcoding reads assembling**

207 Reads of a single species with abundance higher than 10 \times were assembled by

208 Supernova (version 2.1.1), which is a co-barcoding *de novo* assembler for single large
209 eukaryotic genomes with high performances. Supernova was designed for linked-
210 reads of 10X Genomics, which have different barcode sequences and formats from
211 stLFR reads. Thus, we converted the stLFR reads into linked-reads FASTQ files with
212 an in-house script. Additionally, the parameter *--accept-extreme-coverage* was set to
213 *yes* to adapt to large coverage depth differences.

214

215 **Sequences purifying**

216 The similarity between whole genomes based on the alignment fraction (AF) and
217 average nucleotide identity (ANI) have been commonly adopted to circumscribe
218 species [3, 4]. MetaTrass also used the parameters of AF and ANI between assembled
219 contigs and the reference to purify the sequences assembled by the refined co-
220 barcoding reads. ANI was calculated independently for each alignment. AF was
221 defined as the ratio of total alignment length to the total contig length. The alignments
222 with ANI larger than a threshold were counted. In our practice, we set ANI threshold
223 to 90%, and AF threshold to 50%. The alignments between contigs and references
224 were generated by QUAST (version 5.0.2) [45] with default parameters, except that
225 the identity threshold to obtain valid alignment was set to 90%.

226

227 **Combinations of assembling first and binning later**

228 In a standard analysis of NGS metagenomics dataset, the combination of *de novo*
229 genome assembling first and binning later was commonly adopted. We compared
230 different combinations to MetaTrass by analyzing the mock and four gut samples. In
231 our tests, the stLFR co-barcoding reads were assembled by NGS assemblers including
232 IDBA-UD (version 1.1.3), MEGAHIT (version 1.1.3), and MetaSPAdes (version
233 3.10.1) or co-barcoding assemblers including Supernova [37], Athena (version 1.3.0)
234 [29], and CloudSPAdes (version 3.13.1) [40]. Then, all these draft assemblies were
235 binned by two genome binners, MetaBAT2 (version 2.12.1)[21] and Maxbin2.0
236 (version 2.2.5) [20]. Since CloudSPAdes and Athena were not designed for stLFR
237 reads, we made an appropriate format conversion with an in-house script where

238 LongRanger (version 2.2.2) [46] was used. In genome assembling, Supernova was run
239 with the same parameters as those have been adopted in MetaTrass. IDBA-UD,
240 MEGAHIT, MetaSPAdes, Athena, and CloudSPAdes were run with default
241 parameters. All the assembling results were deposited into CNGB Sequence Archive
242 (CNSA) [47] (<https://db.cngb.org/cnsa/>) of China National GeneBank DataBase
243 (CNGBdb) [48] with accession number CNP0002163. In genome binning, MetaBAT2
244 and Maxbin2.0 were run with default parameters.

245

246 **Evaluations**

247 Both reference-based and reference-free assessments were used to evaluate the quality
248 of assemblies obtained using different strategies. For the mock microbial community
249 with definite references, the reference-based tool QUAST was used to evaluate
250 contiguity and accuracy of metagenomics assemblies. Minimap2 was used to map
251 assemblies to references and get valid alignments with the identity threshold of 95%.
252 Then, the statistics such as genome fraction, NG50/NGA50, and number of
253 misassemblies were assessed from the alignments with default parameters. For the
254 real gut microbial communities, the reference-free tool CheckM (version 1.1.2) [49]
255 were run with default parameters to evaluate the completeness and contamination of
256 each genome from metagenomics assemblies in addition to QUAST. Following the
257 guidance proposed in CheckM, we defined a high-quality assembly if it has >90%
258 completeness and <5% contamination and a medium-quality assembly if it has >50%
259 completeness and <10% contamination and does not meet the high-quality criterion.
260 In addition, the statistics of each genome such as N50, genome size, and taxonomic
261 rank were also obtained by CheckM, where the taxonomic rank was used to
262 demonstrate the resolution of a genome bin.

263

264 **Variation and phylogenetic analysis**

265 All the high-quality genomes assembled by MetaTrass were used to call variations for
266 the four gut samples. We aligned each genome to the corresponding reference using
267 minimap2 (2.17-r974-dirty) with parameters (-x asm5) to prevent an alignment

268 extending to regions with diversity >5%. SAMtools (version 1.9) [50] and PAFtools
269 were used to convert the BAM file of initial unsorted alignments into a PAF file of
270 sorted alignments. We identified variations using the “call” module in PAFtools with
271 parameters (-L 10000) to filter out the alignments shorter than 10,000 bp. SNVs only
272 referred to single nucleotide substitutions, excluded single-base insertions or deletions.
273 Insertions or deletions with length shorter than 50 bp were defined as small indels,
274 and the others were large indels. In determination of shared variations among species
275 in different samples, the position and sequence information of a variation were used.
276 When variation information is the same for species genomes in different samples, the
277 variation was shared.

278 We used the “classify_wf” function of GTDB-tk (version 0.3.1) [51] to conduct
279 taxonomic annotation of the genome bins obtained using the common strategies with
280 default parameters. Considering the procedure of UHGG database construction [4],
281 genome bins were assigned at the species level if the AF to the close species
282 representative genomes was higher than 30% and ANI was higher than 95%. We used
283 FastTree (version 2.1.10) [52] to build maximum-likelihood phylogenetic trees of the
284 high-quality genomes assembled by MetaTrass. The input of protein sequence
285 alignments was produced by GTDB-Tk using marker gene set of 120 bacteria and 122
286 archaea. Interactive Tree of Life (iTOL version 4.4.2) [53] was used to visualize and
287 annotate trees.

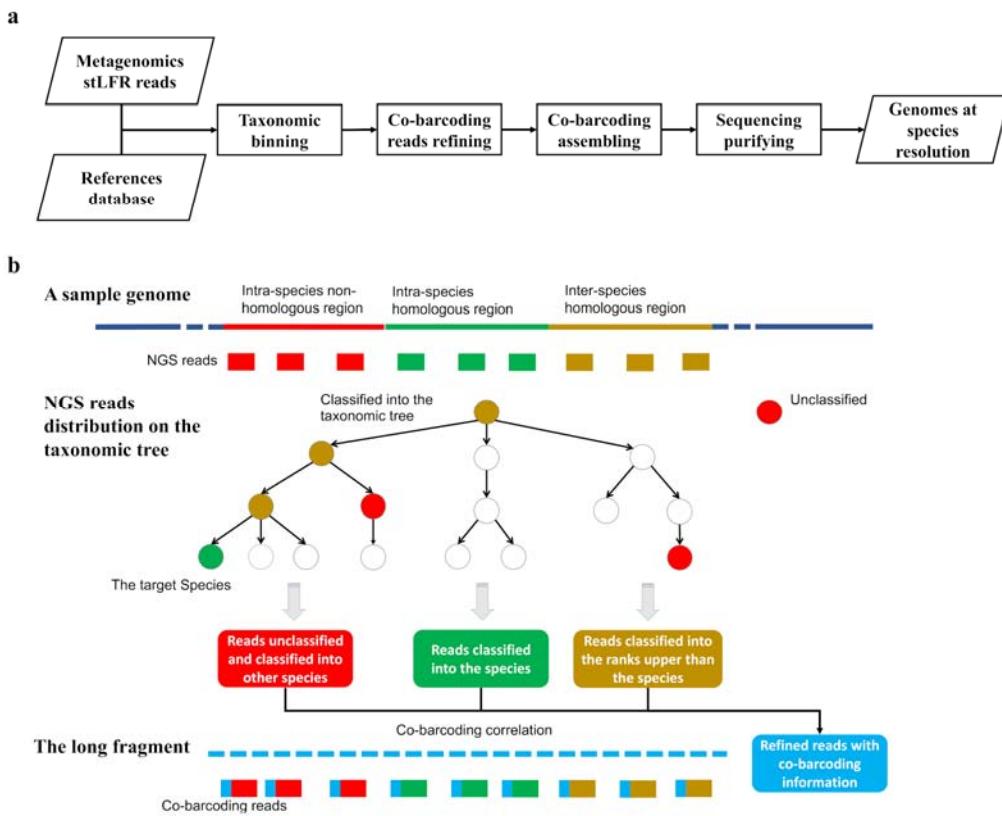
288

289 **Results and discussion**

290 **MetaTrass pipeline**

291 In this work, we developed a metagenomics assembling pipeline named MetaTrass to
292 combine the references and long-range co-barcoding information of stLFR library.
293 From the flowchart (**Figure 1a**), the taxonomic binning of stLFR reads were
294 processed before the genome assembling, and different from the previous common
295 combination strategies of assembling first and binning later. In taxonomic binning, the
296 metagenomics stLFR reads were classified into different taxonomic ranks by Kraken2
297 [42]. Since the phylogenetic relations among references were used in Kraken2, only

298 the reads from intra-species homologous region of a sample genome can be classified
299 into the target species, but the reads from inter-species homologous and intra-species
300 non-homologous regions were not classified effectively (Figure 1b). The reads from
301 inter-species homologous regions were classified into the higher ranks of the target
302 species and those from intra-species non-homologous region were unclassified or
303 classified into irrelevant ranks. Totally, about 10% of the reads were classified into
304 the high ranks for the four human gut datasets and about 9% of the reads were
305 unclassified (Table S1). In co-barcoding refining, the co-barcoding correlation
306 between the reads from intra-species homologous region and those from intra-species
307 non-homologous and inter-species homologous region was used to refine the final
308 reads set for a target species (Figure 1b). The barcodes of the intra-species
309 homologous reads were firstly extracted as the candidate barcodes. Then, the final
310 barcodes were collected by a constraint of data size and the quality of co-barcoding
311 information. Finally, the reads with a barcode belong to the final barcodes were
312 gathered to form the refined reads set for the target species. The constraint of data size
313 was set to reduce computational consumption for the species with extremely high
314 abundance. Since the barcodes with more reads classified into the target species are
315 more possible to retain the long-range genomic information, the quality of co-
316 barcoding information of a barcode was quantified by the number of reads classified
317 into the species and the number ratio of these reads to total reads. In co-barcoding
318 assembling, the refined reads of each species were independently assembled by
319 Supernova. In practice, multiple long fragments from different species would share
320 the same barcode in real stLFR libraries (Figure S1). Thus, the impure sequences
321 assembled by the false positive reads from non-target species should be removed
322 finally according to AF and ANI values of alignments between the assembly and
323 references. Overall, the comprehensive use of co-barcoding information and
324 references in our approach could reduce the false negative effects of taxonomic
325 binning and the false positive effects of co-barcoding read refining.



326
327 **Figure 1** Flowchart and scheme of MetaTrass. a) Flowchart of MetaTrass assembling
328 pipeline. b) Scheme of the homologous relation and co-barcoding correlation of
329 difference reads sets classified by taxonomic binning.

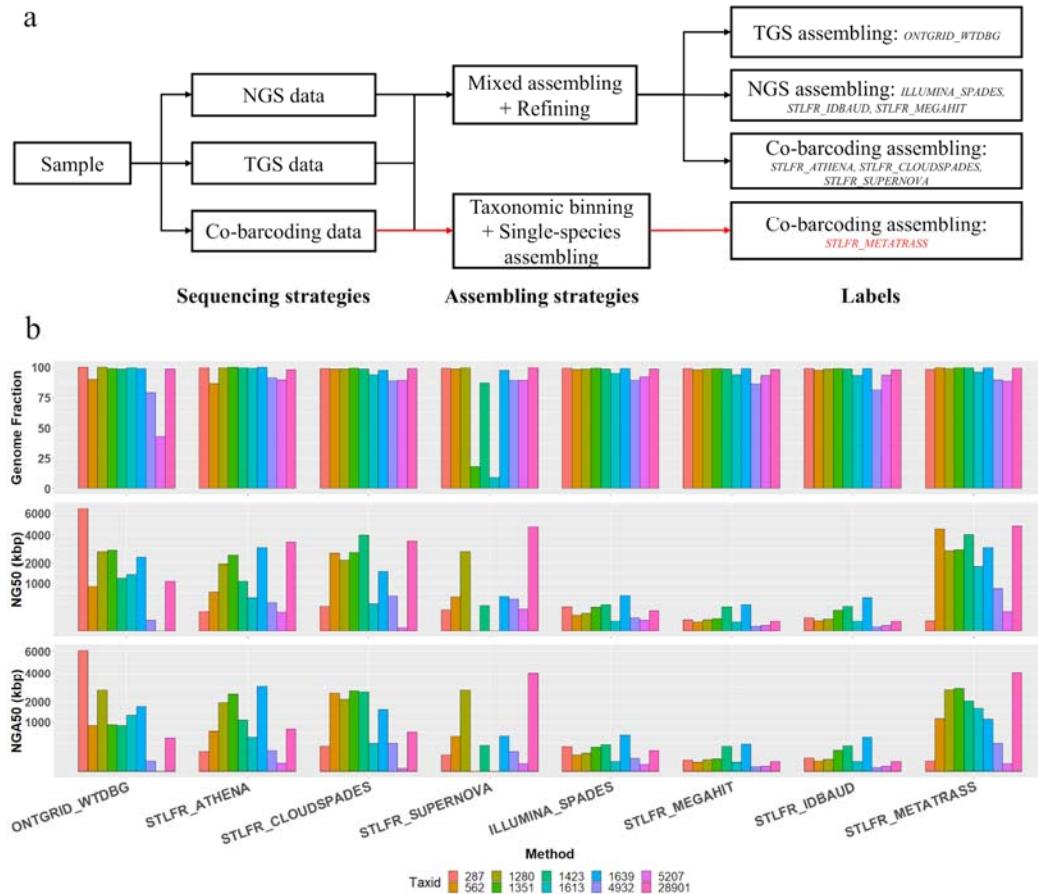
330

331 **Assembly of the mock microbiome**

332 The strategy of binning first and assembling later have been widely adopted to
333 assemble haplotype genomes for eukaryotes with large sizes [54, 34]. But it has been
334 rarely used to assemble metagenomes. We firstly applied MetaTrass to assemble
335 stLFR read sets of the mock microbial community. Totally, up to 99.4% of reads
336 were assigned to different datasets of species due to the simplicity of the microbial
337 community with low inter-species homology and intra-species non-homology (Table
338 S2). To investigate the efficiency of our strategy, we compared it with the
339 mainstream mixed assembling strategies (Figure 2a). Besides the MetaTrass, the
340 stLFR reads were also directly assembled by IDBA-UD, MEGAHIT, Supernova,
341 CloudSPAdes, and Athena in the mixed assembling. Additionally, the optimal mixed
342 assemblies of ONT reads and Illumina NGS reads in Nicholls's work [55] were also

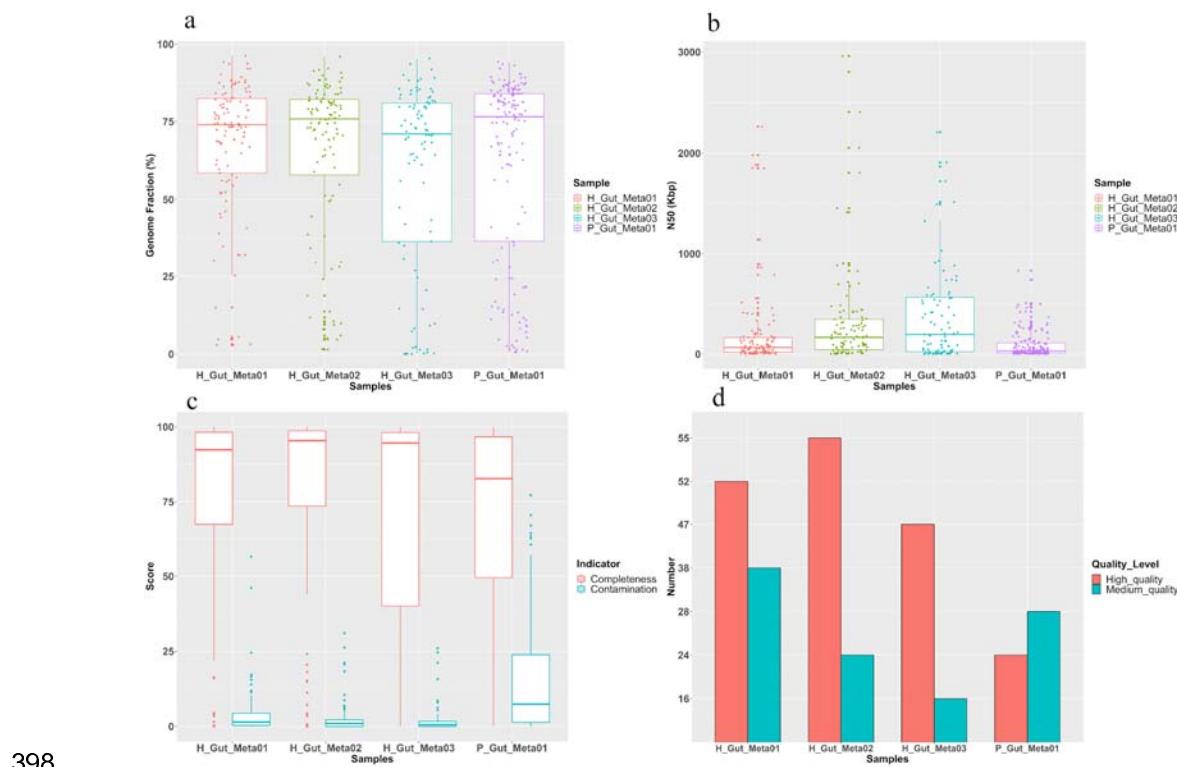
343 used to make a comparison, where the ONT result was assembled by WTDBG and
344 the NGS result was by SPAdes. The draft genome of each species in a mixed
345 assembly was extracted by our sequence purifying module.

346 Overall, our pipeline was superior in the production of draft genomes with high
347 genome fractions and long contiguity (**Figure 2**). Two species *Enterococcus faecalis*
348 and *Lactobacillus fermentum* were incompletely assembled by Supernova, and their
349 genome fractions were only 17.7% and 8.9%. However, both species were properly
350 recovered in MetaTrass, indicating that the assembling complexity caused by uneven
351 abundances was reduced by taxonomic binning. All the assemblies by MetaTrass
352 showed high genome fraction as those by NGS and co-barcoding assemblers designed
353 for metagenome, which were higher than those of ONT assemblies. Compared to
354 NGS assemblers, the co-barcoding and TGS assembler generated draft assemblies
355 with significantly better contiguity, where Metatrass generated the best performance.
356 MetaTrass produced seven draft genomes with NG50 around 2 Mb. Furthermore, the
357 accuracy was guaranteed by MetaTrass, which obtained the most assemblies with
358 NGA50 around 2 Mb. Meanwhile, assemblies by MetaTrass had less assembly errors
359 compared to ONT assemblies (Figure S2). The average mismatch and indel numbers
360 per 100 kb in assemblies with stLFR reads were 60 and 10, which were obviously
361 smaller than that of the ONT assemblies.



377 H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01 samples,
378 respectively. The relations between these abbreviated notations and detailed sample
379 information were described in the section of Materials and methods.

380 The genome fraction of an assembly to the reference is used to evaluate the
381 completeness in single genome assembling. The genome fraction for all samples
382 widely ranges from 0% to 90%, and the distributions of H_Gut_Meta01 and
383 H_Gut_Meta02 were more concentrated than those of H_Gut_Meta03 and
384 P_Gut_Meta01 (**Figure 3a**). However, more than half of the assembled genomes were
385 with a genome fraction of at least 50%. Considering the large genetic diversity
386 between sample genomes and the references [7], these results indicated that our
387 pipeline could assemble complete genomes for species abundance of higher than 10×.
388 The genetic diversity was also proved by the significant differences in genome
389 fraction and the ratio of assembled length to the reference length among the four
390 samples (Figure S7). The distributions of genomes N50 were generally dispersed, and
391 the medians of H_Gut_Meta02 and H_Gut_Meta03 were obviously higher than those
392 of H_Gut_Meta01 and P_Gut_Meta01 (Figure 3b). Nevertheless, the third quartiles in
393 the box plots for the samples were larger than 100 kb, demonstrating that our pipeline
394 had a strong capability to generate draft genomes with high contiguity. Note that for
395 these three healthy samples plenty of ultra-long draft genomes (N50>1 Mb) was
396 obtained, which provide possibilities to study the large genome difference in the
397 microbiome.



398

399 **Figure 3** QUAST and CheckM evaluations of MetaTrass assemblies for the four
400 human gut samples. a) Genome fraction. b) Scaffold N50. c) Box plot of completeness
401 and contamination. d) Number of high- and medium-quality genomes.

402

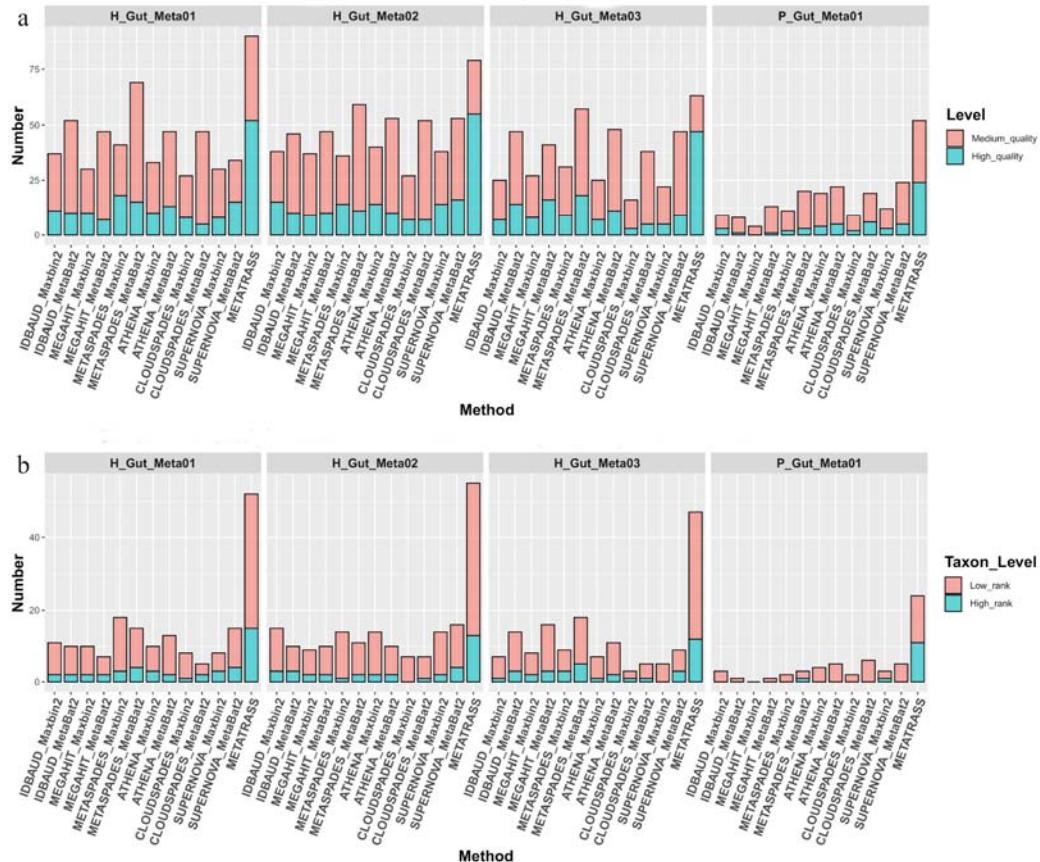
403 Considering the intra-species genetic diversity, we also evaluated the quality of
404 metagenomics assemblies based on the conserved marker genes by CheckM. The
405 completeness medians of three healthy samples were larger than 92%, and the
406 contamination medians were smaller than 2% (Figure 3c). The completeness of the
407 patient sample was about 83%, and the contamination median was about 7% (Figure
408 S8). Meanwhile, a great number of high- and medium-quality genomes were
409 assembled by MetaTrass for the four samples (Figure 3d). 52 high-quality and 37
410 medium-quality genomes were produced for H_Gut_Meta01, and 55 and 24 for
411 H_Gut_Meta02, and 47 and 16 for H_Gut_Meta03, and 24 and 28 for P_Gut_Meta01,
412 respectively.

413

414 **Comparison to the common combination strategy**

415 To further evaluate our approach's efficiency, we compared it with common
416 combinations of assembling tools and genome binning tools as listed in the section of
417 Datasets and Methods. It should be noted that currently, there are still no genome
418 binning tools to directly exploit the co-barcoding information. By counting the
419 number of bins with completeness >50% and at least one conserved marker genes
420 (Table S3), we observed that MetaTrass perform best of all these methods. Especially
421 for P_Gut_Meta01, the optimal combination between Supernova and Maxbin2.0
422 obtained 66 bins with completeness higher than 50%, but it was significantly less than
423 117 obtained by MetaTrass.

424 By comprehensively analyzing the completeness, contamination and taxonomic
425 rank of each bin, we assessed MetaTrass and common strategies in the ability to get
426 high- and medium-quality genomes and resolution of taxonomic rank (**Figure 4**). For
427 different samples, the best combination to produce the optimal results was different.
428 The combinations of MetaSPAdes and Maxbin2.0, Supernova and MetaBAT2,
429 MetaSPAdes and MetaBAT2, and Athena and MetaBAT2 is optimal for
430 H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, respectively.
431 For the four samples, the optimal results of the common strategies were still inferior
432 to those of MetaTrass. For the example of H_Gut_meta01, the combination of
433 MetaSPAdes and Maxbin2.0 produced 41 high- and medium-quality genomes, which
434 was significantly less than 90 obtained by MetaTrass. There were only 3 out of totally
435 18 high-quality genomes with a taxonomic rank lower than the order, but 15 out of 52
436 for MetaTrass. Comparing the strategies only using NGS read information, the
437 combination strategies of co-barcoding assembler and binner showed no obvious
438 advantages in generating genomes with high quality and resolution, but MetaTrass
439 was significantly superior to them. These results demonstrated that the usage of co-
440 barcoding information in MetaTrass was more efficient and accurate than those in a
441 mixed assembling.



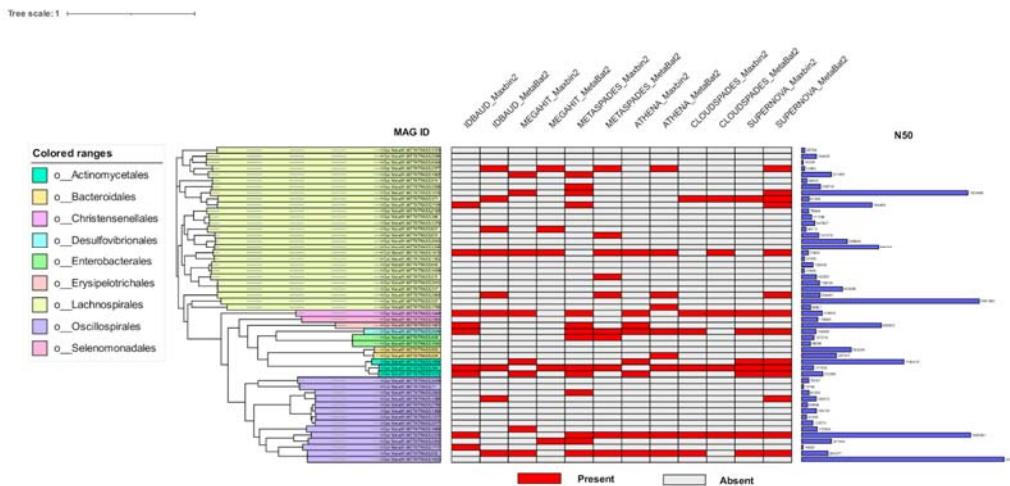
442

443 **Figure 4** Comparison of metagenome assembling for different methods. a) Number
 444 of high- and medium-quality genomes assembled with different methods. b) Number
 445 of high-quality genomes with high- and low-rank with different methods.

446

447 The human gut microbiome composition attracts much attention due to its strong
 448 correlation with personality traits [57]. To compare the microbiome composition
 449 structures of the high-quality genomes with different methods, we uniformly
 450 classified the high-quality genome bins into species using GTDB-tk. Using the large
 451 number of high-quality genomes obtained by MetaTrass, the phylogenetic trees of
 452 these genomes were constructed and the corresponding N50 were attached in the left
 453 histogram as shown in **Figure 5**. Meanwhile, the high-quality genome bins obtained
 454 by the common strategies were marked in red in the middle heat map (Figure 5), if the
 455 genome of the same species were also assembled by MetaTrass. The topology of the
 456 phylogenetic tree of genomes assembled by MetaTrass gave comprehensive insights

457 of the microbial composition structure. From the trees in Figure 5 and Figure S9-S11,
458 the numbers of the order with high-quality genomes assembled by MetaTrass were 9,
459 11, 7, and 7 for H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01,
460 respectively. Notably, some orders contained more than 5 high-quality genomes, and
461 this provide convenience to study the microbiome structure at the genome-wide scale.
462 For the sample of H_Gut_Meta01 (Figure 5), there were 27 high-quality genomes
463 classified into *Lachnospirales* order and 14 into *Oscillospirales*. These two were
464 exactly the dominating orders according to the taxonomic abundance distribution.
465 Similar results were obtained for the other two healthy samples (Figure S9 and S10),
466 indicating that the microbiome with higher sequencing coverage could be better
467 assembled in MetaTrass. In contrast, the orders with more than 5 high-quality
468 genomes were *Enterobacteriales* and *Actinomycetales* for P_Gut_Meta01 (Figure S11).
469 The obvious difference between the healthy and patient samples was consistent with
470 the microbial compositions differences observed in the taxonomic binning results.
471 MetaTrass successfully assemble most of the high-quality genomes of all common
472 combinations in our tests. For instance, they generated 137 genome bins, while only
473 25 genome bins were not assembled by MetaTrass (Figure 5). From the heat maps,
474 most of the common strategies could assemble draft genomes for each order, but the
475 total numbers in each order were relatively small. The maximal number of genomes in
476 one order was 6 and obtained by the combination of Supernova and MetaBAT2 for
477 *Lachnospirales*. Moreover, 146 of 179 high-quality genomes were with N50 values
478 larger than 100 kb, demonstrating that MetaTrass had a strong ability to improve the
479 contiguity of assemblies.



480

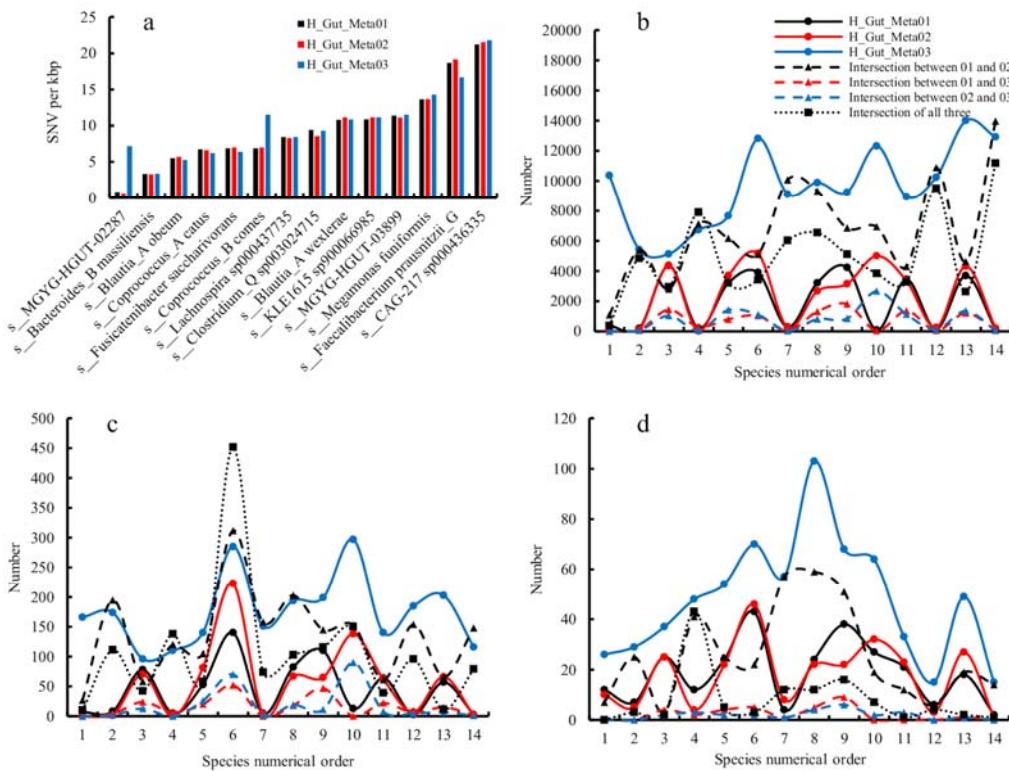
481 **Figure 5** Phylogenetic tree of the high-quality genomes assembled by MetaTrass for
482 H_Gut_Meta01. The phylogenetic tree is on the left. Distribution of the high-quality
483 genomes assembled by other methods are colored as red in the middle heat map.
484 N50 of each high-quality genome is shown in the right histogram.

485

486 **Genetic diversity in different samples**

487 Different types of variations in gut microbiomes are strongly associated with host
488 health, and the genetic diversity among different microbiomes has been intensively
489 studied to unravel the genetic origin of phenotypic difference among people of
490 different regions or health status [58, 59]. By aligning draft genomes to the references,
491 we called variations for high-quality genomes for each species in different samples,
492 including single nucleotide variations (SNV), small and large indels. For different
493 variations, the numbers of SNV were significantly larger than those of the small and
494 large indels for the four samples (Figure S12). Three healthy samples showed close
495 variation numbers, which were obviously larger than those of the patient. It come
496 from fewer alignments for the patient sample according to the QUAST evaluation.
497 However, when we removed the effect of the total aligned length by calculating the
498 SNV density, the patient sample showed denser SNV than the healthy samples (Figure
499 S12d). The median was about 21 for the patient sample, but about 9 for the healthy
500 samples. This difference could be introduced by the individual's physiological state,
501 which was related to the diseases and also to the territory or race [4].

502 Based on the taxonomic information of high-quality genomes, we found 15
503 species shared by three samples, where 14 species appeared in the three healthy
504 samples but only one species of *Escherichia* appeared in the patient and two healthy
505 samples. By analyzing the SNV density and intersection of variations between
506 different samples for each species in three healthy samples, we further investigated
507 the genetic diversity between species from different samples. The SNV densities were
508 different for different species even in the same sample, but similar for the same
509 species in different sample (**Figure 6a**). From Figure 6b to 6d, the number of unique
510 and shared variations in different types significantly fluctuated for different species,
511 but their difference among samples showed great consistency. The total shared
512 numbers between H_Gut_Meta01 and H_Gut_meta02 were obviously more than
513 those between H_GutMeta03 and the other two samples for all variations.
514 Furthermore, the ratio of large indels shared by all three samples to the total number
515 was much smaller than those of SNVs and small indels. These results demonstrated
516 that large variations were more specific than small variations in the huge genetic
517 diversity between different samples, were consistent with the observation in the study
518 of association between host health and structural variations in gut microbiome [58].



519

520 **Figure 6** SNV density and number of unique and shared variations for each species
521 appearing in all three healthy samples. a) is the SNV density. b), c) and d) are the
522 number of SNVs, small and large indels, respectively. The species numerical order in
523 b), c) and d) corresponds to the appearance order of species from left to right in a).

524

525 Computational performance

526 Runtime and used thread number of each assembler were recorded for all the human
527 gut datasets (**Table 1**). Most of the assemblers were test on 24 Intel(R) Xeon(R) Silver
528 4116 CPU @ 2.10GHz, except for Athena and Supernova which were test on HPC
529 Cluster for their large memory requirements. The thread number used in each
530 assembler was the same for different samples. The time consumption of the format
531 conversion from stLFR reads to 10X linked-reads were not included, and was about
532 500 minutes for dataset with 50 Gb with one thread. We found that MetaTrass was
533 less time consuming than Athena but more than other assemblers. This may come
534 from that both MetaTrass and Athena contained many sub-assembling, which took
535 most of the time among all sub-processes in MetaTrass (Table S4). Since the sub-

536 assembling was independent, it could be run in parallel to further speed up the
537 assembling by increasing the parallel number and the parallel number was 8 in default.

538

539 Conclusion

540 High-quality genomes at species level are strongly demanded to investigate the
541 genetic origins of diseases associated with the human gut, but how to get sufficient
542 number of them in one sample is still a challenge due to the inter-species repeats and
543 uneven abundance in metagenomics assembling. In this work, we developed a tool to
544 get high-quality genomes with high taxonomic resolutions by combining the co-
545 barcoding information with public references. Compared with the common
546 combination strategies, our pipeline generated a large number of high-quality
547 genomes for the human microbiome co-barcoding datasets. Meanwhile, plenty of
548 draft genomes were also assembled with NG50 values of larger than 1 Mb, some of
549 which were even longer than the references for both mock and human gut datasets.
550 For all the four real gut samples, 178 draft genomes with high completeness and low
551 contamination were generated, but their genome fractions relative to the references
552 were low. The differences between the sample genomes assembled by MetaTrass and
553 the reference genomes demonstrated that the co-barcoding information could be used
554 to reduce the false negative reads in taxonomic binning. These reads retrieved from
555 inter-species homologous and intra-species non-homologous regions by co-barcoding
556 refining could significantly improve the assembly results. For the patient sample, the
557 number of high-quality genomes with long contiguity assembled by MetaTrass was
558 significantly larger than that without co-barcoding refining (Figure S13).

559 The efficiency of our pipeline depended on the co-barcoding information quality
560 including the read coverage and length of long fragments. By aligning reads to the
561 species reference, we calculated the genome fraction with different read coverage
562 depths for different read sets including the taxonomic reads, the refined reads, and all
563 reads. According to the genome fraction with high coverage depths, we evaluate the
564 efficiency of the co-barcoding refining. From the results of species with medium
565 abundance in P_Gut_Meta01 (Figure S5), We observed that the fraction with high
566 depths of the refined reads was higher than those of the taxonomic reads, but still
567 lower than those of all aligned reads. These results indicated that there were still some
568 false negative reads introduced by the low coverage or short length of long fragments.

569 Thus, improvements on co-barcoding library and the co-barcoding refining would
570 improve the performance of MetaTrass.

571 In summary, the application of MetaTrass in human gut samples showed great
572 promise of generating high-quality genomes for real complex microbial community at
573 a high resolution. With the increasing number of reference genomes from various
574 microbial communities and the development of co-barcoding sequencing library, the
575 combination strategy of binning first and assembling later in MetaTrass will be
576 extended and facilitate the investigation of the association between host phenotypes
577 and microbial genotypes for different microbial communities.

578

579

580 **Acknowledgements**

581 This research was supported by the National Key Research and Development
582 Program of China (2018YFD0900301-05), and Science Technology and Innovation
583 Committee of Shenzhen Municipality of China (SGDX20190919142801722). We
584 would thank Yufen Huang and many other BGI-Shenzhen employees for fruitful
585 discussions in the development and performance test.

586

587 **Conflicts of interest**

588 All authors are employees of the BGI group.

589

590 **Authors' contributions**

591 Li Deng, Guangyi Fan and Yanwei Qi contributed to the software design. Yanwei Qi,
592 Shengqiang Gu, Yue Zhang and Lidong Guo contributed to the software
593 implementation. Li Deng, Yanwei Qi, Shengqiang Gu, Mengyang Xu and Jianwei
594 Chen contributed to data analyses. Xiaofang Chen, Ou Wang and Xiaodong Fang
595 contribute to the data curation, collection. Guangyi Fan, Li Deng and Xin Liu
596 contributed to the benchmarking design. All authors contributed to the manuscript
597 writing. Li Deng and Guangyi Fan supervised the project. All authors read and
598 approved the final manuscript.

599

600 **Data availability statement**

601 MetaTrass is freely available at <https://github.com/BGI-Qingdao/MetaTrass>. The
602 assembling results of the four human faecal samples were deposited into CNSA
603 (<https://db.cngb.org/cnsa/>) of CNGBdb with accession number CNP0002163 and
604 available from authors upon reasonable request and with permission of CNGBdb. The
605 metagenomics stLFR datasets used in the study were available from the
606 corresponding author on reasonable request.

607

608 **References**

- 609 1. Schloss, Patrick D, and Jo Handelsman. 2005. "Metagenomics for studying
610 unculturable microorganisms: cutting the Gordian knot." *Genome Biology* 6: 1-4.
- 611 2. Qin, Junjie, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer
612 Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, *et al.* 2010. "A human
613 gut microbial gene catalogue established by metagenomic sequencing." *Nature*
614 464: 59-65.
- 615 3. Parks, Donovan H, Maria Chuvochina, Pierre-Alain Chaumeil, Christian Rinke,
616 Aaron J Mussig, and Philip Hugenholtz. 2020. "A complete domain-to-species
617 taxonomy for Bacteria and Archaea." *Nature Biotechnology* 38: 1079-86.
- 618 4. Almeida, Alexandre, Stephen Nayfach, Miguel Boland, Francesco Strozzi,
619 Martin Beracochea, Zhou Jason Shi, Katherine S. Pollard, *et al.* 2021. "A unified
620 catalog of 204,938 reference genomes from the human gut microbiome." *Nature
621 Biotechnology* 39: 105-14.
- 622 5. Sheth, Ravi U, Mingqiang Li, Weiqian Jiang, Peter A Sims, Kam W Leong, and
623 Harris H Wang. 2019. "Spatial metagenomic characterization of microbial
624 biogeography in the gut." *Nature Biotechnology* 37: 877-83.
- 625 6. Martino, Cameron, Liat Shenhav, Clarisse A. Marotz, George Armstrong, Daniel
626 McDonald, Yoshiki Vázquez-Baeza, James T. Morton, *et al.* 2021. "Context-
627 aware dimensionality reduction deconvolutes gut microbial community

628 dynamics." *Nature Biotechnology* 39: 165-8.

629 7. Van Rossum, Thea, Pamela Ferretti, Oleksandr M Maistrenko, and Peer Bork.

630 2020. "Diversity within species: interpreting strains in microbiomes." *Nature*

631 *Reviews: Microbiology* 18: 491-506.

632 8. Olm, Matthew R, Alexander Crits-Christoph, Keith Bouma-Gregson, Brian A

633 Firek, Michael J Morowitz, and Jillian F Banfield. 2021. "inStrain profiles

634 population microdiversity from metagenomic data and sensitively detects shared

635 microbial strains." *Nature Biotechnology* 39: 727-36.

636 9. Leimbach, Andreas, Jörg Hacker, and Ulrich Dobrindt. 2013. "E. coli as an all-

637 rounder: the thin line between commensalism and pathogenicity." *Current Topics*

638 *in Microbiology and Immunology* 358: 3-32.

639 10. Pierce, Jessica V, and Harris D Bernstein. 2016. "Genomic diversity of

640 enterotoxigenic strains of *Bacteroides fragilis*." *PLoS One* 11: e0158171.

641 11. Yao, G., W. Zhang, M. Yang, H. Yang, J. Wang, H. Zhang, L. Wei, Z. Xie, and W.

642 Li. 2020. "MicroPhenoDB Associates Metagenomic Data with Pathogenic

643 Microbes, Microbial Core Genes, and Human Disease Phenotypes." *Genomics*

644 *Proteomics Bioinformatics* 18: 760-72.

645 12. Welch, R. A., V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E. L.

646 Buckles, *et al.* 2002. "Extensive mosaic structure revealed by the complete

647 genome sequence of uropathogenic *Escherichia coli*." *Proceedings of the*

648 *National Academy of Sciences* 99: 17020-4.

649 13. Sczyrba, Alexander, Peter Hofmann, Peter Belmann, David Koslicki, Stefan

650 Janssen, Johannes Dröge, Ivan Gregor, *et al.* 2017. "Critical assessment of

651 metagenome interpretation—a benchmark of metagenomics software." *Nature*

652 *Methods* 14: 1063-71.

653 14. Breitwieser, Florian P, Jennifer Lu, and Steven L Salzberg. 2019. "A review of

654 methods and databases for metagenomic classification and assembly." *Briefings*

655 *in Bioinformatics* 20: 1125-36.

656 15. Eun Kang, J., A. Ciampi, and M. Hijri. 2020. "SeSaMe: Metagenome Sequence

657 Classification of Arbuscular Mycorrhizal Fungi-associated Microorganisms."

658 *Genomics Proteomics Bioinformatics* 18: 601-12.

659 16. Li, Dinghua, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.

660 2015. "MEGAHIT: an ultra-fast single-node solution for large and complex

661 metagenomics assembly via succinct de Bruijn graph." *Bioinformatics* 31: 1674-6.

662 17. Nurk, Sergey, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner.

663 2017. "metaSPAdes: a new versatile metagenomic assembler." *Genome Research*

664 27: 824-34.

665 18. Peng, Yu, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. 2012. "IDBA-

666 UD: a de novo assembler for single-cell and metagenomic sequencing data with

667 highly uneven depth." *Bioinformatics* 28: 1420-8.

668 19. Wu, Yu-Wei, and Yuzhen Ye. 2011. "A novel abundance-based algorithm for

669 binning metagenomic sequences using 1-tuples." *Journal of Computational*

670 *Biology* 18: 523-34.

671 20. Wu, Yu-Wei, Blake A Simmons, and Steven W Singer. 2016. "MaxBin 2.0: an

672 automated binning algorithm to recover genomes from multiple metagenomic

673 datasets." *Bioinformatics* 32: 605-7.

674 21. Kang, Dongwan D, Jeff Froula, Rob Egan, and Zhong Wang. 2015. "MetaBAT,

675 an efficient tool for accurately reconstructing single genomes from complex

676 microbial communities." *PeerJ* 3: e1165.

677 22. Bertrand, Denis, Jim Shaw, Manesh Kalathiyappan, Amanda Hui Qi Ng, M.

678 Senthil Kumar, Chenhao Li, Mirta Dvornicic, *et al.* 2019. "Hybrid metagenomic

679 assembly enables high-resolution analysis of resistance determinants and mobile

680 elements in human microbiomes." *Nature Biotechnology* 37: 937-44.

681 23. Chin, Chen-Shan, David H. Alexander, Patrick Marks, Aaron A. Klammer, James

682 Drake, Cheryl Heiner, Alicia Clum, *et al.* 2013. "Nonhybrid, finished microbial

683 genome assemblies from long-read SMRT sequencing data." *Nature Methods* 10:

684 563-9.

685 24. Kolmogorov, Mikhail, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich,

686 Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, *et al.* 2020. "metaFlye: scalable

687 long-read metagenome assembly using repeat graphs." *Nature Methods* 17: 1103-

688 10.

689 25. DeMaere, Matthew Z, and Aaron E Darling. 2019. "bin3C: exploiting Hi-C
690 sequencing data to accurately resolve metagenome-assembled genomes."
691 *Genome Biology* 20: 1-16.

692 26. Cleary, Brian, Ilana Lauren Brito, Katherine Huang, Dirk Gevers, Terrance Shea,
693 Sarah Young, and Eric J Alm. 2015. "Detection of low-abundance bacterial
694 strains in metagenomic datasets by eigengenome partitioning." *Nature
695 Biotechnology* 33: 1053-60.

696 27. Peters, Brock A., Bahram G. Kermani, Andrew B. Sparks, Oleg Alferov, Peter
697 Hong, Andrei Alexeev, Yuan Jiang, *et al.* 2012. "Accurate whole-genome
698 sequencing and haplotyping from 10 to 20 human cells." *Nature* 487: 190-5.

699 28. Adey, Andrew, Jacob O Kitzman, Joshua N Burton, Riza Daza, Akash Kumar,
700 Lena Christiansen, Mostafa Ronaghi, *et al.* 2014. "In vitro, long-range sequence
701 information for de novo genome assembly via transposase contiguity." *Genome
702 Research* 24: 2041-9.

703 29. Bishara, Alex, Eli L Moss, Mikhail Kolmogorov, Alma E Parada, Ziming Weng,
704 Arend Sidow, Anne E Dekas, Serafim Batzoglou, and Ami S Bhatt. 2018. "High-
705 quality genome sequences of uncultured microbes by assembly of read clouds."
706 *Nature Biotechnology* 36: 1067-75.

707 30. Wang, Ou, Robert Chin, Xiaofang Cheng, Michelle Wu, Qing Mao, Jingbo Tang,
708 Yuhui Sun, *et al.* 2019. "Efficient and unique cobarcoding of second-generation
709 sequencing reads from long DNA molecules enabling cost-effective and accurate
710 sequencing, haplotyping, and de novo assembly." *Genome Research* 29: 798-808.

711 31. Chen, Zhoutao, Long Pham, Tsai-Chin Wu, Guoya Mo, Yu Xia, Peter L. Chang,
712 Devin Porter, *et al.* 2020. "Ultralow-input single-tube linked-read library method
713 enables short-read second-generation sequencing systems to routinely generate
714 highly accurate and economical long-range sequencing information." *Genome
715 Research* 30: 898-909.

716 32. Zheng, Grace X. Y., Billy T. Lau, Michael Schnall-Levin, Mirna Jarosz, John M.
717 Bell, Christopher M. Hindson, Sofia Kyriazopoulou-Panagiotopoulou, *et al.* 2016.

718 "Haplotyping germline and cancer genomes with high-throughput linked-read
719 sequencing." *Nature Biotechnology* 34: 303-11.

720 33. Danko, David C, Dmitry Meleshko, Daniela Bezdan, Christopher Mason, and
721 Iman Hajirasouliha. 2019. "Minerva: an alignment-and reference-free approach
722 to deconvolve Linked-Reads for metagenomics." *Genome Research* 29: 116-24.

723 34. Xu, Mengyang, Lidong Guo, Xiao Du, Lei Li, Brock A Peters, Li Deng, Ou
724 Wang, *et al.* 2021. "Accurate haplotype-resolved assembly reveals the origin of
725 structural variants for human trios." *Bioinformatics* 37: 2095-102.

726 35. Bishara, Alex, Yuling Liu, Ziming Weng, Dorna Kashef-Haghghi, Daniel E
727 Newburger, Robert West, Arend Sidow, and Serafim Batzoglou. 2015. "Read
728 clouds uncover variation in complex regions of the human genome." *Genome*
729 *Research* 25: 1570-80.

730 36. Guo, Junfu, Chang Shi, Xi Chen, Ou Wang, Ping Liu, Huanming Yang, Xun Xu,
731 Wenwei Zhang, and Hongmei Zhu. 2021. "stLFRsv: A Germline Structural
732 Variant Analysis Pipeline Using Co-barcoded Reads." *Frontiers in Genetics* 12:
733 222.

734 37. Weisenfeld, Neil I, Vijay Kumar, Preyas Shah, Deanna M Church, and David B
735 Jaffe. 2017. "Direct determination of diploid genome sequences." *Genome*
736 *Research* 27: 757-67.

737 38. Yeo, Sarah, Lauren Coombe, René L Warren, Justin Chu, and Inanç Birol. 2017.
738 "ARCS: scaffolding genome drafts with linked reads." *Bioinformatics* 34: 725-31.

739 39. Guo, Lidong, Mengyang Xu, Wenchao Wang, Shengqiang Gu, Xia Zhao, Fang
740 Chen, Ou Wang, *et al.* 2021. "SLR-superscaffolder: a de novo scaffolding tool for
741 synthetic long reads using a top-to-bottom scheme." *BMC Bioinformatics* 22: 1-
742 16.

743 40. Tolstoganov, Ivan, Anton Bankevich, Zhoutao Chen, and Pavel A Pevzner. 2019.
744 "cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs."
745 *Bioinformatics* 35: i61-i70.

746 41. Kuleshov, Volodymyr, Michael P Snyder, and Serafim Batzoglou. 2016.
747 "Genome assembly from synthetic long read clouds." *Bioinformatics* 32: i216-i24.

748 42. Wood, Derrick E, Jennifer Lu, and Ben Langmead. 2019. "Improved
749 metagenomic analysis with Kraken 2." *Genome Biology* 20: 1-13.

750 43. Lu, Jennifer, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg. 2017.
751 "Bracken: estimating species abundance in metagenomics data." *PeerJ Computer
752 Science* 3: e104.

753 44. Danko, David C, Dmitry Meleshko, Daniela Bezdan, Christopher Mason, and
754 Iman Hajirasouliha. 2019. "Novel Algorithms for the Taxonomic Classification of
755 Metagenomic Linked-Reads." *bioRxiv* 549667.

756 45. Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. 2013.
757 "QUAST: quality assessment tool for genome assemblies." *Bioinformatics* 29:
758 1072-5.

759 46. Marks, Patrick, Sarah Garcia, Alvaro Martinez Barrio, Kamila Belhocine, Jorge
760 Bernate, Rajiv Bharadwaj, Keith Bjornson, *et al.* 2019. "Resolving the full
761 spectrum of human genome variation using Linked-Reads." *Genome Research* 29:
762 635-45.

763 47. Guo, X., F. Chen, F. Gao, L. Li, K. Liu, L. You, C. Hua, *et al.* 2020. "CNSA: a
764 data repository for archiving omics data." *Database* 2020: baaa055.

765 48. Chen, Feng Zhen, Li Jin You, Fan Yang, Li Na Wang, Xue Qin Guo, Fei Gao,
766 Cong Hua, *et al.* 2020. "CNGBdb: China National GeneBank DataBase."
767 *Heredidas* 42: 799-809.

768 49. Parks, Donovan H, Michael Imelfort, Connor T Skennerton, Philip Hugenholtz,
769 and Gene W Tyson. 2015. "CheckM: assessing the quality of microbial genomes
770 recovered from isolates, single cells, and metagenomes." *Genome Research* 25:
771 1043-55.

772 50. Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
773 Gabor Marth, *et al.* 2009. "The Sequence Alignment/Map format and SAMtools."
774 *Bioinformatics* 25: 2078-9.

775 51. Chaumeil, Pierre-Alain, Aaron J Mussig, Philip Hugenholtz, and Donovan H
776 Parks. 2019. "GTDB-Tk: a toolkit to classify genomes with the Genome
777 Taxonomy Database." *Bioinformatics* 36: 1925-7.

778 52. Price, Morgan N., Paramvir S. Dehal, and Adam P. Arkin. 2010. "FastTree 2 –
779 Approximately Maximum-Likelihood Trees for Large Alignments." *PLOS ONE* 5:
780 e9490.

781 53. Letunic, Ivica, and Peer Bork. 2019. "Interactive Tree Of Life (iTOL) v4: recent
782 updates and new developments." *Nucleic Acids Research* 47: W256-W9.

783 54. Koren, Sergey, Arang Rhie, Brian P Walenz, Alexander T Dilthey, Derek M
784 Bickhart, Sarah B Kingan, Stefan Hiednleider, *et al.* 2018. "De novo assembly of
785 haplotype-resolved genomes with trio binning." *Nature Biotechnology* 36: 1174-
786 82.

787 55. Nicholls, Samuel M, Joshua C Quick, Shuiquan Tang, and Nicholas J Loman.
788 2019. "Ultra-deep, long-read nanopore sequencing of mock microbial community
789 standards." *GigaScience* 8: giz043.

790 56. Shin, Na-Ri, Tae Woong Whon, and Jin-Woo Bae. 2015. "Proteobacteria:
791 microbial signature of dysbiosis in gut microbiota." *Trends in Biotechnology* 33:
792 496-503.

793 57. Johnson, Katerina V-A. 2020. "Gut microbiome composition and diversity are
794 related to human personality traits." *Human Microbiome Journal* 15: 100069.

795 58. Zeevi, David, Tal Korem, Anastasia Godneva, Noam Bar, Alexander Kurilshikov,
796 Maya Lotan-Pompan, Adina Weinberger, *et al.* 2019. "Structural variation in the
797 gut microbiome associates with host health." *Nature* 568: 43-8.

798 59. Chen, Lianmin, Daoming Wang, Sanzhima Garmaeva, Alexander Kurilshikov,
799 Arnau Vich Vila, Ranko Gacesa, Trishla Sinha, *et al.* 2021. "The long-term
800 genetic stability and individual specificity of the human gut microbiome." *Cell*
801 184: 2302-15.

802

803

804

805

806

807

808

809

810

811

812

813 Tables

814 **Table 1** Runtimes and thread number of each assembler for all the human gut
815 datasets.

Assembler	Thread number	Runtime (min)			
	All samples	H_Gut_meta01	H_Gut_Meta02	H_Gut_Meta03	P_Gut_Meta01
IBDA-UD	6	863	884	911	2657
MEGAHIT	16	179	161	163	611
MetaSPAdes	16	1478	1289	1429	3459
CloudSPAdes	16	1024	1163	1039	2627
Supernova	8	1249	864	1098	6776
Athena	16	13813	8689	6361	--
MetaTrass	16	5145	2631	3147	8363

816 *Note:* The exact runtime of assembling P_Gut_Meta01 sample by Athena was not
817 collected correctly due to several uncontrolled interrupts on HPC cluster.

818

819

820 Supporting information

821 **Table S1** Read number on different ranks classified by Kraken2 for the four gut
822 samples.

823 **Table S2** Classified read information of the mock dataset.

824 **Table S3** The overall view of genome bins obtained by MetaTrass and all common
825 strategies “Comp >50%” means the completeness higher than 50%.

826 **Table S4** The runtime of MetaTrass step by step for all human gut datasets.

827 **Table S5** Genome fraction with different coverage depths for different read sets

828 including the taxonomic read (TR), refined reads by co-barcoding (BR), and total
829 reads (Total) for five species with medium abundances in P_Gut_Meta01.

830 **Figure S1** The probability of barcodes with long fragments from different species for
831 four gut samples.

832 **Figure S2** Mismatches and Indels of different assemblies for the mock dataset.

833 **Figure S3** Distributions of classified reads at different phyla for four gut samples.

834 **Figure S4** Distributions of classified reads at different classes for four gut samples.

835 **Figure S5** Distributions of classified reads at different orders for four gut samples.

836 **Figure S6** Distributions of classified reads at different families for four gut samples.

837 **Figure S7** Genome fraction and ratio of assembly length to reference length of all
838 species assembled in MetaTrass for four gut samples, and the species are ordered by
839 the completeness.

840 **Figure S8** Two-dimensional scatter plot of completeness and contamination
841 evaluated by CheckM for four gut samples.

842 **Figure S9** Phylogenetic tree of the high-quality genomes assembled by MetaTrass for
843 H_Gut_Meta02. The phylogenetic tree is on the left. Distribution of the high-quality
844 genomes assembled by other methods are colored as red in the middle heat map.
845 N50 of each high-quality genome is shown in the right histogram.

846 **Figure S10** Phylogenetic tree of the high-quality genomes assembled by MetaTrass
847 for H_Gut_Meta03. The phylogenetic tree is on the left. Distribution of the high-
848 quality genomes assembled by other methods are colored as red in the middle heat
849 map. N50 of each high-quality genome is shown in the right histogram.

850 **Figure S11** Phylogenetic tree of the high-quality genomes assembled by MetaTrass
851 for P_Gut_Meta01. The phylogenetic tree is on the left. N50 of each high-quality
852 genome is shown in the right histogram. Because the genome bins obtained by the
853 combination strategies cannot be classified into species by GTDB-tk, the heat map is
854 not showed for this sample.

855 **Figure S12** Box plot of variations. Box plots of SNVs (a), small indels (b), large indels
856 (c) and SNV density (d) called from the high-quality genomes for four gut samples.

857 **Figure S13** Number of genomes with different quality (a) and contiguity (b)

858 assembled by MetaTrass and MetaTrass_TR for the patient gut sample. Since
859 MetaTrass_TR excluded the co-barcoding refining process compared to MetaTrass,
860 the input dataset of co-barcoding assembling in MetaTrass_TR is the taxonomic reads
861 set. Only the high-quality genomes are considered to count the number of genomes
862 with different contiguity.