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30 Abstract

31 With the development of sequencing technologies and computational analysis in
32  metagenomics, the genetic diversity of non-conserved regions has been receiving
33 intensive attention to unravel the human gut microbia community. However, it
34 remains a challenge to obtain enough microbial draft genomes at a high resolution
35 from asingle sample. In this work, we presented MetaTrass with a strategy of binning
36 first and assembling later to assemble high-quality draft genomes based on
37  metagenomics co-barcoding reads and the public reference genomes. We applied the
38 tool to the single tube long fragment reads datasets for four human faecal samples,
39 and generated more high-quality draft genomes with longer contiguity and higher
40 resolution than the common combination strategies of genome assembling and
41 binning. A total of 178 high-quality genomes was successfully assembled by
42 MetaTrass, but the maximum of 58 was generated by the optimal common
43  combination strategy in our tests. These high-quality genomes paved the way for
44  genetic diversity and lineage analysis among different samples. With the high
45  capability of assembling high-quality genomes of metagenomics datasets, MetaTrass
46  will facilitate the study of spatial characters and dynamics of complex microbial
47  communities at high resolution. The open-source code of MetaTrass is available at
48  https://github.com/BGI-Qingdao/MetaTrass.

49

50 KEYWORDS: Metagenome assembly, Synthetic long reads, Taxonomic binning,
51  Microbiome composition, Phylogenetic trees

52

53

54 Introduction

55  Through sequencing and analyzing the DNA of microbial communities directly from
56  the environment, metagenomics has showed important roles in advancing the study of
57  uncultured microbiomes [1, 2]. Comprehensive databases of metagenome-assembled

58 genomes, especialy for the human gut microbiome, are massively expanded to
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59 completely understand the genomic taxonomic structure of different microbiome
60 communities according to genetic similarity [3, 4]. The progresses in metagenomics
61 have shed new light on the study of spatial distribution and dynamics of complex
62  microbial communities from the human gut [5, 6].

63 Based on the function mining of high-quality strain-resolved genomes, it is
64 redlized that genotypic differences among strains are strongly correlated with their
65 phenotypic differences [7, 8]. The importance of intra-species non-homologous genes
66 have been intensively studied in the field of pathogenicity, and many new species
67  with both pathogenic and commensal strains have been found [9-11]. Indeed, the
68  percentage of conserved intra-species homologous genes shared between strains is as
69 low as 40% [12], and the large part of non-conservation region is thought of as the
70 genetic origin of phenotypic diversity. Thus, complete draft genomes from a
71 microbiome sample at the species level will enable a more comprehensive study of
72  intra-species genome diversity, but it is still a challenge to generate sufficient high-
73 quality genomes from metagenomic datasets.

74 Most of current approaches to analyze the microbiome communities are based on
75  high-throughput and low-cost next-generation sequencing (NGS) reads. Many highly
76  modularized computational tools have been developed such as genome assemblers,
77 genome binners, taxonomic binners and taxonomic profilers [13-15]. The
78 combinations of assembling first and binning later have been commonly used to
79  generate metagenome-assembled genomes. In these strategies, a mass of short reads
80 from a microbial community are firstly assembled to generate longer sequences by
81 metagenomics assemblers with the consideration of uneven coverage depths of
82 different microbial species [16-18]. Then the assembled segquences are grouped into
83 individual genomes by genome binners based on similar K-mer composition and read
84  coverage [19-21]. As aresult, draft genomes with non-conserved genes are retrieved
85 from various microbial communities. However, it is impossible to solve the
86 assembling problem of the long inter-species repeats by the short NGS reads, so the
87  contiguity of the draft genomes assembled by NGS reads is still not enough long for

88  studying the long structural variations in metagenomics.
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89 Various sequencing technologies with long-range information accompanied by
90  speciaized computational tools are promised to overcome the problem of long repests.
91  Third-generation single-molecule real-time sequencing (TGS) technologies devel oped
92 by Pacific Biosciences and Oxford Nanopore Technology (ONT) can produce
93  contiguous reads with lengths up to hundreds of kb, and show great potential to
94  generate complete genomes from both cultured and uncultured microbial communities
95  [22-24]. With using the chromatin-level contact probability information generated by
96  high-throughput chromosome conformation capture (Hi-C) technology, more high-
97  quality genome bins with improved contiguity can be retrieved [25]. Additionally, the
98  co-abundance of speciesin multiple samples with the common K-mer composition are
99  also used to improve the capability to retrieve high-quality genome bins for NGS
100 datasets [26]. However, there are limitations for these approaches. The high
101 sequencing error rate in TGS long reads hampers the distinction between true
102  variations and sequencing errors. An effective contact map with Hi-C library can only
103  be established for a draft genome with preferable contiguity. Constructing co-
104  abundance in multiple samples ignores the genome characteristics of a single sample
105  and increase the sequencing cost.
106 The co-barcoding sequencing library [27-31], an improved short-read sequencing
107 with long-range genomic information, can provide an aternative way to improve
108  metagenomics analyzing. In a co-barcoding library construction, long fragments
109  sheared from DNA samples are firstly distributed into different isolated partitions, and
110  then short-read fragments from the long fragment in the same partition are labeled
111 with a unique barcode sequence, finaly the co-barcoded fragments are sequenced by
112 standard short-read sequencing platforms. For different co-barcoding libraries such as
113  BGI’s single tube long fragment reads (StLFR) library [30], 10X Genomics' linked-
114 reads library [32] and Illumina’s contiguity preserving transposase sequencing library
115 [28], different technical metrics in the total barcode number and the short-read
116  coverage of the long fragment have a great impact on their powers in the downstream
117 anaysis [33-36]. The co-barcoding correlation on the draft sequences or the
118 assembled graph have been successfully applied to improve the contiguity of
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119  assembled genomes for both large eukaryotic genomes [37-39] and metagenomes [29,
120 40, 41]. All these methods are still the common combination strategy in principle,
121 leaving the inherent problem of long repeats among species with uneven abundance
122 unsolved in efficiently constructing high-quality draft genomes for complex microbial
123  communities.

124 In this work, we introduced a pipeline of Metagenomics Taxonomic Read
125  Assembly of Single Species (MetaTrass) based on co-barcoding sequencing data and
126  references. Different from the common strategies, MetaTrass was a strategy of
127  binning first and assembling later. The co-barcoding information was used not only to
128 improve the assemblies by implementing co-barcoding assemblies, but also to
129  simplify the dataset before assembling using microbial references with the help of
130 taxonomic binning. We apply MetaTrass to stLFR datasets of a mock metagenome
131 community and four real gut microbiome communities to evaluate its capability of
132  producing high-quality draft genomes with high contiguity and high taxonomic
133 resolution. The results were benchmarked by comparing to the common combinations
134  of several mainstream tools. Meanwhile, the microbiome composition and genetic
135  diversity in the four human gut samples were quantitatively analyzed with using the
136 high-quality draft genomes assembled by MetaTrass. We expected that the high-
137  quality draft genomes with taxonomic information at the species level assembled by
138  our tools would be convenient to make more extensively use to investigate various

139  microbial communities.
140

141 Materialsand methods

142  Datasets

143 A mock microbial and four gut microbial communities were analyzed to evaluate the
144  efficiency of MetaTrass. The mock microbia community (ZymoBIOMICS™
145  Microbial Community DNA Standard) consists of 8 isolated bacteria with the
146  abundance of about 12% and 2 fungi with the abundance of about 2%. The four gut

147  microbia DNA samples include faeces of three heathy volunteers and one patient
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148  with inflammatory bowel disease. The stLFR libraries were constructed according to
149  the standard protocol [30]. The DNA samples were firstly sheared into long fragments,
150  and then the long fragments were captured into a magnetic microbead with a unique
151  barcode sequence. Finally, each long fragment was broken and hybridized with a
152  unique barcode by the Tn5 transposase on the surface of the microbead. The stLFR
153 libraries of the mock and the patient sample were sequenced on BGISEQS500 platform,
154  and those of healthy samples were sequenced on MGISEQ2000 platform. The read
155  length in the read pair was 100 bp for al datasets. The mock and three healthy sample
156 libraries were individualy allocated to a half lane, and a total of about 50 Gb raw
157  reads were generated. The patient library was allocated to a full lane, generating about
158 100 Gb raw reads. Barcode sequences were extracted from the end of read2 and then
159  replaced by numerical symbols in the read names in the FASTQ file with an in-house
160  script. SOAPfilter_v2.2 with parameters -y -F
161  CTGTCTCTTATACACATCTTAGGAAGACAAGCACTGACGACATGA -R
162 TCTGCTGAGTCGAGAACGTCTCTGTGAGCCAAGGAGTTGCTCTGG -p-M 2 f -1
163  -Q 10) was used to clean out low-quality raw reads with adaptors, excessive confused
164  bases, and high duplications. Finally, 55.65 Gb clean data were retained for the mock
165  microbiome, 34.48 Gb for the first healthy sample (H_Gut_Meta01), 35.33 Gb for the
166  second (H_Gut_Meta02), 37.88 Gb for the third (H_Gut_Meta03), and 97.20 Gb for
167  the patient sample (P_Gut_Meta01).

168

169  Taxonomic binning

170  We adopted Kraken2 (version 2.0.9-beta) [42] to classify stLFR reads into different
171 species. Firstly, a customized reference databases were constructed according to the
172 microbial community. Specially, references attached to the ZYMO product were used
173  for the mock sample. The Kraken2 database of the Unified Human Gastrointestinal
174  Genomes (UHGG) collection [3] was used to study the gut samples, and which
175  included 4542 representative genomes at the species level. Then, the corresponding
176  SILFR reads were classified with default parameters.

177
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178  Co-barcoding readsrefining

179  Since ataxonomic tree of references was established to reduce the number of multiple
180  hits of a K-mer from inter-species homologous sequences in Kraken2, the reads from
181  these regions were classified into the lowest common ancient (LCA) rank higher than
182  its corresponding species. Several works tried to reallocate these reads to species by
183  datistical inferences using the coverage depth or co-barcoding information of intra-
184  species homologous region of a species [43, 44]. In MetaTrass pipeline, the co-
185  barcoding correlation between reads classified into a species and those classified into
186  high LCA ranks was used to reduce the false negative of reads classified into high
187  LCA rank. Reads classified into a species level is defined as the taxonomic reads of
188  the species. In this step, we collected and refined reads for each barcode according to
189  the number of reads in the taxonomic reads (Num_T) and the ratio of these reads to
190  the total reads (Ratio_T). Barcodes appearing in the taxonomic reads were firstly
191  extracted as candidates. Then, we ranked candidates first in order of Num_ T from
192  largeto small, and then Ratio_T for those with the same Num_T. Finally, reads with a
193  barcode of Ratio_T larger than a threshold were chose based on the barcode rank.
194  Since sufficient read coverage is required for assembling a complete genome, only the
195  read sets of one species with abundance higher than 10x were refined by co-barcoding
196  information. The abundance of each species was roughly calculated according to the
197  coverage depth of the taxonomic reads on the reference. Meanwhile, we set a data size
198  threshold of the refined reads to reduce the computational consumption for species
199  with extremely high abundance (e.g., 300x). Paired-end reads were extracted by Seqtk
200  (version 1.3-r114-dirty) according to the barcode-related read names from the FASTQ
201 file of clean reads. Note that there were still some false positive reads, athough
202 Ratio_T was set to reduce them caused by the collision of long fragments from
203 different species in the same microbead. Sequences assembled by these reads would
204  befurther filtered as following description in the section of sequences purifying.

205

206  Co-barcoding reads assembling

207 Reads of a single species with abundance higher than 10x were assembled by
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208  Supernova (version 2.1.1), which is a co-barcoding de novo assembler for single large
209 eukaryotic genomes with high performances. Supernova was designed for linked-
210  reads of 10X Genomics, which have different barcode sequences and formats from
211 sLFR reads. Thus, we converted the stLFR reads into linked-reads FASTQ files with
212  an in-house script. Additionally, the parameter --accept-extreme-coverage was set to
213  yesto adapt to large coverage depth differences.

214

215 Sequences purifying

216  The similarity between whole genomes based on the alignment fraction (AF) and
217  average nucleotide identity (ANI) have been commonly adopted to circumscribe
218  gspecies|[3, 4]. MetaTrass aso used the parameters of AF and ANI between assembled
219 contigs and the reference to purify the sequences assembled by the refined co-
220 barcoding reads. ANI was calculated independently for each alignment. AF was
221  defined astheratio of total alignment length to the total contig length. The dignments
222 with ANI larger than a threshold were counted. In our practice, we set ANI threshold
223  to 90%, and AF threshold to 50%. The alignments between contigs and references
224 were generated by QUAST (version 5.0.2) [45] with default parameters, except that
225  theidentity threshold to obtain valid alignment was set to 90%.

226

227  Combinations of assembling first and binning later

228 In a standard analysis of NGS metagenomics dataset, the combination of de novo
229  genome assembling first and binning later was commonly adopted. We compared
230 different combinations to MetaTrass by analyzing the mock and four gut samples. In
231  our tests, the st(LFR co-barcoding reads were assembled by NGS assemblers including
232 IDBA-UD (version 1.1.3), MEGAHIT (version 1.1.3), and MetaSPAdes (version
233  3.10.1) or co-barcoding assemblers including Supernova [37], Athena (version 1.3.0)
234  [29], and CloudSPAdes (version 3.13.1) [40]. Then, all these draft assemblies were
235 binned by two genome binners, MetaBAT2 (version 2.12.1)[21] and Maxhin2.0
236  (version 2.2.5) [20]. Since CloudSPAdes and Athena were not designed for stLFR

237 reads, we made an appropriate format conversion with an in-house script where
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238  LongRanger (version 2.2.2) [46] was used. In genome assembling, Supernovawas run
239  with the same parameters as those have been adopted in MetaTrass. IDBA-UD,
240 MEGAHIT, MetaSPAdes, Athena, and CloudSPAdes were run with default
241 parameters. All the assembling results were deposited into CNGB Sequence Archive
242 (CNSA) [47] (https://db.cngb.org/cnsal) of China National GeneBank DataBase
243  (CNGBdb) [48] with accession number CNP0002163. In genome binning, MetaBAT2
244  and Maxbin2.0 were run with default parameters.

245

246  Evaluations

247  Both reference-based and reference-free assessments were used to evaluate the quality
248  of assemblies obtained using different strategies. For the mock microbial community
249  with definite references, the reference-based tool QUAST was used to evaluate
250  contiguity and accuracy of metagenomics assemblies. Minimap2 was used to map
251  assemblies to references and get valid alignments with the identity threshold of 95%.
252  Then, the statistics such as genome fraction, NG50/NGA50, and number of
253  misassemblies were assessed from the alignments with default parameters. For the
254  real gut microbial communities, the reference-free tool CheckM (version 1.1.2) [49]
255  were run with default parameters to evaluate the completeness and contamination of
256  each genome from metagenomics assemblies in addition to QUAST. Following the
257  guidance proposed in CheckM, we defined a high-quality assembly if it has >90%
258  completeness and <5% contamination and a medium-quality assembly if it has >50%
259  completeness and <10% contamination and does not meet the high-quality criterion.
260 In addition, the statistics of each genome such as N50, genome size, and taxonomic
261 rank were also obtained by CheckM, where the taxonomic rank was used to
262  demonstrate the resolution of a genome bin.

263

264  Variation and phylogenetic analysis

265  All the high-quality genomes assembled by MetaTrass were used to call variations for
266  the four gut samples. We aligned each genome to the corresponding reference using

267 minimap2 (2.17-r974-dirty) with parameters (-x asmb) to prevent an aignment
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268  extending to regions with diversity >5%. SAMtools (version 1.9) [50] and PAFtools
269  were used to convert the BAM file of initial unsorted alignments into a PAF file of
270  sorted aignments. We identified variations using the “call” module in PAFtools with
271 parameters (-L 10000) to filter out the alignments shorter than 10,000 bp. SNV's only
272  referred to single nucleotide substitutions, excluded single-base insertions or deletions.
273  Insertions or deletions with length shorter than 50 bp were defined as small indels,
274  and the others were large indels. In determination of shared variations among species
275  in different samples, the position and sequence information of a variation were used.
276  When variation information is the same for species genomes in different samples, the

277  variation was shared.
278 We used the “classify_wf” function of GTDB-tk (version 0.3.1) [51] to conduct

279  taxonomic annotation of the genome bins obtained using the common strategies with
280  default parameters. Considering the procedure of UHGG database construction [4],
281 genome bins were assigned at the species level if the AF to the close species
282  representative genomes was higher than 30% and ANI was higher than 95%. We used
283  FastTree (version 2.1.10) [52] to build maximum-likelihood phylogenetic trees of the
284  high-quality genomes assembled by MetaTrass. The input of protein sequence
285 aignments was produced by GTDB-Tk using marker gene set of 120 bacteria and 122
286  archaea. Interactive Tree of Life (iTOL version 4.4.2) [53] was used to visualize and
287  annotate trees.

288

289 Resultsand discussion

290 MetaTrass pipeline

291  Inthis work, we developed a metagenomics assembling pipeline named MetaTrass to
292  combine the references and long-range co-barcoding information of stLFR library.
293 From the flowchart (Figure 1a), the taxonomic binning of stLFR reads were
294  processed before the genome assembling, and different from the previous common
295  combination strategies of assembling first and binning later. In taxonomic binning, the
296  metagenomics stLFR reads were classified into different taxonomic ranks by Kraken2

297  [42]. Since the phylogenetic relations among references were used in Kraken2, only
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298  the reads from intra-species homologous region of a sample genome can be classified
299 into the target species, but the reads from inter-species homologous and intra-species
300 non-homologous regions were not classified effectively (Figure 1b). The reads from
301 inter-species homologous regions were classified into the higher ranks of the target
302 gspecies and those from intra-species non-homologous region were unclassified or
303 classified into irrelevant ranks. Totally, about 10% of the reads were classified into
304 the high ranks for the four human gut datasets and about 9% of the reads were
305 unclassified (Table S1). In co-barcoding refining, the co-barcoding correlation
306  between the reads from intra-species homologous region and those from intra-species
307 non-homologous and inter-species homologous region was used to refine the final
308 reads set for a target species (Figure 1b). The barcodes of the intra-species
309 homologous reads were firstly extracted as the candidate barcodes. Then, the final
310  barcodes were collected by a constraint of data size and the quality of co-barcoding
311 information. Finally, the reads with a barcode belong to the final barcodes were
312  gathered to form the refined reads set for the target species. The constraint of data size
313 was set to reduce computational consumption for the species with extremely high
314  abundance. Since the barcodes with more reads classified into the target species are
315 more possible to retain the long-range genomic information, the quality of co-
316  barcoding information of a barcode was quantified by the number of reads classified
317  into the species and the number ratio of these reads to total reads. In co-barcoding
318 assembling, the refined reads of each species were independently assembled by
319  Supernova. In practice, multiple long fragments from different species would share
320 the same barcode in real stLFR libraries (Figure S1). Thus, the impure sequences
321  assembled by the false positive reads from non-target species should be removed
322 finaly according to AF and ANI vaues of aignments between the assembly and
323 references. Overal, the comprehensive use of co-barcoding information and
324  references in our approach could reduce the false negative effects of taxonomic

325  binning and the fal se positive effects of co-barcoding read refining.
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327  Figure 1 Flowchart and scheme of MetaTrass. a) Flowchart of MetaTrass assembling
328 pipeline. b) Scheme of the homologous relation and co-barcoding correlation of
329 difference reads sets classified by taxonomic binning.

330

331  Assembly of the mock microbiome

332 The strategy of binning first and assembling later have been widely adopted to
333  assemble haplotype genomes for eukaryotes with large sizes [54, 34]. But it has been
334 rarely used to assemble metagenomes. We firstly applied MetaTrass to assemble
335 SLFR read sets of the mock microbial community. Totally, up to 99.4% of reads
336  were assigned to different datasets of species due to the simplicity of the microbial
337  community with low inter-species homology and intra-species non-homology (Table
338 S2). To investigate the efficiency of our strategy, we compared it with the
339 mainstream mixed assembling strategies (Figure 2a). Besides the MetaTrass, the
340 StLFR reads were aso directly assembled by IDBA-UD, MEGAHIT, Supernova,
341  CloudSPAdes, and Athena in the mixed assembling. Additionally, the optimal mixed

342  assemblies of ONT reads and Illumina NGS reads in Nicholls's work [55] were also
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343  used to make a comparison, where the ONT result was assembled by WTDBG and
344  the NGS result was by SPAdes. The draft genome of each species in a mixed
345  assembly was extracted by our sequence purifying module.

346 Overall, our pipeline was superior in the production of draft genomes with high
347  genome fractions and long contiguity (Figure 2). Two species Enterococcus faecalis
348 and Lactobacillus fermentum were incompletely assembled by Supernova, and their
349  genome fractions were only 17.7% and 8.9%. However, both species were properly
350 recovered in MetaTrass, indicating that the assembling complexity caused by uneven
351  abundances was reduced by taxonomic binning. All the assemblies by MetaTrass
352  showed high genome fraction as those by NGS and co-barcoding assemblers designed
353  for metagenome, which were higher than those of ONT assemblies. Compared to
354 NGS assemblers, the co-barcoding and TGS assembler generated draft assemblies
355  with significantly better contiguity, where Metatrass generated the best performance.
356  MetaTrass produced seven draft genomes with NG50 around 2 Mb. Furthermore, the
357  accuracy was guaranteed by MetaTrass, which obtained the most assemblies with
358 NGASO0 around 2 Mb. Meanwhile, assemblies by MetaTrass had less assembly errors
359 compared to ONT assemblies (Figure S2). The average mismatch and indel numbers
360 per 100 kb in assemblies with stLFR reads were 60 and 10, which were obviously
361  smaller than that of the ONT assemblies.
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363  Figure 2 Scheme and evaluations for different strategies. a) Difference labels of the
364 assemblies based on different sequencing and assembling strategies. b) Genome
365  fraction, NG50 and NGASO0 evaluated by QUAST for the assemblies.

366

367  Assembly of four human gut microbiomes

368 To evaluate the robustness of our approach, we applied MetaTrass to four human
369 faecal samples. The comprehensive genome references of UHGG were used to
370 classify NGS reads by Kraken2, and the community compositions were estimated by
371 the classified reads at different taxonomic ranks (Figure S3-S6). The three healthy
372  samples had asimilar microbial community, where the major microbiomes were from
373  Firmicutes A phylum. This microbial community was different from the patient
374  microbia community dominated by Proteobacteria which is strongly correlated with
375 the enteric diseases caused by dysbiosis in gut microbiota [56]. The total numbers of

376  gspecies with higher than 10x abundance were 113, 108, 93, and 158 in
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377 H_Gut MetaDl, H _Gut Meta02, H Gut Metad3, and P _Gut MetaOl samples,
378  respectively. The relations between these abbreviated notations and detailed sample
379 information were descripted in the section of Materials and methods.

380 The genome fraction of an assembly to the reference is used to evaluate the
381 completeness in single genome assembling. The genome fraction for all samples
382 widely ranges from 0% to 90%, and the distributions of H_Gut Metadl and
383 H_Gut_MetaD2 were more concentrated than those of H_Gut Meta03 and
384 P _Gut Meta0l (Figure 3a). However, more than half of the assembled genomes were
385 with a genome fraction of at least 50%. Considering the large genetic diversity
386  between sample genomes and the references [7], these results indicated that our
387  pipeline could assemble complete genomes for species abundance of higher than 10x.
388 The genetic diversity was also proved by the significant differences in genome
389 fraction and the ratio of assembled length to the reference length among the four
390 samples (Figure S7). The distributions of genomes N50 were generally dispersed, and
391  the medians of H_Gut_Meta02 and H_Gut_Meta03 were obviously higher than those
392 of H_Gut Meta0l and P_Gut_Meta01 (Figure 3b). Nevertheless, the third quartilesin
393 the box plots for the samples were larger than 100 kb, demonstrating that our pipeline
394  had a strong capability to generate draft genomes with high contiguity. Note that for
395 these three healthy samples plenty of ultra-long draft genomes (N50>1 Mb) was
396 obtained, which provide possibilities to study the large genome difference in the

397  microbiome.
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Figure 3 QUAST and CheckM evaluations of MetaTrass assemblies for the four
human gut samples. a) Genome fraction. b) Scaffold N50. c) Box plot of completeness

and contamination. d) Number of high- and medium-quality genomes.

Considering the intra-species genetic diversity, we also evaluated the quality of
metagenomics assemblies based on the conserved marker genes by CheckM. The
completeness medians of three hedthy samples were larger than 92%, and the
contamination medians were smaller than 2% (Figure 3c). The completeness of the
patient sample was about 83%, and the contamination median was about 7% (Figure
S8). Meanwhile, a great number of high- and medium-quality genomes were
assembled by MetaTrass for the four samples (Figure 3d). 52 high-quality and 37
medium-quality genomes were produced for H_Gut_Meta0l, and 55 and 24 for
H_Gut_Meta02, and 47 and 16 for H_Gut_Meta03, and 24 and 28 for P_Gut_Meta01,
respectively.

Comparison to the common combination strategy

Modiim_qual

ty
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415 To further evaluate our approach’s efficiency, we compared it with common
416  combinations of assembling tools and genome binning tools as listed in the section of
417  Datasets and Methods. It should be noted that currently, there are till no genome
418 binning tools to directly exploit the co-barcoding information. By counting the
419  number of bins with completeness >50% and at least one conserved marker genes
420 (Table S3), we observed that MetaTrass perform best of all these methods. Especially
421 for P_Gut_Meta0l, the optimal combination between Supernova and Maxbin2.0
422  obtained 66 bins with completeness higher than 50%, but it was significantly less than
423 117 obtained by MetaTrass.

424 By comprehensively analyzing the completeness, contamination and taxonomic
425  rank of each bin, we assessed MetaTrass and common strategies in the ability to get
426  high- and medium-quality genomes and resolution of taxonomic rank (Figure 4). For
427  different samples, the best combination to produce the optimal results was different.
428 The combinations of MetaSPAdes and Maxhin2.0, Supernova and MetaBAT2,
429 MetaSPAdes and MetaBAT2, and Athena and MetaBAT2 is optima for
430 H_Gut Meta0l, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, respectively.
431  For the four samples, the optimal results of the common strategies were till inferior
432  to those of MetaTrass. For the example of H_Gut_meta0l, the combination of
433  MetaSPAdes and Maxbin2.0 produced 41 high- and medium-quality genomes, which
434  wassignificantly less than 90 obtained by MetaTrass. There were only 3 out of totally
435 18 high-quality genomes with ataxonomic rank lower than the order, but 15 out of 52
436 for MetaTrass. Comparing the strategies only using NGS read information, the
437 combination strategies of co-barcoding assembler and binner showed no obvious
438 advantages in generating genomes with high quality and resolution, but MetaTrass
439  was significantly superior to them. These results demonstrated that the usage of co-
440  barcoding information in MetaTrass was more efficient and accurate than those in a

441 mixed assembling.
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Figure 4 Comparison of metagenome assembling for different methods. a) Number

443

of high- and medium-quality genomes assembled with different methods. b) Number

444

of high-quality genomes with high- and low-rank with different methods.

445

446

The human gut microbiome composition attracts much attention due to its strong

447

correlation with personality traits [57]. To compare the microbiome composition

448

structures of the high-quality genomes with different methods, we uniformly

449

classified the high-quality genome bins into species using GTDB-tk. Using the large

450

number of high-quality genomes obtained by MetaTrass, the phylogenetic trees of

451

these genomes were constructed and the corresponding N50 were attached in the left

452

histogram as shown in Figure 5. Meanwhile, the high-quality genome bins obtained

453

by the common strategies were marked in red in the middle heat map (Figure 5), if the

454

genome of the same species were also assembled by MetaTrass. The topology of the

455

phylogenetic tree of genomes assembled by MetaTrass gave comprehensive insights

456
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457  of the microbial composition structure. From the trees in Figure 5 and Figure S9-S11,
458  the numbers of the order with high-quality genomes assembled by MetaTrass were 9,
459 11,7,and 7 for H_Gut MetaD1, H Gut Metad2, H_Gut_Meta03, and P_Gut_Meta01,
460  respectively. Notably, some orders contained more than 5 high-quality genomes, and
461  this provide convenience to study the microbiome structure at the genome-wide scale.
462  For the sample of H_Gut_MetaOl1 (Figure 5), there were 27 high-quality genomes
463 classified into Lachnospirales order and 14 into Oscillospirales. These two were
464  exactly the dominating orders according to the taxonomic abundance distribution.
465  Similar results were obtained for the other two healthy samples (Figure O and S10),
466 indicating that the microbiome with higher sequencing coverage could be better
467 assembled in Metalrass. In contrast, the orders with more than 5 high-quality
468  genomes were Enterobacterales and Actinomycetales for P_Gut_MetaD1 (Figure S11).
469  The obvious difference between the healthy and patient samples was consistent with
470  the microbial compositions differences observed in the taxonomic binning results.
471 MetaTrass successfully assemble most of the high-quality genomes of all common
472  combinations in our tests. For instance, they generated 137 genome bins, while only
473 25 genome bins were not assembled by MetaTrass (Figure 5). From the heat maps,
474  most of the common strategies could assemble draft genomes for each order, but the
475  total numbersin each order were relatively small. The maximal number of genomesin
476  one order was 6 and obtained by the combination of Supernova and MetaBAT?2 for
477  Lachnospirales. Moreover, 146 of 179 high-quality genomes were with N50 values
478  larger than 100 kb, demonstrating that MetaTrass had a strong ability to improve the

479  contiguity of assemblies.
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481  Figure 5 Phylogenetic tree of the high-quality genomes assembled by MetaTrass for
482  H_Gut_Meta0l. The phylogenetic tree is on the left. Distribution of the high-quality
483  genomes assembled by other methods are colored as red in the middle heat map.
484 NS5O of each high-quality genome is shown in the right histogram.

485

486  Genetic diversity in different samples

487  Different types of variations in gut microbiomes are strongly associated with host
488  hedlth, and the genetic diversity among different microbiomes has been intensively
489 studied to unravel the genetic origin of phenotypic difference among people of
490  different regions or health status [58, 59]. By aligning draft genomes to the references,
491  we caled variations for high-quality genomes for each species in different samples,
492  including single nucleotide variations (SNV), small and large indels. For different
493  variations, the numbers of SNV were significantly larger than those of the small and
494 large indels for the four samples (Figure S12). Three healthy samples showed close
495  variation numbers, which were obviously larger than those of the patient. It come
496 from fewer aignments for the patient sample according to the QUAST evaluation.
497  However, when we removed the effect of the total aligned length by calculating the
498 SNV density, the patient sample showed denser SNV than the healthy samples (Figure
499  S12d). The median was about 21 for the patient sample, but about 9 for the healthy
500 samples. This difference could be introduced by the individual’s physiological state,

501  which was related to the diseases and also to the territory or race [4].
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502 Based on the taxonomic information of high-quality genomes, we found 15
503  gpecies shared by three samples, where 14 species appeared in the three healthy
504  samples but only one species of Escherichia appeared in the patient and two healthy
505 samples. By analyzing the SNV density and intersection of variations between
506 different samples for each species in three healthy samples, we further investigated
507 the genetic diversity between species from different samples. The SNV densities were
508 different for different species even in the same sample, but similar for the same
509 gpeciesin different sample (Figure 6a). From Figure 6b to 6d, the number of unique
510 and shared variations in different types significantly fluctuated for different species,
511 but their difference among samples showed great consistency. The total shared
512 numbers between H_Gut_MetaO1 and H_Gut_meta02 were obviously more than
513 those between H_GutMetaO3 and the other two samples for all variations.
514  Furthermore, the ratio of large indels shared by all three samples to the total number
515  was much smaller than those of SNV's and small indels. These results demonstrated
516 that large variations were more specific than small variations in the huge genetic
517  diversity between different samples, were consistent with the observation in the study

518  of association between host health and structural variations in gut microbiome [58].
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520  Figure 6 SNV density and number of unique and shared variations for each species
521  appearing in all three healthy samples. a) is the SNV density. b), ¢} and d) are the
522  number of SNVs, small and large indels, respectively. The species numerical order in
523  b), c¢)and d) corresponds to the appearance order of species from left to right in a).
524

525  Computational performance

526  Runtime and used thread number of each assembler were recorded for all the human
527  gut datasets (Table 1). Most of the assemblers were test on 24 Intel(R) Xeon(R) Silver
528 4116 CPU @ 2.10GHz, except for Athena and Supernova which were test on HPC
529  Cluster for their large memory requirements. The thread number used in each
530 assembler was the same for different samples. The time consumption of the format
531  conversion from stLFR reads to 10X linked-reads were not included, and was about
532 500 minutes for dataset with 50 Gb with one thread. We found that MetaTrass was
533  less time consuming than Athena but more than other assemblers. This may come
534  from that both MetaTrass and Athena contained many sub-assembling, which took

535 most of the time among all sub-processes in MetaTrass (Table $4). Since the sub-
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536 assembling was independent, it could be run in paralel to further speed up the
537  assembling by increasing the parallel number and the parallel number was 8 in default.

538

539 Conclusion

540 High-quality genomes at species level are strongly demanded to investigate the
541  genetic origins of diseases associated with the human gut, but how to get sufficient
542  number of them in one sample is still a challenge due to the inter-species repeats and
543  uneven abundance in metagenomics assembling. In this work, we developed atool to
544  get high-quality genomes with high taxonomic resolutions by combining the co-
545  barcoding information with public references. Compared with the common
546  combination strategies, our pipeline generated a large number of high-quality
547  genomes for the human microbiome co-barcoding datasets. Meanwhile, plenty of
548  draft genomes were also assembled with NG50 values of larger than 1 Mb, some of
549  which were even longer than the references for both mock and human gut datasets.
550  For al the four real gut samples, 178 draft genomes with high completeness and low
551  contamination were generated, but their genome fractions relative to the references
552  were low. The differences between the sample genomes assembled by MetaTrass and
553  the reference genomes demonstrated that the co-barcoding information could be used
554  to reduce the false negative reads in taxonomic binning. These reads retrieved from
555  inter-species homologous and intra-species non-homologous regions by co-barcoding
556  refining could significantly improve the assembly results. For the patient sample, the
557  number of high-quality genomes with long contiguity assembled by MetaTrass was
558  dignificantly larger than that without co-barcoding refining (Figure S13).

559 The efficiency of our pipeline depended on the co-barcoding information quality
560 including the read coverage and length of long fragments. By aligning reads to the
561  gpecies reference, we calculated the genome fraction with different read coverage
562  depths for different read sets including the taxonomic reads, the refined reads, and all
563  reads. According to the genome fraction with high coverage depths, we evaluate the
564  efficiency of the co-barcoding refining. From the results of species with medium
565 abundance in P_Gut_Meta0l (Figure S5), We observed that the fraction with high
566  depths of the refined reads was higher than those of the taxonomic reads, but still
567  lower than those of all aligned reads. These results indicated that there were still some
568  false negative reads introduced by the low coverage or short length of long fragments.
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569  Thus, improvements on co-barcoding library and the co-barcoding refining would
570  improve the performance of MetaTrass.

571 In summary, the application of MetaTrass in human gut samples showed great
572  promise of generating high-quality genomes for real complex microbial community at
573 a high resolution. With the increasing number of reference genomes from various
574  microbial communities and the development of co-barcoding sequencing library, the
575 combination strategy of binning first and assembling later in MetaTrass will be
576  extended and facilitate the investigation of the association between host phenotypes
577  and microbia genotypes for different microbial communities.

578
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808
809
810
811
812

813 Tables

814 Table 1 Runtimes and thread number of each assembler for all the human gut

815  datasets.

Assembler Thread Runtime (min)
number
All H _Gut metaD1 H Gut MetaD2 H_Gut MetaD3 P_Gut_Meta0l
samples
IBDA-UD 6 863 884 911 2657
MEGAHIT 16 179 161 163 611
MetaSPAdes 16 1478 1289 1429 3459
CloudSPAdes 16 1024 1163 1039 2627
Supernova 8 1249 864 1098 6776
Athena 16 13813 86389 6361 --
MetaTrass 16 5145 2631 3147 8363

816  Note: The exact runtime of assembling P_Gut_Meta01 sample by Athena was not

817  collected correctly due to several uncontrolled interrupts on HPC cluster.
818

819
820 Supporting information

821 Table S1 Read number on different ranks classified by Kraken2 for the four gut
822  samples.

823 Table S2 Classified read information of the mock dataset.

824 Table S3 The overall view of genome bins obtained by MetaTrass and all common
825  strategies “Comp >50%" means the completeness higher than 50%.

826 Table S4 The runtime of MetaTrass step by step for all human gut datasets.

827 Table S5 Genome fraction with different coverage depths for different read sets
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828 including the taxonomic read (TR), refined reads by co-barcoding (BR), and total
829  reads (Total) for five species with medium abundances in P_Gut_Meta01.

830  Figure S1 The probability of barcodes with long fragments from different species for
831  four gut samples.

832  Figure S2 Mismatches and Indels of different assemblies for the mock dataset.

833  Figure S3 Distributions of classified reads at different phyla for four gut samples.

834  Figure S4 Distributions of classified reads at different classes for four gut samples.
835  Figure S5 Distributions of classified reads at different orders for four gut samples.
836  Figure S6 Distributions of classified reads at different families for four gut samples.
837  Figure S7 Genome faction and ratio of assembly length to reference length of all
838  species assembled in MetaTrass for four gut samples, and the species are ordered by
839  the completeness.

840  Figure S8 Two-dimensional scatter plot of completeness and contamination
841  evaluated by CheckM for four gut samples.

842  Figure S9 Phylogenetic tree of the high-quality genomes assembled by MetaTrass for
843 H_Gut_Meta02. The phylogenetic tree is on the left. Distribution of the high-quality
844  genomes assembled by other methods are colored as red in the middle heat map.
845  N5O0 of each high-quality genome is shown in the right histogram.

846  Figure S10 Phylogenetic tree of the high-quality genomes assembled by MetaTrass
847 for H_Gut_Meta03. The phylogenetic tree is on the left. Distribution of the high-
848  quality genomes assembled by other methods are colored as red in the middle heat
849  map. N50 of each high-quality genome is shown in the right histogram.

850  Figure S11 Phylogenetic tree of the high-quality genomes assembled by MetaTrass
851 for P_Gut_Meta0l. The phylogenetic tree is on the left. N50 of each high-quality
852 genome is shown in the right histogram. Because the genome bins obtained by the
853  combination strategies cannot be classified into species by GTDB-tk, the heat map is
854  not showed for this sample.

855  Figure S12 Box plot of variations. Box plots of SNVs (a), small indels (b), large indels
856 (c) and SNV density (d) called from the high-quality genomes for four gut samples.

857  Figure S13 Number of genomes with different quality (a) and contiguity (b)
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assembled by MetaTrass and MetaTrass_ TR for the patient gut sample. Since
MetaTrass_TR excluded the co-barcoding refining process compared to MetaTrass,
the input dataset of co-barcoding assembling in MetaTrass_TR is the taxonomic reads
set. Only the high-quality genomes are considered to count the number of genomes

with different contiguity.
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