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Abstract 30 

With the development of sequencing technologies and computational analysis in 31 

metagenomics, the genetic diversity of non-conserved regions has been receiving 32 

intensive attention to unravel the human gut microbial community. However, it 33 

remains a challenge to obtain enough microbial draft genomes at a high resolution 34 

from a single sample. In this work, we presented MetaTrass with a strategy of binning 35 

first and assembling later to assemble high-quality draft genomes based on 36 

metagenomics co-barcoding reads and the public reference genomes. We applied the 37 

tool to the single tube long fragment reads datasets for four human faecal samples, 38 

and generated more high-quality draft genomes with longer contiguity and higher 39 

resolution than the common combination strategies of genome assembling and 40 

binning. A total of 178 high-quality genomes was successfully assembled by 41 

MetaTrass, but the maximum of 58 was generated by the optimal common 42 

combination strategy in our tests. These high-quality genomes paved the way for 43 

genetic diversity and lineage analysis among different samples. With the high 44 

capability of assembling high-quality genomes of metagenomics datasets, MetaTrass 45 

will facilitate the study of spatial characters and dynamics of complex microbial 46 

communities at high resolution. The open-source code of MetaTrass is available at 47 

https://github.com/BGI-Qingdao/MetaTrass. 48 

 49 

KEYWORDS: Metagenome assembly, Synthetic long reads, Taxonomic binning, 50 

Microbiome composition, Phylogenetic trees   51 

 52 

 53 

Introduction 54 

Through sequencing and analyzing the DNA of microbial communities directly from 55 

the environment, metagenomics has showed important roles in advancing the study of 56 

uncultured microbiomes [1, 2]. Comprehensive databases of metagenome-assembled 57 

genomes, especially for the human gut microbiome, are massively expanded to 58 
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completely understand the genomic taxonomic structure of different microbiome 59 

communities according to genetic similarity [3, 4]. The progresses in metagenomics 60 

have shed new light on the study of spatial distribution and dynamics of complex 61 

microbial communities from the human gut [5, 6]. 62 

Based on the function mining of high-quality strain-resolved genomes, it is 63 

realized that genotypic differences among strains are strongly correlated with their 64 

phenotypic differences [7, 8]. The importance of intra-species non-homologous genes 65 

have been intensively studied in the field of pathogenicity, and many new species 66 

with both pathogenic and commensal strains have been found [9-11]. Indeed, the 67 

percentage of conserved intra-species homologous genes shared between strains is as 68 

low as 40% [12], and the large part of non-conservation region is thought of as the 69 

genetic origin of phenotypic diversity. Thus, complete draft genomes from a 70 

microbiome sample at the species level will enable a more comprehensive study of 71 

intra-species genome diversity, but it is still a challenge to generate sufficient high-72 

quality genomes from metagenomic datasets.   73 

Most of current approaches to analyze the microbiome communities are based on 74 

high-throughput and low-cost next-generation sequencing (NGS) reads. Many highly 75 

modularized computational tools have been developed such as genome assemblers, 76 

genome binners, taxonomic binners and taxonomic profilers [13-15]. The 77 

combinations of assembling first and binning later have been commonly used to 78 

generate metagenome-assembled genomes. In these strategies, a mass of short reads 79 

from a microbial community are firstly assembled to generate longer sequences by 80 

metagenomics assemblers with the consideration of uneven coverage depths of 81 

different microbial species [16-18]. Then the assembled sequences are grouped into 82 

individual genomes by genome binners based on similar K-mer composition and read 83 

coverage [19-21]. As a result, draft genomes with non-conserved genes are retrieved 84 

from various microbial communities. However, it is impossible to solve the 85 

assembling problem of the long inter-species repeats by the short NGS reads, so the 86 

contiguity of the draft genomes assembled by NGS reads is still not enough long for 87 

studying the long structural variations in metagenomics.  88 
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Various sequencing technologies with long-range information accompanied by 89 

specialized computational tools are promised to overcome the problem of long repeats. 90 

Third-generation single-molecule real-time sequencing (TGS) technologies developed 91 

by Pacific Biosciences and Oxford Nanopore Technology (ONT) can produce 92 

contiguous reads with lengths up to hundreds of kb, and show great potential to 93 

generate complete genomes from both cultured and uncultured microbial communities 94 

[22-24]. With using the chromatin-level contact probability information generated by 95 

high-throughput chromosome conformation capture (Hi-C) technology, more high-96 

quality genome bins with improved contiguity can be retrieved [25]. Additionally, the 97 

co-abundance of species in multiple samples with the common K-mer composition are 98 

also used to improve the capability to retrieve high-quality genome bins for NGS 99 

datasets [26]. However, there are limitations for these approaches. The high 100 

sequencing error rate in TGS long reads hampers the distinction between true 101 

variations and sequencing errors. An effective contact map with Hi-C library can only 102 

be established for a draft genome with preferable contiguity. Constructing co-103 

abundance in multiple samples ignores the genome characteristics of a single sample 104 

and increase the sequencing cost. 105 

The co-barcoding sequencing library [27-31], an improved short-read sequencing 106 

with long-range genomic information, can provide an alternative way to improve 107 

metagenomics analyzing. In a co-barcoding library construction, long fragments 108 

sheared from DNA samples are firstly distributed into different isolated partitions, and 109 

then short-read fragments from the long fragment in the same partition are labeled 110 

with a unique barcode sequence, finally the co-barcoded fragments are sequenced by 111 

standard short-read sequencing platforms. For different co-barcoding libraries such as 112 

BGI’s single tube long fragment reads (stLFR) library [30], 10X Genomics’ linked-113 

reads library [32] and Illumina’s contiguity preserving transposase sequencing library 114 

[28], different technical metrics in the total barcode number and the short-read 115 

coverage of the long fragment have a great impact on their powers in the downstream 116 

analysis [33-36]. The co-barcoding correlation on the draft sequences or the 117 

assembled graph have been successfully applied to improve the contiguity of 118 
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assembled genomes for both large eukaryotic genomes [37-39] and metagenomes [29, 119 

40, 41]. All these methods are still the common combination strategy in principle, 120 

leaving the inherent problem of long repeats among species with uneven abundance 121 

unsolved in efficiently constructing high-quality draft genomes for complex microbial 122 

communities. 123 

In this work, we introduced a pipeline of Metagenomics Taxonomic Read 124 

Assembly of Single Species (MetaTrass) based on co-barcoding sequencing data and 125 

references. Different from the common strategies, MetaTrass was a strategy of 126 

binning first and assembling later. The co-barcoding information was used not only to 127 

improve the assemblies by implementing co-barcoding assemblies, but also to 128 

simplify the dataset before assembling using microbial references with the help of 129 

taxonomic binning. We apply MetaTrass to stLFR datasets of a mock metagenome 130 

community and four real gut microbiome communities to evaluate its capability of 131 

producing high-quality draft genomes with high contiguity and high taxonomic 132 

resolution. The results were benchmarked by comparing to the common combinations 133 

of several mainstream tools. Meanwhile, the microbiome composition and genetic 134 

diversity in the four human gut samples were quantitatively analyzed with using the 135 

high-quality draft genomes assembled by MetaTrass. We expected that the high-136 

quality draft genomes with taxonomic information at the species level assembled by 137 

our tools would be convenient to make more extensively use to investigate various 138 

microbial communities.  139 

 140 

Materials and methods 141 

Datasets 142 

A mock microbial and four gut microbial communities were analyzed to evaluate the 143 

efficiency of MetaTrass. The mock microbial community (ZymoBIOMICSTM 144 

Microbial Community DNA Standard) consists of 8 isolated bacteria with the 145 

abundance of about 12% and 2 fungi with the abundance of about 2%. The four gut 146 

microbial DNA samples include faeces of three healthy volunteers and one patient 147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


with inflammatory bowel disease. The stLFR libraries were constructed according to 148 

the standard protocol [30]. The DNA samples were firstly sheared into long fragments, 149 

and then the long fragments were captured into a magnetic microbead with a unique 150 

barcode sequence. Finally, each long fragment was broken and hybridized with a 151 

unique barcode by the Tn5 transposase on the surface of the microbead. The stLFR 152 

libraries of the mock and the patient sample were sequenced on BGISEQ500 platform, 153 

and those of healthy samples were sequenced on MGISEQ2000 platform. The read 154 

length in the read pair was 100 bp for all datasets. The mock and three healthy sample 155 

libraries were individually allocated to a half lane, and a total of about 50 Gb raw 156 

reads were generated. The patient library was allocated to a full lane, generating about 157 

100 Gb raw reads. Barcode sequences were extracted from the end of read2 and then 158 

replaced by numerical symbols in the read names in the FASTQ file with an in-house 159 

script. SOAPfilter_v2.2 with parameters (-y -F 160 

CTGTCTCTTATACACATCTTAGGAAGACAAGCACTGACGACATGA -R 161 

TCTGCTGAGTCGAGAACGTCTCTGTGAGCCAAGGAGTTGCTCTGG -p -M 2 -f -1 162 

-Q 10) was used to clean out low-quality raw reads with adaptors, excessive confused 163 

bases, and high duplications. Finally, 55.65 Gb clean data were retained for the mock 164 

microbiome, 34.48 Gb for the first healthy sample (H_Gut_Meta01), 35.33 Gb for the 165 

second (H_Gut_Meta02), 37.88 Gb for the third (H_Gut_Meta03), and 97.20 Gb for 166 

the patient sample (P_Gut_Meta01).   167 

 168 

Taxonomic binning   169 

We adopted Kraken2 (version 2.0.9-beta) [42] to classify stLFR reads into different 170 

species. Firstly, a customized reference databases were constructed according to the 171 

microbial community. Specially, references attached to the ZYMO product were used 172 

for the mock sample. The Kraken2 database of the Unified Human Gastrointestinal 173 

Genomes (UHGG) collection [3] was used to study the gut samples, and which 174 

included 4542 representative genomes at the species level. Then, the corresponding 175 

stLFR reads were classified with default parameters.   176 

 177 
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Co-barcoding reads refining  178 

Since a taxonomic tree of references was established to reduce the number of multiple 179 

hits of a K-mer from inter-species homologous sequences in Kraken2, the reads from 180 

these regions were classified into the lowest common ancient (LCA) rank higher than 181 

its corresponding species. Several works tried to reallocate these reads to species by 182 

statistical inferences using the coverage depth or co-barcoding information of intra-183 

species homologous region of a species [43, 44]. In MetaTrass pipeline, the co-184 

barcoding correlation between reads classified into a species and those classified into 185 

high LCA ranks was used to reduce the false negative of reads classified into high 186 

LCA rank. Reads classified into a species level is defined as the taxonomic reads of 187 

the species. In this step, we collected and refined reads for each barcode according to 188 

the number of reads in the taxonomic reads (Num_T) and the ratio of these reads to 189 

the total reads (Ratio_T). Barcodes appearing in the taxonomic reads were firstly 190 

extracted as candidates. Then, we ranked candidates first in order of Num_T from 191 

large to small, and then Ratio_T for those with the same Num_T. Finally, reads with a 192 

barcode of Ratio_T larger than a threshold were chose based on the barcode rank. 193 

Since sufficient read coverage is required for assembling a complete genome, only the 194 

read sets of one species with abundance higher than 10× were refined by co-barcoding 195 

information. The abundance of each species was roughly calculated according to the 196 

coverage depth of the taxonomic reads on the reference. Meanwhile, we set a data size 197 

threshold of the refined reads to reduce the computational consumption for species 198 

with extremely high abundance (e.g., 300×). Paired-end reads were extracted by Seqtk 199 

(version 1.3-r114-dirty) according to the barcode-related read names from the FASTQ 200 

file of clean reads. Note that there were still some false positive reads, although 201 

Ratio_T was set to reduce them caused by the collision of long fragments from 202 

different species in the same microbead. Sequences assembled by these reads would 203 

be further filtered as following description in the section of sequences purifying.  204 

 205 

Co-barcoding reads assembling 206 

Reads of a single species with abundance higher than 10× were assembled by 207 
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Supernova (version 2.1.1), which is a co-barcoding de novo assembler for single large 208 

eukaryotic genomes with high performances. Supernova was designed for linked-209 

reads of 10X Genomics, which have different barcode sequences and formats from 210 

stLFR reads. Thus, we converted the stLFR reads into linked-reads FASTQ files with 211 

an in-house script. Additionally, the parameter --accept-extreme-coverage was set to 212 

yes to adapt to large coverage depth differences. 213 

 214 

Sequences purifying 215 

The similarity between whole genomes based on the alignment fraction (AF) and 216 

average nucleotide identity (ANI) have been commonly adopted to circumscribe 217 

species [3, 4]. MetaTrass also used the parameters of AF and ANI between assembled 218 

contigs and the reference to purify the sequences assembled by the refined co-219 

barcoding reads. ANI was calculated independently for each alignment. AF was 220 

defined as the ratio of total alignment length to the total contig length. The alignments 221 

with ANI larger than a threshold were counted. In our practice, we set ANI threshold 222 

to 90%, and AF threshold to 50%. The alignments between contigs and references 223 

were generated by QUAST (version 5.0.2) [45] with default parameters, except that 224 

the identity threshold to obtain valid alignment was set to 90%.  225 

 226 

Combinations of assembling first and binning later  227 

In a standard analysis of NGS metagenomics dataset, the combination of de novo 228 

genome assembling first and binning later was commonly adopted. We compared 229 

different combinations to MetaTrass by analyzing the mock and four gut samples. In 230 

our tests, the stLFR co-barcoding reads were assembled by NGS assemblers including 231 

IDBA-UD (version 1.1.3), MEGAHIT (version 1.1.3), and MetaSPAdes (version 232 

3.10.1) or co-barcoding assemblers including Supernova [37], Athena (version 1.3.0) 233 

[29], and CloudSPAdes (version 3.13.1) [40]. Then, all these draft assemblies were 234 

binned by two genome binners, MetaBAT2 (version 2.12.1)[21] and Maxbin2.0 235 

(version 2.2.5) [20]. Since CloudSPAdes and Athena were not designed for stLFR 236 

reads, we made an appropriate format conversion with an in-house script where 237 
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LongRanger (version 2.2.2) [46] was used. In genome assembling, Supernova was run 238 

with the same parameters as those have been adopted in MetaTrass. IDBA-UD, 239 

MEGAHIT, MetaSPAdes, Athena, and CloudSPAdes were run with default 240 

parameters. All the assembling results were deposited into CNGB Sequence Archive 241 

(CNSA) [47] (https://db.cngb.org/cnsa/) of China National GeneBank DataBase 242 

(CNGBdb) [48] with accession number CNP0002163. In genome binning, MetaBAT2 243 

and Maxbin2.0 were run with default parameters. 244 

 245 

Evaluations 246 

Both reference-based and reference-free assessments were used to evaluate the quality 247 

of assemblies obtained using different strategies. For the mock microbial community 248 

with definite references, the reference-based tool QUAST was used to evaluate 249 

contiguity and accuracy of metagenomics assemblies. Minimap2 was used to map 250 

assemblies to references and get valid alignments with the identity threshold of 95%. 251 

Then, the statistics such as genome fraction, NG50/NGA50, and number of 252 

misassemblies were assessed from the alignments with default parameters. For the 253 

real gut microbial communities, the reference-free tool CheckM (version 1.1.2) [49] 254 

were run with default parameters to evaluate the completeness and contamination of 255 

each genome from metagenomics assemblies in addition to QUAST. Following the 256 

guidance proposed in CheckM, we defined a high-quality assembly if it has >90% 257 

completeness and <5% contamination and a medium-quality assembly if it has >50% 258 

completeness and <10% contamination and does not meet the high-quality criterion. 259 

In addition, the statistics of each genome such as N50, genome size, and taxonomic 260 

rank were also obtained by CheckM, where the taxonomic rank was used to 261 

demonstrate the resolution of a genome bin.  262 

 263 

Variation and phylogenetic analysis 264 

All the high-quality genomes assembled by MetaTrass were used to call variations for 265 

the four gut samples. We aligned each genome to the corresponding reference using 266 

minimap2 (2.17-r974-dirty) with parameters (-x asm5) to prevent an alignment 267 
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extending to regions with diversity >5%. SAMtools (version 1.9) [50] and PAFtools 268 

were used to convert the BAM file of initial unsorted alignments into a PAF file of 269 

sorted alignments. We identified variations using the “call” module in PAFtools with 270 

parameters (-L 10000) to filter out the alignments shorter than 10,000 bp. SNVs only 271 

referred to single nucleotide substitutions, excluded single-base insertions or deletions. 272 

Insertions or deletions with length shorter than 50 bp were defined as small indels, 273 

and the others were large indels. In determination of shared variations among species 274 

in different samples, the position and sequence information of a variation were used. 275 

When variation information is the same for species genomes in different samples, the 276 

variation was shared.       277 

We used the “classify_wf” function of GTDB-tk (version 0.3.1) [51] to conduct 278 

taxonomic annotation of the genome bins obtained using the common strategies with 279 

default parameters. Considering the procedure of UHGG database construction [4], 280 

genome bins were assigned at the species level if the AF to the close species 281 

representative genomes was higher than 30% and ANI was higher than 95%. We used 282 

FastTree (version 2.1.10) [52] to build maximum-likelihood phylogenetic trees of the 283 

high-quality genomes assembled by MetaTrass. The input of protein sequence 284 

alignments was produced by GTDB-Tk using marker gene set of 120 bacteria and 122 285 

archaea. Interactive Tree of Life (iTOL version 4.4.2) [53] was used to visualize and 286 

annotate trees.  287 

 288 

Results and discussion 289 

MetaTrass pipeline 290 

In this work, we developed a metagenomics assembling pipeline named MetaTrass to 291 

combine the references and long-range co-barcoding information of stLFR library.  292 

From the flowchart (Figure 1a), the taxonomic binning of stLFR reads were 293 

processed before the genome assembling, and different from the previous common 294 

combination strategies of assembling first and binning later. In taxonomic binning, the 295 

metagenomics stLFR reads were classified into different taxonomic ranks by Kraken2 296 

[42]. Since the phylogenetic relations among references were used in Kraken2, only 297 
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the reads from intra-species homologous region of a sample genome can be classified 298 

into the target species, but the reads from inter-species homologous and intra-species 299 

non-homologous regions were not classified effectively (Figure 1b). The reads from 300 

inter-species homologous regions were classified into the higher ranks of the target 301 

species and those from intra-species non-homologous region were unclassified or 302 

classified into irrelevant ranks. Totally, about 10% of the reads were classified into 303 

the high ranks for the four human gut datasets and about 9% of the reads were 304 

unclassified (Table S1). In co-barcoding refining, the co-barcoding correlation 305 

between the reads from intra-species homologous region and those from intra-species 306 

non-homologous and inter-species homologous region was used to refine the final 307 

reads set for a target species (Figure 1b). The barcodes of the intra-species 308 

homologous reads were firstly extracted as the candidate barcodes. Then, the final 309 

barcodes were collected by a constraint of data size and the quality of co-barcoding 310 

information. Finally, the reads with a barcode belong to the final barcodes were 311 

gathered to form the refined reads set for the target species. The constraint of data size 312 

was set to reduce computational consumption for the species with extremely high 313 

abundance. Since the barcodes with more reads classified into the target species are 314 

more possible to retain the long-range genomic information, the quality of co-315 

barcoding information of a barcode was quantified by the number of reads classified 316 

into the species and the number ratio of these reads to total reads. In co-barcoding 317 

assembling, the refined reads of each species were independently assembled by 318 

Supernova. In practice, multiple long fragments from different species would share 319 

the same barcode in real stLFR libraries (Figure S1). Thus, the impure sequences 320 

assembled by the false positive reads from non-target species should be removed 321 

finally according to AF and ANI values of alignments between the assembly and 322 

references. Overall, the comprehensive use of co-barcoding information and 323 

references in our approach could reduce the false negative effects of taxonomic 324 

binning and the false positive effects of co-barcoding read refining.   325 
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 326 

Figure 1  Flowchart and scheme of MetaTrass. a) Flowchart of MetaTrass assembling 327 

pipeline. b) Scheme of the homologous relation and co-barcoding correlation of 328 

difference reads sets classified by taxonomic binning. 329 

 330 

Assembly of the mock microbiome 331 

The strategy of binning first and assembling later have been widely adopted to 332 

assemble haplotype genomes for eukaryotes with large sizes [54, 34]. But it has been 333 

rarely used to assemble metagenomes. We firstly applied MetaTrass to assemble 334 

stLFR read sets of the mock microbial community.  Totally, up to 99.4% of reads 335 

were assigned to different datasets of species due to the simplicity of the microbial 336 

community with low inter-species homology and intra-species non-homology (Table 337 

S2).  To investigate the efficiency of our strategy, we compared it with the 338 

mainstream mixed assembling strategies (Figure 2a). Besides the MetaTrass, the 339 

stLFR reads were also directly assembled by IDBA-UD, MEGAHIT, Supernova, 340 

CloudSPAdes, and Athena in the mixed assembling. Additionally, the optimal mixed 341 

assemblies of ONT reads and Illumina NGS reads in Nicholls’s work [55] were also 342 
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used to make a comparison, where the ONT result was assembled by WTDBG and 343 

the NGS result was by SPAdes. The draft genome of each species in a mixed 344 

assembly was extracted by our sequence purifying module.  345 

Overall, our pipeline was superior in the production of draft genomes with high 346 

genome fractions and long contiguity (Figure 2). Two species Enterococcus faecalis 347 

and Lactobacillus fermentum were incompletely assembled by Supernova, and their 348 

genome fractions were only 17.7% and 8.9%. However, both species were properly 349 

recovered in MetaTrass, indicating that the assembling complexity caused by uneven 350 

abundances was reduced by taxonomic binning. All the assemblies by MetaTrass 351 

showed high genome fraction as those by NGS and co-barcoding assemblers designed 352 

for metagenome, which were higher than those of ONT assemblies. Compared to 353 

NGS assemblers, the co-barcoding and TGS assembler generated draft assemblies 354 

with significantly better contiguity, where Metatrass generated the best performance. 355 

MetaTrass produced seven draft genomes with NG50 around 2 Mb. Furthermore, the 356 

accuracy was guaranteed by MetaTrass, which obtained the most assemblies with 357 

NGA50 around 2 Mb. Meanwhile, assemblies by MetaTrass had less assembly errors 358 

compared to ONT assemblies (Figure S2). The average mismatch and indel numbers 359 

per 100 kb in assemblies with stLFR reads were 60 and 10, which were obviously 360 

smaller than that of the ONT assemblies.  361 
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 362 

Figure 2  Scheme and evaluations for different strategies. a) Difference labels of the 363 

assemblies based on different sequencing and assembling strategies. b) Genome 364 

fraction, NG50 and NGA50 evaluated by QUAST for the assemblies. 365 

 366 

Assembly of four human gut microbiomes 367 

To evaluate the robustness of our approach, we applied MetaTrass to four human 368 

faecal samples. The comprehensive genome references of UHGG were used to 369 

classify NGS reads by Kraken2, and the community compositions were estimated by 370 

the classified reads at different taxonomic ranks (Figure S3-S6). The three healthy 371 

samples had a similar microbial community, where the major microbiomes were from 372 

Firmicutes A phylum. This microbial community was different from the patient 373 

microbial community dominated by Proteobacteria which is strongly correlated with 374 

the enteric diseases caused by dysbiosis in gut microbiota [56]. The total numbers of 375 

species with higher than 10× abundance were 113, 108, 93, and 158 in 376 
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H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01 samples, 377 

respectively. The relations between these abbreviated notations and detailed sample 378 

information were descripted in the section of Materials and methods.   379 

The genome fraction of an assembly to the reference is used to evaluate the 380 

completeness in single genome assembling. The genome fraction for all samples 381 

widely ranges from 0% to 90%, and the distributions of H_Gut_Meta01 and 382 

H_Gut_Meta02 were more concentrated than those of H_Gut_Meta03 and 383 

P_Gut_Meta01 (Figure 3a). However, more than half of the assembled genomes were 384 

with a genome fraction of at least 50%. Considering the large genetic diversity 385 

between sample genomes and the references [7], these results indicated that our 386 

pipeline could assemble complete genomes for species abundance of higher than 10×. 387 

The genetic diversity was also proved by the significant differences in genome 388 

fraction and the ratio of assembled length to the reference length among the four 389 

samples (Figure S7). The distributions of genomes N50 were generally dispersed, and 390 

the medians of H_Gut_Meta02 and H_Gut_Meta03 were obviously higher than those 391 

of H_Gut_Meta01 and P_Gut_Meta01 (Figure 3b). Nevertheless, the third quartiles in 392 

the box plots for the samples were larger than 100 kb, demonstrating that our pipeline 393 

had a strong capability to generate draft genomes with high contiguity. Note that for 394 

these three healthy samples plenty of ultra-long draft genomes (N50>1 Mb) was 395 

obtained, which provide possibilities to study the large genome difference in the 396 

microbiome. 397 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 398 

Figure 3  QUAST and CheckM evaluations of MetaTrass assemblies for the four 399 

human gut samples. a) Genome fraction. b) Scaffold N50. c) Box plot of completeness 400 

and contamination. d) Number of high- and medium-quality genomes. 401 

 402 

Considering the intra-species genetic diversity, we also evaluated the quality of 403 

metagenomics assemblies based on the conserved marker genes by CheckM. The 404 

completeness medians of three healthy samples were larger than 92%, and the 405 

contamination medians were smaller than 2% (Figure 3c). The completeness of the 406 

patient sample was about 83%, and the contamination median was about 7% (Figure 407 

S8). Meanwhile, a great number of high- and medium-quality genomes were 408 

assembled by MetaTrass for the four samples (Figure 3d). 52 high-quality and 37 409 

medium-quality genomes were produced for H_Gut_Meta01, and 55 and 24 for 410 

H_Gut_Meta02, and 47 and 16 for H_Gut_Meta03, and 24 and 28 for P_Gut_Meta01, 411 

respectively.  412 

 413 

Comparison to the common combination strategy  414 
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To further evaluate our approach’s efficiency, we compared it with common 415 

combinations of assembling tools and genome binning tools as listed in the section of 416 

Datasets and Methods. It should be noted that currently, there are still no genome 417 

binning tools to directly exploit the co-barcoding information. By counting the 418 

number of bins with completeness >50% and at least one conserved marker genes 419 

(Table S3), we observed that MetaTrass perform best of all these methods. Especially 420 

for P_Gut_Meta01, the optimal combination between Supernova and Maxbin2.0 421 

obtained 66 bins with completeness higher than 50%, but it was significantly less than 422 

117 obtained by MetaTrass. 423 

By comprehensively analyzing the completeness, contamination and taxonomic 424 

rank of each bin, we assessed MetaTrass and common strategies in the ability to get 425 

high- and medium-quality genomes and resolution of taxonomic rank (Figure 4). For 426 

different samples, the best combination to produce the optimal results was different. 427 

The combinations of MetaSPAdes and Maxbin2.0, Supernova and MetaBAT2, 428 

MetaSPAdes and MetaBAT2, and Athena and MetaBAT2 is optimal for 429 

H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, respectively. 430 

For the four samples, the optimal results of the common strategies were still inferior 431 

to those of MetaTrass. For the example of H_Gut_meta01, the combination of 432 

MetaSPAdes and Maxbin2.0 produced 41 high- and medium-quality genomes, which 433 

was significantly less than 90 obtained by MetaTrass. There were only 3 out of totally 434 

18 high-quality genomes with a taxonomic rank lower than the order, but 15 out of 52 435 

for MetaTrass. Comparing the strategies only using NGS read information, the 436 

combination strategies of co-barcoding assembler and binner showed no obvious 437 

advantages in generating genomes with high quality and resolution, but MetaTrass 438 

was significantly superior to them. These results demonstrated that the usage of co-439 

barcoding information in MetaTrass was more efficient and accurate than those in a 440 

mixed assembling.  441 
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 442 

Figure 4  Comparison of metagenome assembling for different methods. a) Number 443 

of high- and medium-quality genomes assembled with different methods. b) Number 444 

of high-quality genomes with high- and low-rank with different methods. 445 

 446 

The human gut microbiome composition attracts much attention due to its strong 447 

correlation with personality traits [57]. To compare the microbiome composition 448 

structures of the high-quality genomes with different methods, we uniformly 449 

classified the high-quality genome bins into species using GTDB-tk. Using the large 450 

number of high-quality genomes obtained by MetaTrass, the phylogenetic trees of 451 

these genomes were constructed and the corresponding N50 were attached in the left 452 

histogram as shown in Figure 5. Meanwhile, the high-quality genome bins obtained 453 

by the common strategies were marked in red in the middle heat map (Figure 5), if the 454 

genome of the same species were also assembled by MetaTrass. The topology of the 455 

phylogenetic tree of genomes assembled by MetaTrass gave comprehensive insights 456 
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of the microbial composition structure. From the trees in Figure 5 and Figure S9-S11, 457 

the numbers of the order with high-quality genomes assembled by MetaTrass were 9, 458 

11, 7, and 7 for H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, 459 

respectively. Notably, some orders contained more than 5 high-quality genomes, and 460 

this provide convenience to study the microbiome structure at the genome-wide scale. 461 

For the sample of H_Gut_Meta01 (Figure 5), there were 27 high-quality genomes 462 

classified into Lachnospirales order and 14 into Oscillospirales. These two were 463 

exactly the dominating orders according to the taxonomic abundance distribution. 464 

Similar results were obtained for the other two healthy samples (Figure S9 and S10), 465 

indicating that the microbiome with higher sequencing coverage could be better 466 

assembled in MetaTrass. In contrast, the orders with more than 5 high-quality 467 

genomes were Enterobacterales and Actinomycetales for P_Gut_Meta01 (Figure S11). 468 

The obvious difference between the healthy and patient samples was consistent with 469 

the microbial compositions differences observed in the taxonomic binning results. 470 

MetaTrass successfully assemble most of the high-quality genomes of all common 471 

combinations in our tests. For instance, they generated 137 genome bins, while only 472 

25 genome bins were not assembled by MetaTrass (Figure 5). From the heat maps, 473 

most of the common strategies could assemble draft genomes for each order, but the 474 

total numbers in each order were relatively small. The maximal number of genomes in 475 

one order was 6 and obtained by the combination of Supernova and MetaBAT2 for 476 

Lachnospirales. Moreover, 146 of 179 high-quality genomes were with N50 values 477 

larger than 100 kb, demonstrating that MetaTrass had a strong ability to improve the 478 

contiguity of assemblies. 479 
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 480 

Figure 5  Phylogenetic tree of the high-quality genomes assembled by MetaTrass for 481 

H_Gut_Meta01. The phylogenetic tree is on the left. Distribution of the high-quality 482 

genomes assembled by other methods are colored as red in the middle heat map. 483 

N50 of each high-quality genome is shown in the right histogram. 484 

 485 

Genetic diversity in different samples 486 

Different types of variations in gut microbiomes are strongly associated with host 487 

health, and the genetic diversity among different microbiomes has been intensively 488 

studied to unravel the genetic origin of phenotypic difference among people of 489 

different regions or health status [58, 59]. By aligning draft genomes to the references, 490 

we called variations for high-quality genomes for each species in different samples, 491 

including single nucleotide variations (SNV), small and large indels. For different 492 

variations, the numbers of SNV were significantly larger than those of the small and 493 

large indels for the four samples (Figure S12). Three healthy samples showed close 494 

variation numbers, which were obviously larger than those of the patient. It come 495 

from fewer alignments for the patient sample according to the QUAST evaluation. 496 

However, when we removed the effect of the total aligned length by calculating the 497 

SNV density, the patient sample showed denser SNV than the healthy samples (Figure 498 

S12d). The median was about 21 for the patient sample, but about 9 for the healthy 499 

samples. This difference could be introduced by the individual’s physiological state, 500 

which was related to the diseases and also to  the territory or race [4].  501 
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Based on the taxonomic information of high-quality genomes, we found 15 502 

species shared by three samples, where 14 species appeared in the three healthy 503 

samples but only one species of Escherichia appeared in the patient and two healthy 504 

samples. By analyzing the SNV density and intersection of variations between 505 

different samples for each species in three healthy samples, we further investigated 506 

the genetic diversity between species from different samples. The SNV densities were 507 

different for different species even in the same sample, but similar for the same 508 

species in different sample (Figure 6a). From Figure 6b to 6d, the number of unique 509 

and shared variations in different types significantly fluctuated for different species, 510 

but their difference among samples showed great consistency. The total shared 511 

numbers between H_Gut_Meta01 and H_Gut_meta02 were obviously more than 512 

those between H_GutMeta03 and the other two samples for all variations. 513 

Furthermore, the ratio of large indels shared by all three samples to the total number 514 

was much smaller than those of SNVs and small indels. These results demonstrated 515 

that large variations were more specific than small variations in the huge genetic 516 

diversity between different samples, were consistent with the observation in the study 517 

of association between host health and structural variations in gut microbiome [58]. 518 
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 519 

Figure 6  SNV density and number of unique and shared variations for each species 520 

appearing in all three healthy samples. a) is the SNV density. b), c) and d) are the 521 

number of SNVs, small and large indels, respectively. The species numerical order in 522 

b), c) and d) corresponds to the appearance order of species from left to right in a). 523 

 524 

Computational performance 525 

Runtime and used thread number of each assembler were recorded for all the human 526 

gut datasets (Table 1). Most of the assemblers were test on 24 Intel(R) Xeon(R) Silver 527 

4116 CPU @ 2.10GHz, except for Athena and Supernova which were test on HPC 528 

Cluster for their large memory requirements. The thread number used in each 529 

assembler was the same for different samples. The time consumption of the format 530 

conversion from stLFR reads to 10X linked-reads were not included, and was about 531 

500 minutes for dataset with 50 Gb with one thread. We found that MetaTrass was 532 

less time consuming than Athena but more than other assemblers. This may come 533 

from that both MetaTrass and Athena contained many sub-assembling, which took 534 

most of the time among all sub-processes in MetaTrass (Table S4). Since the sub-535 
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assembling was independent, it could be run in parallel to further speed up the 536 

assembling by increasing the parallel number and the parallel number was 8 in default. 537 

 538 

Conclusion 539 

High-quality genomes at species level are strongly demanded to investigate the 540 

genetic origins of diseases associated with the human gut, but how to get sufficient 541 

number of them in one sample is still a challenge due to the inter-species repeats and 542 

uneven abundance in metagenomics assembling. In this work, we developed a tool to 543 

get high-quality genomes with high taxonomic resolutions by combining the co-544 

barcoding information with public references. Compared with the common 545 

combination strategies, our pipeline generated a large number of high-quality 546 

genomes for the human microbiome co-barcoding datasets. Meanwhile, plenty of 547 

draft genomes were also assembled with NG50 values of larger than 1 Mb, some of 548 

which were even longer than the references for both mock and human gut datasets. 549 

For all the four real gut samples, 178 draft genomes with high completeness and low 550 

contamination were generated, but their genome fractions relative to the references 551 

were low. The differences between the sample genomes assembled by MetaTrass and 552 

the reference genomes demonstrated that the co-barcoding information could be used 553 

to reduce the false negative reads in taxonomic binning. These reads retrieved from 554 

inter-species homologous and intra-species non-homologous regions by co-barcoding 555 

refining could significantly improve the assembly results. For the patient sample, the 556 

number of high-quality genomes with long contiguity assembled by MetaTrass was 557 

significantly larger than that without co-barcoding refining (Figure S13).  558 

The efficiency of our pipeline depended on the co-barcoding information quality 559 

including the read coverage and length of long fragments. By aligning reads to the 560 

species reference, we calculated the genome fraction with different read coverage 561 

depths for different read sets including the taxonomic reads, the refined reads, and all 562 

reads. According to the genome fraction with high coverage depths, we evaluate the 563 

efficiency of the co-barcoding refining. From the results of species with medium 564 

abundance in P_Gut_Meta01 (Figure S5), We observed that the fraction with high 565 

depths of the refined reads was higher than those of the taxonomic reads, but still 566 

lower than those of all aligned reads. These results indicated that there were still some 567 

false negative reads introduced by the low coverage or short length of long fragments. 568 
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Thus, improvements on co-barcoding library and the co-barcoding refining would 569 

improve the performance of MetaTrass. 570 

In summary, the application of MetaTrass in human gut samples showed great 571 

promise of generating high-quality genomes for real complex microbial community at 572 

a high resolution. With the increasing number of reference genomes from various 573 

microbial communities and the development of co-barcoding sequencing library, the 574 

combination strategy of binning first and assembling later in MetaTrass will be 575 

extended and facilitate the investigation of the association between host phenotypes 576 

and microbial genotypes for different microbial communities.  577 

 578 

 579 

Acknowledgements 580 

This research was supported by the National Key Research and Development 581 

Program of China (2018YFD0900301-05), and Science Technology and Innovation 582 

Committee of Shenzhen Municipality of China (SGDX20190919142801722). We 583 

would thank Yufen Huang and many other BGI-Shenzhen employees for fruitful 584 

discussions in the development and performance test. 585 

 586 

Conflicts of interest 587 

All authors are employees of the BGI group. 588 

 589 

Authors’ contributions 590 

Li Deng, Guangyi Fan and Yanwei Qi contributed to the software design. Yanwei Qi, 591 

Shengqiang Gu, Yue Zhang and Lidong Guo contributed to the software 592 

implementation. Li Deng, Yanwei Qi, Shengqiang Gu, Mengyang Xu and Jianwei 593 

Chen contributed to data analyses. Xiaofang Chen, Ou Wang and Xiaodong Fang 594 

contribute to the data curation, collection. Guangyi Fan, Li Deng and Xin Liu 595 

contributed to the benchmarking design. All authors contributed to the manuscript 596 

writing. Li Deng and Guangyi Fan supervised the project. All authors read and 597 

approved the final manuscript. 598 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 599 

Data availability statement 600 

MetaTrass is freely available at https://github.com/BGI-Qingdao/MetaTrass. The 601 

assembling results of the four human faecal samples were deposited into CNSA 602 

(https://db.cngb.org/cnsa/) of CNGBdb with accession number CNP0002163 and 603 

available from authors upon reasonable request and with permission of CNGBdb. The 604 

metagenomics stLFR datasets used in the study were available from the 605 

corresponding author on reasonable request. 606 

 607 

References 608 

1. Schloss, Patrick D, and Jo Handelsman. 2005. "Metagenomics for studying 609 

unculturable microorganisms: cutting the Gordian knot." Genome Biology 6: 1-4. 610 

2. Qin, Junjie, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer 611 

Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, et al. 2010. "A human 612 

gut microbial gene catalogue established by metagenomic sequencing." Nature 613 

464: 59-65. 614 

3. Parks, Donovan H, Maria Chuvochina, Pierre-Alain Chaumeil, Christian Rinke, 615 

Aaron J Mussig, and Philip Hugenholtz. 2020. "A complete domain-to-species 616 

taxonomy for Bacteria and Archaea." Nature Biotechnology 38: 1079-86. 617 

4. Almeida, Alexandre, Stephen Nayfach, Miguel Boland, Francesco Strozzi, 618 

Martin Beracochea, Zhou Jason Shi, Katherine S. Pollard, et al. 2021. "A unified 619 

catalog of 204,938 reference genomes from the human gut microbiome." Nature 620 

Biotechnology 39: 105-14. 621 

5. Sheth, Ravi U, Mingqiang Li, Weiqian Jiang, Peter A Sims, Kam W Leong, and 622 

Harris H Wang. 2019. "Spatial metagenomic characterization of microbial 623 

biogeography in the gut." Nature Biotechnology 37: 877-83. 624 

6. Martino, Cameron, Liat Shenhav, Clarisse A. Marotz, George Armstrong, Daniel 625 

McDonald, Yoshiki Vázquez-Baeza, James T. Morton, et al. 2021. "Context-626 

aware dimensionality reduction deconvolutes gut microbial community 627 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


dynamics." Nature Biotechnology 39: 165-8. 628 

7. Van Rossum, Thea, Pamela Ferretti, Oleksandr M Maistrenko, and Peer Bork. 629 

2020. "Diversity within species: interpreting strains in microbiomes." Nature 630 

Reviews: Microbiology 18: 491-506. 631 

8. Olm, Matthew R, Alexander Crits-Christoph, Keith Bouma-Gregson, Brian A 632 

Firek, Michael J Morowitz, and Jillian F Banfield. 2021. "inStrain profiles 633 

population microdiversity from metagenomic data and sensitively detects shared 634 

microbial strains." Nature Biotechnology 39: 727-36. 635 

9. Leimbach, Andreas, Jörg Hacker, and Ulrich Dobrindt. 2013. "E. coli as an all-636 

rounder: the thin line between commensalism and pathogenicity." Current Topics 637 

in Microbiology and Immunology 358: 3-32. 638 

10. Pierce, Jessica V, and Harris D Bernstein. 2016. "Genomic diversity of 639 

enterotoxigenic strains of Bacteroides fragilis." PLoS One 11: e0158171. 640 

11. Yao, G., W. Zhang, M. Yang, H. Yang, J. Wang, H. Zhang, L. Wei, Z. Xie, and W. 641 

Li. 2020. "MicroPhenoDB Associates Metagenomic Data with Pathogenic 642 

Microbes, Microbial Core Genes, and Human Disease Phenotypes." Genomics 643 

Proteomics Bioinformatics 18: 760-72. 644 

12. Welch, R. A., V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E. L. 645 

Buckles, et al. 2002. "Extensive mosaic structure revealed by the complete 646 

genome sequence of uropathogenic Escherichia coli." Proceedings of the 647 

National Academy of Sciences 99: 17020-4. 648 

13. Sczyrba, Alexander, Peter Hofmann, Peter Belmann, David Koslicki, Stefan 649 

Janssen, Johannes Dröge, Ivan Gregor, et al. 2017. "Critical assessment of 650 

metagenome interpretation—a benchmark of metagenomics software." Nature 651 

Methods 14: 1063-71. 652 

14. Breitwieser, Florian P, Jennifer Lu, and Steven L Salzberg. 2019. "A review of 653 

methods and databases for metagenomic classification and assembly." Briefings 654 

in Bioinformatics 20: 1125-36. 655 

15. Eun Kang, J., A. Ciampi, and M. Hijri. 2020. "SeSaMe: Metagenome Sequence 656 

Classification of Arbuscular Mycorrhizal Fungi-associated Microorganisms." 657 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genomics Proteomics Bioinformatics 18: 601-12. 658 

16. Li, Dinghua, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. 659 

2015. "MEGAHIT: an ultra-fast single-node solution for large and complex 660 

metagenomics assembly via succinct de Bruijn graph." Bioinformatics 31: 1674-6. 661 

17. Nurk, Sergey, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. 662 

2017. "metaSPAdes: a new versatile metagenomic assembler." Genome Research 663 

27: 824-34. 664 

18. Peng, Yu, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. 2012. "IDBA-665 

UD: a de novo assembler for single-cell and metagenomic sequencing data with 666 

highly uneven depth." Bioinformatics 28: 1420-8. 667 

19. Wu, Yu-Wei, and Yuzhen Ye. 2011. "A novel abundance-based algorithm for 668 

binning metagenomic sequences using l-tuples." Journal of Computational 669 

Biology 18: 523-34. 670 

20. Wu, Yu-Wei, Blake A Simmons, and Steven W Singer. 2016. "MaxBin 2.0: an 671 

automated binning algorithm to recover genomes from multiple metagenomic 672 

datasets." Bioinformatics 32: 605-7. 673 

21. Kang, Dongwan D, Jeff Froula, Rob Egan, and Zhong Wang. 2015. "MetaBAT, 674 

an efficient tool for accurately reconstructing single genomes from complex 675 

microbial communities." PeerJ 3: e1165. 676 

22. Bertrand, Denis, Jim Shaw, Manesh Kalathiyappan, Amanda Hui Qi Ng, M. 677 

Senthil Kumar, Chenhao Li, Mirta Dvornicic, et al. 2019. "Hybrid metagenomic 678 

assembly enables high-resolution analysis of resistance determinants and mobile 679 

elements in human microbiomes." Nature Biotechnology 37: 937-44. 680 

23. Chin, Chen-Shan, David H. Alexander, Patrick Marks, Aaron A. Klammer, James 681 

Drake, Cheryl Heiner, Alicia Clum, et al. 2013. "Nonhybrid, finished microbial 682 

genome assemblies from long-read SMRT sequencing data." Nature Methods 10: 683 

563-9. 684 

24. Kolmogorov, Mikhail, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, 685 

Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, et al. 2020. "metaFlye: scalable 686 

long-read metagenome assembly using repeat graphs." Nature Methods 17: 1103-687 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. 688 

25. DeMaere, Matthew Z, and Aaron E Darling. 2019. "bin3C: exploiting Hi-C 689 

sequencing data to accurately resolve metagenome-assembled genomes." 690 

Genome Biology 20: 1-16. 691 

26. Cleary, Brian, Ilana Lauren Brito, Katherine Huang, Dirk Gevers, Terrance Shea, 692 

Sarah Young, and Eric J Alm. 2015. "Detection of low-abundance bacterial 693 

strains in metagenomic datasets by eigengenome partitioning." Nature 694 

Biotechnology 33: 1053-60. 695 

27. Peters, Brock A., Bahram G. Kermani, Andrew B. Sparks, Oleg Alferov, Peter 696 

Hong, Andrei Alexeev, Yuan Jiang, et al. 2012. "Accurate whole-genome 697 

sequencing and haplotyping from 10 to 20 human cells." Nature 487: 190-5. 698 

28. Adey, Andrew, Jacob O Kitzman, Joshua N Burton, Riza Daza, Akash Kumar, 699 

Lena Christiansen, Mostafa Ronaghi, et al. 2014. "In vitro, long-range sequence 700 

information for de novo genome assembly via transposase contiguity." Genome 701 

Research 24: 2041-9. 702 

29. Bishara, Alex, Eli L Moss, Mikhail Kolmogorov, Alma E Parada, Ziming Weng, 703 

Arend Sidow, Anne E Dekas, Serafim Batzoglou, and Ami S Bhatt. 2018. "High-704 

quality genome sequences of uncultured microbes by assembly of read clouds." 705 

Nature Biotechnology 36: 1067-75. 706 

30. Wang, Ou, Robert Chin, Xiaofang Cheng, Michelle Wu, Qing Mao, Jingbo Tang, 707 

Yuhui Sun, et al. 2019. "Efficient and unique cobarcoding of second-generation 708 

sequencing reads from long DNA molecules enabling cost-effective and accurate 709 

sequencing, haplotyping, and de novo assembly." Genome Research 29: 798-808. 710 

31. Chen, Zhoutao, Long Pham, Tsai-Chin Wu, Guoya Mo, Yu Xia, Peter L. Chang, 711 

Devin Porter, et al. 2020. "Ultralow-input single-tube linked-read library method 712 

enables short-read second-generation sequencing systems to routinely generate 713 

highly accurate and economical long-range sequencing information." Genome 714 

Research 30: 898-909. 715 

32. Zheng, Grace X. Y., Billy T. Lau, Michael Schnall-Levin, Mirna Jarosz, John M. 716 

Bell, Christopher M. Hindson, Sofia Kyriazopoulou-Panagiotopoulou, et al. 2016. 717 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


"Haplotyping germline and cancer genomes with high-throughput linked-read 718 

sequencing." Nature Biotechnology 34: 303-11. 719 

33. Danko, David C, Dmitry Meleshko, Daniela Bezdan, Christopher Mason, and 720 

Iman Hajirasouliha. 2019. "Minerva: an alignment-and reference-free approach 721 

to deconvolve Linked-Reads for metagenomics." Genome Research 29: 116-24. 722 

34. Xu, Mengyang, Lidong Guo, Xiao Du, Lei Li, Brock A Peters, Li Deng, Ou 723 

Wang, et al. 2021. "Accurate haplotype-resolved assembly reveals the origin of 724 

structural variants for human trios." Bioinformatics 37: 2095-102. 725 

35. Bishara, Alex, Yuling Liu, Ziming Weng, Dorna Kashef-Haghighi, Daniel E 726 

Newburger, Robert West, Arend Sidow, and Serafim Batzoglou. 2015. "Read 727 

clouds uncover variation in complex regions of the human genome." Genome 728 

Research 25: 1570-80. 729 

36. Guo, Junfu, Chang Shi, Xi Chen, Ou Wang, Ping Liu, Huanming Yang, Xun Xu, 730 

Wenwei Zhang, and Hongmei Zhu. 2021. "stLFRsv: A Germline Structural 731 

Variant Analysis Pipeline Using Co-barcoded Reads." Frontiers in Genetics 12: 732 

222. 733 

37. Weisenfeld, Neil I, Vijay Kumar, Preyas Shah, Deanna M Church, and David B 734 

Jaffe. 2017. "Direct determination of diploid genome sequences." Genome 735 

Research 27: 757-67. 736 

38. Yeo, Sarah, Lauren Coombe, René L Warren, Justin Chu, and Inanç Birol. 2017. 737 

"ARCS: scaffolding genome drafts with linked reads." Bioinformatics 34: 725-31. 738 

39. Guo, Lidong, Mengyang Xu, Wenchao Wang, Shengqiang Gu, Xia Zhao, Fang 739 

Chen, Ou Wang, et al. 2021. "SLR-superscaffolder: a de novo scaffolding tool for 740 

synthetic long reads using a top-to-bottom scheme." BMC Bioinformatics 22: 1-741 

16. 742 

40. Tolstoganov, Ivan, Anton Bankevich, Zhoutao Chen, and Pavel A Pevzner. 2019. 743 

"cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs." 744 

Bioinformatics 35: i61-i70. 745 

41. Kuleshov, Volodymyr, Michael P Snyder, and Serafim Batzoglou. 2016. 746 

"Genome assembly from synthetic long read clouds." Bioinformatics 32: i216-i24. 747 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Wood, Derrick E, Jennifer Lu, and Ben Langmead. 2019. "Improved 748 

metagenomic analysis with Kraken 2." Genome Biology 20: 1-13. 749 

43. Lu, Jennifer, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg. 2017. 750 

"Bracken: estimating species abundance in metagenomics data." PeerJ Computer 751 

Science 3: e104. 752 

44. Danko, David C, Dmitry Meleshko, Daniela Bezdan, Christopher Mason, and 753 

Iman Hajirasouliha. 2019. "Novel Algorithms for the Taxonomic Classification of 754 

Metagenomic Linked-Reads." bioRxiv 549667. 755 

45. Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. 2013. 756 

"QUAST: quality assessment tool for genome assemblies." Bioinformatics 29: 757 

1072-5. 758 

46. Marks, Patrick, Sarah Garcia, Alvaro Martinez Barrio, Kamila Belhocine, Jorge 759 

Bernate, Rajiv Bharadwaj, Keith Bjornson, et al. 2019. "Resolving the full 760 

spectrum of human genome variation using Linked-Reads." Genome Research 29: 761 

635-45. 762 

47. Guo, X., F. Chen, F. Gao, L. Li, K. Liu, L. You, C. Hua, et al. 2020. "CNSA: a 763 

data repository for archiving omics data." Database 2020: baaa055. 764 

48. Chen, Feng Zhen, Li Jin You, Fan Yang, Li Na Wang, Xue Qin Guo, Fei Gao, 765 

Cong Hua, et al. 2020. "CNGBdb: China National GeneBank DataBase." 766 

Heredidas 42: 799-809. 767 

49. Parks, Donovan H, Michael Imelfort, Connor T Skennerton, Philip Hugenholtz, 768 

and Gene W Tyson. 2015. "CheckM: assessing the quality of microbial genomes 769 

recovered from isolates, single cells, and metagenomes." Genome Research 25: 770 

1043-55. 771 

50. Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, 772 

Gabor Marth, et al. 2009. "The Sequence Alignment/Map format and SAMtools." 773 

Bioinformatics 25: 2078-9. 774 

51. Chaumeil, Pierre-Alain, Aaron J Mussig, Philip Hugenholtz, and Donovan H 775 

Parks. 2019. "GTDB-Tk: a toolkit to classify genomes with the Genome 776 

Taxonomy Database." Bioinformatics 36: 1925-7. 777 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


52. Price, Morgan N., Paramvir S. Dehal, and Adam P. Arkin. 2010. "FastTree 2 – 778 

Approximately Maximum-Likelihood Trees for Large Alignments." PLOS ONE 5: 779 

e9490. 780 

53. Letunic, Ivica, and Peer Bork. 2019. "Interactive Tree Of Life (iTOL) v4: recent 781 

updates and new developments." Nucleic Acids Research 47: W256-W9. 782 

54. Koren, Sergey, Arang Rhie, Brian P Walenz, Alexander T Dilthey, Derek M 783 

Bickhart, Sarah B Kingan, Stefan Hiendleder, et al. 2018. "De novo assembly of 784 

haplotype-resolved genomes with trio binning." Nature Biotechnology 36: 1174-785 

82. 786 

55. Nicholls, Samuel M, Joshua C Quick, Shuiquan Tang, and Nicholas J Loman. 787 

2019. "Ultra-deep, long-read nanopore sequencing of mock microbial community 788 

standards." GigaScience 8: giz043. 789 

56. Shin, Na-Ri, Tae Woong Whon, and Jin-Woo Bae. 2015. "Proteobacteria: 790 

microbial signature of dysbiosis in gut microbiota." Trends in Biotechnology 33: 791 

496-503. 792 

57. Johnson, Katerina V-A. 2020. "Gut microbiome composition and diversity are 793 

related to human personality traits." Human Microbiome Journal 15: 100069. 794 

58. Zeevi, David, Tal Korem, Anastasia Godneva, Noam Bar, Alexander Kurilshikov, 795 

Maya Lotan-Pompan, Adina Weinberger, et al. 2019. "Structural variation in the 796 

gut microbiome associates with host health." Nature 568: 43-8. 797 

59. Chen, Lianmin, Daoming Wang, Sanzhima Garmaeva, Alexander Kurilshikov, 798 

Arnau Vich Vila, Ranko Gacesa, Trishla Sinha, et al. 2021. "The long-term 799 

genetic stability and individual specificity of the human gut microbiome." Cell 800 

184: 2302-15. 801 

 802 

 803 

 804 

 805 

 806 

 807 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 808 

 809 

 810 

 811 

 812 

Tables 813 

Table 1  Runtimes and thread number of each assembler for all the human gut 814 

datasets. 815 

Assembler Thread 

number 

Runtime (min) 

 All 

samples 

H_Gut_meta01 H_Gut_Meta02 H_Gut_Meta03 P_Gut_Meta01 

IBDA-UD 6 863 884 911 2657 

MEGAHIT 16 179 161 163 611 

MetaSPAdes 16 1478 1289 1429 3459 

CloudSPAdes 16 1024 1163 1039 2627 

Supernova 8 1249 864 1098 6776 

Athena 16 13813 8689 6361 -- 

MetaTrass 16 5145 2631 3147 8363 

Note: The exact runtime of assembling P_Gut_Meta01 sample by Athena was not 816 

collected correctly due to several uncontrolled interrupts on HPC cluster. 817 

 818 

 819 

Supporting information 820 

Table S1  Read number on different ranks classified by Kraken2 for the four gut 821 

samples. 822 

Table S2  Classified read information of the mock dataset. 823 

Table S3  The overall view of genome bins obtained by MetaTrass and all common 824 

strategies  “Comp >50%” means the completeness higher than 50%. 825 

Table S4  The runtime of MetaTrass step by step for all human gut datasets. 826 

Table S5  Genome fraction with different coverage depths for different read sets 827 
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including the taxonomic read (TR), refined reads by co-barcoding (BR), and total 828 

reads (Total) for five species with medium abundances in P_Gut_Meta01. 829 

Figure S1  The probability of barcodes with long fragments from different species for 830 

four gut samples. 831 

Figure S2  Mismatches and Indels of different assemblies for the mock dataset. 832 

Figure S3  Distributions of classified reads at different phyla for four gut samples. 833 

Figure S4  Distributions of classified reads at different classes for four gut samples. 834 

Figure S5  Distributions of classified reads at different orders for four gut samples. 835 

Figure S6  Distributions of classified reads at different families for four gut samples. 836 

Figure S7  Genome faction and ratio of assembly length to reference length of all 837 

species assembled in MetaTrass for four gut samples, and the species are ordered by 838 

the completeness. 839 

Figure S8  Two-dimensional scatter plot of completeness and contamination 840 

evaluated by CheckM for four gut samples. 841 

Figure S9  Phylogenetic tree of the high-quality genomes assembled by MetaTrass for 842 

H_Gut_Meta02. The phylogenetic tree is on the left. Distribution of the high-quality 843 

genomes assembled by other methods are colored as red in the middle heat map. 844 

N50 of each high-quality genome is shown in the right histogram. 845 

Figure S10  Phylogenetic tree of the high-quality genomes assembled by MetaTrass 846 

for H_Gut_Meta03. The phylogenetic tree is on the left. Distribution of the high-847 

quality genomes assembled by other methods are colored as red in the middle heat 848 

map. N50 of each high-quality genome is shown in the right histogram. 849 

Figure S11  Phylogenetic tree of the high-quality genomes assembled by MetaTrass 850 

for P_Gut_Meta01.  The phylogenetic tree is on the left. N50 of each high-quality 851 

genome is shown in the right histogram. Because the genome bins obtained by the 852 

combination strategies cannot be classified into species by GTDB-tk, the heat map is 853 

not showed for this sample. 854 

Figure S12  Box plot of variations. Box plots of SNVs (a), small indels (b), large indels 855 

(c) and SNV density (d) called from the high-quality genomes for four gut samples. 856 

Figure S13  Number of genomes with different quality (a) and contiguity (b) 857 
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assembled by MetaTrass and MetaTrass_TR for the patient gut sample. Since 858 

MetaTrass_TR excluded the co-barcoding refining process compared to MetaTrass, 859 

the input dataset of co-barcoding assembling in MetaTrass_TR is the taxonomic reads 860 

set. Only the high-quality genomes are considered to count the number of genomes 861 

with different contiguity.   862 
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