

1 **The genome of the endangered *Macadamia jansenii* displays little diversity but represents an**
2 **important genetic resource for plant breeding.**

3

4

5 Priyanka Sharma¹, Valentine Murigneux², Jasmine Haimovitz³, Catherine J. Nock⁴, Wei
6 Tian^{5,6}, Ardashir Kharabian Masouleh¹, Bruce Topp¹, Mobashwer Alam¹, Agnelo Furtado¹
7 and Robert J. Henry^{1,7}

8

9

10 ¹Queensland Alliance for Agriculture and Food Innovation, University of Queensland,
11 Brisbane 4072 Australia

12 ²Genome Innovation Hub, University of Queensland, Brisbane 4072 Australia

13 ³Dovetail Genomics, 100 Enterprise Way, Scotts Valley, CA 95066

14 ⁴Southern Cross Plant Science, Southern Cross University, Military Road, NSW, Lismore,
15 2480, Australia

16

17 ⁵BGI-Shenzhen, Shenzhen 518083, China

18 ⁶BGI-Australia, 300 Herston Road, Herston QLD 4006, Australia

19 ⁷ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of
20 Queensland, Brisbane 4072 Australia

21 **Summary**

22 Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions
23 of the world, is one of the most economically important genera in the diverse and widely
24 adapted Proteaceae family. All four species of *Macadamia* are rare in the wild with the most
25 recently discovered, *M. jansenii*, being endangered. The *M. jansenii* genome has been used as
26 a model for testing sequencing methods using a wide range of long read sequencing techniques.
27 Here we report a chromosome level genome assembly, generated using a combination of
28 Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 58
29 Mb and a total 758 Mb genome assembly size of which 56% is repetitive. Completeness
30 assessment revealed that the assembly covered 96.9% of the conserved single copy genes.
31 Annotation predicted 31,591 protein coding genes and allowed the characterization of genes
32 encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism and anti-microbial
33 proteins. Re-sequencing of seven other genotypes confirmed low diversity and low
34 heterozygosity within this endangered species. Important morphological characteristics of this
35 species such as small tree size and high kernel recovery suggest that *M. jansenii* is an important
36 source of these commercial traits for breeding. As a member of a small group of families that
37 are sister to the core eudicots, this high-quality genome also provides a key resource for
38 evolutionary and comparative genomics studies.

39

40 **Key words:** Proteaceae, endangered species, genome sequencing, genome assembly, genome
41 diversity, wild species.

42 **Introduction:**

43 Macadamia is a recent domesticate with a complex domestication history (Peace, 2005). The
44 four currently recognised *Macadamia* species are endemic to the central coast of eastern
45 Australia (Mast et al., 2008). However, macadamia was first domesticated in Hawaii around
46 100 years ago, with most of the global production based upon the Hawaiian domesticated
47 germplasm (Hardner, 2016). Macadamia is a member of the Proteaceae family, one of a group
48 of families that are a sister to the core eudicots (Gross and Weston, 1992; Christenhusz and
49 Byng, 2016). Macadamia is the first Australian native plant that has been widely grown as a
50 food plant (Peace et al., 2013). All of the Hawaiian macadamia cultivars has been reported to
51 be based upon only a few or possibly even a single tree from Australia (Nock et al., 2019). This
52 resulting narrow gene pool makes it susceptible to disease and climate change, whereas the
53 unexploited wild macadamia germplasm of Australia provides an opportunity for great
54 improvement of this newly domesticated crop. Despite a rapid international increase in
55 macadamia production, breeding is restricted because of lack of genomic information (Topp et
56 al., 2019).

57 Macadamia is the most widely grown Australian native food crop (Peace et al., 2013).
58 Macadamia production was valued at USD 1.17 billion in 2019 and production is expected to
59 grow at a rate of 9.2% from 2020 to 2027 (<https://www.grandviewresearch.com/industry-analysis/macadamia-nut-market>). Among the macadamia species, *M. integrifolia*, the species
60 from which most of the domesticated gene pool is derived (Hardner, 2016), was the first
61 genome to be sequenced (Nock et al., 2016). This genome, of cultivar HAES 741, has
62 supported initial efforts at genome based breeding (O'Connor et al., 2018) and has recently
63 been upgraded to chromosome level with a contig N50 of 413 Kb. The other species that has
64 been a contributor to domesticated germplasm, *M. tetraphylla*, has been sequenced with an
65 N50 of 1.18 Mb (Niu et al., 2020).

67 All species are rare in the wild but *M. jansenii* is endangered and is only found in a limited area
68 to the north-west of Bundaberg, Queensland (Shapcott and Powell, 2011; Hayward et al.,
69 2021). *Macadamia jansenii* is endangered under the Australian (EPBC) Act and critically
70 endangered under the Queensland (Qld Nature Conservation Act) legislation (Gross and
71 Weston, 1992). Due to the expected low heterozygosity associated with the extremely small
72 population size, this species has been used as a model to compare available genome sequencing
73 technologies (Murigneux et al., 2020; Sharma et al., 2021). *Macadamia jansenii* has been
74 sequenced (Murigneux et al., 2020), using three long read sequencing technologies, Oxford
75 Nanopore (PromethION), PacBio (Sequel I) and BGI (Single-tube Long Fragment Read). The
76 genome was recently updated by sequencing using the PacBio HiFi sequencing (Sharma et al.,
77 2021). Here, we report chromosome level assembly of the same genotype using Hi-C and
78 annotation of the genome. This provides a platform that allows analysis of key genes of
79 importance in macadamia breeding, a reference genome in this group of angiosperms and
80 insights into the impact of rarity on plant genomes.

81 This high quality reference genome also provides a platform for analysis of three unique
82 attributes of macadamia, the high levels of unusual fatty acids (Hu et al., 2019b), high
83 cyanogenic glucoside content, (Nock et al., 2016) and the presence of a novel anti-microbial
84 peptide (Marcus et al., 1999). The fatty acid, palmitoleic acid (16:1) is found in large amounts
85 in macadamia and has been considered to have potential human health benefits (Solà Marsiñach
86 and Cuenca, 2019; Song et al., 2018). Cyanogenic glycosides in plants are part of their defence
87 against herbivores. However, the highly bitter nuts of *M. jansenii* are not edible and use of this
88 species in macadamia breeding will require selection to ensure high levels of cyanogenic
89 glycosides are avoided. Identification of the associated genes could assist by providing
90 molecular tools for use in breeding selection. A novel antimicrobial protein was reported in
91 the kernals of *M. integrifolia* (Marcus et al., 1999). These small antimicrobial proteins were

92 found to be produced by processing of a larger pre-cursor protein. As fungal infection and
93 insect herbivores are major hurdles in macadamia production (Dahler et al., 1995; Nock et al.,
94 2016; Marcus et al., 1999), retention of the antimicrobial protein and cyanogenesis in some
95 parts of the plant may be important. Analysis of candidate genes for these traits may assist in
96 understanding and manipulating in macadamia breeding.

97 **Results**

98 **Genome sequencing and assembly**

99 A pseudo-molecule level genome assembly of Pac Bio contigs (Murigneux et al., 2020) was
100 produced using Hi-C. The estimated genome size of *M. jansenii* was 780 Mb (Murigneux et
101 al., 2020) and the size of the final Hi-C assembly is 758 Mb comprised of 219 scaffolds with
102 an N50 of 52Mb (**Table 1**). Of this 97% was anchored to the 14 largest scaffolds representing
103 the 14 chromosomes (**Figure S1, Table S1**). Comparison of the PacBio assembly with the Hi-
104 C chromosome assembly shows the number of scaffolds decreased from 762 to 219 and the
105 length of the longest scaffold increased 6-fold (**Table 1**). The L50 reduced from 135 to 7
106 scaffolds and the N50 was improved from 1.58 Mb to 52 Mb.

107 **Assembly completeness and repeat element analysis**

108 The completeness of the *M. jansenii* assembly was assessed by Benchmarking Universal
109 Single-Copy orthologs (BUSCO) (Simão et al., 2015). This analysis revealed 96.9% complete
110 genes (single and duplicated) in the Hi-C assembly (**Table 1**). A total of 423.6 Mb, representing
111 55.9% of the Hi-C assembly was identified as repetitive (**Table 2**). Class I TE (Transposable
112 Elements) repeats were the most abundant repetitive elements representing 30% of the genome,
113 including LTRs (24%), LINE (5.67%) and SINE (0%) and Class II TE repeats were 1.56%.

114

115 **Structural and functional annotation**

116 A total of 31,591 genes were identified in the repeat-masked Hi-C *M. jansenii* genome using
117 an homology-based and RNA assisted approach. The average length of the genes was 1,368 bp
118 (**Table 3**). Of a total of 31,591 transcripts, only 22,500 sequences (71%) were annotated by
119 BLAST2GO (**Figure S2**). The transcripts were functionally annotated using Gene Ontology
120 (GO) terms to assess the potential role of the genes in the *M. jansenii* genome. The most
121 abundant *M. jansenii* specific gene families were organic cyclic and heterocyclic compound
122 among the molecular function; organic and cellular metabolic among the biological process;
123 and protein-containing binding membrane and intracellular organelle among the cellular
124 component (**Figure S3**). The comparison of the three *Macadamia* genomes, assembled so far,
125 showed *M. jansenii* has the highly continuous assembly with highest number of BUSCO genes
126 (**Table 4**).

127 **Anti-microbial genes**

128 Antimicrobial proteins have been reported in *M. integrifolia* (Marcus et al., 1999). In addition
129 to antimicrobial properties these seed storage proteins are homologous to vicilin 7S globulins
130 and have been identified as putative allergens (Rost et al., 2020; Rost et al., 2016). A cDNA
131 sequence, from *M. integrifolia*, encoding these proteins, MiAMP-2, has been reported to
132 contain four repeat segments, with each segment comprised of cysteine rich motifs (C-X-X-X-
133 C-(10 to12) X-C-X-X-X-C), where X is any other amino acid residue (Marcus et al., 1999).
134 Blast analysis identified homologues in the *M. jansenii* genome (**Figure S4**). The ANN01396
135 transcript from *M. jansenii*, also showed four repeat segments of cysteine motifs with the same
136 structure as found in MiAMP-2 (**Figure 1A**). Comparison of the translated protein sequences
137 indicated a high level of homology with only 28 differences in the 665 aa sequence (**Figure**

138 **1B).** The *M. jansenii* sequence provides the first genomic sequence for this novel anti-microbial
139 gene and reveals the presence of an intron in the 5' UTR (**Figure S5**).

140 **Cyanogenic glycoside genes**

141 *M. jansenii* has bitter nuts, presumably because of the presence of cyanogenic glycosides (Nock
142 et al., 2016; Castada et al., 2020). Analysis of genes of cyanogenic glycoside metabolism
143 detected a total of 76 putative genes in the *M. jansenii* genome. These genes were distributed
144 throughout the genome (**Figure 2(A)**). The largest number of these genes (22) are encoded by
145 UGT85 which is responsible for conversion of Hydronitrile to cyanogenic glucoside. In
146 contrast only 14 genes for Cyp 79, the first gene in the pathway, was found (**Figure 2(B) &**
147 **Table S8**).

148 **Fatty acid metabolism genes**

149 This study identified the key enzymes involved in fatty acid biosynthesis: elongases (e.g., KAS,
150 FATA, FATB) and desaturases (e.g., SAD). A total of 44 of these genes were found in the *M.*
151 *jansenii* genome. Stearoyl-ACP desaturases (SAD) which convert 18:0 to 18:1 was found to
152 be abundant with 17 genes present (**Figure 2(A) & Table S7**).

153

154 **Heterozygosity and genetic diversity**

155 To study the genetic diversity within the species, re-sequencing of seven other individuals was
156 performed. A total of 166 M to 167 M reads of 150 bp in length were obtained. This represents
157 a coverage of around 32 X of the *M. jansenii* genome. The seven accessions analysed had
158 between 5.4 and 7.0 million variants relative to the reference genome (Table 5). Most of these
159 were SNPs with less than 600,000 indels in all genotypes. Most SNPs were heterozygous with
160 approximately 1 million or less homozygous SNP variants in each individual. The level of SNP

161 heterozygosity for the 8 genotypes (including the reference) was found to be in the range of
162 0.26% to 0.34% with an average of 0.31 % (Table 5). The genotypes varied in their divergence
163 from the reference with most unique variants being heterozygous and only 85,000 to 165,00
164 unique homozygous SNPs being found in an individual and not present in the other seven
165 genotypes.

166

167 **Discussion**

168 A major constraint to the use of *M. jansenii* for commercial breeding is the risk of an inedible
169 kernel due to high levels of toxic cyanogenic glycosides. Cyanogenic glycosides have been
170 observed in all the four species of *Macadamia*. However, the concentration varies at different
171 developmental stages (Castada et al., 2020). Even the edible cultivars derived from *M.*
172 *integerrifolia* have genes involved in the cyanogenic glycoside pathway (Nock et al., 2016).
173 However, cyanogenic glycosides levels are extremely low in the kernel of the commercially
174 important species *M. integrifolia* and *M. tetraphylla* (Dahler et al., 1995). The high level of
175 bitterness in the seeds of *M. jansenii* may be associated with high concentrations of cyanogenic
176 glycosides and large numbers of genes for their biosynthesis found in this study. Knowledge
177 of these genes will support efforts to avoid their transfer to domesticated *Macadamia* when
178 using *M. jansenii* as a source of other desirable genes.

179 Plants may produce antimicrobial proteins as part of their defence against microbial attack.
180 Macadamia seed might have antimicrobial proteins that protect them against attack when
181 germinating in the warm and moist rainforest environment. A new family of antimicrobial
182 peptides, MiAMP-2, was discovered in the seeds of *M. integrifolia* (Marcus et al., 1999).
183 Although only a single gene was found in the *M. jansenii* genome, it encoded a protein with
184 four domains that correspond to the previously reported antimicrobial peptides suggesting that

185 four copies of the peptide could be derived from each translation of this gene. This is the first
186 report of a gene structure for the macadamia anti-microbial peptide with a single intron. This
187 gene has potential for wide use as an antimicrobial protein in plant defence.

188 Macadamia oil has a unique composition being 75% fat, 80% of which is monounsaturated
189 e.g., oleic oil (C18:1) 55-67%, followed by palmitoleic acid (C16:1) 15-22% (Hu et al., 2019a;
190 Curb et al., 2000; Aquino-Bolaños et al., 2016). The results of analysis of the genes of lipid
191 metabolism in the *M. jansenii* genome are consistent with this fatty acid profile. The number
192 of SAD genes which are responsible for conversion of stearoyl-ACP (18:0) to oleate (18:1)
193 was found to be higher in number than the other genes in these pathways and may explain the
194 desirable high oleic content of macadamias. Retention of these genes will be important in
195 breeding. This species may provide a source of genes for manipulation of lipids in other food
196 crops.

197 This rare species has a very small population size explaining the low heterozygosity (Ceballos
198 et al., 2018). The heterozygosity was less than one third that of the more widespread, *M.*
199 *integerrifolia*, reported to have a heterozygosity of 0.98% (Topp et al., 2019; Nock et al., 2020).
200 This analysis indicates the importance of conserving the diversity of this endangered species
201 and retaining the unique alleles that may be useful in breeding. *M. jansenii* is a small tree with
202 a high kernel recovery and both of these traits are key for macadamia improvement. Sustainable
203 intensification of production will be facilitated by the breeding of smaller trees and improved
204 kernel recovery is central to kernel yield. Genome level analysis will support field studies for
205 the conservation of this species (Shapcott and Powell, 2011) and molecular analysis of diversity
206 in support of breeding (Mai et al., 2020).

207 The use of *M. jansenii* as a model in testing genome sequencing and assembly methods
208 (Murigneux et al., 2020; Sharma et al., 2021) is further enhanced by the chromosome level

209 assembly presented here. This is currently the most complete genome sequence available for a
210 macadamia and any member of the more than 1,660 Proteaceae species (Christenhusz and
211 Byng, 2016) making a useful contribution to the goal of sequencing plant biodiversity (Lewin
212 et al., 2018). The Proteaceae belongs to the basal eudicot order Proteales, a sister group to
213 most eudicots (Chanderbali et al., 2016; Drinnan et al., 1994). Among the basal eudicots there
214 are few well characterized genomes. Available genomes include; *Aquilegia coerulea*
215 (Ranuncules) (Filiault et al., 2018), *Papaver somniferum* (Ranuncules) (Pei et al., 2021),
216 *Nelumbo nucifera* (Proteales) (Ming et al., 2013), *Trochodendron aralioides*
217 (Trochodendrales) (Strijk et al., 2019), *Tetracentron sinense* (Trochodendrales) (Liu et al.,
218 2020). The *M. jansenii* genome provides a valuable contribution to comparative genomics in
219 this group of flowering plants. The chromosome level assembly with an N50 scaffold length
220 of 58 Mb and 96.9% of BUSCO genes compares favourably with those available for other
221 endangered species e.g *Acer yangbiense* with N50 45 Mb and 90.5% BUSCO genes (Giordano
222 et al., 2017), *Ostrya rehderiana* N50 2.31 Mb (Yang et al., 2018) and *Nyssa yunnanensis* with
223 N50 of 985 Kb and BUSCO score of 90.5% (Weixue et al., 2020).

224

225 **Experimental procedures**

226 **Plant material**

227 Fresh leaf tissue of *M. jansenii* was collected from *ex-situ* collections of trees at Nambour and
228 Tiaro (three accessions were from the Maroochy Research Facility, Department of Agriculture
229 & Fisheries, Nambour, Queensland, Australia, accessions 1005, 1003 and 1002 and five from
230 Tiaro, Queensland, Australia, Accession #: 1161003, 1161005, 1161001a & 1161001b,
231 1161004). Fresh leaf tissue (fully expanded young flush) was collected and immediately frozen

232 by placing under dry ice and stored at -80°C until further processed for DNA and RNA
233 extraction.

234

235 **DNA and RNA isolation**

236 Leaf tissue was coarsely ground under liquid nitrogen using a mortar and pestle and further
237 ground under cryogenic conditions into a fine powder using a Tissue Lyser (MM400, Retsch,
238 Germany). All accessions were used for DNA isolation. DNA was extracted as per an
239 established method (Furtado, 2014) with minor modification where phenol was excluded from
240 the extraction method. DNA was extracted from 2-3 gm of leaf tissue and dissolved in up to
241 400 µl of TE buffer.

242 Accession no. 10051 was used for RNA isolation. RNA was extracted as per established
243 methods (Rubio-Piña and Zapata-Pérez, 2011; Furtado, 2014). RNA was extracted from 2-3
244 gm of tissue, and treated with extraction buffer, chloroform and phenol/chloroform (1:1) in
245 different steps, followed by further purification using DNase treatment from the Qiagen's
246 RNeasy Mini kit). RNA quality and quantity were determined using A260/280 and A260/230
247 absorbance ratio (Nanodrop, Invitrogen USA) and RNA integrity measurements (Bioanalyser,
248 Agilent technology, USA).

249

250 **Chromosome level assembly**

251 **Chicago library sequencing and Sequencing**

252 DNA was isolated as per an established method (Furtado, 2014). Then the library was prepared
253 as described in Putnam et al., (2016). Briefly, ~500ng of HMW gDNA was reconstituted into
254 chromatin *in vitro* and fixed with formaldehyde. Fixed chromatin was digested with DpnII, the
255 5' overhangs filled in with biotinylated nucleotides, and then free blunt ends were ligated. After
256 ligation, crosslinks were reversed, and the DNA was purified from protein. Purified DNA was

257 treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared
258 to ~350 bp mean fragment size and sequencing libraries were generated using NEBNext Ultra
259 enzymes and Illumina-compatible adapters. Biotin-containing fragments were isolated using
260 streptavidin beads before PCR enrichment of each library. The libraries were sequenced on an
261 Illumina HiSeqX platform to produce 213 million 2x150bp paired end reads, which provided
262 88.11 x physical coverage of the genome (1-100 kb pairs).

263

264 **Dovetail Hi-C library preparation and sequencing**

265 A Dovetail Hi-C library was prepared in a similar manner as described previously (Lieberman-
266 Aiden et al., 2009). Briefly, for each library, chromatin was fixed in place with formaldehyde
267 in the nucleus and then extracted. Fixed chromatin was digested with DpnII, the 5' overhangs
268 filled in with biotinylated nucleotides, and then free blunt ends were ligated. After ligation,
269 crosslinks were reversed, and the DNA purified from protein. Purified DNA was treated to
270 remove biotin that was not internal to ligated fragments. The DNA was then sheared to ~350
271 bp mean fragment size and sequencing libraries were generated using NEBNext Ultra enzymes
272 and Illumina-compatible adapters. Biotin-containing fragments were isolated using
273 streptavidin beads before PCR enrichment of each library. The libraries were sequenced on an
274 Illumina HiSeqX platform to produce 156 million 2x150bp paired end reads, which provided
275 3,601.74 x physical coverage of the genome (10-10,000 kb pairs).

276 **Scaffolding the assembly with HiRise**

277 The input *de novo* assembly, shotgun reads, Chicago library reads, and Dovetail Hi-C library
278 reads were used as input data for HiRise, a software pipeline designed specifically for using
279 proximity ligation data to scaffold genome assemblies (Putnam et al, 2016). An iterative
280 analysis was conducted. First, Shotgun and Chicago library sequences were aligned to the draft

281 input assembly using a modified SNAP read mapper (<http://snap.cs.berkeley.edu>). The
282 separations of Chicago read pairs mapped within draft scaffolds were analyzed by HiRise to
283 produce a likelihood model for genomic distance between read pairs, and the model was used
284 to identify and break putative misjoins, to score prospective joins, and make joins above a
285 threshold. After aligning and scaffolding Chicago data, Dovetail HiC library sequences were
286 aligned and scaffolded following the same method. After scaffolding, shotgun sequences were
287 used to close gaps between contigs.

288 **Re-sequencing**

289 To study the genetic diversity within the species, re-sequencing of the seven different
290 genotypes was performed on the DNBseq platform (Drmanac et al., 2010). The seven
291 *Macadamia jansenii* samples were selected randomly to represent diversity in the population.
292 A DNBseq library was prepared as follows. Briefly, genomic DNA (1 μ g) was randomly
293 fragmented using a Covaris, magnetic beads were used to select fragments with an average size
294 of 300-400bp and DNA was quantified using a Qubit fluorometer. The Fragments were
295 subjected to end-repair and 3' adenylated, adaptors were ligated to the ends of these 3'
296 adenylated fragments. Then the double stranded products were heat denatured and circularized
297 by the splint oligo sequence, the single strand circle DNA (ssCir DNA) was formatted as the
298 final library. the final library was then amplified to make DNA nanoball (DNB) which had
299 more than 300 copies of each molecule and the DNBs were loaded into the patterned nanoarray.
300 Finally, pair-end 150 bases reads were generated by combinatorial Probe-Anchor Synthesis
301 (cPAS) (MGISEQ-2000).

302

303 **RNA-sequencing**

304 RNA sequencing was undertaken by Macrogen, South Korea. Total RNA was subjected to
305 ribosomal RNA depletion (Ribo zero plant) and then sequenced using Illumina Novaseq 600.
306 Data.

307

308 **Genome assembly quality evaluation & Repetitive element evaluation**

309 The completeness of the genome assembly was evaluated by checking the integrity of the
310 protein coding genes in the Hi-C assembly using Benchmarking Universal Single-Copy
311 Orthologs (BUSCO) (version v5.0.0) analysis with eudicot odb10 dataset with 2326 genes.

312 Repetitive elements in the Hi-C assembly were identified *de novo* and classified using
313 RepeatModeler (version 2.0.1). The repeat library obtained from RepeatModeler was used to
314 identify and mask the repeats in the Hi-C assembly file using RepeatMasker (Version 4.1.0).

315

316 **Structural annotation and functional annotation**

317 The prediction of the protein coding genes in the repeat masked genome was carried out using
318 ab-initio and evidence-based approach. For ab-initio prediction, Dovetail staff used Augustus
319 (version 2.5.5) (Stanke et al., 2006) and SNAP (version 2006-07-28) (Johnson et al., 2008).

320 For evidence based approach, MAKER (Cantarel et al., 2008) was used. For training the ab-
321 initio model for *M. jansenii*, coding sequences from *Malus domestica*, *Prunus persica* and
322 *Arabidopsis thaliana* were used using AUGUSTUS and SNAP. Six rounds of prediction
323 optimization were done with the package provided by AUGUSTUS. To generate the peptide
324 evidence in Maker pipeline, Swiss-Prot peptide sequences from the UniProt database were
325 downloaded and used in combination with the protein sequences from *Malus domestica*,

326 *Prunus persica* and *Arabidopsis thaliana*. To assess the quality of the gene prediction AED
327 scores were generated for each of the predicted genes as part of MAKER pipeline. Only those
328 genes which were predicted by both SNAP and AUGUSTUS were retained in the final gene

329 set. To generate the intron hints, a bam file was generated by aligning the RNAseq reads to the
330 genome using the STAR aligner software (version 2.7) and then bam2hints tool was used
331 within the AUGUSTUS. The predicted genes were further characterized for their putative
332 function by performing a BLASTx search against nr protein database (All non-redundant
333 GenBank CDS translations + PDB + SwissProt + PIR+ PRF), as part of annotations undertaken
334 by Dovetail and also by using OmicsBox Ver 1.3.11 (BioBam Bioinformatics, Spain).

335

336 **Gene families**

337 To identify the anti-microbial genes in the genome BLAST homology search was performed
338 to identity transcripts similar to the *M. integrifolia* antimicrobial cDNA (MiAMP2, GenBank:
339 AF161884.1) (Marcus et al., 1999). Then sequence alignment was undertaken using Clone
340 Manager ver 9.0 (SciEd, USA). Multiple Alignment was undertaken using a reference sequence
341 as indicated in the results and alignment parameter scoring matrix of Mismatch (2) Open Gap
342 (4) and Extension-Gap (1).Genes involved in the metabolism of cyanogenic glycosides were
343 identified in the assembly by following a previously described approach (Nock et al., 2016),
344 using BLASTp (1E-5) and sequence homology. Similarly, genes of fatty acid metabolism were
345 identified following the same method.

346

347 **Heterozygosity and genetic diversity analysis**

348 The basic variant analysis (BVA) was performed using Qiagen CLC Genomics Workbench
349 21.0.4 (CLC bio, Aarhus, Denmark). BGI short read sequences of six genotypes (1003, 1002,
350 1161003, 1161005, 1161001a, 1161001b) and Illumina reads of one genotype (1005) of *M.*
351 *jansenii* were mapped to the reference genome of Dovetail Hi-C assembly of *M. jansenii*
352 (1005). Before mapping, the low-quality reads were removed from all the seven genotypes

353 using different CLC trimming parameters (0.05 and 0.01) and the best trimmed reads were
354 selected based upon the Phred score. Then the trimmed reads were mapped against the
355 reference sequence using three different settings: (1.0 LF, 0.95 SF; 1.0 LF, 0.90 SF and 1.0 LF,
356 0.85 SF), out of which the best mapping was selected and then it was passed through the BVA
357 workflow.

358

359 **Accession numbers**

360 The genome sequence reads, transcriptome sequences and genome assembly of *M. jansenii*
361 have been deposited under NCBI bioproject PRJNA694456.

362

363 **Acknowledgements**

364 This project was funded by the Hort Frontiers Advanced Production Systems Fund as part of
365 the Hort Frontiers strategic partnership initiative developed by Hort Innovation, with co-
366 investment from The University of Queensland, and contributions from the Australian
367 Government. We thank the Research Computing Centre (RCC), University of Queensland for
368 support and providing high performance computing resources.

369

370 **Author contributions**

371 Contributions of authors were as follows: Designed the study and supervised the project: RJH,
372 AF, BT and MA. Collected sample: MA, BT, AF and PS. Management of germplasm: MA and
373 BT. DNA and RNA isolation: PS and AF. Data analysis and prepared the figures: PS and AF.
374 Bioinformatics analysis: PS, AF, VM, JH and AM. Drafted the manuscript: PS, AF, JH and
375 WT. Data deposition: PS. All authors edited and approved the final manuscript.

376 **Short legends for Supporting Information**

377 Table S1: Size of each scaffold and number of genes per scaffold

378 Table S2: SNP heterozygosity statistics in eight *Macadamia jansenii* accessions

379 Table S3: Genetic diversity statistics in eight *Macadamia jansenii* accessions

380 Table S4: Genotype-specific polymorphic SNP positions

381 Table S5: Topologically Associated Domains (TADs) analysis summary

382 Table S6: TAD statistics at different resolutions

383 Table S7: Location of fatty acid genes on pseudo-molecules

384 Table S8: Location of cyanogenic genes on pseudo-molecules

385 Figure S1: Linkage density histogram of Hi-C assembly of *M. jansenii* genome

386 Figure S2: BLAST2GO sequence similarity search

387 Figure S3: Gene ontology (GO) analysis by BLAST2GO

388 Figure S4: Alignment of the vicilin-like antimicrobial-peptide transcript from *M.*
389 *integrifolia* and *M. jansenii*

390 Figure S5: Alignment of anti-microbial CDS sequence of *M. integrifolia* against the *M.*
391 *jansenii* transcript sequence

392 Figure S6: Frequency graph of AED scores.

393 **References**

394 Aquino-Bolaños, E. N., Mapel-Velazco, L., Martín-del-Campo, S. T., Chávez-Servia, J. L., Martínez, A. J.
395 & Verdalet-Guzmán, I. 2016. Fatty acids profile of oil from nine varieties of Macadamia nut.
396 International Journal of Food Properties, 20(6), pp 1262-1269.

397

398 Cantarel, B. L., Korf, I., Robb, S. M., Parra, G., Ross, E., Moore, B., Holt, C., Sanchez Alvarado, A. &
399 Yandell, M. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model
400 organism genomes. Genome Res, 18(1), pp 188-96.

401

402 Castada, H. Z., Liu, J., Ann Barringer, S. & Huang, X. 2020. Cyanogenesis in Macadamia and Direct
403 Analysis of Hydrogen Cyanide in Macadamia Flowers, Leaves, Husks, and Nuts Using Selected
404 Ion Flow Tube-Mass Spectrometry. Foods, 2020, 9, 174.

405

406 Christenhusz, M. J. M. & Byng, J. W. 2016. The number of known plants species in the world and its
407 annual increase. Phytotaxa, 261(3), pp 201-217.

408

409 Curb, J. D., Wergowske, G., Dobbs, J. C., Abbott, R. D. & Huang, B. 2000. Serum Lipid Effects of a
410 High-Monounsaturated Fat Diet Based on Macadamia Nuts. Archives of Internal Medicine,
411 160(8), pp 1154-1158.

412

413 Dahler, J. M., McConchie, C. & Turnbull, C. G. N. 1995. Quantification of Cyanogenic Glycosides in
414 Seedlings of Three Macadamia (Proteaceae) Species. Australian Journal of Botany, 43(6), pp
415 619-628.

416

417 Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P.,
418 Nazarenko, I., Nilsen, G. B., Yeung, G., Dahl, F., Fernandez, A., Staker, B., Pant, K. P., Baccash,
419 J., Borcherding, A. P., Brownley, A., Cedeno, R., Chen, L., Chernikoff, D., Cheung, A., Chirita,
420 R., Curson, B., Ebert, J. C., Hacker, C. R., Hartlage, R., Hauser, B., Huang, S., Jiang, Y.,
421 Karpinchyk, V., Koenig, M., Kong, C., Landers, T., Le, C., Liu, J., McBride, C. E., Morenzoni, M.,
422 Morey, R. E., Mutch, K., Perazich, H., Perry, K., Peters, B. A., Peterson, J., Pethiyagoda, C. L.,
423 Pothuraju, K., Richter, C., Rosenbaum, A. M., Roy, S., Shafto, J., Sharanhovich, U., Shannon,
424 K. W., Sheppy, C. G., Sun, M., Thakuria, J. V., Tran, A., Vu, D., Zaranek, A. W., Wu, X.,
425 Drmanac, S., Oliphant, A. R., Banyai, W. C., Martin, B., Ballinger, D. G., Church, G. M. & Reid,
426 C. A. 2010. Human genome sequencing using unchained base reads on self-assembling DNA
427 nanoarrays. Science, 327(5961), pp 78-81.

428

429 Filiault, D. L., Ballerini, E. S., Mandáková, T., Aköz, G., Derieg, N. J., Schmutz, J., Jenkins, J., Grimwood,
430 J., Shu, S., Hayes, R. D., Hellsten, U., Barry, K., Yan, J., Mihaltcheva, S., Karafiátová, M.,
431 Nizhynska, V., Kramer, E. M., Lysak, M. A., Hodges, S. A. & Nordborg, M. 2018. The *Aquilegia*
432 genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic
433 chromosome with a unique history. eLife, 7(e36426).

434

435 Furtado, A. 2014. DNA extraction from vegetative tissue for next-generation sequencing. *Cereal
436 Genomics*. Springer, pp 1-5.

437

438 Giordano, F., Aigrain, L., Quail, M. A., Coupland, P., Bonfield, J. K., Davies, R. M., Tischler, G., Jackson,
439 D. K., Keane, T. M. & Li, J. J. S. r. 2017. De novo yeast genome assemblies from MinION,
440 PacBio and MiSeq platforms. 7(1), pp 1-10.

441

442 Gross, C. & Weston, P. H. J. A. S. B. 1992. *Macadamia jansenii* (Proteaceae), a new species from
443 central Queensland. 5(6), pp 725-728.

444

445 Hardner, C. 2016. Macadamia domestication in Hawai'i. *Genetic Resources and Crop Evolution*,
446 63(8), pp 1411-1430.

447

448 Hayward, G., Nock, C., Shimizu, Y. & Shapcott, A. 2021. A Comprehensive approach to assessing the
449 future persistence of the endangered rainforest tree, *Macadamia jansenii* (Proteaceae) and
450 the impact of fire. *Australian Journal of Botany* 69, 285-300.

451

452 Hu, W., Fitzgerald, M., Topp, B., Alam, M. & O'Hare, T. J. 2019a. A review of biological functions,
453 health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia
454 nuts. *Journal of Functional Foods*, 62(103520).

455

456

457 Johnson, A. D., Handsaker, R. E., Pilit, S. L., Nizzari, M. M., O'Donnell, C. J. & de Bakker, P. I. 2008.
458 *SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap*.
459 *Bioinformatics*, 24(24), pp 2938-9.

460

461 Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I.,
462 Lajoie, B. R., Sabo, P. J. & Dorschner, M. O. J. s. 2009. Comprehensive mapping of long-range
463 interactions reveals folding principles of the human genome. 326(5950), pp 289-293.

464

465 Liu, P.-L., Zhang, X., Mao, J.-F., Hong, Y.-M., Zhang, R.-G., E, Y., Nie, S., Jia, K., Jiang, C.-K., He, J., Shen,
466 W., He, Q., Zheng, W., Abbas, S., Jewaria, P. K., Tian, X., Liu, C.-j., Jiang, X., Yin, Y., Liu, B.,
467 Wang, L., Jin, B., Ma, Y., Qiu, Z., Baluška, F., Šamaj, J., He, X., Niu, S., Xie, J., Xie, L., Xu, H.,
468 Kong, H., Ge, S., Dixon, R. A., Jiao, Y. & Lin, J. 2020. The Tetracentron genome provides
469 insight into the early evolution of eudicots and the formation of vessel elements. *Genome
470 Biology*, 21(1), pp 291.

471

472 Mai, T., Alam, M., Hardner, C., Henry, R. & Topp, B. J. P. 2020. *Genetic Structure of Wild Germplasm
473 of Macadamia: Species Assignment, Diversity and Phylogeographic Relationships*. 9(6), pp
474 714.

475

476 Marcus, J. P., Green, J. L., Goulter, K. C. & Manners, J. M. 1999. A family of antimicrobial peptides is
477 produced by processing of a 7S globulin protein in *Macadamia integrifolia* kernels. *Plant J.*
478 1999, *Plant J.* 1999 Sep;19(6)), pp 699-710.

479

480 Mast, A. R., Willis, C. L., Jones, E. H., Downs, K. M. & Weston, P. H. 2008. A smaller Macadamia from
481 a more vagile tribe: inference of phylogenetic relationships, divergence times, and diaspora
482 evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). *Am J Bot.* 95(7), pp
483 843-70.

484

485 Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.-T., Zhang, Q., Kim, M.-J., Schatz, M. C.,
486 Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E., Ferguson, A. A., Narzisi, G., Nelson, D.
487 R., Blaby-Haas, C. E., Gschwend, A. R., Jiao, Y., Der, J. P., Zeng, F., Han, J., Min, X. J., Hudson,
488 K. A., Singh, R., Grennan, A. K., Karpowicz, S. J., Watling, J. R., Ito, K., Robinson, S. A., Hudson,
489 M. E., Yu, Q., Mockler, T. C., Carroll, A., Zheng, Y., Sunkar, R., Jia, R., Chen, N., Arro, J., Wai, C.
490 M., Wafula, E., Spence, A., Han, Y., Xu, L., Zhang, J., Peery, R., Haus, M. J., Xiong, W., Walsh, J.
491 A., Wu, J., Wang, M.-L., Zhu, Y. J., Paull, R. E., Britt, A. B., Du, C., Downie, S. R., Schuler, M. A.,
492 Michael, T. P., Long, S. P., Ort, D. R., William Schopf, J., Gang, D. R., Jiang, N., Yandell, M.,
493 dePamphilis, C. W., Merchant, S. S., Paterson, A. H., Buchanan, B. B., Li, S. & Shen-Miller, J.
494 2013. Genome of the long-living sacred lotus (*Nelumbo nucifera* Gaertn.). *Genome Biology*,
495 14(5), pp R41.

496

497 Murigneux, V., Rai, S. K., Furtado, A., Bruxner, T. J. C., Tian, W., Ye, Q., Wei, H., Yang, B., Harliwong, I.,
498 Anderson, E., Mao, Q., Drmanac, R., Wang, O., Peters, B. A., Xu, M., Wu, P., Topp, B., Coin, L.
499 J. M. & Henry, R. J. 2020. Comparison of long read methods for sequencing and assembly of
500 a plant genome. 2020.03.16.992933.

501

502 Niu, Y.-F., Li, G.-H., Ni, S.-B., He, X.-Y., Zheng, C., Liu, Z.-Y., Gong, L.-D., Kong, G.-H. & Liu, J. 2020.
503 Genome assembly and annotation of *Macadamia tetraphylla*. *bioRxiv*, 2020.03.11.987057.

504

505 Nock, C. J., Baten, A., Barkla, B. J., Furtado, A., Henry, R. J. & King, G. J. 2016. Genome and
506 transcriptome sequencing characterises the gene space of *Macadamia integrifolia*
507 (Proteaceae). *BMC Genomics*, 17(1), pp 937.

508

509 Nock, C. J., Baten, A., Mauleon, R., Langdon, K. S., Topp, B., Hardner, C., Furtado, A., Henry, R. J. &
510 King, G. J. 2020. Chromosome-Scale Assembly and Annotation of the Macadamia Genome
511 G3: Genes|Genomes|Genetics, 10(10), pp 3497.

512

513 Nock, C. J., Hardner, C. M., Montenegro, J. D., Ahmad Termizi, A. A., Hayashi, S., Playford, J.,
514 Edwards, D. & Batley, J. 2019. Wild Origins of Macadamia Domestication Identified Through
515 Intraspecific Chloroplast Genome Sequencing. *Frontiers in plant science*, 10(334).

516

517 O'Connor, K., Hayes, B. & Topp, B. 2018. Prospects for increasing yield in macadamia using
518 component traits and genomics. *Tree Genetics & Genomes*, 14(1), pp 7.

519

520 Peace, C. P. 2005. Genetic characterisation of Macadamia with DNA markers. PhD thesis, The
521 University of Queensland, Brisbane.

522

523 Peace, C. P., Allan, P., Vithanage, V., Turnbull, C. N. & Carroll, B. J. 2013. Genetic relationships
524 amongst macadamia varieties grown in South Africa as assessed by RAF markers. *South*
525 *African Journal of Plant and Soil*, 22(2), pp 71-75.

526

527 Pei, L., Wang, B., Ye, J., Hu, X., Fu, L., Li, K., Ni, Z., Wang, Z., Wei, Y., Shi, L., Zhang, Y., Bai, X., Jiang,
528 M., Wang, S., Ma, C., Li, S., Liu, K., Li, W. & Cong, B. 2021. Genome and transcriptome of
529 *Papaver somniferum* Chinese landrace CHM indicates that massive genome expansion
530 contributes to high benzylisoquinoline alkaloid biosynthesis. *Horticulture Research*, 8(1), pp
531 5.

532

533 Rost, J., Muralidharan, S., Campbell, D., Mehr, S., CatherineNock & Alice Lee, N. 2016. ASCIA-P19:
534 Discovery of 7s and 11s globulins as putative allergens in macadamia nut by combining
535 allergenomics and patient serum ige binding. *Internal Medicine Journal*, 46(S4), pp 10-10.

536

537 Rost, J., Muralidharan, S. & Lee, N. A. 2020. A label-free shotgun proteomics analysis of macadamia
538 nut. *Food Research International*, 129(108838).

539

540 Rubio-Piña, J. A. & Zapata-Pérez, O. J. E. j. o. B. 2011. Isolation of total RNA from tissues rich in
541 polyphenols and polysaccharides of mangrove plants. 14(5), pp 11-11.

542

543 Shapcott, A. & Powell, M. J. A. J. o. B. 2011. Demographic structure, genetic diversity and habitat
544 distribution of the endangered, Australian rainforest tree *Macadamia jansenii* help facilitate
545 an introduction program. 59(3), pp 215-225.

546

547 Sharma, P., Aldossary, O., Alsubaie, B., Al-Mssallem, I., Nath, O., Mitter, N., Alves Margarido, G. R.,
548 Topp, B., Murigneux, V., Masouleh, A. K., Furtado, A. & Henry, R. J. 2021. Improvements in
549 the Sequencing and Assembly of Plant Genomes. *Gigabyte*, 1, 2021.

550

551 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. 2015. BUSCO:
552 assessing genome assembly and annotation completeness with single-copy orthologs.
553 *Bioinformatics*, 31(19), pp 3210-3212.

554

555 Solà Marsiñach, M. & Cuenca, A. P. 2019. The impact of sea buckthorn oil fatty acids on human
556 health. *Lipids in Health and Disease*, 18(1), pp 145.

557

558 Song, I.-B., Gu, H., Han, H.-J., Lee, N.-Y., Cha, J.-Y., Son, Y.-K. & Kwon, J. 2018. Omega-7 inhibits
559 inflammation and promotes collagen synthesis through SIRT1 activation. *Applied Biological
560 Chemistry*, 61(4), pp 433-439.

561

562 Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S. & Morgenstern, B. 2006. AUGUSTUS: ab initio
563 prediction of alternative transcripts. *Nucleic Acids Research*, 34(suppl_2), pp W435-W439.

564

565 Strijk, J. S., Hinsinger, D. D., Zhang, F. & Cao, K. 2019. *Trochodendron aralioides*, the first
566 chromosome-level draft genome in *Trochodendrales* and a valuable resource for basal
567 eudicot research. *GigaScience*, 8(11).

568

569 Topp, B. L., Nock, C. J., Hardner, C. M., Alam, M. & O'Connor, K. M. 2019. *Macadamia* (*Macadamia*
570 spp.) Breeding. In: *Advances in Plant Breeding Strategies: Nut and Beverage Crops: Volume*
571 4. Cham: Springer International Publishing, pp. 221–251.

572

573 Weixue, M., Jinpu, W., Ting, Y., Yannan, F., Le, C., Jinlong, Y., Ranchang, M., Jie, L., Jianming, Z.,
574 Weibang, S., Xun, X., Xin, L., Radoje, D. & Huan, L. 2020. The draft genome assembly of the
575 critically endangered *Nyssa yunnanensis*, a plant species with extremely small populations
576 endemic to Yunnan Province, China. *Gigabyte*.

577

578 Yang, Y., Ma, T., Wang, Z., Lu, Z., Li, Y., Fu, C., Chen, X., Zhao, M., Olson, M. S. & Liu, J. 2018. Genomic
579 effects of population collapse in a critically endangered ironwood tree *Ostrya rehderiana*.
580 *Nature Communications*, 9(1), pp 5449.

581 **Table 1** *Macadamia jansenii* genome sequencing and assembly statistics.

	PacBio	Dovetail Chicago	Dovetail Hi-C assembly
Library Statistics	3,170,206 reads	213M read pairs; 2x150 bp	156M read pairs; 2x 150 bp
Coverage	84 X	88 X	3,601 X
Genome assembly			
Total Length	758.28 Mb	758.30 Mb	758.43 Mb
L50/N50*	135 scaffolds; 1.58 Mb	199 scaffolds; 1.0 Mb	7 scaffolds; 52.1Mb
L90/N90*	457 scaffolds; 0.51 Mb	767 scaffolds; 0.23 Mb	13 scaffolds; 45.61 Mb
Longest Scaffold	10,537,631 bp	8,434,305 bp	67,682,215 bp
Number of Scaffolds	762	1,529	219
BUSCO results*			
Single genes	79.10%	80.10%	80.80%
Duplicated genes	17.60%	17.10%	16.30%
Fragmented genes	0.90%	1.00%	1.00%
Missing genes	2.00%	2.00%	2.10%

582 * Eudicots_odb10 dataset, Number of BUSCOs= 2326.

583

584 **Table 2** Annotation of repeat sequences in the *M. janssenii* genome.

585

	Hi-C Assembly
Total Repetitive content	55.9%
Class I TEs repeats	29.9%
LTRs	24%
LINE	5.67%
SINE	0%
Class II TEs repeats	1.56%
Low complexity repeats	0.33%
Simple repeats	1.35%

586

587

588 **Table 3** Genes predicted in the *M. jansenii* genome

589	Gene prediction
Total number of genes	31,591
Total coding region	43,235,907 bp
Average length of genes	1,368 bp
Number of single-exon genes	2,458
Number of genes with annotation	22,500
Cyanogenic genes	82
Fatty acid genes	47
Anti-microbial genes	1

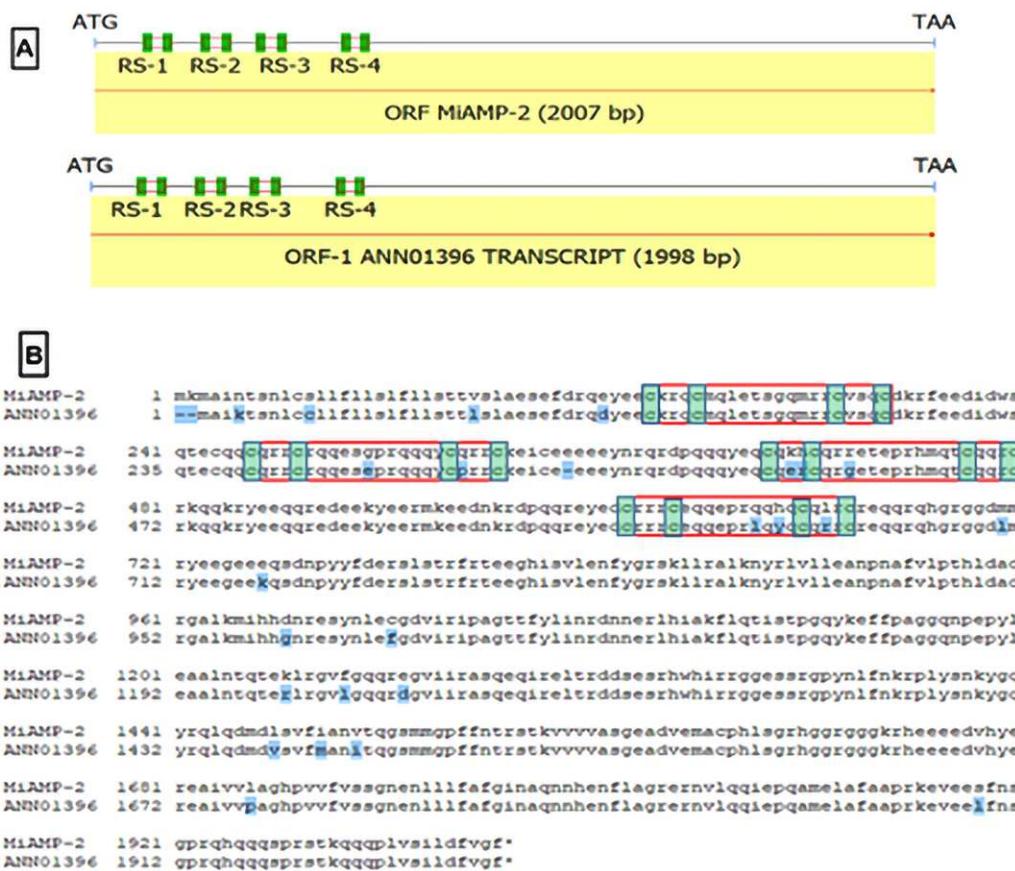
590 **Table 4** Comparison of genome assemblies of three *Macadamia* species.

591

	<i>M. integrifolia</i> (V1)	<i>M. integrifolia</i> (V2)	<i>M. tetraphylla</i>	<i>M. jansenii</i>
Assembly length (Mb)	518.49	744.64	750.53	758.43
N50 (kb)	4.7	413.4	1.2	52.1
No. of contigs/scaffolds	193,493	4094	4,335	219
Repeats	37.00%	55.00%	61.42%	55.90%
BUSCO	77.40%	90.20%	89.72%	96.90%
No. of coding genes	35,337	34,274	31,571	31,591

592

593 **Table 5** Heterozygosity and genetic variation in *M. jansenii*

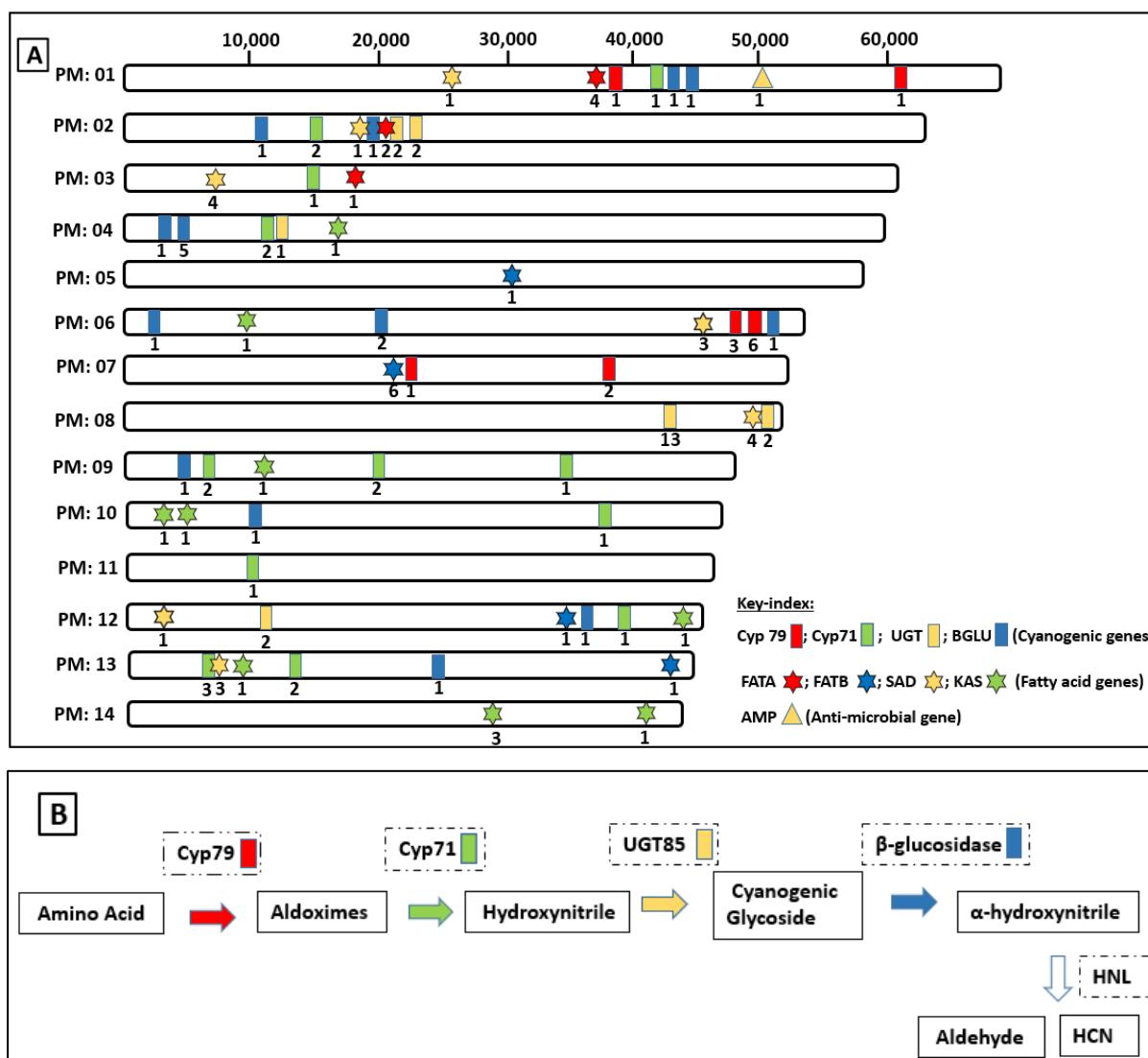

594

Accession ID	Number of polymorphic sites	Number of Indels	Number of SNP	Variant ¹ Positions: Homozygous SNPs	Variant ¹ Positions: Heterozygous SNPs	SNP Heterozygosity	Unique ² Heterozygous variants	Unique ² Homozygous variants	Total unique ² polymorphic positions
1005*	5,418,086	486,846	4,764,835	4,019	2,428,956	0.31	2,249,732	3,070	2,252,802
1161004	5,415,612	377,580	4,901,611	784,323	2,038,553	0.26	1,902,705	111,100	2,013,805
1161003	6,785,189	555,641	6,034,679	1,047,938	2,465,089	0.32	2,306,771	162,541	2,469,312
1161005	6,204,994	531,550	5,488,354	780,593	2,347,362	0.30	2,190,169	85,258	2,275,427
1161001a	6,977,842	574,625	6,196,254	875,565	2,649,035	0.34	2,484,209	109,875	2,594,084
1003	7,050,861	586,001	6,254,227	891,669	2,672,103	0.34	2,505,726	113,837	2,619,563
1002	6,759,260	586,334	5,973,425	1,044,208	2,447,418	0.31	2,286,675	165,048	2,451,723
1161001b	6,704,384	548,292	5,962,434	824,632	2,556,695	0.33	2,394,003	97,027	2,491,030

595

596 ¹ Relative to reference genome597 ² Only found in this individual and not in any of the other 7 genotypes.

598 * Reference genome


599

600

Figure 1 Anti-microbial peptide structure

602 **Figure 1(A)** is the cDNA sequence of anti-microbial gene of *M. integrifolia* with four repeat
603 segments (RS), shown in red open boxes and cysteine residues in green filled boxes aligned
604 with *M. jansenii* transcript sequence ANN01396, showing same pattern. Figure 1(B) shows
605 the alignment of the anti-microbial peptide sequence from the *M. integrifolia* and *M. jansenii*.
606 The first half of the sequence shows the repeat segments within red boxes with green
607 highlighted cysteine residues. Differences in amino acid sequence throughout the alignment
608 as shown in blue highlighted text.

609

612 **Figure 2** Pseudo-chromosomes of *M. jansenii* with location of cyanogenic, fatty acid and
613 anti-microbial genes.

614 **Figure 2(A)** putative cyanogenic, fatty acid and anti-microbial gene locations are shown on
615 14 pseudo molecules of *M. jansenii*. The bars show the cyanogenic genes, the stars show the
616 genes involved in fatty acid pathway and the triangle shows the antimicrobial gene location
617 on the pseudo-chromosome, the color key-index is given along with the figure. Pseudo-
618 chromosomes are not to scale. **Figure 2(B)** illustrates the cyanogenic pathway and the main
619 enzymes involved.

620