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Short title: Multi-omics phenotype prediction

One-sentence summary: Successful multi-omics integration when predicting
phenotypes makes redundant the predictors that are linked to ubiquitous connections
between the omics, according to biological and statistical approaches

Abstract

Multi-omics represent a promising link between phenotypes and genome variation. Few
studies yet address their integration to understand genetic architecture and improve
predictability. Our study used 241 poplar genotypes, phenotyped in two common
gardens, with their xylem and cambium RNA sequenced at one site, yielding large
phenotypic, genomic and transcriptomic datasets. For each trait, prediction models were
built with genotypic or transcriptomic data and compared to concatenation integrating
both omics. The advantage of integration varied across traits and, to understand such
differences, we made an eQTL analysis to characterize the interplay between the
genome and the transcriptome and classify the predicting features into CIS or TRANS
relationships. A strong and significant negative correlation was found between the
change in predictability and the change in predictor importance for eQTLs (both TRANS
and CIS effects) and CIS regulated transcripts, and mostly for traits showing beneficial
integration and evaluated in the site of transcriptomic sampling. Consequently,
beneficial integration happens when redundancy of predictors is decreased, leaving the
stage to other less prominent but complementary predictors. An additional GO
enrichment analysis appeared to corroborate such statistical output. To our knowledge,
this is a novel finding delineating a promising way to explore data integration.
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Introduction

Genomic prediction, the prediction of phenotypes with genome-wide polymorphisms,
has become a key tool to plant and animal breeders. This approach relies on statistical
modelling to infer the effect of genomic variants, with many different modeling
alternatives proposed in the literature (de los Campos et al., 2013; Varona et al., 2018).
These models are mostly devised to predict the additive and transmissible contribution
to individual genetic values, although dominance and epistatic interactions can also be
accounted for Varona et al. (2018). Despite their success in identifying relevant effects
and predicting phenotypes accurately, even in their most complex formulations, these
models do not capture per se the genetic architecture of complex traits (Gianola, 2021).
Beyond the statistics, it is the use of biological and functional information from the
different organizational layers lying between the raw sequence and the organismal
phenotype that will likely provide the required insights to reveal genetic architectures.
Layers such as DNA methylation (Epigenome), transcripts (Transcriptome), proteins
(Proteomics) or metabolites (Metabolites), are nowadays becoming increasingly
accessible for many species, opening prospects towards a better understanding of the
genetic architecture of complex traits.

In order to simultaneously account for these different layers of data in phenotype
prediction, several integration approaches have been proposed (Ritchie et al., 2015).
Among those, the most frequently used approach is the transformation or kernel-based
integration, which consists in transforming each omics data into an intermediate form,
usually taking the shape of a relationship matrix between the individuals (Guo et al.,
2016; Schrag et al., 2018; Li et al.,, 2019; Morgante et al., 2020). Effects owing to
different omics can then be integrated into a single analytical model, each effect being
associated to a given kernel. Eventually, different kernels can be further combined by
Hadamard product to add extra interaction terms between effects (Guo et al., 2016;
Morgante et al., 2020). Integration can also be carried out across models, in what is
known as model-based integration (Ritchie et al., 2015). Such integration can happen
for a given omic type over different datasets or populations, each one summarized by its
own model, with a final global model feeding on the top features contributed by each of
the initial models. Another variant of the same model-based integration proceeds
through a multistage approach, combining sequentially different omics for a given
population (Ye et al., 2020). One of the simplest integration approaches, however,
remains data concatenation (Azodi et al., 2020), by which multiple omics are placed
side by side into a single large input matrix. Unlike kernels, whose results are produced
at the individual level, the concatenation approach allows for the effects of multiple
features at each omic to be estimated, whether they are SNPs, transcripts or any other
omic. Another advantage, derived from that atomization of effects, is the fact that
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71 interactions between omics can be more easily captured, without the risk of being lost
72 by intermediate transformations.

73 Most of the studies dealing with omics integration for phenotypic prediction have
74  focused on gauging predictive abilities. To that level, the reported benefits of integration
75 are context dependent across studies and, in general, amounting to small differences
76 when compared to single omics counterparts. A series of published comparisons in
77  maize illustrates this point. Using kernels to integrate genomic and transcriptomic data,
78 Guo et al. (2016) found improved accuracies over single omic counterparts for most of
79 the 11 economically important traits under study. Schrag et al. (2018), on the contrary,
80 found no benefit in integration following a similar approach and on a similar set of
81  production-related traits. For Azodi et al. (2020), however, using concatenation of
82 genomic and transcriptomic data for three maize traits yielded benefits only for one of
83 the traits. Studies on other biological models also showed similar context dependent
84 results. Based on the Drosophila melanogaster Reference Panel and different
85 transcriptomic datasets, Li et al. (2019) and Morgante et al. (2020) found subsequently
86 no benefit of integration following a multiple kernel approach in terms of predictive
87 abilities, and over different sets of fithess-related traits. When the integration included a
88 gene ontology (GO) category as an additional layer of information, accuracies were
89  surprisingly improved (Morgante et al., 2020). Using the same Drosophila panel,
90 however, Ye et al. (2020) found some benefits by following a model-based integration
91 approach, with a first modeling stage aiming at detecting SNP associated with
92 transcripts (eQTLs), and a subsequent prediction model focused on resulting eQTLSs.
93 The number of studies, however, is not yet high enough to draw general conclusions.
94  Benefits might depend jointly on methods of integration and targeted traits, reflecting the
95 complexity of underlying architectures and conditions of studied populations.

96 Beyond the reported differences in prediction performance, there is still a scarcer
97 number of studies available that were able to pinpoint some of the possible causes
98 underlying the changes brought by integration to prediction. Already, at statistical level,
99 omics like sequence polymorphisms and transcriptomics are likely non-orthogonal to
100 some extent. If such redundancy is not conveniently handled at the model level, one
101 can expect inaccurate estimation of effects and impaired prediction accuracy as a result
102 (Farrar and Glauber, 1967; Ritchie et al., 2015). Redundancy between genomic and
103 transcriptomic data was addressed in a few studies, typically by gauging the amount of
104 extra variance captured by the different integration models compared to single omic
105 counterparts. For instance, the successful integration described by Guo et al. (2016)
106 was systematically accompanied by extra levels of captured variance, suggesting that
107 each extra layer added to the model contributed to some extent with non-redundant
108 information, and thus improving the prediction. The opposite behavior is described in
109 Morgante et al. (2020), with integrative models showing similar levels of captured
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110 variance to those of single omics, indicating high levels of redundancy. It is interesting
111 to note here that for this latter study, redundancy was not found between GO terms, the
112  only layer bringing benefits to integration in the study. The most explanatory GO terms
113  with genomic data were different from those detected for transcriptomic data. The
114  second, more biological, approach is to look to what extent the most important features
115 in both omics show at the same time mutual associations, in other words, if relevant
116  SNPs are associated or not to relevant transcripts for a given phenotype. Azodi et al.
117  (2020) showed, in maize, that the transcriptome brings information on the phenotype
118 that is different from the one brought by genomic polymorphisms, by highlighting that
119 the information carried by the most important transcripts to predict flowering time is not
120 redundant with that carried out by the most important SNPs. In mice, two independent
121 studies used a Bayesian approach to model the phenotype with both genomic and
122  transcriptomic data (Ehsani et al., 2012; Takagi et al., 2014). These studies showed that
123  specific SNPs (eQTLs) associated with gene expression profiles can contribute to the
124  observed redundancy between the two data sources, which is reflected by the fact that
125 their importance for phenotype prediction was substantially affected under the
126  integrative approach.

127  Further research is needed to enrich the number of studies in data integration. It is clear
128 that the mechanisms by which integration is successful when predicting phenotypes are
129  still not known precisely and over a wide range of conditions and species, with the
130 hypothesis of redundancy being one of the possible explanations. To some extent,
131 redundancy reflects interactivity in the highly integrative space going from the raw
132 genomic sequence to the organismal phenotype. Both redundancy and interactivity are
133  key features to understand genetic architecture beyond the simple list of effects that is
134 typically provided by genomic approaches. Most of the available studies on data
135 integration involve model species like drosophila, maize, and notably humans. In the
136  present study, we proposed new insights on data integration for a species not frequently
137 found as subject of these approaches, black poplar, and using one of the simplest
138 integration alternatives (concatenation) combined to one of the most popular prediction
139 approaches (ridge regression). Here, we aimed at evaluating the factors affecting
140 prediction accuracy when integrating genomic and transcriptomic data for phenotype
141  prediction. Using a fairly large number of diverse phenotypes collected in two common
142 gardens for a collection of black poplars, we specifically analyzed the change in
143  importance of each of the potentially redundant sources (eQTLs and their target genes)
144  between a multi-omics model and the single omics counterparts, together with the
145 evolution of prediction accuracy. Under a more functional point of view, we further
146  studied the redundancy using a Gene ontology (GO) enrichment analysis.
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147 Results

148 Multi-omics model displays performance advantages over the single omic ones
149 for specific functional types of traits

150 Twenty-one traits of different types were phenotyped (Table 1) from 241 poplars grown
151 in two common garden experiments located at contrasting sites (Orleans, France, and
152  Savigliano, Italy). RNA sequencing analysis was also performed on young differentiating
153 xylem and cambium tissues of the entire set of genotypes sampled in the common
154 garden located at Orleans, resulting in large genomic (428,836 SNPs) and
155 transcriptomic (34,229 transcripts) datasets. For each phenotypic trait, three ridge
156 regression models were built: the first one with genotypic data as predictors (denoted
157 G), the second one with transcriptomic data as predictors (T), and the third one with
158 integration by concatenation of both omics data (G+T). The prediction accuracies for the
159 three models varied across trait types, with growth, pathogen tolerance and phenology
160 traits having average performances above 0.5 on both testing sites, while biochemical
161 and architectural traits having average performances below 0.5 (Figure 1).

162 We compared for each trait the prediction accuracies of both the single omic models
163 with the multi-omics model, and tested if they significantly differed with a paired
164  Wilcoxon signed-rank test. Over all traits, the differences between the average accuracy
165  of multi-omics model compared to the single omic models ranged from -0.025 to 0.054.
166  Seven of the 21 traits showed a significant gain with the multi-omics model over both
167 the single omic models. These 7 traits included all the growth traits, the pathogen
168 resistance trait, as well as 3 of the 14 biochemical traits (S.G_ORL, Extractives_ORL
169 and Extractives_SAV). It is noteworthy that most of these traits (5/7) were measured in
170 Orleans, the site where transcriptomics data were also collected. The only 2 traits
171 presenting an advantage for the multi-omics model at the Italian site (Circ and
172  Extractives) were also advantageous on the French site. Some traits showed a
173  significant loss of accuracy with the multi-omics model, two (Lignin_ORL, Lignin_SAV)
174 when the comparison was against the G counterpart, and four (Lignin_ORL,
175 Lignin_SAV, Glucose_SAV and C5.C6_SAV) when it was with T model. Of note, all
176 these traits displaying a decrease in accuracy with the multi-omics model were
177  biochemical traits, they had low prediction accuracies and were more often than not
178 measured in Savigliano (3 in Italy versus 1 in France).

179 In summary, the multi-omics model showed performance advantages over the single
180 omic models in 7 of the 21 traits, more frequently on traits measured in Orleans where
181 transcriptomic data were collected than in the Italian site. The multi-omics model
182 underperformed the single omic models on 4 occasions, corresponding to 3 traits


https://doi.org/10.1101/2021.09.07.459279
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459279; this version posted September 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

183 measured in Italy and one in Orleans. For the 10 remaining traits, no differences
184  between models were detected (Figure 1 and Supplemental Table S1).

185 eQTL analysis sheds light into the interplay between the genome and the
186 transcriptome

187  To further gain insight into the interplay between the two omics layers for phenotype
188  prediction, we studied their relationships through an eQTL analysis. Such analysis was
189 performed with two specific detection steps, the first ignoring linkage disequilibrium
190 between SNPs (called Step_0) and the second detecting multi-locus eQTLs (called
191 Step_opt). The resulting eQTLs at both steps were further classified into CIS and
192 TRANS regulatory elements according to their genomic proximity with the transcripts
193 there were associated with (for more details see the method section). Figure 2 and
194 Supplemental Figure S1 presents a map of these associations, respectively for
195 step_opt and Step_0, with dot size reflecting the eQTL score. The darkened diagonal
196 includes all CIS mediated associations, while the off-diagonal dots represent TRANS
197 eQTLs. It is important to note that some positions at the marker axis present highly
198 populated vertical trails across the genome, corresponding to important regulatory hubs.

199 For both detection stages, we found eQTLs for 10,242 out of the 34,229 transcripts
200 available in the transcriptomic dataset. Step_0 detected a total of 119,022 eQTLs on the
201 marker dataset, including 72,841 (61.2%) CIS regulatory elements and 46,181 (38.8%)
202 TRANS regulatory elements. At the optimal step of the eQTLs analysis (Step_opt),
203 which accounted for linkage disequilibrium between SNPs, we detected a total of
204 18,248 eQTLs, of which 7,845 (43%) were CIS regulatory elements, and 10,403 (57%)
205 were TRANS regulatory elements (Supplemental Figure S2A). CIS eQTLs displayed
206 on average a larger effect than TRANS eQTLs (Supplemental Figure S2B). This
207 point explains why there were so many at step_0, while their number drastically
208 decreased at step_opt when LD was accounted for by the multi-locus approach.
209 Whatever the step considered, the maximum distance between CIS eQTLs and their
210 associated genes ranged between 12 and 14 kb.

211 The importance of predictors is less preserved for traits displaying a predictive
212 advantage with integration

213  To get insights into the factors explaining the gain or loss in predictive ability when using
214 two omics by comparison with a single omic, we further looked at the variation in
215 importance of the individual predictors over the two types of predictive models. For each
216  of the three models, the importance of the different predictors was estimated as the rank
217  of their squared effects from the ridge regression models.
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218 We looked at correlations between the importance of predictors across single and multi-
219 omics models, splitting the predictors into three categories determined from the eQTL
220 analysis: TRANS eQTLs or regulated transcripts, CIS eQTLS or regulated transcripts
221 and no eQTL. For SNPs, the correlation between the importances ranged from 0.62 to
222 0.99 across traits and predictor typologies. They were generally lower for the traits that
223  also showed advantages with the G+T model over single omic models, and for those
224  measured in the French site. Rust resistance, for instance, had the lowest correlations
225 across the different categories among all measured traits (0.62, 0.63 and 0.65,
226  respectively for TRANS eQTLs, CIS eQTLs and non eQTLS). Also, growth traits
227 showed relatively low correlations compared to most of the traits, although this
228 happened only for measurements in the French site (Ht_ ORL, Circ_ORL), with those in
229 the Italian site (Circ_SAV) being much higher and comparable to the top correlations.
230 For the remaining traits, correlations between importances remained high, generally
231 above 0.9 but with a few values close to 0.8 (Supplemental Figure S3A). The
232  correlations between transcript importances (Supplemental Figure S3B) were
233 generally lower than those for SNPs, varying between 0.52 and 0.89 across traits and
234  predictor categories. Following a similar pattern as for SNPs, the traits showing the
235 lowest correlations were also those for which the multi-omics displayed a predictive
236 advantage over single omic models, as well as those measured in the French site.
237  Growth and rust resistance traits were those showing the lowest correlations. Although
238 with small differences, CIS-regulated transcripts showed lower correlations than those
239 from TRANS-regulated counterparts, across traits and sites.

240 TRANS-eQTLs show the most important changes of squared effect rank between
241 multi-omics and single omic models

242  Previous correlations pinpointed to changes in importance in some of the categories of
243  predictors. Such changes can be illustrated by the difference in importance (rank of
244  squared effect) between the multi-omics model and that of the single omic model (either
245 T or G, for transcripts and SNPs respectively) (see Methods for details).

246  When looking at the variation of the differences in importance (Supplemental Figure
247  S4, Figure S4), the amounts were much larger for eQTLs (G+T versus G) than for
248 targeted transcripts (G+T versus T). Higher variations were also found for TRANS
249 eQTLs than for CIS counterparts, and for traits phenotyped at Orleans than for those in
250 the ltalian site. Thus, changes in importance occurred with more intensity for eQTLS,
251 with a TRANS regulation, and linked to traits measured where the transcripts were
252 sampled.

253 An alternative way of visualizing those changes is represented in Figure 3. This time,
254 changes were averaged for a given trait and the resulting distribution of averages
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255 represented by predictor category and site. Patterns were very different between eQTLs
256 and targeted transcripts, and also between sites. The most important changes in
257 ranking happened at the Orleans site. With respect to predictor typologies, it was
258 TRANS-eQTLs that showed the most important changes, with an overall loss of
259 importance when switching to the G+T model, notably for the traits benefiting the most
260 in performance from concatenation (growth and rust resistance). Less conspicuous
261  were the changes for CIS-eQTLs, overall of negative sign but of lesser magnitude. Non-
262 eQTLs showed generally small changes across traits. For targeted transcripts, the most
263 impacted typology was CIS regulated genes, with an overall loss in ranking across
264 traits, notably for growth and rust resistance traits.

265 A negative relationship exits between the change in importance of eQTLs and CIS
266 regulated transcripts and the predictive ability of the integrated multi-omic model

267  Figure 4 represents the link across traits between average change in importance of
268 predictors and advantage in performance of multi-omics over the single omic
269 counterpart. In the case of eQTLs-TRANS, generally the most affected predictors
270 following concatenation, a significant relationship (r=-0.81, p=0.0015) can be drawn
271  where gains in prediction occurred at the expense of losses in ranking of predictors. A
272  similar pattern, although of lesser magnitude, is to be found for eQTLs-CIS and CIS
273  regulated genes (r=-0.6, p=0.037 and r=-0.64, p=0.024, respectively). No significant link
274  was found for TRANS regulated genes. An equivalent representation for the Savigliano
275  site showed no significant links across categories of predictors (Supplemental Figure
276  S6).

277 Gene ontology analysis suggests that top targeted transcripts or eQTLs are trait
278  specific

279  We further selected the transcripts or eQTLs whose importance was most affected
280 through data integration, by focusing on the 1% percentile at each extreme of the
281 distributions, and carried an enrichment analysis in GO terms on the resulting features
282 (Figure 5 and Supplemental Table S2).

283  For all type of traits, the analysis of the GOs showed enrichment of terms from general
284  cell cycle process (e.g. “regulation of RNA export”, “regulation of nucleobase”, “positive
285 regulation of RNA, vesicle-mediated transport”) in the lists of eQTL gene models
286 selected as having the most negative impact on their importance during integration. The
287 same results were visible for all traits with the lists of targeted transcripts selected with a
288 negative effect, the GO terms enrichment were associated to ubiquity process like
289 "protein targeting to chloroplast® or "protein localization to chloroplast® in the
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290 circumference of the tree trunk study (Figure 5A) or "phosphorelay signal transduction”
291 and "cellular response to ethylene" for the lignin content study (Figure 5B).

292  For traits that showed significant gain with integration, this analysis suggests that the list
293 of targeted genes with the most positive effects under integration are enriched with
294  different terms specific to the traits. For example, we found cell wall related terms like
295 “"cell wall polysaccharide catabolic process”, "xylan metabolic process” for the
296 circumference of the tree (Figure 5A). The same results were found for the eQTL gene
297 models selected with the most positive effects with specific GO terms for tree
298 circumference like “formation of plant organ” or “formation of anatomical boundary”.

299 On the contrary, in traits that showed significant predictive losses with multi-omics
300 model over single omic ones, like the lignin content (Figure 5B), showed also
301 enrichment in GO terms of general process for the most positive effect targeted
302 transcripts or eQTL gene models (e.g. "nucleic acid metabolic process”, "gene

303 expression” for the targeted transcripts and "cellular lipid catabolic”, "fatty acid catabolic
304 process"” for the eQTL gene models).

305 Discussion

306 In this study, we used 21 traits to compare the relative advantages of integrating
307 genomic and transcriptomic data for phenotype prediction versus using each omic
308 separately. This relative advantage of integration over single omic varied across traits.
309 For traits such as growth and pathogen resistance, integration yielded more accurate
310 predictions than the single omic counterparts, while for most of the others, basically
311 biochemical traits, no difference was detected, with still a few cases of underperforming
312 concatenation. By using a simple modeling approach like ridge regression, we showed
313 that gains in the traits benefited by integration were associated with systematic changes
314 in importance for some specific predictors, and that those predictors were involved in
315 the interplay between SNP polymorphisms and transcripts, pinpointing at adjustments in
316 effects due to redundancies. Such findings at the statistical level were also backed up
317 by a subsequent biological analysis of GO terms.

318 In order to better understand the reasons underlying trait differences in the benefits of
319 concatenation, we sought to evaluate the interplay between the genomic and
320 transcriptomic data, by making use of an eQTL analysis. Such analysis allowed us firstly
321 to categorize the predictors into CIS eQTLs, TRANS eQTLs, non eQTLs, CIS regulated
322 transcripts, TRANS regulated transcripts and transcripts with no eQTL detected.
323 Secondly, based on such categorization, we could quantify the changes in predictor
324 importance for each of these categories when using the multi-omics model by
325 comparison with single omic ones. Over all the traits under study, we found a strong
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326 negative and significant correlation between the relative advantage of the multi-omics
327 model compared to the single omic ones and the drop in importance of the predictors
328 for eQTLs (R=-0.81 for TRANS eQTLs and R=-0.6 for CIS eQTLs) and transcripts
329 regulated in CIS (R=-0.64). Such a relationship could be interpreted in terms of
330 redundancy between predictors coming from different omics. Indeed, the traits that
331 benefited the most from concatenation were also those for which TRANS eQTLs and
332 CIS-regulated transcripts lost the most in terms of importance in the combined
333 predictive model compared to the single omic counterparts, and thus for which the
334 combined model decreased the redundancy between predictors by down weighting
335 those that specifically matter for the eQTL versus transcript covariation. Redundancy,
336  per se, would not necessarily explain gains or loss in performance, but down weighting
337 redundant predictors could allow other minor predictors, otherwise silenced, climb in
338 importance in such a way that the concatenation model improved in predictability.

339 To our knowledge, this study is the first to establish such a relationship between
340 integration success and redundancy between omics layers, pinpointing eQTLs as key
341 players in such interplay. It is worth mentioning that we could establish such a
342  relationship because of the relatively large number of traits under study, compared to
343  previous works (Ehsani et al., 2012; Guo et al., 2016; Morgante et al., 2020; Azodi et
344 al., 2020; Li et al., 2019; Takagi et al., 2014; Schrag et al., 2018). The relative gains
345 from integration ranged from -0.02 to +0.05 R? across all 21 traits. These gains are
346 indeed small, but are consistent with the state of the art. However, our objective here
347 was to attempt to understand the factors that underlie this gain in order to produce new
348 knowledge that will allow us to improve in more consequent ways the advantage of
349 integration with other methods.

350 A gain of integration was mainly found for traits related to growth and for traits
351 evaluated in the same location as transcriptomic evaluation

352 We observed a significant advantage of multi-omics over single omic for all growth-
353 related traits (Ht_ORL, Circ_ORL and Circ_SAV). Since growth results from cell division
354 and expansion in the apical and cambial meristems (Xylem and cambium) (Chaffey et
355 al., 2002) this relationship between the tissues from which we extracted transcripts and
356 the growth traits (circumference and height) may explain the significant integration
357 advantage observed for these traits.

358 The advantage of integration over the single omic models was also observed for leaf
359 rust resistance. Although xylem and cambium, the tissues sampled for RNA
360 sequencing, seem disconnected to a phenomenon occurring at the leaf level, the
361 relationship here is likely indirect since links between resistance and growth have been
362 reported by other studies (Wang and Kamp, 1992; Steenackers et al., 1996; Newcombe

10
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363 et al., 2001). Following the same reasoning, phenology and architectural traits
364 considered here do not show clear relationships with cambial meristems or with growth-
365 related traits, and therefore support the lack of benefits observed for them in the
366 concatenation models.

367 For the majority of wood biochemical traits, the multi-omics integration model performed
368 similarly or worse than the single omic model. It is noteworthy that these traits are
369 overall not well predicted with single or multi-omics, and they originally come from near
370 infrared spectroscopy prediction which may have included some noise to their variation.
371 We could hypothesize that this factor underlies the observed poor performance for this
372  category of traits during integration.

373 These series of observations across traits also point to the idea that transcripts capture
374 some new information not necessarily available for SNPs, such as that associated to
375 the genic interplays occurring at the specific tissue sampled for transcripts, which could
376  be of a non-additive nature (gene-gene interactions), or even genotype-by-environment
377 interaction effects, which are both not explicitly modelled when using exclusively SNPs
378  as predictors.

379 Among the 21 analysed traits, we observed that the benefits of the concatenation model
380 happened more often for the traits measured in Orleans where the transcriptomic data
381 were also collected than for those in the Italian site. This advantage when phenotypic
382 and transcriptomic data evaluation are carried out at the same location can be
383 interpreted in terms of genotype-environment interactions effectively captured by the
384 transcripts (Buil et al., 2015; Idaghdour and Awadalla, 2013). Conversely, for
385 phenotypes evaluated at the Italian site, the transcriptomic data more likely bring
386 redundant information to that of SNPs, which in turn do not result in any advantage in
387 the multi-omic integration.

388 Negative change in rank between the two models implies an increase in
389 importance

390 Our goal was to identify factors that influence the success of genomic and
391 transcriptomic data integration for phenotype prediction. To this end, we chose a simple
392 integration method that allows us to track changes in the importance of each variable
393 between the integration model and the single omic models. As described in Zampieri et
394 al. (2019) and Ritchie et al. (2015), there are several ways to integrate multi-omics data,
395 the simplest being the concatenation method. Using a ridge regression model,
396 concatenation allows to directly estimate each predictor effect, accounting for all other
397 variables (SNPs and transcripts), unlike LASSO and elastic-net where some degree of
398 variable selection is applied, while trying to minimize the covariation between the
399 predictors' effects. This method allowed us to track the evolution of the relative
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400 importance of the predictors in the multi-omics model compared to the single models,
401 and therefore infer potential redundancies by the changes in importance. Since the
402 effects of SNPs or transcripts between the two models are not at the same scale to
403 gauge importances, we had to bring them to a common scale. A simple and efficient
404  way to do this is to work with ranks of the squared effects of predictors.

405 Comparing the changes in ranks between the multi-omics model and the single omic
406  ones informed us about the gain or loss in importance of each predictor. A predictor will
407  have a positive change in rank when it has high importance (low rank) under the single
408 omic models and ends up with low importance (high rank) in the multi-omics model.
409 Conversely, a negative change in rank between the two models implies an increase in
410 importance. A zero rank change corresponds to a predictor that keeps the same
411 importance between the two models.

412 Integration success is driven by the loss in importance of covariation sources
413 between genomics and transcriptomics

414  Our main hypothesis was that sources of redundancy between SNPs and transcripts
415 play an important role in the success of the integration. The ideal candidates as a
416  source of redundancy between SNPs and transcripts are eQTLs and the genes they
417 regulate, so we performed an eQTL analysis to identify eQTLs (CIS and TRANS) and
418 their regulated genes among our dataset. In order to remain in the same framework as
419 in the ridge prediction models, we used the results of the eQTL analysis for which
420 linkage disequilibrium was not taken into account, which enabled us to get information
421 at the SNP level rather than at the locus level. However, the SNPs in our dataset are
422  derived from RNAseq and are representative of the functional space of the genome,
423  thus capturing few SNPs in the intergenic spaces. This might have affected our ability to
424  detect some TRANS-eQTLs. Nevertheless, our multi-locus analysis showed that
425 TRANS-eQTLs remained the majority, with some hotspot or hub loci associated with a
426  fairly large number of transcripts. Such behavior has previously been reported in other
427  species such as yeast (Albert et al., 2018) or maize (Liu et al., 2017; Swanson-Wagner
428 etal., 2009).

429 The main results of our study is the strong negative and significant correlation found
430 between the relative advantage of the multi-omic model over the single omic ones and
431 the average importance losses of the eQTLs (more pronounced for TRANS) and the
432 genes regulated in CIS. It is important to note here that CIS-regulated genes are on
433 average regulated by more eQTLs than their TRANS-regulated counterparts, 10.15 and
434  6.63 eQTLs respectively (Supplemental Figure S7), suggesting that CIS-regulated
435 genes are the source of more redundancies than TRANS-regulated genes in our
436 dataset. To our knowledge, this study is the first to establish this direct relationship
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437  between integration success and losses in the importance of eQTLs and regulated
438 genes. This relationship was possible to establish due to the relatively large number of
439  diverse traits that we used.

440 There are results obtained in other studies that indirectly suggest the importance of
441  eQTLs for multi-omics integration between genomics and transcriptomics. Ehsani et al.
442  (2012) observed in mice losses in importance of eQTLs in the combined genomics and
443  transcriptomics model versus the model with only genomics for the phenotype that
444  shows an advantage of integration (body mass). Such behavior of eQTLs in this study
445  was observed only for a single phenotype with low resolution genotyping data. Also, Ye
446 et al. (2020) were successful in improving the performance of phenotype prediction in
447  Drosophila using genotypes of eQTLs regulating genes that are important for the
448  phenotype. They proceeded with successive selection steps involving a transcriptome
449  wide association study (TWAS) with an eQTLs analysis for the TWAS significant genes,
450  while optimizing the detection thresholds of these two analyses. Their results indirectly
451 suggest the importance of eQTLs for the integration between genomics and
452  transcriptomics. The negative correlation between the relative advantage of the multi-
453 omics model over the single omic ones and the average losses in importance of
454  covariation sources suggests that the integration success is driven by a minimization of
455 the redundancy between genomics and transcriptomics. Azodi et al. (2020) observed in
456 maize that concatenation between genomic and transcriptomic data improves the
457  prediction of one of their 3 studied phenotypes. For this phenotype, they showed that
458 the most important SNPs and transcripts were not redundant in the sense that they
459 were not located in the same genomic regions, nor were they regulators of important
460  transcripts.

461 The observed redundancy may be explained by biological processes

462  Up to now, we have shown statistically that the sources of redundancy were penalized
463  with a weaker importance under integration. Our GO enrichment analysis provided a
464 more biological point of view to bring extra evidence of the role of redundancy.
465 Generally speaking, genes pointing at general ubiquitous biological processes were
466  more likely the source of redundancy, while those associated with specific processes
467 could more easily bring extra useful information to the prediction process. The GO
468 analysis showed that genes gaining in prediction importance under integration were
469 generally associated with specialized processes of relevance for the predicted
470 phenotype. This pattern was observed notably for traits related to wood production. On
471 the contrary, the genes that were most heavily affected in their importance under
472  integration showed a characteristic enrichment of terms linked to the general cell cycle
473  processes. As the transcriptomic data came from young differentiating xylem and
474  cambium tissues, the redundancy (and complementarity) that we observed is strongly
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475 associated with phenotypes related to the production of wood, like the trunk
476  circumference. This interpretation of our results might also apply to the loss of prediction
477  for traits whose genes are not likely to be represented in our transcriptome, such as
478 those related to rust resistance for example. One eventual validation could be to
479 complement the transcriptomic data with alternative collection on tissues other than
480 those closely connected to xylem and cambium, like leaves, and work on traits more
481  specifically expressed on the collected tissue (i.e. rust resistance). If the genes
482  associated with the general biological processes are found to be sources of redundancy
483  through GO analysis, one strategy to improve prediction could be to reduce or minimize
484  their contribution to the models.

485 Perspectives

486  One of the main findings of this study is the fact that certain predictors with ubiquitous
487 connections seem to be made redundant when integration takes place, leaving the
488 stage for other features to be picked up, eventually less prominent but bringing true
489 complementarity to the integrative prediction. For the sake of simplicity, our study could
490 not take the extra step to devise a novel alternative to account for such redundancies.
491 However, it would be quite straightforward to outline a basic strategy where the
492 importance of predictors going into the model is penalized according to some function
493 describing their redundancy in the data. Under kernel-based integration, for instance,
494 some kind of optimization of composition in features included in the relatedness
495 matrices could be devised so that the resulting kernels bring complementary
496 information. Under a model-based integration, a multistage approach could be devised
497 where associations between all involved omics are firstly carried out, so that the
498 features contributing the most to the associations can be subsequently penalized to
499 some degree or filtered out when it comes to construct a consensual model. More
500 research would be required to devise and test a strategy to derive robust weightings.

501 It would be essential to gather extra information on the beneficial role of multiple omics,
502 collected at different development stages or distinct tissues, so that links to different
503 traits can be drawn. This is certainly a costly endeavor, which could be focused on
504  specific training populations. Ideally, integration studies on those training sets would
505 allow us to identify important hubs in the genetic architecture of traits, and use that
506 information for differential weighting on other related populations with no or basic
507 access to extra omics layers.

508 Material and methods

509 Plant material, experimental design and phenotypic evaluation
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510 We studied 241 genotypes of Populus nigra originated from 11 major river catchments
511 across 4 countries and representative of the species range in Western Europe. These
512 poplars were evaluated in common garden experiments located on 2 contrasting sites
513 (Orleans noted ORL and Savigliano noted SAV) (Guet et al., 2015). In each site, the
514  experimental design consisted in a randomized complete block design with 6 blocks,
515 and thus 6 repetitions per genotype. Twelve traits were evaluated on the 2 sites, as
516 previously described (Gebreselassie et al., 2017; Chateigner et al., 2020). We
517 considered traits measured in 2 sites as different traits, leading to a total of 21 traits
518 (detailed in Table 1). These traits can be categorized into 5 types: growth, pathogen
519 tolerance, phenology, architecture, and biochemistry. At Orleans, the trees were grown
520 through 3 successive cycles: 2008-2009, 2010-2011 and 2012-2015. During the first
521  growth cycle (2009), rust tolerance (Rust) was measured with a discrete score from 1
522  (no symptom) to 8 (generalized symptoms), as detailed in Legionnet et al. (1999).
523  Average branch angle (BrAngl) was evaluated with a score on proleptic shoots from 1 to
524 4 (score 1: between 0° and 30°; score 2: between 30° and 40°; score 3: between 40°
525 and 55°; score 4: and between 55°and 90°). During the second growth cycle, height (Ht)
526 and circumference at 1-meter above the ground (Circ) were measured on 2 year-old
527 trees (winter 2011). At Savigliano, trees went through two cycles: 2008-2009 and 2009-
528 2010. Only Circ was measured during the second growth cycle on 2 year-old trees
529 (winter 2010). Biochemical traits consisted in predictions of several chemical
530 compounds obtained from near-infrared spectra on wood samples collected in the same
531 years as growth traits and at both sites, as described in Gebreselassie et al. (2017).
532 Biochemical traits included: extractives content (Extractives), total lignin content
533 (Lignin), ratios between different lignin components like p-hydroxyphenyl (H), guaiacyl
534 (G) and syringyl (S) (H.G, S.G), total Glucose content (Glucose), ratio between Xylose
535 and Glucose content (XylGlu) and the ratio between 5 and 6 carbon sugars (C5.C6).
536 One phenological trait was also measured, BudFlush as discrete scores for a given day
537 of the year, measured on the apical bud (Dillen et al., 2009).

538 Phenotype adjustments

539 All 21 traits were independently adjusted to field micro-environmental heterogeneity
540 using the breedR package (Munoz and Sanchez, 2017). The model included blocks and
541  spatial effects (autoregressive residuals function) to account for micro-environmental
542  heterogeneity. Also a model selection was carried out using the AIC to select the effects
543 to be included in the model and to tune the autoregressive parameters. The genotypic
544  adjusted means from these models were used as phenotype for this study.

545 Genotype and transcriptomic data
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546 RNA sequencing was carried out in 2015 on young differentiating xylem and cambium
547  tissues collected on two replicates of the 241 genotypes located into two blocks of the
548 Orleans design (Chateigner et al., 2020). We obtained sequencing reads for 459
549 samples corresponding to 218 genotypes with two replicates and 23 genotypes with 1
550 replicate. These sequencing reads were used to provide both transcriptomic and
551  genomic data.

552  For transcriptomic data, the reads were mapped on the Populus trichocarpa v3.0
553 primary transcripts and read counts were retrieved for 41,335 transcripts. Only
554  transcripts with at least 1 count in 10% of the individuals were kept, yielding 34,229
555 features. The raw count data were normalized by Trimmed Mean of M-values using the
556 R package edgeR v3.26.4 (Robinson and Oshlack, 2010) and we calculated the counts
557 per millions (Law et al., 2014). To make the CPM data fit a Gaussian distribution, we
558 computed a log2(n+1) instead of a log2(n+0.5) typically used in a voom analysis (Law et
559 al., 2014), to avoid negative values, which are problematic for the rest of the analysis.
560 For each transcript the log2(n+1) of the CPM were fitted with a mixed model including
561 experimental (batch) and genetic effects to extract their genotypic blups. Those
562  transcripts’ genotypic blups were used for the rest of our analysis.

563 The genotyping data was obtained, first by mapping the RNAseq reads on the P.
564 trichocarpa genome reference (v3.0) (Goodstein et al., 2012). After the mapping, the
565 SNPs were called using 4 callers. In order to generate a high-confidence SNP set we
566 selected only the SNPs identified by at least 3 of the 4 callers and with less than 50% of
567 missing values. Remaining missing values were imputed using complementary
568 genotyping data obtained with a 12k lllumina Infinium Bead-Chip array (Faivre-Rampant
569 et al., 2016). Full details of SNP discovery, data filtering criteria and final selection are
570 given in Rogier et al. (2018). We then detected 874,923 SNPs. From these detected
571  SNPs 428,836 SNPs were retained for this study after filtering the SNPs with minimum
572  alleles frequencies lower than 0.05.

573 eQTLs Analysis

574 eQTLs analysis was performed using the Multi-Loci Mixed-Model (MLMM) approach
575 (Segura et al., 2012) and implemented in the R package MLMM v0.1.1. MLMM uses a
576  step-by-step forward inclusion and backward elimination approach under a mixed-model
577 framework which accounts for the confounding usually attributed to population structure
578 with a random polygenic effect. For each of the 34,229 transcripts we ran MLMM for up
579 to 10 steps and identified the optimal model according to the mBonf criterion (all
580 selected SNPs are significant at a 5% Bonferroni corrected threshold). The initial and
581 the optimal steps outputs have been saved for further analyses.
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582 Based on the positional proximity of the genes, the eQTLS detected at each of these 2
583 steps were classified as CIS regulatory elements (non-coding DNA regulating the
584  transcription of neighboring genes), and/or as TRANS regulatory elements (regulating
585 the transcription of distant genes), according to the following rules:

586 - all eQTLs associated with the expression of a gene located in a different
587 chromosome are classified as TRANS, and the targeted gene is classified as a
588 TRANS regulated gene;

589 - all eQTLs located on the same locus as the gene it targets, according to the
590 genome annotation, are classified as CIS, and the targeted gene is also
591 classified as CIS regulated gene;

592 - the remaining eQTLs whose target gene is on the same chromosome but not on
593 the same locus, were splitted into CIS or TRANS according to their distance to
594 the middle of the gene they target. We estimated the maximum distance between
595 the CIS eQTLs identified at previous step and the middle of the gene they target
596 as 18.9 kb (eQTL being on the same position as its target gene). If the distance
597 between eQTLs and the gene they target is greater than 18.9 kb they were
598 classified as eQTLs TRANS and target Gene TRANS. Otherwise, the eQTLs and
599 the target gene were classified as CIS.

600 Models, prediction accuracy and cross-validation

601 Two ridge regression models were built for each trait with a single omic data as
602 predictor, genotypic data (G model), or transcriptomic data (T model), respectively with
603 p =428,836 SNPs and q = 34,229 transcripts’ expression levels variables. A third multi-
604 omic was also built with integration by concatenation of both omics data (G+T model).
605 These 3 models can be written as:

606 Y=XB1+e (eql)

607 Respectively for models G,T and G+T, X represent the genotyping matrix (n xp) | the
608 transcript expression level matrix for the genes (n x g) and the concatenated transcript
609 expression level and genotyping matrix (n x (p+ 9)). with the same logic, 8 represent
610 the vector of effect sizes of variables of those matrices. Y is the vector of phenotype,
611 and e the vector of residual errors of the model.

612 The models were computed using the R package glmnet (Friedman et al., 2010) ina 5
613 inner-fold and 10 outer-fold nested cross validation framework (Varma and Simon,
614 2006). The sampling process for the different folds was repeated 50 times. Each cross-
615 validation sample was used across all traits and for the three models. Paired t-tests in R
616  (rstatix package version 0.7.0) (Kassambara, 2021) were used for model comparisons
617  of performance.
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618 The models performances was measured using R? between observed and predicted
619 values.

620 SNPs and transcript effects ranking

621 In order to study the changes operated for each feature (SNP or gene) when changing
622  prediction models from single omics to the concatenated counterpart, we compared the
623 change in ranking of the effects across models. Ranks were obtained for each
624  predicting model and trait from the ordering of squared effect sizes.

625 For each variant typologies, the estimated effects rank was compared between the
626  single omic models (G or T) and the multi-omics model with a paired wilcoxon test and a
627  Pearson correlation.

628 The difference in effect ranking between the model with concatenation and the single
629 omic models was calculated for the different typologies of each feature (SNPs and
630 genes). Then this ranking difference was averaged for each trait and regressed with the
631 concatenation advantage of each trait, which is the average accuracy difference
632 between the concatenation model and the single omics models:

1 W
edictor = — R, — R;
Apr ctor W Z ([G+T) (GorT)) (eq2)

633 =1

634  Predictor represents either SNPs or transcripts. R is the ranking vector of squared effect
635 sizes of the given predictor. w is the number of predictors (p for SNPs and q for

636 transcripts). Apedictor is the average difference in effect ranking between the multi-omics
637 model and the single omic one by trait for the given predictor.

638 GO analysis

639 Functional enrichment was conducted based on the gene ontology (GO) terms
640 associated with the best Arabidopsis thaliana homolog and based on Phytozome
641 v12.1.6 database (Goodstein et al.,, 2012). GO analysis was conducted using R
642 package topGO 2.44.0 (Alexa and Rahnenfuhrer, 2021) and Fisher's exact test with
643 ‘elim’ used to correct for multiple comparisons. The significant threshold of GO terms

644 was PO<[0.05.

645 Availability of data and code
646  Supporting data is available at: https://doi.org/10.15454/8DQXK5

647  Code for running the test and replicate the analysis are available at:
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648 https://github.com/Tawfekh/Code-Article-Multi-omics-prediction
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779 Figure legends

780 Figure 1: Prediction accuracies

781  Violin plots of prediction accuracies for 21 traits in the poplar dataset according to three
782 models, using only genotyping data (the G model colored in dark brown to the left in the
783 panels), using only transcriptomic data (T model colored in dark blue), and
784  concatenating both genotyping and transcriptomic data (G+T model colored in light
785 brown to the right). Each distribution of accuracies resulted from a cross-validation
786  scheme. Significance from paired tests is shown for comparisons between models, with
787 a sign indicating if the accuracy is increased (+) or decreased (-) in the multi-omics
788 model by comparison with the single omic ones. Some traits were evaluated in two sites
789 (“ORL” standing for Orléans in France and “SAV” for Savigliano in Italy). The white and
790 Dblack dots show the median and mean of the precision distributions, respectively. The
791 dark brown and dark blue horizontal lines represent respectively the mean of precision
792  distributions of G and T models.

793

794  Figure 2: eQTL map between SNPs and transcripts

795 Map of associations (dots) between SNPs and transcripts through an eQTLs analysis
796  with multi locus detection (Step_op), with dot size reflecting the association score (-
797 logl0 of the p-value of the test). The darkened diagonal includes all CIS mediated
798 associations, while the off-diagonal dots represent the TRANS associations.

799

800 Figure 3: Distribution of predictors’ change in importance

801 Boxplot of the average change in importance of SNPs (panels A) and transcripts
802 (panels B). Each dot represents the average difference per trait and per site of the
803  predictor ranks between the multi omics model (G+T) and the single omic models (G for
804 SNPs and T for transcripts). The red and blue boxplots show respectively the
805 distribution of the average rank change for the TRANS-eQTLs and CIS-eQTLs. The
806  boxplot in black shows the distribution for the predictors that have not been detected in
807 the eQTL analysis.

808

809 Figure 4: Relationship between predictors’ change in importance and muti-omics
810 prediction advantage

811 Regression across traits measured at Orleans between average change in importance
812  of predictors and advantage in performance of G+T over the single-omic counterpart.
813 The top panel (A) shows the regression obtained with the eQTLs (TRANS-eQTLs on the
814 left and CIS-eQTLs on the right). The bottom panel (B) shows the regression obtained
815  with the regulated genes (TRANS on the left and CIS on the right).

816

817 Figure 5: Gene ontology terms enrichment analysis

818 Schematic representation of the enriched GO terms among the top targeted transcripts
819 or eQTL gene models list for A) the circumference of the tree trunk or B) the lignin
820 content evaluated at Orleans. Font size and color intensity are proportional to -log10(p)
821 of the top 10 GO terms.
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822 Supplemental Data

823 Supplemental Figure S1: eQTL map between SNPs and transcripts (Step_0)

824  Supplemental Figure S2: Abundance and score of CIS and TRANS eQTLs

825 Supplemental Figure S3: Comparison between the importance of predictors across
826  single and multi-omics models

827 Supplemental Figure S4: Variation of the change in importance of the eQTLs and
828 targeted transcripts

829 Supplemental Figure S5: Change in importance of the eQTLs and their corresponding
830 targeted transcripts

831 Supplemental Figure S6: Relationship between predictors change in importance and
832 muti-omics prediction advantage for traits measured at Savigliano

833 Supplemental Figure S7: Average number of connection for the eQTLs and targeted
834  transcripts

835 Supplemental Table S1: Prediction accuracies comparison between the multi-omics
836 model and the single omic ones

837 Supplemental Table S2: Complete gene ontology analysis of all traits
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Table 1: List of phenotypic traits
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List of phenotypic traits used in the study with their abbreviations, classified by
functional types, with site of measurement and year.

Functional types Trait Abbreviation Site Year
Height Ht ORL 2011
Growth ORL 2011
Circumference Circ
SAV 2009
Pathogen Tolerance to rust Rust ORL 2009
Tolerance
ORL 2009
Phenology Date of bud flush | BudFlush
SAV 2011
Architecture Branching angle BrAngl ORL 2009
ORL 2011
H/G lignin ratio H.G
SAV 2009
ORL 2011
S/G lignin ratio S.G
SAV 2009
ORL 2011
Lignin content Lignin
SAV 2009
ORL 2011
Biochemicall Glucose content Glucose
SAV 2009
Xylose to glucose ORL 2011
y ratig u Xyl.Glu
SAV 2009
ORL 2011
g SAV 2009
. ORL 2011
Extractives .
content Extractives
SAV 2009
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