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ABSTRACT2

Accurate generative statistical modeling of count data is of critical relevance for the analysis3

of biological datasets from high-throughput sequencing technologies. Important instances4

include the modeling of microbiome compositions from amplicon sequencing surveys and the5

analysis of cell type compositions derived from single-cell RNA sequencing. Microbial and6

cell type abundance data share remarkably similar statistical features, including their inherent7

compositionality and a natural hierarchical ordering of the individual components from taxonomic8

or cell lineage tree information, respectively. To this end, we introduce a Bayesian model for tree-9

aggregated amplicon and single-cell compositional data analysis (tascCODA) that seamlessly10

integrates hierarchical information and experimental covariate data into the generative modeling11

of compositional count data. By combining latent parameters based on the tree structure with12

spike-and-slab Lasso penalization, tascCODA can determine covariate effects across different13

levels of the population hierarchy in a data-driven parsimonious way. In the context of differential14

abundance testing, we validate tascCODA’s excellent performance on a comprehensive set of15

synthetic benchmark scenarios. Our analyses on human single-cell RNA-seq data from ulcerative16

colitis patients and amplicon data from patients with irritable bowel syndrome, respectively,17

identified aggregated cell type and taxon compositional changes that were more predictive and18

parsimonious than those proposed by other schemes. We posit that tascCODA1 constitutes19

a valuable addition to the growing statistical toolbox for generative modeling and analysis of20

compositional changes in microbial or cell population data.21

Keywords: Bayesian modeling, Dirichlet multinomial, microbiome data, single-cell data, spike-and-slab lasso, tree aggregation,22

differential abundance testing23

1 available at https://github.com/bio-datascience/tascCODA
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1 INTRODUCTION

Next-generation sequencing (NGS) technologies have fundamentally transformed our ability to24

quantitatively measure the molecular make-up of single cells (Shalek et al., 2013), tissues (Regev et al.,25

2017; Karlsson et al., 2021), organs (He et al., 2020), as well as microbiome compositions in and on26

the human body (Human Microbiome Project Consortium, 2012). Single-cell RNA sequencing (scRNA-27

seq) (Tang et al., 2009; Shalek et al., 2013; Macosko et al., 2015) has become the key technology for28

recording the transcriptional profiles of individual cells across different tissue types (Regev et al., 2017)29

and developmental stages (Griffiths et al., 2018), and for determining cell type states and overall cell type30

compositions (Trapnell, 2015). Cell type compositions provide informative and interpretable representations31

of the noisy high-dimensional scRNA-seq data and are typically derived from clustering characteristic32

gene expression patterns in each cell (Duò et al., 2018; Traag et al., 2019), followed by analysis of the33

expression levels of marker genes (Luecken and Theis, 2019). As a by-product, these workflows also yield34

a hierarchical grouping of the cell types, either derived from the clustering procedure or determined by35

known cell lineage hierarchies. Determining changes in cell type populations across conditions can give36

valuable insight into the effects of drug treatment (Tsoucas et al., 2019) and disease status (Smillie et al.,37

2019), among others.38

Complementary to scRNA-seq data collection, amplicon or marker-gene sequencing techniques provide39

abundance information of microbes across human body sites (Human Microbiome Project Consortium,40

2012; Lloyd-Price et al., 2017; McDonald et al., 2018). Current estimates suggest that the human41

microbiome, i.e., the collection of microbes in and on the human body, outnumber an individual’s somatic42

and germ cells by a factor of 1.3-10 (Turnbaugh et al., 2007; Sender et al., 2016). Starting from the raw43

read counts, amplicon data are typically summarized in count abundance tables of operational taxonomic44

units (OTUs) at a fixed sequence similarity level or, alternatively, of denoised amplicon sequence variants45

(ASVs). The marker genes also allow taxonomic classification and phylogenetic tree estimation, thus46

inducing a hierarchical grouping of the taxa. To reduce the dimensionality of the data set and guard against47

noisy and low count measurements, the taxonomic grouping information is often used to aggregate the48

data at a fixed taxonomic rank, e.g., the genus or family rank. Shifts in the population structure of taxa49

have been implicated in the host’s health and have been associated with various diseases and symptoms,50

including immune-mediated diseases (Round and Palm, 2018), Crohn’s disease (Gevers et al., 2014), and51

Irritable Bowel Syndrome (IBS) (Ford et al., 2017).52

In the present work, we exploit the remarkable similarities between scRNA-seq-derived cell type data53

and amplicon-based microbial count data and propose a statistical generative model that is applicable to54

both data modalities: the Bayesian model for tree-aggregated amplicon and single-cell COmpositional55

Data Analysis, in short, tascCODA. Our model assumes that count data are available in the form of a56

n× p-dimensional count matrix Y containing the counts of p different cell types or microbial taxa in n57

samples, a covariate matrix n × d-dimensional X carrying metadata or covariate information for each58

sample, and a tree structure with p leaves that imposes a hierarchical order on the count data Y . Since59

both amplicon and scRNA-seq technologies are limited in the amount of material that can be processed in60

one sample, the total number of counts in rows of Y do not reflect total abundance measurements of the61

features but rather relate to the efficiency of the sequencing experiment itself (Gloor et al., 2017). This62

implies that the counts only carry relative abundance information, making them essentially compositional63

data (Aitchison, 1982).64

tascCODA is a fully Bayesian model for tree-aggregated modeling of count data and is a natural65

extension of the scCODA model, recently introduced for compositional scRNA-seq data analysis (Büttner66
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et al., 2020). At its core, tascCODA models the count data Y via a Dirichlet Multinomial distribution67

and associates count data and covariate information via a log-link function. To encourage sparsity in68

the underlying associations between the covariates and the hierarchically grouped features, tascCODA69

exploits recent ideas from tree-guided regularization and the spike-and-slab LASSO (Ročková and George70

(2018)). This allows tascCODA to perform tree-guided sparse regression on compositional responses with71

any type or number of covariates. In particular, in the presence of a single binary covariate, e.g., a condition72

indicator, tascCODA allows to perform Bayesian differential abundance testing. More generally, however,73

tascCODA enables to determine how host phenotype, such as disease status, host covariates such as age,74

gender, or an individual’s demographics, or environmental factors jointly influence the compositional75

counts. Finally, incorporating tree information into the inference allows tascCODA to not only identify76

associations between individual features, but also entire groups of features that form a subset of the tree.77

tascCODA complements several recent statistical approaches, in particular, from the field of microbiome78

data analysis, some of which also use the concept of tree-guided models. Chen and Li (2013) were among79

the first to use the sparse Dirichlet-Multinomial model to connect compositional count data with covariate80

information in a penalized maximum-likelihood setting. Wadsworth et al. (2017) were the first to use a81

similar model in a Bayesian setting. Both adaANCOM (Zhou et al. (2021a)) and the Logstic-tree normal82

model (Wang et al. (2021)) use the Dirichlet-tree (multinomial) model (Wang and Zhao (2017)) to determine83

differential abundance of microbial taxa via a product of Dirichlet distributions at each split. These methods84

restrict themselves, however, to fully binary trees. One the other hand, the trac method (Bien et al.,85

2021)) uses tree-guided regularization (Yan and Bien, 2021)) in a maximum-likelihood-type framework to86

predict continuous outcomes from compositional microbiome data.87

In its present form, the Bayesian model behind tascCODA is ideally suited for data sets of moderate88

dimensionality, typically p < 100, yet can handle extremely small sample sizes n. Since amplicon89

datasets are usually high-dimensional in the number of taxa and exhibit high overdispersion and excess90

number of zeros, we focus on the analysis of genus-level microbiome data. In the context of cell type91

compositional data, on the other hand, often only very few replicate samples are available (Büttner et al.,92

2020). Here, tascCODA can leverage well-calibrated prior information to operate in low-sample regimes93

where frequentist methods likely fail.94

The remainder of the paper is structured as follows. In the next section, we introduce the tascCODA95

model and describe the computational implementation. In Section 3, we describe and discuss synthetic data96

benchmarks and provide two real-world applications, on human single-cell RNA-seq data from ulcerative97

colitis patients and amplicon data from patients with irritable bowel syndrome. Finally, we summarize the98

key points in Section 4 and present considerations about future extensions of the method. A flexible and99

user-friendly implementation of tascCODA is available in the Python package tascCODA2. All results in100

this paper are fully reproducible and available on Zenodo3.101

2 MATERIALS AND METHODS

2.1 Model description102

We start with formally describing the problem at hand. Let Y ∈ R
n×p be a count matrix describing n103

samples from p features (e.g., cell types, microbial taxa, etc.), and X ∈ R
n×d be a matrix that contains104

the values of d covariates of interest for each sample. Due to the technical limitations of the sampling105

procedure, the sum of counts in each sample, Ȳi =
∑p

j=1 Yi,j must be seen as a scaling factor, making106

2 https://github.com/bio-datascience/tascCODA

3 hhttps://zenodo.org/record/5302136#.YSrhdi1h0mI
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the data compositional (Gloor et al. (2017)). Additionally, Y is hierarchically ordered by a multifurcating107

tree T with p leaves and t internal nodes. Let v = p+ t denote the total number of nodes in T . T can be108

represented via a binary ancestor matrix A ∈ {0, 1}p×v:109

Aj,k =

{

1 if j = k or k is ancestor of j

0 else.

Our goal is to determine whether the abundance of single features (leaves of T ) or entire subtrees are110

associated with the covariates in X . Hereby, a credibly changing subtree implies that the features contained111

in it are affected by the condition in the same manner (Figure 1A).112

³13=0 ³2=0³3=N5³4=

N5+T4

³5=N5³6=N5³7=0³8=0³9=T9³10=0³11=0³12=0 ³1=0

T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

N8 N7 N6 N5 N4

N3 N2

N1(A) (B)

Figure 1. Intuition behind tascCODA, (A) a multifurcating tree structure T with internal nodes N1, . . . N8,
and tips T1 . . . T13. If the blue nodes N5, T4, and T9 are assigned nonzero effects by tascCODA, the
aggregated effects on the node level are displayed as β1 . . .β13 at the bottom. (B) Plate representation of
the tascCODA model. Grey squares indicate fixed parameters and input variables that are either part of or
directly calculated from the data. The grey circle represents the output count matrix, white circles show
latent variables.

2.1.1 Core model with tree aggregation113

tascCODA posits a Dirichlet-Multinomial model for Yi,· for each sample i ∈ 1 . . . n, thus accounting114

for the compositional nature of the count data. The covariates are associated with the features through a115

log-linear relationship. We put uninformative Normal priors on the base composition α, which describes116

the data in the case Xi,· = 0:117

Yi ∼ DirMult(Ȳi, a(x)i) (1)

log(a(X))i = α +Xi,·β (2)

αj ∼ N (0, 10) ∀j ∈ [p] . (3)

The total count Ȳi is directly inferred from the data for each sample. The effect of the l-th covariate on118

the j-th feature is therefore given by βl,j .119
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We now use a variant of the tree-based penalty formulation of Yan and Bien (2021) to model common120

effects at each internal node of T in addition to the effects on the leaves. We define a node effect matrix121

β̂ ∈ R
d×v and calculate effects on the tips of the tree by multiplying with the ancestor matrix:122

β = β̂AT (4)

Thus, the effect of covariate l on feature k is the sum over the effects of l on all ancestors of k,123

βl,k =
∑v

j=1 β̂l,jA
T
j,k. Figure 1A illustrates this tree-based aggregation process.124

2.1.2 Spike-and-slab lasso prior125

To ease model interpretability, many statistical models provide a mechanism for sparsifying model126

parameters. In high-dimensional linear regression, this can be achieved via the lasso (Tibshirani, 1996),127

which adds an L1-penalty on the regression coefficients. In Bayesian modeling, spike-and-slab priors are a128

popular choice to perform automatic model selection. Recently, (Ročková and George, 2018) developed a129

connection between the two approaches in the form of the spike-and-slab lasso prior, which provides a130

Bayesian equivalent to penalized likelihood estimation. Here, the effect of interest is described as a mixture131

of two double-exponential priors with different rates λ0, λ1 and a mixture coefficient θ:132

β̂l,k = θβ̃1,l,k + (1− θ)β̃0,l,k ∀k ∈ [v], l ∈ [d] (5)

β̃m,l,k = σm,l,k ∗ bm,l,k ∀k ∈ [v],m ∈ {0, 1}, l ∈ [d] (6)

σm,l,k ∼ Exp(λ2m,l,k/2) ∀k ∈ [v],m ∈ {0, 1}, l ∈ [d] (7)

bm,l,k ∼ N(0, 1) ∀k ∈ [v],m ∈ {0, 1}, l ∈ [d] (8)

θ ∼ Beta(1, 1/v) (9)

This prior can be reformulated as a likelihood penalty function that finds a balance between weak and133

strong penalization by λ1 and λ0, respectively (See Supplementary material section 1.2). As recommended134

by Ročková and George (2018), we use the non-separable version of the spike-and-slab lasso prior, which135

provides self-adaptivity of the sparsity level and an automatic control for multiplicity via a Beta prior on θ136

(Bai et al. (2020a); Scott and Berger (2010)). We further set λ0,l,k = 50 ∀k to achieve a strong penalization137

in the ”spike” part of the prior, leaving λ1,l,k as our only parameter that controls the total amount of penalty138

applied at larger effect values.139

2.1.3 Node-adaptive penalization140

We use a variant of the strategy proposed by Bien et al. (2021) to make the strength of the regularization141

penalty dependent on the corresponding node’s position in the tree. We introduce the following sigmoidal142

scaling:143

λ1,k = 2λ1
1

1 + e−φ(Lk/p−0.5)
, (10)

where λ1 = 5 is the default value for the penalty strength, Lk is the number of leaves that are contained144

in the subtree of node k, and φ acts as a scaling factor based on the tree structure. If φ = 0, the default in145
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tascCODA, all nodes are penalized equally with λ1, while for φ < 0, effects on nodes with larger subtrees,146

located closer to the root of the tree, are penalized less and are therefore more likely to be included in147

the model. If φ > 0, a solution that comprises more diverse effects on leaf nodes will be preferred. Thus,148

the parameter φ provides a way to trade off model accuracy with the level of aggregation. We discuss the149

behavior of the spike-and-slab LASSO penalty and the choice of λ0,1 in more detail in the Supplementary150

material.151

2.1.4 Reference feature152

Since the data at hand is compositional, model uniqueness and interpretability are only guaranteed with153

respect to a reference. Popular choices include picking one of the p features or the (geometric) mean over154

multiple or all groups (Fernandes et al., 2014). Following the scCODA model, we pick a single reference155

feature prior to analysis (Büttner et al., 2020). Technically, this is achieved by choosing one feature p̂ that is156

set to be unchanged by all covariates. Let v̂ be the set of ancestors of p̂. By forcing β̂l,k = 0 ∀k ∈ v̂, l ∈ [d],157

we ensure that the reference is not influenced by the covariates through any of its ancestor nodes. If no158

suitable reference feature is known a priori, tascCODA provides an automatic way of selecting the feature159

with minimal dispersion across all samples among the features that are present in at least a share of samples160

t (default t = 0.95; this value can be lowered if no suitable feature exists).161

p̂ = arg min
j=1···p

Disp(Y ′
·,j) s.th. |i : Yi,j > 0|/n ≥ t

The restriction to large presence avoids choosing a rare feature as the reference where small changes in162

terms of counts lead to large relative deviations. The least-dispersion approach is aimed at reducing the163

bias introduced by the choice of reference. Equations (1-9) together with the reference feature yields the164

tascCODA model (Figure 1B):165

Yi ∼ DirMult(Ȳi, a(x)i)

log(a(X))i = α +Xi,·β

αj ∼ N (0, 10) ∀j ∈ [p]

β = β̂AT

β̂l,k = 0 ∀k ∈ v̂, l ∈ [d]

β̂l,k = θβ̃1,l,k + (1− θ)β̃0,l,k ∀k ∈ {[v]r v̂}, l ∈ [d]

β̃m,l,k = σm,l,k ∗ bm,l,k ∀k ∈ {[v]r v̂},m ∈ {0, 1}, l ∈ [d]

σm,l,k ∼ Exp(λ2m,l,k/2) ∀k ∈ {[v]r v̂}, l ∈ {0, 1}, l ∈ [d]

bm,l,k ∼ N(0, 1) ∀k ∈ {[v]r v̂}, l ∈ {0, 1}, l ∈ [d]

θ ∼ Beta(1,
1

|{[v]r v̂}|
)

with the default choices of λ0 = 50 and λ1,k set according to (10) with hyperparameters φ and λ1 = 5166

(Supplementary material section 1.2).167
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2.2 Computational aspects168

Before performing Bayesian inference with the tascCODA model, several data preprocessing steps are169

applied. Singular nodes, i.e., internal nodes that have only one child node, are removed from the tree, since170

their effect only propagates to one node and is therefore redundant. We also add a small pseudo-count of171

0.5 to all zero entries of Y to minimize the frequency of numerical instabilities in our tests. Finally, we172

recommend normalizing all covariates to a common scale before applying tascCODA to avoid biasing the173

model selection process toward the covariate with the largest range of values.174

Since tascCODA is a hierarchical Bayesian model, we use Hamiltonian Monte Carlo sampling175

(Betancourt and Girolami, 2015) for posterior inference, implemented through the tensorflow (Abadi176

et al., 2016) and tensorflow-probability (Dillon et al., 2017) libraries for Python, solving the gradient177

in each step via automatic differentiation. By default, tascCODA uses a leapfrog integrator with Dual-178

averaging step size adaptation (Nesterov, 2009) and 10 leapfrog steps per iteration, sampling a chain of179

20,000 posterior realizations and discarding the first 5,000 iterations as burn-in, which was also the setting180

for all applications in this article, unless explicitly stated otherwise. As an alternative, No-U-turn sampling181

(Homan and Gelman, 2014) is available for use with tascCODA. The initial states for all αj and bm,l,k are182

randomly sampled from a standard normal distribution. All σm,l,k and θ values are initialized at 1 and 0.5,183

respectively.184

To determine the credible effects of covariates on nodes from the chain of posterior samples, we calculate185

the threshold of practical significance, introduced by Ročková and George (2018), for each node as follows:186

δk =
1

λ0 − λ1,k log(
1

p∗
θ,k

(0) − 1)
(11)

p∗θ,k(β) =
θ∗

λ1,k
2 e−λ1,k|β|

θ∗
λ1,k
2 e−λ1,k|β| + (1− θ∗)λ02 e

−λ0|β|
(12)

Here, θ∗ is the posterior median of θ. More details on δ are available in the Supplementary material. We187

compare the posterior median effects β̂∗l,k to the corresponding δk and take all effects where |β̂∗l,k| > δk188

as credible. In the context of differential abundance testinf, we obtain the set of differentially abundant189

features D by multiplying the matrix with the all credible effects, β̂
(C)
l,j =

{

β̂∗l,k if |β̂∗l,k| > δk

0 else.
, with AT ,190

and get191

D = {(l, j) ∈ [d]× [p] : β̂
(C)
l,j A

T 6= 0} (13)

as the set of features, influenced by at least one credible effect.192

A Python package for tascCODA is available at https://github.com/bio-datascience/193

tascCODA. Building upon the scCODA package, the software provides methods to seamlessly integrate194

scRNA-seq data from scanpy (Wolf et al., 2018) or microbial population data via pandas (McKinney,195

2010). The package also allows to perform differential abundance testing with tascCODA and visualize196

tascCODA’s results through tree plots from the toytree package. All results were obtained using Python 3.8197

with tensorflow=2.5.0 (Abadi et al. (2016)), tensorflow-probability=0.13 (Dillon et al. (2017)), arviz=0.11198
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(Kumar et al. (2019)), numpy=1.19.5, scanpy=1.8.1 (Wolf et al. (2018)), toytree=2.0.1, and sccoda=0.1.4199

(Büttner et al. (2020)).200

3 RESULTS

3.1 Simulation studies201

3.1.1 Model comparison202

To test the performance of tascCODA in a differential abundance testing scenario, we generated203

compositional datasets with an underlying tree structure and compared how well several models could204

detect the changes introduced by a binary covariate. For compositional models that do not account for205

the tree structure, we used the state-of-the art methods ANCOM-BC (Lin and Peddada (2020)), ANCOM206

(Mandal et al. (2015)), and ALDEx2 (Fernandes et al. (2014)) from the field of microbiome data analysis,207

as well as scCODA (Büttner et al., 2020) from scRNA-seq analysis. Based on the recommendations208

by Aitchison (1982), we also analyzed the data with the additive log-ratio (ALR) transformation in209

combination with t- or Wilcoxon rank-sum tests. We also included the recent adaANCOM (Zhou et al.,210

2021a), a differential abundance testing method that accounts for the tree structure. Furthermore, we211

applied tascCODA with different values for the aggregation parameter, φ = (−10,−5,−1, 0, 1, 5, 10),212

setting λ1 = 5.213

We first defined four different data sizes p = (10, 30, 50, 100) and randomly generated a multifurcating214

tree with depth 5 for each value of p. We then chose three nodes (one internal on the level directly above the215

leaves, two leaves) from each tree, whose child leaves, denoted by p′, are set to be differentially abundant216

under a binary (control-treatment) condition (Figure S1 - S4). Similar to Wadsworth et al. (2017), we217

generated n = n0+n1 compositional data samples from two groups of equal size n0 = n1 = (5, 20, 30, 50).218

Each sample Yi is a realization of a Dirichlet-Multinomial distribution with a total sum of Ȳi = 10, 000219

and a parameter vector γ∗. For extra dispersion in the data, we set γ∗i = γi∑
j γj

1−ψ
ψ with ψ = 0.002. The220

parameters for the first (control) group were generated via γ0,i = exp (αi); αi ∼ Unif(−2, 2). In the221

second (treatment) group, we added an effect β = (0.3, 0.5, 0.7, 0.9) to the components in p′: γ1,i =222

exp (αi + βI(i∈p′)). For each parameter combination (p, n0, β), we randomly generated 20 replicates,223

resulting in a total of 1280 datasets.224

Since the adaANCOM method assumes a bifurcating tree structure, we transformed each tree node to225

a series of bifurcating splits via the multi2di and collapse.singles methods from the ape package for R226

(Paradis et al. (2004)) before applying the method. For the methods that require a reference category227

(ALR, scCODA, tascCODA, ALDEx2), we used the last component, which was always designed to be228

unaffected by the condition, as the reference. After applying each method to a dataset, we corrected the229

resulting p-values by the Benjamini-Hochberg procedure, except for ANCOM-BC, where we used the230

recommended Holm correction of p-values, and determined the significant results at an expected FDR level231

of 0.05. The Bayesian methods scCODA and tascCODA do not produce p-values and identify credible232

effects as previously described.233

For an overall indicator of how well the different methods could determine differentially abundant234

features, we considered Matthews correlation coefficient (Figure 2A). Here, adaANCOM showed poor235

performance especially on small datasets, while ALDEx2 struggled when p was larger. Only scCODA236

and ANCOM-BC performed well in comparison for all data and effect sizes. For tascCODA, varying237

the aggregation level φ had a strong influence on the performance. With larger values of φ, tascCODA238

prefers less generalizing effects, resulting in a more detailed solution and larger MCC. At a high resolution239

level (φ = 5), tascCODA was on par with or even better than scCODA and ANCOM-BC, showing almost240

This is a provisional file, not the final typeset article 8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459120
http://creativecommons.org/licenses/by/4.0/


Ostner et al. tascCODA

no sensitivity to the size of the dataset. Because the trees in our simulation contained only effects on leaf241

nodes or the level directly above, preferring generalizing effects (φ = −5) resulted in worse performance,242

while the unbiased case of φ = 0 gave slightly worse results than scCODA and ANCOM-BC. All methods243

shown in Figure 2B except adaANCOM controlled the FDR reasonably well, although ANCOM-BC and244

scCODA could not always hold the nominal level of 0.05. Only ALDEx2, which is known to be very245

conservative (Hawinkel et al., 2019; Büttner et al., 2020), produced almost no false positives, at the cost of246

larger type 2 error. tascCODA had a slightly inflated FDR (< 0.25) for smaller values of φ in some cases,247

which became more apparent when analyzing the ability of each method to exactly recover the true effects248

(2C). Increasing the effect size resulted in a reduced Hamming distance between the ground truth and249

tascCODA with φ = 5, which consistently outperformed all other models. tascCODA in the misspecified250

setting φ = −5 showed an inflated Hamming distance, especially for p = 30. This is, however, expected251

since tascCODA is forced to infer small-sized effects at the top level, resulting in many falsely detected252

features and thus a large deviation from the true sparse solution. In practice, this highlights the need to253

perform cross-validation over different levels of φ to reduce false discoveries due to misspecification. We254

further found that ANCOM detected many false positives in all of our simulations, while the ALR-based255

methods were similarly conservative as ALDEx2 (Figures ??-??). Increasing the sample size generally256

improved the recovery performance of all methods except for tascCODA with misspecified φ (Figure ??).257

(A)

(B)

(C)

Figure 2. Performance comparison of tascCODA and other methods on simulated data with one binary
covariate (differential abundance testing). Plots are grouped by the number of simulated components p and
the effect size β. For tascCODA, different values of φ were tested (dashed blue lines). The areas around
each line represent the standard deviation. Performance measured by (A) Matthews correlation coefficient
(MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and determined
effects.

0.5cm258
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3.1.2 Effect detection at high tree levels259

In the next benchmark scenario, we evaluated the effect of the tuning parameter φ in tascCODA to260

detect effects on larger groups of features through aggregation at higher levels of the tree. To this end, we261

considered the p = 30 setting with the tree structure from Figure S5, and defined an effect on a node near262

the root, influencing almost all features. We simulated datasets in the same manner as for the previous263

benchmark, with n = 10, β = (0.3, 0.5, 0.7, 0.9), and 20 replicates per effect size. We then compared264

tascCODA with different levels of φ using the same performance metrics as before.265

With a correctly specified parametrization φ < 0, favoring effects near the root, tascCODA recovered266

almost all relevant effects, as indicated by a small Hamming distance and high MCC, without producing267

false positive results (Figure 3). With increasing φ, however, tascCODA favors effects on the leaves,268

thus entering the misspecified regime. As predicted, tascCODA was able to only recover a small portion269

of the true effects, while producing more false positive results. This highlights tascCODA’s ability to270

consistently uncover effects on larger groups of features which would be missed when not taking into271

account tree information.272

(A) (B) (C)

Figure 3. Performance comparison of different bias settings for tascCODA on simulated data with the
effect being located near the root of the tree, depending on effect size. Performance measured by (A)
Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between
ground truth and determined effects.

3.1.3 Simulation with multiple covariates273

In our third benchmark scenario, we simulated data with two covariates to showcase how tascCODA is274

able to distinguish effects from two different sources. Taking the tree from the method comparison study275

with p = 30 (Figure S2), we first defined a binary covariate x0 with effect sizes β0 = (0.3, 0.5, 0.7, 0.9)276

as before, and n = 10 samples per group. We also included a second covariate x1 ∼ Unif(0, 1) with277

effect size β1 = 3 that affects node 39 and therefore features 13-23 in all samples. For each effect size, we278

simulated 10 datasets and applied tascCODA with φ = (−5, 0, 5) and two different design matrices X .279

For the first design matrix, we used only x0, while the second design matrix contained both x0 and x1 as280

covariates. We compared how well both configurations could recover the effects introduced by x0 in terms281

of MCC, FDR, and Hamming distance to the ground truth.282

Ignoring x1 in the model design resulted in an overall worse performance of tascCODA for all metrics,283

all effect sizes for x0, and all values of φ (Figure 4). In every case it proved beneficial to include the284

second covariate in the model, resulting in almost no false positive detections of changes caused by the285

first covariate. Further, the two-covariate model achieved an MCC and Hamming distance that were similar286

to our simulations where only one covariate acted on the data (Figure 2). This proves that tascCODA is287

able to reliably identify the influence of multiple covariates on the count data.288

This is a provisional file, not the final typeset article 10

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459120
http://creativecommons.org/licenses/by/4.0/


Ostner et al. tascCODA

(A) (B) (C)

Figure 4. Performance comparison for tascCODA on simulated data with two covariates. The setups
including both or only one covariate in the model are shown as x0 + x1 and x0, respectively. Simulations
were evaluated for different effect sizes and aggregation levels φ. Performance measured by (A) Matthews
correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground
truth and determined effects.

3.2 Experimental data applications289

3.2.1 Single-cell RNA-seq analysis of ulcerative colitis in humans290

Ulcerative colitis is one of the most common manifestations of inflammatory bowel disease. The disease291

alternates between periods of symptomatic flares and remissions. The flares are due to the surge of an292

inflammatory reaction in the colon, causing superficial to profound ulcerations, which manifests with293

bloody stool, diarrhea and abdominal pain. The patients will thus have part of their colon referred to294

as ”inflamed”, while colonic tissue still seemingly intact will be called ”non-inflamed”. To show how295

tascCODA can be applied to cell population data from scRNA-seq experiments, we used data collected296

by Smillie et al. (2019) from a study of the colonic epithelium on ulcerative colitis (UC). In the study, a297

total of 133 samples from 12 healthy donors, as well as inflamed and non-inflamed tissue from 18 patients298

with UC, were obtained via single-cell RNA-sequencing, divided into epithelial samples and samples from299

the Lamina Propria (Supplemental data 1.3.1).300

We applied tascCODA to six different subsets of the data, comparing two of the three health conditions301

in one type of tissue at a time, and then compared our findings with the results of scCODA and the302

Dirichlet regression model used by Smillie et al. (2019), implemented in the DirichletReg package for R303

(Maier (2014)). For tascCODA and scCODA, we used the automatically determined reference cell types,304

which are identical for both models in all cases, and applied scCODA with an FDR level of 0.05. In the305

Dirichlet regression model, we adjusted the p-values by the Benjamini-Hochberg procedure, and selected306

differentially abundant cell types at a level of 0.05.307

The cell lineage tree inferred from Smillie et al. (2019) (Figure 5) is divided into epithelial, stromal and308

immune cells at the top level (Figure 5). While the biopsies from the Epithelium contain mostly epithelial309

cells, and samples from the Lamina Propria consist of cells mostly from the other two lineages, both groups310

also include considerable amounts of cells from the other major lineages. We first compared scCODA and311

Dirichlet regression, which both do not take the tree structure into account, to tascCODA with φ = 5312

(Figure 6), thus preferring a detailed solution with effects mainly located on leaf nodes, which approaches313

the leaf-only solutions of the other two methods. In this setting, tascCODA, scCODA and Dirichlet314

regression all determined mostly epithelial cells to shift in abundance between pairwise comparisons of315

healthy, non-inflamed, and inflamed tissue samples from the intestinal Epithelium (Figure 6A), and most316

changes in the Lamina Propria to be among stromal and immune cells (Figure 6B). When propagating the317

node effects of tascCODA with φ = 5 to the leafs via Equation 13, the differentially abundant cell types318

determined by tascCODA, scCODA, and Dirichlet regression were largely identical (Figure 6).319
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To further investigate the predictive and sparsity-inducing powers of tascCODA, we performed out-320

of-sample prediction with the results obtained from tascCODA and scCODA on 5-fold cross validation321

splits of each of the six data subsets. For both models, we determined cell type-specific effect vectors322

β∗ (tascCODA: β∗ = Aβ̂
(C)
j , as in equation 13; scCODA: Model output) as well as the posterior mean323

of the base composition α∗ on the training splits, and used them to predict cell counts for each health324

status label Xl in the corresponding test split as ŷj,l =
e
α∗jXlβ

∗

j

∑p
j=1

e
α∗
j
Xlβ

∗

j

1
ntrain

∑ntrain
i=1 Ȳi. We measured the325

predictive power of tascCODA and scCODA as the mean squared logarithmic error (MSLE) between326

the actual and predicted cell counts, and sparsity as the average number of nonzero effects over all five327

splits (Table 1). For small φ, tascCODA determined very few or no credible effects, while the MSLE was328

usually slightly higher than the MSLE from scCODA. In the unbiased setting φ = 0, tascCODA found329

credible effects in three scenarios, which considerably reduced the MSLE. With a small bias towards the330

leaves (φ = 1), tascCODA even outperformed scCODA in terms of MSLE in one case, while for φ = 5,331

tascCODA achieved a lower MSLE and similar number of credible effects in three scenarios, and a lower332

number of credible effects and similar MSLE in the other three scenarios. We observed a curious result333

when comparing non-inflamed and inflamed epithelial samples. Here, the MSLE increased with rising φ,334

indicating that the mean model over all samples described the data better than trying to determine variation335

between the two groups. This confirms the intuition that the aggregation bias φ in tascCODA acts as336

a trade-off between generalization level and prediction accuracy. For smaller φ, tascCODA will select337

fewer, more general effects, which might miss subtle changes at a lower level of the lineage tree, while338

with increasing φ, tascCODA’s results will approach the ones discovered without taking tree aggregation339

into account.340

For a more detailed comparison between tascCODA and scCODA, we compared healthy to non-inflamed341

biopsies of control and UC patients. When choosing φ = 5, thus biasing tascCODA towards the leaf nodes,342

tascCODA detected the differences in cell composition in the Epithelium as changes in abundance of the343

same three cell types as scCODA (Figure 5A). In the Lamina Propria, tascCODA detected credible changes344

on six different groups of cell types, including T and B cells, which were previously linked to UC (Holmén345

et al. (2006); Smillie et al. (2019)), as well as eight single cell types (Figure 5B). Notably, tascCODA346

amplified the decrease of Plasma B-cells induced by the group effect on B-cells by an additional negative347

effect on the cell type level. A strong decrease of Plasma cells was also confirmed by Smillie et al. (2019)348

through FACS stainings. Importantly, tascCODA described the data with only 14 nonzero effects, whereas349

with scCODA, 21 credible effects were produced.350

As a contrast, we also examined the unbiased setting with φ = 0, treating all nodes equally. Here, the351

cell type-specific changes in the Epithelium were not picked up anymore by tascCODA (Figure 5C). In352

the Lamina Propria, only seven effects, almost all on groups of cell types, were detected by tascCODA353

(Figure 5D). Again, B and T cells were found as the cell lineages that undergo the largest change between354

healthy and non-inflamed UC biopsies. When testing healthy versus inflamed, and non-inflamed versus355

inflamed biopsies, tascCODA also detected more detailed results when φ = 5, and found fewer, more356

generalizing effects with φ = 0 (Figure ??, ??; Table ??-??).357
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(C) (D)

(A) (B)

Figure 5. Behavior of tascCODA on scRNA-seq data for different values of φ. All plots show the
comparison of healthy control samples to non-inflamed tissue samples of UC patients in the data from
Smillie et al. (2019). White and black circles on the cell lineage tree show the effects found by tascCODA,
which are also shown as blue bars on the right side of each plot. The bars below the tree depict effects
on internal nodes, with lower positions in the diagram corresponding to nodes closer to the root. For
comparison, the red bars indicate effects found by scCODA, which only operates on the tips of the tree.
The green-shaded area shows the reference cell type that was used for both models. (A) When φ = 5,
tascCODA prefers placing effects near the tips of the tree and finds the exact same solution as scCODA
for the Epithelium data. (B) In the Lamina Propria, tascCODA places some effects on internal nodes,
resulting in a sparser solution than the one obtained by scCODA (14 vs. 21 credible effects). (C) When
φ = 0, tascCODA finds no credible effects in samples from the Epithelium, and (D) only seven effects
are necessary to summarize the large number of effects found by scCODA when looking at samples from
the Lamina Propria.
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Table 1. Mean squared logarithmic error (MSLE) and number of selected effects over 5 cross-validation
splits for tascCODA with different parametrizations φ and scCODA. Abbreviations for scenarios: Healthy
(H), Non-inflamed (N), and Inflamed (I). With increasing φ, tascCODA selects more effects and on
average improves its predictive power. At φ = 5, tascCODA has equal or lower MSLE than scCODA and
a similar number of selected effects

Model tascCODA scCODA

Scenario φ -5 -1 0 1 5 -

Epithelium - H vs. N MSLE 142.22 142.16 142.18 138.56 134.36 134.96

Effects 0.0 0.0 0.0 1.2 3.2 2.4

Epithelium - H vs. I MSLE 167.46 163.60 160.68 158.06 154.64 154.44

Effects 0.0 1.6 2.6 3.2 8.2 10.8

Epithelium - N vs. I MSLE 173.94 174.10 174.10 175.86 177.26 174.78

Effects 0.0 0.0 0.0 0.2 3.6 5.2

LP - H vs. N MSLE 162.76 157.62 155.16 152.80 149.58 154.02

Effects 0.4 1.8 3.0 6.2 16.0 14.4

LP - H vs. I MSLE 188.58 182.96 178.88 176.02 173.32 173.40

Effects 0.0 1.8 4.8 7.8 17.8 17.4

LP - N vs. I MSLE 219.72 219.70 219.66 219.68 216.76 218.62

Effects 0.0 0.0 0.0 0.0 1.4 0.4
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(A)

(B)

Figure 6. Comparison of differentially abundant cell types found by tascCODA (blue, φ = 5), scCODA
(red, FDR=0.05), and Dirichlet regression (green, adjusted padj < 0.05) between biopsies of healthy,
non-inflamed and inflamed tissue. Colored bars for each method indicate that a credible change was found.
(A) Among samples from the intestinal epithelium, tascCODA and Dirichlet regression detect effects on
lowly abundant epithelial cell types (Tuft, Goblet, Enteroendocrine) that were not detected by scCODA.
(B) In the Lamina Propria, only tascCODA detects a number of effects on some of the T and B cell types.
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3.2.2 Analysis of the human gut microbiome under Irritable Bowel Syndrome358

We next considered a microbiome data example and considered another chronic disorder of the human359

gut, the Irritable Bowel Syndrome (IBS). IBS is a functional bowel disorder characterized by frequent360

abdominal pain, alteration of stool morphology and/or frequency, with the absence of other gastrointestinal361

diseases (i.e. colorectal cancer, inflammatory bowel disease). It is estimated that about 10% of the general362

population experience symptoms that can be classified as a subtype of Irritable Bowel Syndrome, which363

include IBS-C (constipation), IBS-D (diarrhea), IBS-M (mixed), or unspecified IBS (Ford et al. (2017)).364

While the exact sources of the disease can be manifold, it has been hypothesized that the gastroenterological365

symptoms may be caused by a disturbed composition of the gut microbiome (Duan et al. (2019); Ford et al.366

(2017)).367

In particular, we analyzed 16S rRNA sequencing data of stool samples collected from IBS patients and368

healthy controls, which were obtained by Labus et al. (2017). The dataset consists of n = 52 samples,369

with 23 healthy controls, and 29 IBS patients separated into 11 subjects with constipation (IBS-C), 10370

subjects with diarrhea (IBS-D), 6 subjects with mixed symptoms (IBS-M), and 2 subjects with unspecified371

symptoms. Further, metadata information about age, sex and BMI of most subjects is available. We372

re-processed the raw 16S rRNA sequences with DADA2, version 1.21.0 (Callahan et al. (2016)) and did373

taxonomic assignment via the Silva database, version 138.1 (Quast et al. (2013); Yilmaz et al. (2014)),374

yielding a final count table with 709 ASVs along with a taxonomic tree (Supplemental data 1.3.2). This375

data was then aggregated at the genus level, resulting in a total of p = 91 known genera.376

We applied tascCODA to the genus-level data, comparing healthy and IBS subjects. For comparison,377

we also applied scCODA and ANCOM to the data aggregated at each level of the taxonomic tree (phylum,378

class, order, family, and genus). To showcase the flexibility of tascCODA, we analyzed the data with379

different covariate setups, by including the other available metadata variables. As a reference genus for380

scCODA and tascCODA, we chose Alistipes, since it is a genus with relatively high presence and rather381

low dispersion. For all analyses on this dataset, we decreased the mean shrinkage in tascCODA to λ1 = 1,382

allowing us to find more subtle effects.383

We first used tascCODA to analyze the differences in the gut microbial composition between healthy384

controls and IBS patients (Figure 7, Table ??). Favoring generalization with φ = −5, we found only385

a small decrease of the phylum Firmicutes (Figure 7A). In the unbiased setting (φ = 0), the previous386

effect on the phylum level was substantiated to the Oscillospirales order. Additionally, decreases of the387

Parabacteroides and Bacteroides genera are found (Figure 7B). Setting φ = 5, thus favoring detailed388

results, we discovered a decrease of the Ruminococcaceae family, a subgroup of Oscillospirales, and389

multiple decreasing genera with the strongest effects on Parabacteroides and Bacteroides (Figure 7C). For390

comparison, we also applied scCODA (FDR=0.1) to the same dataset, which also discovered a decrease of391

Parabacteroides and Bacteroides, as well as three genera in the Ruminococcaceae family. A decrease of392

Parabacteroides in a subset of IBS patients was also found by Labus et al. (2017). Also, a relative decrease393

of the order Bacteroidales, which includes Parabacteroides and Bacteroides, was reported by Nagel et al.394

(2016) and Jeffery et al. (2012). Decreasing shares of Ruminococcaceae were also connected to IBS in395

multiple studies (Pozuelo et al., 2015; Durbán et al., 2012).396

To highlight the flexibilty of tascCODA, we next tried to discover changes in the gut microbiome related397

to age, BMI, gender, and IBS subtype. Before applying tascCODA, we min-max normalized the two398

former covariates to obtain a common scale for all covariates. We excluded three samples with missing399

information on BMI. We conducted every analysis three times with φ = −5, 0, 5. When testing for changes400

related to one of age, gender, or BMI alone, tascCODA was not able to discover any credible differences401
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for any aggregation bias. When testing on all four covariates together, excluding interactions, tascCODA402

only reported credible changes in the microbiome with respect to the IBS subtype. Finally, including403

all possible variable, interactions revealed that while a general negative effect was found independent of404

gender, male IBS-D patients had a larger depletion of Bacteroides than female patients.405

Phylum

Synergistota

Proteobacteria

Actinobacteriota

Bacteroidota

Firmicutes

tascCODA Effects

1.405

-1.405

(A) (B)

(C)

Faecalibacterium
Subdoligranulum
Rumino

coccus
Anae

ro�lumPalu
dico

laUBA
181

9Inc
erta

e_S
edi

s

An
ge
lak

ise
lla

Ne
ga
tiv
iba

cil
lus

UC
G-
00
2

UC
G
-0
05

U
C
G
-0
03

Fl
av
on
ifr
ac
to
r

V
9D
20
13
_g
ro
up

O
sc
ill
ib
ac
te
r

N
K
4A
21
4_
gr
ou
p

In
te
st
in
im
o
n
a
s

B
u
ty
ri
ci
co
cc
u
s

U
C
G
-0
0
8

B
la
u
ti
a

D
o
re
a

A
g
a
th
o
b
a
c
te
r

F
u
s
ic
a
te
n
ib
a
c
te
r

A
n
a
e
ro
s
tip
e
s

L
a
c
h
n
o
s
p
ira
c
e
a
e
_
N
K
4
A
1
3
6
_
g
ro
u
p

C
o
p
ro
c
o
c
c
u
s

R
o
s
e
b
u
ria

L
a
ch
n
o
clo

strid
iu
m

S
e
llim

o
n
a
s

M
a
rvin

b
rya

n
tia

T
u
zze

re
lla

Lachnospiraceae_A
C
2044_group

C
A
G
-56

Lachnospira

Lachnospiraceae_U
C
G
-003

Eisenbergiella

Lachnospiraceae_UCG
-010

Lachnospiraceae_UCG-001

Romboutsia

Terrisporobacter

Intestinibacter

Family_XIII_AD3011_group

Christensenellaceae_R-7_groupChristensenella
Monoglobus

Clostridium_sensu_stricto_1

Peptococcus

Holdemane
lla

Turicib
acter

Cate
nisph

aera

Hold
ema

nia

Fae
cal

ital
ea

Ery
sip

elo
tric

ha
cea

e_
UC

G-
00
3

Ca
ten

iba
cte

riu
m

Er
ys
ipe
lat
oc
los
trid

ium

Co
pr
ob
ac
illu
s

La
ct
ob
ac
illu
s

St
re
pt
oc
oc
cu
s

E
nt
er
oc
oc
cu
s

D
ia
lis
te
r

M
eg
as
ph
ae
ra

V
e
ill
o
n
e
lla

A
ci
d
a
m
in
o
co
cc
u
s

P
h
a
sc
o
la
rc
to
b
a
ct
e
ri
u
m

P
re
vo
te
lla

P
re
v
o
te
lla
c
e
a
e
_
N
K
3
B
3
1
_
g
ro
u
p

P
a
ra
p
re
v
o
te
lla

A
llo
p
re
v
o
te
lla

P
re
v
o
te
lla
c
e
a
e
_
Y
A
B
2
0
0
3
_
g
ro
u
p

A
lis
tip
e
s

R
ik
e
n
e
lla
c
e
a
e
_
R
C
9
_
g
u
t_
g
ro
u
p

B
a
rn
e
s
ie
lla

C
o
p
ro
b
a
c
te
r

O
d
o
rib
a
cte

r
B
u
tyricim

o
n
a
s

B
a
cte

ro
id
e
s

P
ara

bacteroides

E
ggerthella

G
ordonibacter

S
lackia

Senegalim
assilia

Enterorhabdus

Collinsella

Atopobium

Cronobacter

Escherichia/Shigella

Enterobacter

Yersinia

Serratia

Parasutterella

Cloacibacillus

Figure 7. Credible changes found by tascCODA (λ1 = 1), comparing healthy controls and IBS patients
in the genus-aggregated data of Labus et al. (2017). The circles on nodes of the tree represent credible
effects. (A) High-level aggregation with φ = −5. (B) Unbiased aggregation (φ = 0). (C) Aggregation with
bias towards the leaves (φ = 5). Red genera show the credible effects found by scCODA (FDR=0.1) on the
genus level. The grey genus Alistipes was used as the reference for tascCODA and scCODA.
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Next, we restricted our analysis to testing for changes between the four IBS subtypes and all other samples.406

The results shown in Figure 8 and Table ?? were obtained with φ = 5. For patients experiencing constipation407

(IBS-C, Figure 8A), decreases of Agathobacter, Bacteroides, Ruminococcus, and Faecalibacterium, as408

well as an increase of Anaerostipes were found by tascCODA. Conversely, diarrhea (IBS-D, Figure 8B)409

was associated with a decrease in Parabacteroides, as well as a large decrease in Bacteroides. Patients with410

mixed symptoms (IBS-M, Figure 8C) were found to have increased numbers of Blautia, in addition to a411

decrease of Parabacteroides and Faecalibacterium, which each match with the observations related to one412

of the two previous conditions. Finally, only a small increase of Romboutsia was associated to IBS with413

unspecified symptoms (IBS-unspecified, Figure 8D).414
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Figure 8. Credible changes found by tascCODA (λ1 = 1, φ = 5), simultaneously comparing healthy
controls to all IBS subtypes in the genus-aggregated data of Labus et al. (2017). The circles on nodes of
the tree represent credible effects. The grey genus Alistipes was used as the reference for tascCODA. (A)
IBS-C (n=11). (B) IBS-D (n=10). (C) IBS-M (n=6). (D) IBS-unspecified (n=2).
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4 DISCUSSION

Associating changes in the structure of microbial communities or cell type compositions with host or415

environmental covariates are commonly investigated with amplicon or single-cell RNA sequencing. With416

tascCODA, we have presented a fully Bayesian method to determine such compositional changes417

that acknowledges the hierarchical structure of the underlying microbial or cell type abundances and418

simultaneously accounts for the compositional nature of the data. By introducing tree-based penalization419

that adapts to the structure of the tree, the tascCODA model is able to accurately identify group-level420

changes with fewer parameters than traditional individual feature-based approaches. Thanks to a scaled421

variant of the spike-and-slab lasso prior (Ročková and George (2018)), we were able to obtain sparse422

solutions that can favor high-level aggregations or more detailed effects on a dynamic range characterized423

by a single scaling parameter φ. The tascCODA Python package seamlessly integrates into the scanpy424

environment for scRNA-seq (Wolf et al. (2018)) and allows Bayesian regression-like analyses with flexible425

covariate structures.426

Through its ability to favor general trends or more detailed solutions, tascCODA is able to provide427

a trade-off between model sparsity and accuracy, which can be adjusted to reveal credible associations428

on different levels of the hierarchy. We recapitulated this behavior in synthetic benchmark scenarios,429

where focusing on low aggregation levels allowed tascCODA to outperform state-of-the-art methods in a430

differential abundance testing setup, while effects that influenced the majority of features were recovered431

with greater accuracy when we favored generalizing solutions. The aggregation property further allows432

for more interpretable models, detecting group-specific changes in the cell lineage or microbial taxonomy.433

For instance, tascCODA determined B and T cells as the main factors in cell composition changes of the434

Lamina Propria of Ulcerative Colitis patients, while inflamed epithelial tissue biopsies showed a depletion435

of Enterocytes.436

Second, tascCODA can accommodate any linear combination of normalized covariates, allowing for437

multi-faceted analysis of complex relationships, while still producing highly sparse and interpretable438

solutions. On synthetic data, we showed that tascCODA was able to accurately distinguish the influence439

of two covariates that perturbed the data in different ways. While we did not detect credible relationships440

with the covariates age, sex and BMI, tascCODA was also able to simultaneously identify characteristic441

shifts in the gut microbiome for each subtype of Irritable Bowel Syndrome.442

The application range of tascCODA extends beyond the taxonomic or expert-derived cell lineage tree443

structures used in our real data applications. Genetically driven orderings such as phylogenetic trees444

or cell type hierarchies obtained from clustering algorithms, or fully correlation-based approaches may445

provide more accurate results in differential abundance testing (see, e.g., Bichat et al. (2020) for further446

information).447

While tascCODA provides a hierarchically adaptive extension of a classical compositional modeling448

framework based on a fixed aggregation level, extensions of the method could increase the application449

range of tascCODA. First, tascCODA does not account for the zero-inflation and overdispersion that450

is common in microbial abundance data on the OTU/ASV level. We avoided this challenge here by451

aggregating to the genus level. Accounting for these properties within the model, for example by using a452

zero-inflated Dirichlet-Multinomial model (Tang and Chen (2019)) or the Tweedie family of distributions453

(Mallick et al. (2021)), would allow for even more fine-grained analyses. Second, the tascCODA model454

currently places a sparsity-inducing spike-and-slab lasso prior on all included covariates. A natural next455

step would be to consider some covariates as confounding variables similar to Zhou et al. (2021b), reducing456

the number of latent parameters, while restricting results to a few core influence factors. Third, extending457
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known efficient computational methods for inference of spike-and-slab lasso priors (Bai et al. (2020b);458

Ročková and George (2018)) to be used with our compositional modeling framework could greatly reduce459

the computational resources required for running tascCODA.460

We believe that tascCODA, together with its implementation in Python, represents a valuable addition461

to the growing toolbox of compositional data modeling tools by providing a unifying statistical way to462

model and analyze microbial and cell population data in the presence of hierarchical side information.463
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