bioRxiv preprint doi: https://doi.org/10.1101/2021.09.06.459120; this version posted September 6, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

"" frontiers

tascCODA: Bayesian tree-aggregated analysis
of compositional amplicon and single-cell
data

Johannes Ostner -2, Salomé Carcy 23, Christian L. Miiller 1-24*

I Department of Statistics, Ludwig-Maximilians-Universitdt Minchen, Germany

2 Institute of Computational Biology, Helmholtz Zentrum Miinchen, Germany

3 Department of Biology, Ecole Normale Supérieure, PSL University, Paris, France
4 Center for Computational Mathematics, Flatiron Institute, New York, New York, USA
fCurrently at: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
Correspondence™:

Christian L. Mller
christian.mueller@helmholtz-muenchen.de

ABSTRACT

Accurate generative statistical modeling of count data is of critical relevance for the analysis
of biological datasets from high-throughput sequencing technologies. Important instances
include the modeling of microbiome compositions from amplicon sequencing surveys and the
analysis of cell type compositions derived from single-cell RNA sequencing. Microbial and
cell type abundance data share remarkably similar statistical features, including their inherent
compositionality and a natural hierarchical ordering of the individual components from taxonomic
or cell lineage tree information, respectively. To this end, we introduce a Bayesian model for tree-
aggregated amplicon and single-cell compositional data analysis (tascCODA) that seamlessly
integrates hierarchical information and experimental covariate data into the generative modeling
of compositional count data. By combining latent parameters based on the tree structure with
spike-and-slab Lasso penalization, tascCODA can determine covariate effects across different
levels of the population hierarchy in a data-driven parsimonious way. In the context of differential
abundance testing, we validate tascCODA’s excellent performance on a comprehensive set of
synthetic benchmark scenarios. Our analyses on human single-cell RNA-seq data from ulcerative
colitis patients and amplicon data from patients with irritable bowel syndrome, respectively,
identified aggregated cell type and taxon compositional changes that were more predictive and
parsimonious than those proposed by other schemes. We posit that tasccopa! constitutes
a valuable addition to the growing statistical toolbox for generative modeling and analysis of
compositional changes in microbial or cell population data.
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1 INTRODUCTION

Next-generation sequencing (NGS) technologies have fundamentally transformed our ability to
quantitatively measure the molecular make-up of single cells (Shalek et al., [2013)), tissues (Regev et al.,
2017; Karlsson et al., 2021), organs (He et al., 2020), as well as microbiome compositions in and on
the human body (Human Microbiome Project Consortium, 2012). Single-cell RNA sequencing (scRNA-
seq) (Tang et al.l 2009; |Shalek et al., 2013} Macosko et al., 2015) has become the key technology for
recording the transcriptional profiles of individual cells across different tissue types (Regev et al., 2017)
and developmental stages (Griffiths et al., 2018), and for determining cell type states and overall cell type
compositions (Trapnell, 2015). Cell type compositions provide informative and interpretable representations
of the noisy high-dimensional scRNA-seq data and are typically derived from clustering characteristic
gene expression patterns in each cell (Duo et al., 2018; [Traag et al., [2019)), followed by analysis of the
expression levels of marker genes (Luecken and Theis, [2019). As a by-product, these workflows also yield
a hierarchical grouping of the cell types, either derived from the clustering procedure or determined by
known cell lineage hierarchies. Determining changes in cell type populations across conditions can give
valuable insight into the effects of drug treatment (Tsoucas et al., 2019) and disease status (Smillie et al.,
2019), among others.

Complementary to scRNA-seq data collection, amplicon or marker-gene sequencing techniques provide
abundance information of microbes across human body sites (Human Microbiome Project Consortium,
2012; Lloyd-Price et al., |2017; McDonald et al., [2018). Current estimates suggest that the human
microbiome, i.e., the collection of microbes in and on the human body, outnumber an individual’s somatic
and germ cells by a factor of 1.3-10 (Turnbaugh et al., 2007; Sender et al., 2016). Starting from the raw
read counts, amplicon data are typically summarized in count abundance tables of operational taxonomic
units (OTUs) at a fixed sequence similarity level or, alternatively, of denoised amplicon sequence variants
(ASVs). The marker genes also allow taxonomic classification and phylogenetic tree estimation, thus
inducing a hierarchical grouping of the taxa. To reduce the dimensionality of the data set and guard against
noisy and low count measurements, the taxonomic grouping information is often used to aggregate the
data at a fixed taxonomic rank, e.g., the genus or family rank. Shifts in the population structure of taxa
have been implicated in the host’s health and have been associated with various diseases and symptoms,
including immune-mediated diseases (Round and Palm, [2018)), Crohn’s disease (Gevers et al., 2014), and
Irritable Bowel Syndrome (IBS) (Ford et al.,|[2017).

In the present work, we exploit the remarkable similarities between scRNA-seq-derived cell type data
and amplicon-based microbial count data and propose a statistical generative model that is applicable to
both data modalities: the Bayesian model for tree-aggregated amplicon and single-cell COmpositional
Data Analysis, in short, tascCODA. Our model assumes that count data are available in the form of a
n X p-dimensional count matrix Y containing the counts of p different cell types or microbial taxa in n
samples, a covariate matrix n X d-dimensional X carrying metadata or covariate information for each
sample, and a tree structure with p leaves that imposes a hierarchical order on the count data Y. Since
both amplicon and scRNA-seq technologies are limited in the amount of material that can be processed in
one sample, the total number of counts in rows of Y do not reflect total abundance measurements of the
features but rather relate to the efficiency of the sequencing experiment itself (Gloor et al., [2017). This
implies that the counts only carry relative abundance information, making them essentially compositional
data (Aitchison, [1982).

tascCODA is a fully Bayesian model for tree-aggregated modeling of count data and is a natural
extension of the scCODA model, recently introduced for compositional scRNA-seq data analysis (Biittner
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et al., [2020). At its core, tascCODA models the count data Y via a Dirichlet Multinomial distribution
and associates count data and covariate information via a log-link function. To encourage sparsity in
the underlying associations between the covariates and the hierarchically grouped features, tascCODA
exploits recent ideas from tree-guided regularization and the spike-and-slab LASSO (Rockova and George
(2018)). This allows t ascCODA to perform tree-guided sparse regression on compositional responses with
any type or number of covariates. In particular, in the presence of a single binary covariate, e.g., a condition
indicator, t ascCODA allows to perform Bayesian differential abundance testing. More generally, however,
tascCODA enables to determine how host phenotype, such as disease status, host covariates such as age,
gender, or an individual’s demographics, or environmental factors jointly influence the compositional
counts. Finally, incorporating tree information into the inference allows tascCODA to not only identify
associations between individual features, but also entire groups of features that form a subset of the tree.

tascCODA complements several recent statistical approaches, in particular, from the field of microbiome
data analysis, some of which also use the concept of tree-guided models. |(Chen and Li (2013) were among
the first to use the sparse Dirichlet-Multinomial model to connect compositional count data with covariate
information in a penalized maximum-likelihood setting. [Wadsworth et al.| (2017)) were the first to use a
similar model in a Bayesian setting. Both adaANCOM (Zhou et al.|(2021a)) and the Logstic-tree normal
model (Wang et al. (2021)) use the Dirichlet-tree (multinomial) model (Wang and Zhao|(2017)) to determine
differential abundance of microbial taxa via a product of Dirichlet distributions at each split. These methods
restrict themselves, however, to fully binary trees. One the other hand, the t rac method (Bien et al.,
2021)) uses tree-guided regularization (Yan and Bien, 2021)) in a maximum-likelihood-type framework to
predict continuous outcomes from compositional microbiome data.

In its present form, the Bayesian model behind tascCODA is ideally suited for data sets of moderate
dimensionality, typically p < 100, yet can handle extremely small sample sizes n. Since amplicon
datasets are usually high-dimensional in the number of taxa and exhibit high overdispersion and excess
number of zeros, we focus on the analysis of genus-level microbiome data. In the context of cell type
compositional data, on the other hand, often only very few replicate samples are available (Biittner et al.,
2020). Here, t ascCODA can leverage well-calibrated prior information to operate in low-sample regimes
where frequentist methods likely fail.

The remainder of the paper is structured as follows. In the next section, we introduce the tascCODA
model and describe the computational implementation. In Section |3} we describe and discuss synthetic data
benchmarks and provide two real-world applications, on human single-cell RNA-seq data from ulcerative
colitis patients and amplicon data from patients with irritable bowel syndrome. Finally, we summarize the
key points in Section 4 and present considerations about future extensions of the method. A flexible and
user-friendly implementation of t ascCODA is available in the Python package tascCODA?. All results in
this paper are fully reproducible and available on Zenodo?.

2 MATERIALS AND METHODS
2.1 Model description

We start with formally describing the problem at hand. Let Y € R™*P be a count matrix describing n
samples from p features (e.g., cell types, microbial taxa, etc.), and X € R™*? be a matrix that contains

the values of d covariates of interest for each sample. Due to the technical limitations of the sampling
procedure, the sum of counts in each sample, Y; = Z‘;’:l Y; ; must be seen as a scaling factor, making

2 lhttps://github.com/bio-datascience/tascCODA
3 lhnttps://zenodo.org/record/53021364.YSrhdilhOmI
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the data compositional (Gloor et al.[|(2017))). Additionally, Y is hierarchically ordered by a multifurcating
tree 7 with p leaves and ¢ internal nodes. Let v = p + ¢ denote the total number of nodes in 7. 7 can be
represented via a binary ancestor matrix A € {0, 1}P*?:

1 if j = k or k is ancestor of j
Jik =
0 else.

Our goal is to determine whether the abundance of single features (leaves of 7) or entire subtrees are
associated with the covariates in X . Hereby, a credibly changing subtree implies that the features contained
in it are affected by the condition in the same manner (Figure [T/A).

B13=0 B1;=0 PB13=0 Byo=0 Bg=T9 Bg=0 B;=0 Pe=N5 Bs=N5 Bs= B3=N5 B,=0  B;=0
N5+T4

Figure 1. Intuition behind tascCODA, (A) a multifurcating tree structure 7~ with internal nodes N1, ... N8,
and tips T1 ... T13. If the blue nodes N5, T4, and T9 are assigned nonzero effects by tascCODA, the
aggregated effects on the node level are displayed as (; ... 513 at the bottom. (B) Plate representation of
the t ascCODA model. Grey squares indicate fixed parameters and input variables that are either part of or
directly calculated from the data. The grey circle represents the output count matrix, white circles show
latent variables.

2.1.1 Core model with tree aggregation

tascCODA posits a Dirichlet-Multinomial model for Y; . for each sample 7 € 1...n, thus accounting
for the compositional nature of the count data. The covariates are associated with the features through a
log-linear relationship. We put uninformative Normal priors on the base composition «, which describes
the data in the case X;. = 0:

Y; ~ DirMult(Y;, a(x);) (1
1og(a(X))i = o+ Xi,.ﬂ ()
aj ~ N(0,10) vj € lp]. 3)

The total count Y; is directly inferred from the data for each sample. The effect of the [-th covariate on
the j-th feature is therefore given by /3 ;.

This is a provisional file, not the final typeset article 4


https://doi.org/10.1101/2021.09.06.459120
http://creativecommons.org/licenses/by/4.0/

120
121
122

123
124

125
126
127
128
129
130
131
132

133
134
135
136
137
138
139

140
141
142
143

144
145

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.06.459120; this version posted September 6, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Ostner et al. tascCODA

We now use a variant of the tree-based penalty formulation of Yan and Bien| (2021) to model common
effects at each internal node of 7 in addition to the effects on the leaves. We define a node effect matrix
5 € R¥ and calculate effects on the tips of the tree by multiplying with the ancestor matrix:

B =pAT 4)

Thus, the effect of covariate [ on feature & is the sum over the effects of [ on all ancestors of k,
Bk = 23{:1 ﬂl,jAjT’k. Figure illustrates this tree-based aggregation process.

2.1.2 Spike-and-slab lasso prior

To ease model interpretability, many statistical models provide a mechanism for sparsifying model
parameters. In high-dimensional linear regression, this can be achieved via the lasso (Tibshirani, |1996),
which adds an £;-penalty on the regression coefficients. In Bayesian modeling, spike-and-slab priors are a
popular choice to perform automatic model selection. Recently, (RoCkova and Georgel 2018) developed a
connection between the two approaches in the form of the spike-and-slab lasso prior, which provides a
Bayesian equivalent to penalized likelihood estimation. Here, the effect of interest is described as a mixture
of two double-exponential priors with different rates Ag, A\; and a mixture coefficient 6:

Br = 0Bk + (1 —0)Bosk Vk € [v],1 € [d] (5)
Btk = Omik * btk Vk € [v],m € {0,1},1 € [d] (6)
Ol ~ Exp()\fml’k/Q) VEk € [v],m € {0,1},1 € [d] (7)
b,k ~ N(0,1) Vk € [v],m € {0,1},1 € [d] (8)

0 ~ Beta(1,1/v) 9)

This prior can be reformulated as a likelihood penalty function that finds a balance between weak and
strong penalization by A; and Ao, respectively (See Supplementary material section 1.2). As recommended
by Rockova and George (2018), we use the non-separable version of the spike-and-slab lasso prior, which
provides self-adaptivity of the sparsity level and an automatic control for multiplicity via a Beta prior on 6
(Bai et al.|(2020a); Scott and Berger| (2010)). We further set Ag; . = 50 Vk to achieve a strong penalization
in the “spike” part of the prior, leaving Ay ; . as our only parameter that controls the total amount of penalty
applied at larger effect values.

2.1.3 Node-adaptive penalization

We use a variant of the strategy proposed by Bien et al. (2021) to make the strength of the regularization
penalty dependent on the corresponding node’s position in the tree. We introduce the following sigmoidal
scaling:

1
ALk =2\

: 1+ e~ ¢(Lk/p—05)’ (10)

where A\ = 5 is the default value for the penalty strength, Ly, is the number of leaves that are contained
in the subtree of node &, and ¢ acts as a scaling factor based on the tree structure. If ¢ = 0, the default in
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tascCODA, all nodes are penalized equally with A1, while for ¢ < 0, effects on nodes with larger subtrees,
located closer to the root of the tree, are penalized less and are therefore more likely to be included in
the model. If ¢ > 0, a solution that comprises more diverse effects on leaf nodes will be preferred. Thus,
the parameter ¢ provides a way to trade off model accuracy with the level of aggregation. We discuss the
behavior of the spike-and-slab LASSO penalty and the choice of Ay 1 in more detail in the Supplementary
material.

2.1.4 Reference feature

Since the data at hand is compositional, model uniqueness and interpretability are only guaranteed with
respect to a reference. Popular choices include picking one of the p features or the (geometric) mean over
multiple or all groups (Fernandes et al., 2014). Following the scCODA model, we pick a single reference
feature prior to analysis (Blittner et al., [2020). Technically, this is achieved by choosing one feature p that is
set to be unchanged by all covariates. Let ¢ be the set of ancestors of p. By forcing Bl, r=0Vk e leld,
we ensure that the reference is not influenced by the covariates through any of its ancestor nodes. If no
suitable reference feature is known a priori, tascCODA provides an automatic way of selecting the feature
with minimal dispersion across all samples among the features that are present in at least a share of samples
t (default £ = 0.95; this value can be lowered if no suitable feature exists).

p=arg min Disp(Y.;) s.th. i : Y;; > 0]/n >t
j=1-p 2

The restriction to large presence avoids choosing a rare feature as the reference where small changes in
terms of counts lead to large relative deviations. The least-dispersion approach is aimed at reducing the
bias introduced by the choice of reference. Equations (1-9) together with the reference feature yields the
tascCODA model (Figure [IB):

Y; ~ DirMult(Y;, a(x);)
log(a(X)); = a+ X; .8

a; ~ N(0,10) vj € [p]
8= pAT
Bk =0 Vk € 9,1 € [d]
Bl,k = 951,l,k +(1 - «9)50,1,k Vi € {[v] N0}, € [d]
Btk = Ok * btk Vk e {[v] ~0},m € {0,1},1 € [d]
Tk ~ EXp(AZ, 1 1/2) Vk € {[v] N 0},1 € {0,1},1 € [d]
b.a g ~ N(0,1) Vk € {[v] ~ 9},1 € {0,1},1 € [d]
1
0 ~ Beta(1, —|{[U] N @}|)

with the default choices of Ao = 50 and A; j, set according to with hyperparameters ¢ and A\ =5
(Supplementary material section 1.2).
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2.2 Computational aspects

Before performing Bayesian inference with the t ascCODA model, several data preprocessing steps are
applied. Singular nodes, i.e., internal nodes that have only one child node, are removed from the tree, since
their effect only propagates to one node and is therefore redundant. We also add a small pseudo-count of
0.5 to all zero entries of Y to minimize the frequency of numerical instabilities in our tests. Finally, we
recommend normalizing all covariates to a common scale before applying t ascCODA to avoid biasing the
model selection process toward the covariate with the largest range of values.

Since tascCODA is a hierarchical Bayesian model, we use Hamiltonian Monte Carlo sampling
(Betancourt and Girolami, 2015) for posterior inference, implemented through the tensorflow (Abadi
et al., 2016) and tensorflow-probability (Dillon et al., 2017) libraries for Python, solving the gradient
in each step via automatic differentiation. By default, tascCODA uses a leapfrog integrator with Dual-
averaging step size adaptation (Nesterov,, [2009) and 10 leapfrog steps per iteration, sampling a chain of
20,000 posterior realizations and discarding the first 5,000 iterations as burn-in, which was also the setting
for all applications in this article, unless explicitly stated otherwise. As an alternative, No-U-turn sampling
(Homan and Gelman, 2014 is available for use with t ascCODA. The initial states for all a; and by, ; 5, are
randomly sampled from a standard normal distribution. All o, ; ;. and 0 values are initialized at 1 and 0.5,
respectively.

To determine the credible effects of covariates on nodes from the chain of posterior samples, we calculate
the threshold of practical significance, introduced by [Rockova and George (2018), for each node as follows:

1
O = (11)
Ao — ALk log(ple(O) —1)
A
G*Me_)‘l,k|ﬁ|
Po.1(B) 2 (12)

B g*/\l_jke—h,kw + (1 — 9*)&2167Ao|5|

Here, 0* is the posterior median of . More details on § are available in the Supplementary material. We
compare the posterior median effects 3/, to the corresponding d;, and take all effects where |53/;.| > 6y,
as credible. In the context of differential abundance testinf, we obtain the set of differentially abundant
BZk if W;:k‘ > 0y,

, with AT
0 else.

features D by multiplying the matrix with the all credible effects, Bl(?) = {

and get

D ={(1,j) € [d] x [o] : B AT # 0} (13)

as the set of features, influenced by at least one credible effect.

A Python package for tascCODA is available at https://github.com/bio-datascience/
tascCODA. Building upon the scCODA package, the software provides methods to seamlessly integrate
scRNA-seq data from scanpy (Wolf et al., |2018) or microbial population data via pandas (McKinney,
2010). The package also allows to perform differential abundance testing with tascCODA and visualize
tascCODA’s results through tree plots from the toytree package. All results were obtained using Python 3.8
with tensorflow=2.5.0 (Abadi et al. (2016)), tensorflow-probability=0.13 (Dillon et al.| (2017)), arviz=0.11
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(Kumar et al.[(2019)), numpy=1.19.5, scanpy=1.8.1 (Wolf et al.[(2018)), toytree=2.0.1, and sccoda=0.1.4
(Biittner et al.| (2020)).

3 RESULTS
3.1 Simulation studies
3.1.1  Model comparison

To test the performance of tascCODA in a differential abundance testing scenario, we generated
compositional datasets with an underlying tree structure and compared how well several models could
detect the changes introduced by a binary covariate. For compositional models that do not account for
the tree structure, we used the state-of-the art methods ANCOM-BC (Lin and Peddada (2020)), ANCOM
(Mandal et al.|(2015)), and ALDEx2 (Fernandes et al. (2014)) from the field of microbiome data analysis,
as well as scCODA (Biittner et al., 2020) from scRNA-seq analysis. Based on the recommendations
by |Aitchison| (1982), we also analyzed the data with the additive log-ratio (ALR) transformation in
combination with t- or Wilcoxon rank-sum tests. We also included the recent adaANCOM (Zhou et al.,
2021a), a differential abundance testing method that accounts for the tree structure. Furthermore, we
applied tascCODA with different values for the aggregation parameter, ¢ = (—10,—5,—1,0, 1,5, 10),
setting A1 = 5.

We first defined four different data sizes p = (10, 30, 50, 100) and randomly generated a multifurcating
tree with depth 5 for each value of p. We then chose three nodes (one internal on the level directly above the
leaves, two leaves) from each tree, whose child leaves, denoted by p’, are set to be differentially abundant
under a binary (control-treatment) condition (Figure S1 - S4). Similar to |Wadsworth et al. (2017), we
generated n = ng+n; compositional data samples from two groups of equal size ng = n; = (5, 20, 30, 50).
Each sample Y; is a realization of a Dirichlet-Multinomial distribution with a total sum of Y; = 10,000
and a parameter vector *. For extra dispersion in the data, we set v, = ij'% % with ¢ = 0.002. The

parameters for the first (control) group were generated via vp; = exp («;); o; ~ Unif(—2,2). In the
second (treatment) group, we added an effect # = (0.3,0.5,0.7,0.9) to the components in p’: 71 ; =
exp (i + Bl(;epy). For each parameter combination (p, no, 3), we randomly generated 20 replicates,
resulting in a total of 1280 datasets.

Since the adaANCOM method assumes a bifurcating tree structure, we transformed each tree node to
a series of bifurcating splits via the multi2di and collapse.singles methods from the ape package for R
(Paradis et al. (2004))) before applying the method. For the methods that require a reference category
(ALR, scCODA, tascCODA, ALDEx2), we used the last component, which was always designed to be
unaffected by the condition, as the reference. After applying each method to a dataset, we corrected the
resulting p-values by the Benjamini-Hochberg procedure, except for ANCOM-BC, where we used the
recommended Holm correction of p-values, and determined the significant results at an expected FDR level
of 0.05. The Bayesian methods scCODA and tascCODA do not produce p-values and identify credible
effects as previously described.

For an overall indicator of how well the different methods could determine differentially abundant
features, we considered Matthews correlation coefficient (Figure ). Here, adaANCOM showed poor
performance especially on small datasets, while ALDEX?2 struggled when p was larger. Only scCODA
and ANCOM-BC performed well in comparison for all data and effect sizes. For tascCODA, varying
the aggregation level ¢ had a strong influence on the performance. With larger values of ¢, tascCODA
prefers less generalizing effects, resulting in a more detailed solution and larger MCC. At a high resolution
level (¢ = 5), tascCODA was on par with or even better than sScCODA and ANCOM-BC, showing almost
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no sensitivity to the size of the dataset. Because the trees in our simulation contained only effects on leaf
nodes or the level directly above, preferring generalizing effects (¢ = —5) resulted in worse performance,
while the unbiased case of ¢ = 0 gave slightly worse results than scCODA and ANCOM-BC. All methods
shown in Figure 2B except adaANCOM controlled the FDR reasonably well, although ANCOM-BC and
scCODA could not always hold the nominal level of 0.05. Only ALDEx2, which is known to be very
conservative (Hawinkel et al., 2019; Biittner et al., 2020), produced almost no false positives, at the cost of
larger type 2 error. tascCODA had a slightly inflated FDR (< 0.25) for smaller values of ¢ in some cases,
which became more apparent when analyzing the ability of each method to exactly recover the true effects
(2C). Increasing the effect size resulted in a reduced Hamming distance between the ground truth and
tascCODA with ¢ = 5, which consistently outperformed all other models. t ascCODA in the misspecified
setting ¢ = —5 showed an inflated Hamming distance, especially for p = 30. This is, however, expected
since tascCODA is forced to infer small-sized effects at the top level, resulting in many falsely detected
features and thus a large deviation from the true sparse solution. In practice, this highlights the need to
perform cross-validation over different levels of ¢ to reduce false discoveries due to misspecification. We
further found that ANCOM detected many false positives in all of our simulations, while the ALR-based
methods were similarly conservative as ALDEx2 (Figures ??-??). Increasing the sample size generally
improved the recovery performance of all methods except for t ascCODA with misspecified ¢ (Figure ??).
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Figure 2. Performance comparison of tascCODA and other methods on simulated data with one binary
covariate (differential abundance testing). Plots are grouped by the number of simulated components p and
the effect size 5. For tascCODA, different values of ¢ were tested (dashed blue lines). The areas around
each line represent the standard deviation. Performance measured by (A) Matthews correlation coefficient
(MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and determined
effects.
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3.1.2 Effect detection at high tree levels

In the next benchmark scenario, we evaluated the effect of the tuning parameter ¢ in tascCODA to
detect effects on larger groups of features through aggregation at higher levels of the tree. To this end, we
considered the p = 30 setting with the tree structure from Figure S5, and defined an effect on a node near
the root, influencing almost all features. We simulated datasets in the same manner as for the previous
benchmark, with n = 10, § = (0.3,0.5,0.7,0.9), and 20 replicates per effect size. We then compared
tascCODA with different levels of ¢ using the same performance metrics as before.

With a correctly specified parametrization ¢ < 0, favoring effects near the root, t ascCODA recovered
almost all relevant effects, as indicated by a small Hamming distance and high MCC, without producing
false positive results (Figure . With increasing ¢, however, tascCODA favors effects on the leaves,
thus entering the misspecified regime. As predicted, t ascCODA was able to only recover a small portion
of the true effects, while producing more false positive results. This highlights t ascCODA’s ability to
consistently uncover effects on larger groups of features which would be missed when not taking into
account tree information.

T T T T T T T : T T T T T T T
03 04 05 06 07 08 09 03 04 05 06 07 o08 09 03 04 05 06 07 08 09
Effect size Effect size Effect size

Figure 3. Performance comparison of different bias settings for tascCODA on simulated data with the
effect being located near the root of the tree, depending on effect size. Performance measured by (A)
Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between
ground truth and determined effects.

3.1.3 Simulation with multiple covariates

In our third benchmark scenario, we simulated data with two covariates to showcase how tascCODA is
able to distinguish effects from two different sources. Taking the tree from the method comparison study
with p = 30 (Figure S2), we first defined a binary covariate xo with effect sizes Sy = (0.3,0.5,0.7,0.9)
as before, and n = 10 samples per group. We also included a second covariate x; ~ Unif(0,1) with
effect size 51 = 3 that affects node 39 and therefore features 13-23 in all samples. For each effect size, we
simulated 10 datasets and applied tascCODA with ¢ = (—5,0,5) and two different design matrices X.
For the first design matrix, we used only z(, while the second design matrix contained both zy and z1 as
covariates. We compared how well both configurations could recover the effects introduced by x¢ in terms
of MCC, FDR, and Hamming distance to the ground truth.

Ignoring x; in the model design resulted in an overall worse performance of t ascCODA for all metrics,
all effect sizes for xg, and all values of ¢ (Figure 4). In every case it proved beneficial to include the
second covariate in the model, resulting in almost no false positive detections of changes caused by the
first covariate. Further, the two-covariate model achieved an MCC and Hamming distance that were similar
to our simulations where only one covariate acted on the data (Figure 2). This proves that tascCODA is
able to reliably identify the influence of multiple covariates on the count data.
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Figure 4. Performance comparison for tascCODA on simulated data with two covariates. The setups
including both or only one covariate in the model are shown as z¢ + 21 and x(, respectively. Simulations
were evaluated for different effect sizes and aggregation levels ¢. Performance measured by (A) Matthews
correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground
truth and determined effects.

3.2 Experimental data applications
3.2.1 Single-cell RNA-seq analysis of ulcerative colitis in humans

Ulcerative colitis is one of the most common manifestations of inflammatory bowel disease. The disease
alternates between periods of symptomatic flares and remissions. The flares are due to the surge of an
inflammatory reaction in the colon, causing superficial to profound ulcerations, which manifests with
bloody stool, diarrhea and abdominal pain. The patients will thus have part of their colon referred to
as “inflamed”, while colonic tissue still seemingly intact will be called “non-inflamed”. To show how
tascCODA can be applied to cell population data from scRNA-seq experiments, we used data collected
by Smuillie et al.| (2019) from a study of the colonic epithelium on ulcerative colitis (UC). In the study, a
total of 133 samples from 12 healthy donors, as well as inflamed and non-inflamed tissue from 18 patients
with UC, were obtained via single-cell RNA-sequencing, divided into epithelial samples and samples from
the Lamina Propria (Supplemental data 1.3.1).

We applied t ascCODA to six different subsets of the data, comparing two of the three health conditions
in one type of tissue at a time, and then compared our findings with the results of scCODA and the
Dirichlet regression model used by Smillie et al. (2019), implemented in the DirichletReg package for R
(Maier| (2014)). For t ascCODA and scCODA, we used the automatically determined reference cell types,
which are identical for both models in all cases, and applied scCODA with an FDR level of 0.05. In the
Dirichlet regression model, we adjusted the p-values by the Benjamini-Hochberg procedure, and selected
differentially abundant cell types at a level of 0.05.

The cell lineage tree inferred from [Smillie et al.| (2019) (Figure [3)) is divided into epithelial, stromal and
immune cells at the top level (Figure [5)). While the biopsies from the Epithelium contain mostly epithelial
cells, and samples from the Lamina Propria consist of cells mostly from the other two lineages, both groups
also include considerable amounts of cells from the other major lineages. We first compared scCODA and
Dirichlet regression, which both do not take the tree structure into account, to tascCODA with ¢ = 5
(Figure [6), thus preferring a detailed solution with effects mainly located on leaf nodes, which approaches
the leaf-only solutions of the other two methods. In this setting, tascCODA, scCODA and Dirichlet
regression all determined mostly epithelial cells to shift in abundance between pairwise comparisons of
healthy, non-inflamed, and inflamed tissue samples from the intestinal Epithelium (Figure[6A), and most
changes in the Lamina Propria to be among stromal and immune cells (Figure [6B). When propagating the
node effects of tascCODA with ¢ = 5 to the leafs via Equation (13| the differentially abundant cell types
determined by tascCODA, scCODA, and Dirichlet regression were largely identical (Figure [6).
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To further investigate the predictive and sparsity-inducing powers of tascCODA, we performed out-
of-sample prediction with the results obtained from tascCODA and scCODA on 5-fold cross validation
splits of each of the six data subsets. For both models, we determined cell type-specific effect vectors
£* (tascCODA: f* = ABJ(C), as in equation ; scCODA: Model output) as well as the posterior mean
of the base composition «* on the training splits, and used them to predict cell counts for each health

%5 %155 1 train - d th
Y m I
S T > Y;. We measured the
j=1

status label X; in the corresponding test split as y;; =

predictive power of tascCODA and scCODA as the mean squared logarithmic error (MSLE) between
the actual and predicted cell counts, and sparsity as the average number of nonzero effects over all five
splits (Table[I). For small ¢, tascCODA determined very few or no credible effects, while the MSLE was
usually slightly higher than the MSLE from scCODA. In the unbiased setting ¢ = 0, tascCODA found
credible effects in three scenarios, which considerably reduced the MSLE. With a small bias towards the
leaves (¢ = 1), tascCODA even outperformed scCODA in terms of MSLE in one case, while for ¢ = 5,
tascCODA achieved a lower MSLE and similar number of credible effects in three scenarios, and a lower
number of credible effects and similar MSLE in the other three scenarios. We observed a curious result
when comparing non-inflamed and inflamed epithelial samples. Here, the MSLE increased with rising ¢,
indicating that the mean model over all samples described the data better than trying to determine variation
between the two groups. This confirms the intuition that the aggregation bias ¢ in tascCODA acts as
a trade-off between generalization level and prediction accuracy. For smaller ¢, t ascCODA will select
fewer, more general effects, which might miss subtle changes at a lower level of the lineage tree, while
with increasing ¢, tascCODA’s results will approach the ones discovered without taking tree aggregation
into account.

For a more detailed comparison between t ascCODA and scCODA, we compared healthy to non-inflamed
biopsies of control and UC patients. When choosing ¢ = 5, thus biasing t ascCODA towards the leaf nodes,
tascCODA detected the differences in cell composition in the Epithelium as changes in abundance of the
same three cell types as scCODA (Figure[5A). In the Lamina Propria, t ascCODA detected credible changes
on six different groups of cell types, including T and B cells, which were previously linked to UC (Holmén
et al| (2006); [Smillie et al.| (2019)), as well as eight single cell types (Figure [5B). Notably, tascCODA
amplified the decrease of Plasma B-cells induced by the group effect on B-cells by an additional negative
effect on the cell type level. A strong decrease of Plasma cells was also confirmed by Smullie et al.|(2019)
through FACS stainings. Importantly, t ascCODA described the data with only 14 nonzero effects, whereas
with scCODA, 21 credible effects were produced.

As a contrast, we also examined the unbiased setting with ¢ = 0, treating all nodes equally. Here, the
cell type-specific changes in the Epithelium were not picked up anymore by tascCODA (Figure[5[C). In
the Lamina Propria, only seven effects, almost all on groups of cell types, were detected by tascCODA
(Figure [5D). Again, B and T cells were found as the cell lineages that undergo the largest change between
healthy and non-inflamed UC biopsies. When testing healthy versus inflamed, and non-inflamed versus
inflamed biopsies, tascCODA also detected more detailed results when ¢ = 5, and found fewer, more
generalizing effects with ¢ = 0 (Figure ??, ??; Table ??-2?).
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Figure 5. Behavior of tascCODA on scRNA-seq data for different values of ¢. All plots show the
comparison of healthy control samples to non-inflamed tissue samples of UC patients in the data from
Smillie et al.| (2019). White and black circles on the cell lineage tree show the effects found by t ascCODA,

which are also shown as blue bars on the right side of each plot. The bars below the tree depict effects
on internal nodes, with lower positions in the diagram corresponding to nodes closer to the root. For
comparison, the red bars indicate effects found by scCODA, which only operates on the tips of the tree.
The green-shaded area shows the reference cell type that was used for both models. (A) When ¢ = 5,
tascCODA prefers placing effects near the tips of the tree and finds the exact same solution as scCODA
for the Epithelium data. (B) In the Lamina Propria, tascCODA places some effects on internal nodes,
resulting in a sparser solution than the one obtained by scCODA (14 vs. 21 credible effects). (C) When
¢ = 0, tascCODA finds no credible effects in samples from the Epithelium, and (D) only seven effects
are necessary to summarize the large number of effects found by scCODA when looking at samples from
the Lamina Propria.
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Table 1. Mean squared logarithmic error (MSLE) and number of selected effects over 5 cross-validation
splits for t ascCODA with different parametrizations ¢ and scCODA. Abbreviations for scenarios: Healthy
(H), Non-inflamed (N), and Inflamed (I). With increasing ¢, tascCODA selects more effects and on
average improves its predictive power. At ¢ = 5, tascCODA has equal or lower MSLE than scCODA and
a similar number of selected effects

Model | tascCODA scCODA

Scenario ) -5 -1 0 1 5 -

Epithelium - Hvs. N MSLE | 14222 142.16 142.18 138.56 134.36 134.96
Effects 0.0 0.0 0.0 1.2 3.2 24

Epithelium - Hvs.I  MSLE | 167.46 163.60 160.68 158.06 154.64 154.44
Effects 0.0 1.6 2.6 32 8.2 10.8

Epithelium - Nvs.I MSLE | 173.94 174.10 174.10 175.86 177.26 174.78

Effects 0.0 0.0 0.0 0.2 3.6 5.2
LP-Hvs. N MSLE | 162.76 157.62 155.16 152.80 149.58 154.02
Effects 0.4 1.8 3.0 6.2 16.0 14.4
LP-Hvs. 1 MSLE | 188.58 18296 178.88 176.02 173.32 173.40
Effects 0.0 1.8 4.8 7.8 17.8 17.4
LP-Nwvs. I MSLE | 219.72 219.70 219.66 219.68 216.76 218.62
Effects 0.0 0.0 0.0 0.0 1.4 0.4
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Figure 6. Comparison of differentially abundant cell types found by tascCODA (blue, ¢ = 5), scCODA
(red, FDR=0.05), and Dirichlet regression (green, adjusted p,q; < 0.05) between biopsies of healthy,
non-inflamed and inflamed tissue. Colored bars for each method indicate that a credible change was found.
(A) Among samples from the intestinal epithelium, t ascCODA and Dirichlet regression detect effects on
lowly abundant epithelial cell types (Tuft, Goblet, Enteroendocrine) that were not detected by scCODA.
(B) In the Lamina Propria, only tascCODA detects a number of effects on some of the T and B cell types.
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3.2.2 Analysis of the human gut microbiome under Irritable Bowel Syndrome

We next considered a microbiome data example and considered another chronic disorder of the human
gut, the Irritable Bowel Syndrome (IBS). IBS is a functional bowel disorder characterized by frequent
abdominal pain, alteration of stool morphology and/or frequency, with the absence of other gastrointestinal
diseases (i.e. colorectal cancer, inflammatory bowel disease). It is estimated that about 10% of the general
population experience symptoms that can be classified as a subtype of Irritable Bowel Syndrome, which
include IBS-C (constipation), IBS-D (diarrhea), IBS-M (mixed), or unspecified IBS (Ford et al.| (2017)).
While the exact sources of the disease can be manifold, it has been hypothesized that the gastroenterological
symptoms may be caused by a disturbed composition of the gut microbiome (Duan et al. (2019); |Ford et al.
(2017)).

In particular, we analyzed 16S rRNA sequencing data of stool samples collected from IBS patients and
healthy controls, which were obtained by Labus et al. (2017). The dataset consists of n = 52 samples,
with 23 healthy controls, and 29 IBS patients separated into 11 subjects with constipation (IBS-C), 10
subjects with diarrhea (IBS-D), 6 subjects with mixed symptoms (IBS-M), and 2 subjects with unspecified
symptoms. Further, metadata information about age, sex and BMI of most subjects is available. We
re-processed the raw 16S rRNA sequences with DADA?2, version 1.21.0 (Callahan et al. (2016)) and did
taxonomic assignment via the Silva database, version 138.1 (Quast et al.[|(2013)); Yilmaz et al.| (2014)),
yielding a final count table with 709 ASVs along with a taxonomic tree (Supplemental data 1.3.2). This
data was then aggregated at the genus level, resulting in a total of p = 91 known genera.

We applied tascCODA to the genus-level data, comparing healthy and IBS subjects. For comparison,
we also applied scCODA and ANCOM to the data aggregated at each level of the taxonomic tree (phylum,
class, order, family, and genus). To showcase the flexibility of tascCODA, we analyzed the data with
different covariate setups, by including the other available metadata variables. As a reference genus for
scCODA and tascCODA, we chose Alistipes, since it is a genus with relatively high presence and rather
low dispersion. For all analyses on this dataset, we decreased the mean shrinkage in tascCODA to A; = 1,
allowing us to find more subtle effects.

We first used tascCODA to analyze the differences in the gut microbial composition between healthy
controls and IBS patients (Figure [/, Table ??). Favoring generalization with ¢ = —5, we found only
a small decrease of the phylum Firmicutes (Figure [7A). In the unbiased setting (¢ = 0), the previous
effect on the phylum level was substantiated to the Oscillospirales order. Additionally, decreases of the
Parabacteroides and Bacteroides genera are found (Figure [7B). Setting ¢ = 5, thus favoring detailed
results, we discovered a decrease of the Ruminococcaceae family, a subgroup of Oscillospirales, and
multiple decreasing genera with the strongest effects on Parabacteroides and Bacteroides (Figure [7C). For
comparison, we also applied scCODA (FDR=0.1) to the same dataset, which also discovered a decrease of
Parabacteroides and Bacteroides, as well as three genera in the Ruminococcaceae family. A decrease of
Parabacteroides in a subset of IBS patients was also found by |Labus et al.| (2017). Also, a relative decrease
of the order Bacteroidales, which includes Parabacteroides and Bacteroides, was reported by Nagel et al.
(2016)) and Jeftery et al. (2012). Decreasing shares of Ruminococcaceae were also connected to IBS in
multiple studies (Pozuelo et al., 2015; Durban et al., 2012).

To highlight the flexibilty of tascCODA, we next tried to discover changes in the gut microbiome related
to age, BMI, gender, and IBS subtype. Before applying tascCODA, we min-max normalized the two
former covariates to obtain a common scale for all covariates. We excluded three samples with missing
information on BMI. We conducted every analysis three times with ¢ = —5, 0, 5. When testing for changes
related to one of age, gender, or BMI alone, t ascCODA was not able to discover any credible differences

This is a provisional file, not the final typeset article 16


https://doi.org/10.1101/2021.09.06.459120
http://creativecommons.org/licenses/by/4.0/

402
403
404
405

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.06.459120; this version posted September 6, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Ostner et al. tascCODA

for any aggregation bias. When testing on all four covariates together, excluding interactions, tascCODA
only reported credible changes in the microbiome with respect to the IBS subtype. Finally, including
all possible variable, interactions revealed that while a general negative effect was found independent of
gender, male IBS-D patients had a larger depletion of Bacteroides than female patients.
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Figure 7. Credible changes found by tascCODA (A1 = 1), comparing healthy controls and IBS patients
in the genus-aggregated data of (2017). The circles on nodes of the tree represent credible
effects. (A) High-level aggregation with ¢ = —5. (B) Unbiased aggregation (¢ = 0). (C) Aggregation with
bias towards the leaves (¢ = 5). Red genera show the credible effects found by scCODA (FDR=0.1) on the
genus level. The grey genus Alistipes was used as the reference for tascCODA and scCODA.
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Next, we restricted our analysis to testing for changes between the four IBS subtypes and all other samples.
The results shown in Figure[§|and Table ?? were obtained with ¢ = 5. For patients experiencing constipation
(IBS-C, Figure |§|A), decreases of Agathobacter, Bacteroides, Ruminococcus, and Faecalibacterium, as
well as an increase of Anaerostipes were found by tascCODA. Conversely, diarrhea (IBS-D, Figure 8B)
was associated with a decrease in Parabacteroides, as well as a large decrease in Bacteroides. Patients with
mixed symptoms (IBS-M, Figure [§IC) were found to have increased numbers of Blautia, in addition to a
decrease of Parabacteroides and Faecalibacterium, which each match with the observations related to one
of the two previous conditions. Finally, only a small increase of Romboutsia was associated to IBS with
unspecified symptoms (IBS-unspecified, Figure [§D).
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Figure 8. Credible changes found by tascCODA (A1 = 1, ¢ = 5), simultaneously comparing healthy
controls to all IBS subtypes in the genus-aggregated data of |[Labus et al. (2017). The circles on nodes of
the tree represent credible effects. The grey genus Alistipes was used as the reference for tascCODA. (A)
IBS-C (n=11). (B) IBS-D (n=10). (C) IBS-M (n=6). (D) IBS-unspecified (n=2).
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4 DISCUSSION

Associating changes in the structure of microbial communities or cell type compositions with host or
environmental covariates are commonly investigated with amplicon or single-cell RNA sequencing. With
tascCODA, we have presented a fully Bayesian method to determine such compositional changes
that acknowledges the hierarchical structure of the underlying microbial or cell type abundances and
simultaneously accounts for the compositional nature of the data. By introducing tree-based penalization
that adapts to the structure of the tree, the tascCODA model is able to accurately identify group-level
changes with fewer parameters than traditional individual feature-based approaches. Thanks to a scaled
variant of the spike-and-slab lasso prior (Rockova and George| (2018))), we were able to obtain sparse
solutions that can favor high-level aggregations or more detailed effects on a dynamic range characterized
by a single scaling parameter ¢. The tascCODA Python package seamlessly integrates into the scanpy
environment for scRNA-seq (Wolf et al. (2018)) and allows Bayesian regression-like analyses with flexible
covariate structures.

Through its ability to favor general trends or more detailed solutions, tascCODA is able to provide
a trade-off between model sparsity and accuracy, which can be adjusted to reveal credible associations
on different levels of the hierarchy. We recapitulated this behavior in synthetic benchmark scenarios,
where focusing on low aggregation levels allowed tascCODA to outperform state-of-the-art methods in a
differential abundance testing setup, while effects that influenced the majority of features were recovered
with greater accuracy when we favored generalizing solutions. The aggregation property further allows
for more interpretable models, detecting group-specific changes in the cell lineage or microbial taxonomy.
For instance, t ascCODA determined B and T cells as the main factors in cell composition changes of the
Lamina Propria of Ulcerative Colitis patients, while inflamed epithelial tissue biopsies showed a depletion
of Enterocytes.

Second, tascCODA can accommodate any linear combination of normalized covariates, allowing for
multi-faceted analysis of complex relationships, while still producing highly sparse and interpretable
solutions. On synthetic data, we showed that t ascCODA was able to accurately distinguish the influence
of two covariates that perturbed the data in different ways. While we did not detect credible relationships
with the covariates age, sex and BMI, tascCODA was also able to simultaneously identify characteristic
shifts in the gut microbiome for each subtype of Irritable Bowel Syndrome.

The application range of t ascCODA extends beyond the taxonomic or expert-derived cell lineage tree
structures used in our real data applications. Genetically driven orderings such as phylogenetic trees
or cell type hierarchies obtained from clustering algorithms, or fully correlation-based approaches may
provide more accurate results in differential abundance testing (see, e.g., Bichat et al. (2020) for further
information).

While t ascCODA provides a hierarchically adaptive extension of a classical compositional modeling
framework based on a fixed aggregation level, extensions of the method could increase the application
range of tascCODA. First, tascCODA does not account for the zero-inflation and overdispersion that
is common in microbial abundance data on the OTU/ASV level. We avoided this challenge here by
aggregating to the genus level. Accounting for these properties within the model, for example by using a
zero-inflated Dirichlet-Multinomial model (Tang and Chen| (2019)) or the Tweedie family of distributions
(Mallick et al.| (2021)), would allow for even more fine-grained analyses. Second, the t ascCODA model
currently places a sparsity-inducing spike-and-slab lasso prior on all included covariates. A natural next
step would be to consider some covariates as confounding variables similar to|Zhou et al.| (2021b)), reducing
the number of latent parameters, while restricting results to a few core influence factors. Third, extending
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known efficient computational methods for inference of spike-and-slab lasso priors (Bai et al. (2020b));
Rockova and George| (2018)) to be used with our compositional modeling framework could greatly reduce
the computational resources required for running t ascCODA.

We believe that tascCODA, together with its implementation in Python, represents a valuable addition
to the growing toolbox of compositional data modeling tools by providing a unifying statistical way to
model and analyze microbial and cell population data in the presence of hierarchical side information.
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