

1 **IL-10 receptor blockade delivered simultaneous with BCG vaccination sustains**
2 **long term protection against *Mycobacterium tuberculosis* infection in mice**

3
4 Varun Dwivedi¹, Shalini Gautam², Colwyn A. Headley², Tucker Piergallini², Jordi B. Torrelles³ and
5 Joanne Turner^{2*}

6
7 ¹ Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio,
8 Texas 78227, USA

9 ²Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas
10 78227, USA

11 ³Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, 78227,
12 USA

13
14 **Correspondence*:** Dr. Joanne Turner; joanneturner@txbiomed.org

15
16 **Short running title:** IL-10 intervention during vaccination enhances efficacy of BCG vaccine

17
18 **Keywords:** Tuberculosis, BCG, IL-10, Vaccine, long term protection

19
20
21
22
23
24
25
26
27

28 **ABSTRACT**

29 *Mycobacterium bovis* bacillus Calmette-Guérin (BCG) immunization still remains the best
30 vaccination strategy available to control the development of active tuberculosis (TB). Protection
31 afforded by BCG vaccination gradually wanes over time and while booster strategies have
32 promise, they remain under development. An alternative approach is to improve BCG efficacy
33 through host-directed therapy. Building upon prior knowledge that blockade of interleukin-10
34 receptor 1 (IL-10R1) during early *Mycobacterium tuberculosis* (*M.tb*) infection improves and
35 extends control of *M.tb* infection in mice, we employed a combined anti-IL-10R1/BCG vaccine
36 strategy. A subcutaneous, single vaccination of BCG/αIL10-R1 increased the numbers of CD4⁺
37 and CD8⁺ central memory T cells, and reduced TH1 and TH17 cytokine levels in the lung for up
38 to 7 weeks post vaccination. Subsequent *M.tb* challenge in mice showed both an early (4 week)
39 and sustained long-term (47 week) control of infection, which was associated with increased
40 survival. In contrast, protection of BCG/saline vaccinated mice waned 8 weeks post *M.tb* infection.
41 Our findings demonstrate that a single and simultaneous vaccination with BCG/αIL10-R1 sustains
42 long-term protection, identifying a promising approach to enhance and extend the current BCG
43 mediated protection against TB.

44

45

46

47

48

49

50

51

52

53 **INTRODUCTION**

54 Tuberculosis (TB), caused by *Mycobacterium tuberculosis* (*M.tb*) is considered a global public
55 health emergency, as declared by the World Health Organization (WHO) in 1993. TB is a leading
56 cause of mortality, associated with more than 10 million new cases and 1.2 million deaths each
57 year (1). The ongoing TB pandemic is worsened by the emergence of multi-drug resistance
58 strains, opportunistic co-infections, and limited advancements in chemotherapeutics.

59 Vaccination is considered the most potent and cost-effective approach for improving public health
60 in both the industrialized and developing world (2-4). Currently *Mycobacterium bovis* bacillus
61 Calmette-Guérin (BCG) is the only available vaccine to provide immune protection against TB (5-
62 8). The BCG vaccine elicits a robust TH1 response, which is critical towards mitigating TB
63 burden(9-12). Despite this, BCG has limited protection against pulmonary TB in adults in high TB-
64 endemic countries and is estimated to prevent only 5 to 15% of all potentially vaccine preventable
65 deaths due to TB (1, 13, 14). Therefore, BCG-based vaccine strategies should aim at inducing
66 long lasting T cell responses that would contribute to long-term protection.

67

68 Interleukin 10 (IL-10) is a correlate of TB disease in mice and humans (15-18). We and others
69 have shown that IL-10 negatively regulates the immune response during *M.tb* infection in both
70 *M.tb*-resistant C57BL/6 and *M.tb*-susceptible CBA/J mice (16, 19-21). We have also shown that
71 *M.tb* infection of CBA/J mice leads to increased IL-10 in the lungs during the later phase of
72 infection and that blockade of IL-10 receptor 1 (IL-10R1) at that time, promotes TH1 immunity and
73 stabilizes the bacterial burden (21). Important to this study, IL-10R1 blockade during the first 21
74 days of *M.tb* infection, when IL-10 levels in the lung are negligible, resulted in early recruitment of
75 TH1 cells to the lung and improved long-term control of *M.tb* for at least 120 days post-infection.
76 This protection was associated with the formation of mature fibrotic granulomas and extended
77 host survival (22).

78 While early IL-10R1 blockade can substantially improve long-term control of *M.tb* infection,
79 changes in *M.tb* control were not evident until 60 days post-infection (22). We therefore
80 hypothesize that IL-10 negatively influences the initial generation of adaptive immunity required
81 for long lasting control of *M.tb* infection. This concept is supported by previous studies showing
82 that IL-10 can directly or indirectly restrict memory CD4⁺ and CD8⁺ T cell differentiation (23-27).
83 Studies have also shown that IL-10R1 blockade for 3-weeks following BCG vaccination could
84 enhance antigen specific TH1 and TH17 immune responses in the lungs, that subsequently
85 reduced the *M.tb* burden for up to 16 weeks post infection (28) showing proof of concept for our
86 hypothesis. Here, we specifically asked whether a single dose of IL-10R1 antibody, delivered
87 simultaneous with the BCG vaccine, was sufficient to enhance the long-term control of *M.tb*
88 infection afforded by BCG. This strategy spatially separates the influence of IL-10 on the
89 generation of protective immunity to BCG from the impact of IL-10 on control of *M.tb* infection.
90 Our results reveal that a single dose of α IL-10R1 delivered simultaneous with BCG vaccination
91 stimulated immunity that was capable of maintaining long-term control of *M.tb* infection. Long-
92 term protection was sustained for at least 47 weeks post *M.tb* infection, and was associated with
93 extended survival relative to mice receiving BCG alone. Prior to *M.tb* challenge, a single α IL-
94 10R1/BCG vaccination resulted in the emergence of CD4⁺ and CD8⁺ central memory T cells, a
95 reduced pro-inflammatory cytokine profile in the lungs, and increased *M.tb* antigen specific IFN- γ
96 and IL-17 production. These findings identify IL-10 as an important immuno-modulator that
97 impedes the development of long-term BCG specific memory immunity. Our studies also
98 demonstrate that a single dose of α IL-10R1 delivered simultaneous with BCG vaccination is
99 sufficient to reverse the known waning protective efficacy of BCG. Furthermore, our results
100 identify a single-dose α IL-10R1 strategy that may be more amendable to implement in humans.

101

102

103

104 **MATERIALS AND METHODS**

105 **Mice**

106 Six to eight-week-old, specific pathogen free male or female wild type CBA/J strain mice (WT)
107 were purchased from The Jackson laboratory (The Jackson Laboratory, Bar Harbor, ME). Mice
108 were acclimatized for at least 1 week before any experimental manipulation. IL-10^{-/-} mice on the
109 CBA/J strain background were developed and bred in house (stock now available at The Jackson
110 Laboratories; strain 036145 CBA.129P2(B6)-Il10<tm1Cgn>/TrnrJ) and age and sex matched with
111 WT mice. Mice were housed in ventilated micro isolator cages in ABSL-2 or ABSL-3 animal
112 facilities and maintained with sterilized water and food *ad libitum*. Mice were euthanized at
113 predetermined time points by CO₂ asphyxiation. The Ohio State University (2009A0226) or Texas
114 Biomedical Research Institute (1617 MU) Institutional Laboratory Animal Care and Use
115 Committees approved animal protocols.

116

117 **Immunization**

118 BCG Pasteur (ATCC 35734) and *M.tb* Erdman (ATCC 35801) were grown in supplemented
119 Proskauer-Beck medium as previously described (29). Mice were immunized by the
120 subcutaneous (s.c.) route with 1x10⁵ colony forming units (CFU) of BCG prepared in normal saline
121 (0.9% NaCl) or with normal saline alone (sham). To co-immunize mice, 1x10⁵ BCG and 1.6 mg
122 of αIL-10R1 antibody (BE0050, clone: 1B1.3A; BioXcell) or its isotype IgG1 control antibody
123 (BE0088, clone: HRPN; BioXcell) were admixed prior to vaccination. All vaccine and control
124 formulations were given in a 200 μl final volume. IL-10 knock-out (IL-10^{-/-}) mice were immunized
125 with 1x10⁵ CFU of BCG in normal saline (0.9% NaCl) or normal saline alone (sham) by the s.c.
126 route.

127

128 ***M.tb* infection and determination of bacterial load**

129 Seven weeks post-BCG immunization, mice were infected with a low dose aerosol of *M.tb* Erdman
130 using a Glass-Col inhalation exposure system (Terre Haute, IN) calibrated to deliver 50-100 CFU
131 to each individual mouse (29). Mice were euthanized at specific time points post-infection and
132 lungs were aseptically harvested and homogenized. Lung homogenates were serially diluted and
133 plated onto 7H11 agar plates enriched with OADC (oleic acid, albumin, dextrose, and catalase,
134 Sigma-Aldrich, St. Louis, MO) and incubated at 37°C for 3 weeks. CFU were counted to determine
135 the burden in each organ (30). Mice allocated to survival studies were monitored over a period of
136 50 weeks, and any surviving mice were euthanized at study endpoint. Mice were euthanized when
137 they reached a body condition score of 2 or less (31). Scores were determined by weekly visual
138 and hands-on examination of each animal.

139

140 **Lung mononuclear cell isolation**

141 Mice were euthanized at pre-determined time points post vaccination or *M.tb* challenge and lungs
142 perfused with 10 ml PBS containing 50 U/ml heparin via the right ventricle of the heart. Lung lobes
143 were extracted and placed in enriched complete Dulbecco's modified Eagle's medium [DMEM
144 containing L-glutamine (Life Sciences, Tewksbury, MA, USA)], supplemented with sterile-filtered
145 mixture of 5 ml HEPES buffer (1 M; Sigma), 10 ml MEM nonessential amino acid solution (100X;
146 Sigma), 660 µl 2-mercaptoethanol (50 mM; Sigma), and 45 ml heat-inactivated FBS (Atlas
147 Biologicals, Ft. Collins, CO, USA). Lungs were dissociated using a GentleMACS Dissociator, in
148 the presence of collagenase A (type XI; 0.7 mg/ml obtained from *Clostridium hystolyticum*; Sigma)
149 and type IV bovine pancreatic DNase (30 µg/ml; Sigma) and incubated for 30 min at 37°C, 5%
150 CO₂. The enzymatic reaction was stopped by adding complete DMEM. Single cell suspensions
151 were achieved by passing the digested lung tissue through 70-µm cell strainers. Cells were
152 treated with Gey's solution (8 mM NH₄Cl, 5 mM KHCO₃ in water) to lyse residual red blood cells
153 and suspended in complete DMEM. Live cells were counted by using a Trypan blue live-dead

154 exclusion method or using a Cellometer K2 (Nexcelom Bioscience, Lawrence, MA) with acridine
155 orange (AO)/propidium iodide (PI) stain (29).

156

157 ***M.tb* antigen specific cell culture**

158 Lung mononuclear cells were cultured with medium or 10 µg/ml of *M.tb* culture filtrate proteins
159 (CFP) for 48 h at 37°C, 5% CO₂ (29). Culture supernatants were collected and stored at -80°C.

160

161 **Enzyme linked immunosorbent assay (ELISA)**

162 Clarified lung homogenates and cell culture supernatants were thawed and analyzed for IFN-γ,
163 IL-12p70, TNF-α, IL-17 and IL-10 by ELISA following the manufacturer instructions (BD
164 Biosciences, San Jose, CA).

165

166 **Flow cytometry**

167 Lung mononuclear cells were suspended in incomplete RPMI medium (Sigma-Aldrich) containing
168 0.1% sodium azide. Surface marker staining was performed as described (22). Specific antibodies
169 for surface marker staining were purchased from Biolegend [PerCP anti-CD4 (clone: GK1.5),
170 APC/Cyanine7 anti-CD8 (clone: 53-6.7), PE/Cy7 anti-CD62L (clone: MEL-14), APC anti-CD44
171 (clone: IM7), Brilliant Violet 421 anti-CD197 (CCR7; clone: 4B12)]. Briefly, cells were blocked with
172 mouse Fc block (clone: 2.4G2; BD Biosciences) for 10 min followed by staining with fluorescent
173 dye conjugated antibodies specific to surface markers for 20 min at 4°C in the dark. Cells were
174 fixed and samples were acquired using a BD Canto or Beckman Coulter CyAn ADP flow
175 cytometer and results analyzed using FlowJo software vr. 10.5 &10.6 (Tree Star, Ashland, OR).

176

177

178

179 **Histology**

180 The right caudal lung lobe was isolated from individual mice, inflated with and stored in an excess
181 of 10% neutral-buffered formalin as described (32). Lung tissue was processed, sectioned, and
182 stained with hematoxylin and eosin (H&E) for light microscopy with lobe orientation designed to
183 allow for maximum surface area of each lobe to be seen. Sections were examined in a blinded
184 manner by a board-certified veterinary pathologist without prior knowledge of the experimental
185 groups and evaluated according to the percent affected tissue area, granuloma distribution,
186 granuloma character, granuloma border and cellular composition. Percent affected area was
187 microscopically quantified by calculating the total area of the involved tissue over the total area of
188 the lobe for each individual mouse and graded as 1, 2, 3, 4 and 5, corresponding to <10%, 10%
189 to 25%, 25% to 50%, 50% to 75%, >75% affected tissue, respectively.

190

191 **Statistical analysis**

192 Statistics were performed using Prism vr. 7 Software (GraphPad Software, San Diego, CA).
193 Unpaired, two-tailed Student's *t*-test was used for two group comparisons. Log-rank test was used
194 to determine statistical significance of survival experiments. Statistical significance was reported
195 as *P<0.05, **P<0.01, ***P<0.005 or ****P<0.001.

196

197 **RESULTS**

198 **BCG vaccination stimulates IL-10 production in the lung, which is blocked by α IL-10R1.**

199 WT mice were immunized with BCG (or saline control) by the s.c. route and IL-10 levels were
200 measured in the lung at weeks 1, 2, 4, 5, and 7 post-immunization. BCG immunization resulted
201 in significantly higher IL-10 levels at each time point tested. IL-10 could be detected in the lung
202 as early as 1-week post BCG vaccination and remained high for up to 7 weeks post immunization
203 compared to the saline vaccinated group (**Fig. 1A**). These data demonstrate that s.c. BCG
204 vaccination can stimulate IL-10 production in the lung.

205 We determined the impact of simultaneous immunization of BCG with α IL-10R1 on the production
206 of IL-10 in the lung. Mice were immunized with a combined dose of BCG/ α IL-10R1 or BCG/IgG1
207 control antibody via the s.c. route. BCG/ α -IL-10R1 significantly reduced IL-10 in the lung at week
208 1 and week 7 post immunization (Fig. 1B). These results indicate that a transient blockade of IL-
209 10R1 delivered simultaneous with BCG vaccination has a long-term impact on local IL-10
210 production in the lung. IL-10 has a known deleterious impact on the control of *M.tb* infection (15)
211 and therefore the IL-10 inducing properties of BCG vaccination, or any other lung insult that drives
212 IL-10 production, could inadvertently have a negative consequence on *M.tb* infection control.

213
214 BCG/ α IL-10R1 vaccination generated a relatively low pro-inflammatory environment in the lung
215 compared to BCG/IgG1 vaccination. This is contrary to expectations from prior studies with *M.tb*
216 (16, 22, 28). Indeed, we detected a significant reduction in IFN- γ , TNF α , IL-17 and IL-12p70 in
217 the BCG/ α IL-10R1 group compared to BCG/IgG1 at both time points studied (Fig. 2A-D).
218 Cytokine levels in mice receiving BCG/ α IL-10R1 were marginally elevated relative to mice
219 receiving no BCG (data not shown).

220
221 **BCG vaccination delivered simultaneous with α IL-10R1 generates central memory T cells
222 in the lung.**

223 IL-10 is known to interfere with the generation of memory T cells (23-26). We therefore determined
224 whether BCG/ α IL-10R1 vaccination produced a phenotypically different memory T cell pool in the
225 lung. The total number of CD4 $^+$ and CD8 $^+$ T cells were modestly increased 7 weeks post-
226 immunization in mice receiving BCG/ α IL-10R1 although this did not reach significance (Figs. 3A,
227 E). BCG/ α IL10R1 vaccination led to a consistent increase in the total number of memory (CD44 hi),
228 central memory (CD4 $^+$ CD44 hi CD62L $^+$ CCR7 $^+$) and effector memory (CD4 $^+$ CD44 hi CD62L $^-$ CCR7 $^-$)
229 cells in both CD4 $^+$ and CD8 $^+$ T cell subsets, but again this did not reach significance (Figs. 3B-D

230 **& F-H).** These results suggest that short-term IL-10R1 blockade during BCG vaccination results
231 in a modest accumulation of central and effector memory cells at 7 weeks post vaccination in the
232 lung.

233

234 **BCG vaccination delivered simultaneous with α IL-10R1 increases antigen specific Th1
235 and Th17 cytokine production by lung cells.**

236 IL-10 suppresses TH1 and TH17 immune responses necessary to control *M.tb* infection (28, 33-
237 37). Additionally, BCG/ α IL-10R1 vaccination reduced IL-10 levels (**Fig. 1B**) and stimulated a
238 moderate accumulation of memory T cells in the lung (**Fig. 3C, G**). We therefore determined
239 whether BCG/ α IL-10R1 vaccination could enhance antigen specific TH1 and TH17 cytokine
240 production. Lung cells from WT mice receiving BCG/ α IL-10R1 secreted significantly more antigen
241 specific IFN- γ , TNF- α , and IL-17 (**Fig. 4A-C**) than those receiving BCG/IgG1. Therefore, IL-10
242 receptor blockade at the time of BCG vaccination promoted the generation of functional TH1 and
243 TH17 antigen specific T cells in the lungs.

244

245 To further establish that the absence of IL-10 signaling during BCG vaccination increases antigen
246 specific TH1 and TH17 cytokine secretion, we immunized IL-10 $^{-/-}$ mice with BCG or saline (control)
247 and assessed antigen specific cytokine responses by lung cells 7 weeks post vaccination. Similar
248 to WT mice vaccinated with BCG/ α IL10R1, IL-10 $^{-/-}$ mice vaccinated with BCG alone had
249 significantly increased production of antigen specific IFN- γ , TNF α , and IL-17 (**Fig. 4D-F**),
250 compared to IL-10 $^{-/-}$ mice immunized with saline. These results suggest that the absence of IL-
251 10, similar to our data blocking the action of IL-10R1, promotes a population of T cells capable of
252 secreting TH1 and TH17 cytokines in the lungs.

253

254 **BCG vaccination delivered simultaneous with α IL-10R1 provides long term protection**
255 **against *M.tb* infection**

256 WT mice were vaccinated subcutaneously with BCG/ α IL-10R1, BCG/IgG1 or saline only. In
257 parallel, IL-10^{-/-} mice were vaccinated with BCG or saline. Seven weeks post-immunization, mice
258 were challenged with a low dose aerosol *M.tb* infection. As previously reported, IL-10^{-/-} mice were
259 capable of reducing *M.tb* bacterial burden in the lung to a greater extent than WT mice (22) (**Fig.**
260 **5A** saline vs. **Fig. 5B** saline). BCG vaccination further reduced the bacterial burden in IL-10^{-/-} mice
261 by 1- Log_{10} at 4 weeks post-infection, and importantly, this reduction was sustained for at least 52
262 weeks post infection (**Fig. 5A**).

263

264 In WT mice, the BCG/ α IL-10R1 and BCG/IgG1 vaccinated groups both significantly reduced the
265 *M.tb* bacterial burden by approximately 1- log_{10} at week 4 post *M.tb* infection compared to the
266 unvaccinated (saline) group (**Fig. 5B**). As expected, WT mice that received BCG/IgG1 vaccination
267 quickly lost protection afforded by BCG vaccination alone (37, 38), with lung bacterial burden
268 resembling unvaccinated mice as early as 8-week and reaching almost 8 Log_{10} CFUs in the lung
269 by 47-week post infection (**Fig. 5B**). In contrast, WT mice vaccinated with BCG/ α IL-10R1 further
270 reduced the *M.tb* burden at week 8 post infection, which was sustained at a significantly lower
271 CFU for up to 47 weeks post infection, albeit at slowing increasing levels (study end point, **Fig.**
272 **5B**).

273

274 An independent survival study was established for BCG or saline vaccinated IL-10^{-/-} mice (**Fig.**
275 **5C**) and for BCG/ α IL-10R1, BCG/IgG1 or saline vaccinated WT mice (**Fig. 5D**). BCG or saline
276 vaccinated IL-10^{-/-} mice (**Fig. 5C**) challenged with *M.tb* showed that the complete absence of IL-
277 10 resulted in 100% survival at least to 50 weeks in both BCG or saline vaccinated mice,
278 demonstrating the detrimental impact of IL-10 throughout *M.tb* infection as we described (16, 21).

279 While we observed no survival advantage for BCG vaccination in IL-10^{-/-} mice, extrapolation of
280 bacterial burden (**Fig. 5A**) and pathology scores (**Fig. 6D**) suggests that BCG vaccination would
281 likely have extended survival further relative to IL10^{-/-} mice receiving saline. BCG/IgG1 in WT
282 mice failed to extend survival, indicating that despite an early reduction in *M.tb* bacterial burden
283 at week 4, BCG vaccination alone provided no survival advantage. In contrast, administration of
284 BCG/αIL-10R1 vaccination in WT mice significantly increased survival, with over 65% of mice
285 surviving to the study end point of 50 weeks.

286

287 **BCG vaccination delivered simultaneous with αIL-10R1 reduces immuno-pathology in**
288 **lungs.**

289 we also evaluated the effect of vaccination on lung pathology by assessing the degree of tissue
290 involvement through quantification of cellular aggregation relative to the total size of the lung.
291 All WT mice, independent of experimental groups, had similar and minimal tissue involvement
292 (>10%) in the lung at 4 weeks post infection (**Fig. 6A**) although some pro-inflammatory cytokines
293 in homogenates were significantly reduced in the BCG/αIL-10R1 group compared to BCG/IgG1
294 immunized mice at that time (**Fig. 6B**). These results indicate that even though there was no
295 difference in *M.tb* burden or pathology, an early increased pro-inflammatory cytokine response in
296 the BCG/IgG1 vaccinated group may augment lung pathology at later time points. This was
297 confirmed at week 12 post infection where BCG/IgG1 vaccinated mice had abundant cellular
298 infiltration and inflammation, with about 50% of the lung involved (**Fig. 6A**), although TH1 cytokine
299 levels remained similar to the 4 weeks post infection time-point (**Fig. 6C**). Increased pathology
300 scores were associated with high *M.tb* burden in the lungs of BCG/IgG1 treated mice at later time-
301 points (**Fig. 5B**). These findings contrast with BCG/αIL-10R1 vaccinated mice that maintained a
302 reduced lung involvement (**Fig. 6A**), correlating with less *M.tb* burden (**Fig. 5B**), which was
303 maintained even at later time points. BCG/αIL-10R1 vaccinated mice also had significantly
304 reduced pro-inflammatory cytokines levels (TNF-α, IL-17), as well as immunomodulatory

305 cytokines (IL-10) in their lungs compared to the BCG/IgG1 vaccinated group at both 4- and 12-
306 weeks post infection (**Fig. 6 B,C**). BCG/αIL-10R1 vaccinated mice also had significantly less
307 IFN- γ in their lungs compared to the BCG/IgG1 vaccinated group at the 12-week post infection.
308 (**Fig. 6C**).

309
310 Similar to WT mice, both saline and BCG immunized IL-10 $^{-/-}$ mice had minimal tissue involvement
311 in the lungs at week 4 post-infection; however, BCG immunization showed reduced inflammation
312 scores (<25%) at week 4 post-infection, which was sustained through weeks 47 post-infection
313 (**Fig. 6D**), consistent with lower *M.tb* burden in the lung (Fig. 5A). IL-10 $^{-/-}$ mice receiving BCG
314 showed a reduction in some TH1/pro-inflammatory cytokines in lung homogenates with a
315 significant reduction in IFN- γ at week 4 and IL-17 at week 12 post infection as compared to saline
316 group (**Figure 6 E-F**).
317

318 **Central memory subset of CD4 $^{+}$ and CD8 $^{+}$ T cells are associated with long term protection**
319 **against *M.tb* challenge in mice vaccinated with BCG delivered simultaneous with αIL-10R1.**
320 Following vaccination with BCG/αIL-10R1 and prior to *M.tb* challenge, we observed a modest
321 increase in CD4 $^{+}$ and in CD8 $^{+}$ central and effector memory T cells in the lung (**Fig. 3**). We therefore
322 evaluated the same T cell subsets in the lung at week 4 and 8 post *M.tb* infection (**Fig. 7**). Results
323 showed modest differences in total CD4 $^{+}$ and CD8 $^{+}$ T cell subsets in the lung between BCG/αIL-
324 10R1 and BCG/IgG1 vaccinated WT mice at week 4 post *M.tb* infection (**Fig. 7A, E**). At 4 weeks
325 post-infection, we detected a significant increase in the total number of both CD4 $^{+}$ and in CD8 $^{+}$
326 central memory T cells in mice that received BCG/αIL-10R1 vaccination (**Fig. 7C, G**), which was
327 sustained through week 8 post-infection (Fig. 7K, O). These data suggest that a single and
328 simultaneous vaccination with BCG/αIL-10R1 pre-*M.tb* challenge can induce central memory
329 cells that are associated with long-term protection against *M.tb* infection. CD4 $^{+}$ and CD8 $^{+}$ effector

330 memory T cells were detected at similar or modestly increased levels by both BCG/αIL-10R1 and
331 BCG/IgG1 vaccinated WT mice at 4 and 8 weeks (**Fig. 7 D, H**).

332
333 IL-17 and IFN- γ are critical for mediating immunity against *M.tb* infection as well as vaccine
334 induced protection against the development of TB (39, 40). Lung cells from vaccinated and *M.tb*
335 challenged mice were cultured *ex-vivo* with CFP and IFN- γ and IL-17 production was measured.
336 Relative to unstimulated cells, antigen specific IFN- γ and IL-17 secretion was increased for both
337 BCG/αIL-10R1, BCG/IgG1 vaccinated groups at week 4 and 8 post *M.tb* infection (**Fig. 8 A-D**).
338 There was no significant differences between the BCG/αIL-10R1, BCG/IgG1 groups (**Fig. 8A-D**),
339 with the exception of IL-17 at week 4 (**Fig. 8B**) although significance was lost by week 8 post *M.tb*
340 infection (**Fig. 8D**). IL-17 secretion in unstimulated cultures remained high, perhaps representing
341 a non-T cell source of IL-17 (**Fig. 8 B, D**).

342
343 **Discussion**
344 In this study, we demonstrate that a single co-administration of αIL-10R1/BCG substantially
345 improved the long term protective efficacy of BCG against *M.tb* infection for up to 47 weeks in the
346 CBA/J mouse model, a mouse strain that is defined as relatively susceptible to *M.tb* (41, 42). We
347 therefore demonstrate that a single dose host-directed therapy combined with BCG can improve
348 vaccine efficacy. We also identify the specific time of BCG vaccination for a single-dose IL-10
349 blockade intervention to positively influence the development of long-term protective immunity
350 against *M.tb* infection.

351
352 Our vaccination strategy was based upon prior observations from our group that early αIL-10R1
353 treatment of *M.tb* infected mice could substantially improve control of *M.tb* infection in CBA/J mice
354 (22). We hypothesized that αIL-10R1 treatment blocks the negative influence of IL-10 on priming

355 and development of long-term memory immunity. Because the presence of IL-10 can also
356 influence maintenance of *M.tb* infection as we have described (21), we separated immune cell
357 priming from *M.tb* infection by blocking the action of IL-10 during α IL-10R1/BCG vaccination
358 instead of at *M.tb* infection. The superior control of *M.tb* infection that we observed in α IL-
359 10R1/BCG vaccinated mice demonstrates that IL-10 inhibits the early development of long-term
360 memory immunity. Further supporting our findings, we have previously demonstrated that
361 selective delipidation of BCG, which induces less IL-10, generates enhanced protection against
362 *M.tb* challenge minimizing tissue damage when compared to conventional BCG (43).

363
364 IL-10R1 blockade during vaccination has been tested in various short term experimental or
365 disease models (44-46), including a mouse model of herpes virus (HPV) 16 E7 transformed TC-
366 1 tumor growth, where inclusion of α IL-10R with vaccination enhanced specific cytolytic (CTL)
367 responses (47). Similarly, blockade of IL-10R1 permitted an otherwise ineffective DNA vaccine to
368 become highly efficient at stimulating CD4⁺ and CD8⁺ T cell responses, leading to accelerated
369 clearance of lymphocytic choriomeningitis virus (LCMV) in mice (48). Moreover, IL-10 blockade
370 was shown to enhance the magnitude and quality of TH1 responses sufficient to reduce
371 vaccination/boost frequency from three vaccine doses to only one dose (49). Indeed, α IL-10R1
372 has also been used in combination with BCG to induce anti-cancer immunity which protected
373 mice from bladder cancer (50). Thus, these combined studies highlight the potential for IL-10
374 modulation as a host directed therapy during vaccination to improve protective immunity against
375 a variety of different disease models, including TB, and we postulate that studies of IL-10
376 modulation during initial vaccination should be revisited as a mechanism to boost host protective
377 immunity with vaccines that have known diminished long-term protection efficacy, such as BCG.
378 Protective immunity generated by BCG vaccination wanes over time in humans and in most
379 experimental animal models (37, 38, 51-53). Interestingly, BCG vaccination induces strong TH1

380 responses (54-57), and both *M.tb* infection and BCG immunization induces effector T cells (57-
381 62). However, long lived central memory T cells are associated with superior efficacy of
382 experimental TB vaccines (63-68). In contrast to many short-term microbial infections where a
383 rapid effector T cell response can resolve infection, BCG must stimulate long-term memory
384 immunity to maintain effective control of a recent or a latent *M.tb* infection, often in the absence
385 of sterilizing immunity. Adding additional complexity, BCG also induces IL-10 production which
386 diminishes long-term antigen specific TH1 immune responses (55, 69-72). In this current study,
387 we determined immune responses to α IL-10R1/BCG vaccination at week 1 to observe the
388 immediate impact of IL-101R blockade, and at week 7 post vaccination to characterize the
389 immune status in the lung at the time of *M.tb* challenge. At week 1, BCG vaccination alone
390 increased IL-10 in the lung, which remained high 7 weeks later. Interestingly, α IL-10R1/BCG
391 vaccination reduced IL-10 and led to a concomitant reduction in pro-inflammatory cytokines in the
392 lung. The reduction in pro-inflammatory cytokines was independent of BCG burden as we did not
393 detect BCG in the lungs, and it was accompanied by a modest increase in central and effector
394 memory CD4 $^{+}$ and CD8 $^{+}$ T cell subsets in the lungs, with enhanced antigen specific TH1 and
395 TH17 responses. Thus, a single α IL-10R1/BCG cocktail dose was capable of modifying the local
396 lung environment immediately following vaccination.

397
398 IL-10 is a pleotropic cytokine secreted by various immune cells, with innate cells being a source
399 of IL-10 production during the early phase of BCG vaccination (73). Innate cells can also respond
400 to IL-10 and alter their function (74). Thus, the immediate impact of IL-101R blockade during
401 BCG vaccination may reflect changes in innate cell function including enhanced and prolonged
402 antigen presentation, resulting in altered T cell priming and generation of long-lived T cell
403 responses (27, 75). Indeed, IL-10 from non- B or -T cell sources have been shown to regulate
404 dendritic cell driven TH1/TH2 responses *in-vivo* (75), where, similar to our findings, early IL-10

405 blockade enhanced TH1/TH17 responses associated with accelerated fungal clearance in mice
406 (76).

407

408 Our studies extend observations by Pitt *et al.*, where α IL-10R1 treatment given at the time of BCG
409 vaccination, and for an additional 6 weeks thereafter, promoted antigen specific TH1/TH17
410 immunity in the lungs, and reduced *M.tb* burden, defining an association between enhanced
411 protection and TH1/TH17 responses (28). However, the extended period of α IL-10R1 treatment
412 (for 6 weeks post vaccination) could not fully separate the timing of the negative influence of IL-
413 10 on the early generation of long-term protective immunity, from effector functions. Our single-
414 dose α IL-10R1/BCG vaccine strategy confirms that IL-10 can negatively impact the initial
415 generation of long lasting protective immunity against *M.tb* infection. Given the short half-life of
416 α IL-10R1/IgG1, a direct pleotropic influence of α IL-10R1 at week 7 post vaccination (our selected
417 time for *M.tb* challenge) was unlikely (77).

418

419 The CBA/J mouse strain, the strain background for our studies, has limited protection afforded by
420 BCG (41), making it an ideal WT strain to determine if the α IL-10R1/BCG cocktail can improve
421 protective efficacy and identify potential mechanisms of action. *M.tb* infection of α IL-10R1/BCG
422 vaccinated CBA/J WT mice had a sustained enhanced control of *M.tb* infection and extended
423 lifespan beyond 50 weeks. In contrast, BCG vaccination alone failed to extend survival relative to
424 non-vaccinated CBA/J WT mice. A single dose of α IL-10R1/BCG vaccine was also associated
425 with reduced lung inflammation as determined by histopathology, and reduced pro-inflammatory
426 cytokines in the lung at week 4 and 8 post *M.tb* infection. Pro-inflammatory cytokine production
427 can depend on the bacterial load, yet both BCG and α -IL-10R1/BCG vaccinated mice had similar
428 *M.tb* burden at week 4 post infection, suggesting that α -IL-10R1/BCG vaccination generates an
429 immune response that is less inflammatory, identifying a potential causal relationship between

430 reduced inflammation at the time of vaccination and the generation and prolonged maintenance
431 of IL-17/IFN- γ producing central memory T cells, as described by others ((43). An inflammatory
432 environment can alter the development of effector and/or memory response generating short-
433 lived effector cells (78, 79). Thus, our results support the concept that a strong inflammatory
434 response regulates T cell sensitivity, proliferation and migration of both effector and established
435 memory T cells populations (80, 81).

436

437 Our findings in WT mice treated with α IL-10R1/BCG were corroborated by similar studies in IL-
438 10 knockout mice on the same CBA/J mouse strain background (22). BCG immunized IL-10 $^{-/-}$
439 CBA/J mice had superior control of *M.tb* infection and significantly reduced lung immunopathology
440 for up to 50 weeks post infection. Interestingly, both non-immunized and BCG immunized IL-10 $^{-/-}$
441 mice had 100% survival for at least 50 weeks post infection (study end point), albeit with different
442 immunopathology scores suggesting a possible split in survival much later. Modulation of IL-10R1
443 at late stages of *M.tb* infection is already known to improve outcomes (21). However, the use of
444 a non-conditional knockout model, while complementary, cannot spatially separate this from the
445 influence of IL-10R1 during T cell priming but it can substantiate IL-10 as the primary driver of our
446 observed phenotypes.

447

448 Overall, our studies indicate that temporal and spatial blocking of IL-10R1 is sufficient to generate
449 long-term protective immunity against *M.tb* infection in the relatively susceptible CBA/J mouse
450 strain. Our studies identify IL-10, or its downstream effector functions, as a putative target for the
451 development of improved vaccines for TB, and identify a single dose vaccine strategy against
452 *M.tb* that can result in long-term protective immunity and reduced TB disease.

453

454

455 **Acknowledgements**

456 We thank the animal resources personnel and Biosafety Level 3 Program at both The Ohio State
457 University and Texas Biomedical Research Institute. The following reagent was obtained through
458 BEI Resources, NIAID, NIH: *Mycobacterium tuberculosis*, Strain H₃₇R_v, Culture Filtrate Proteins
459 (CFP), NR-14825.

460

461 **Funding**

462 This work was supported by The Ohio State University (OSU) College of Medicine, OSU Public
463 Health Preparedness for Infectious Disease (PHPID) pilot grant program (JT), Texas Biomedical
464 Research Institutional funds (JT), and by the Robert J. Kleberg, Jr. and Helen C. Kleberg
465 Foundation (JBT).

466

467 **Conflict of Interest**

468 Authors declare non-conflict of interest.

469

470

471

472

473

474

475

476

477

478 **References**

- 479 1. Harding E. 2020. WHO global progress report on tuberculosis elimination. *Lancet Respir Med* 8:19.
- 480 2. Greenwood B. 2014. The contribution of vaccination to global health: past, present and future. *Philos Trans R Soc Lond B Biol Sci* 369:20130433.
- 481 3. Andre FE. 2003. Vaccinology: past achievements, present roadblocks and future promises. *Vaccine* 21:593-5.
- 482 4. Simpson S, Marshall E. 2001. Immune control, memory, and vaccines. *Science* 293:233.
- 483 5. Calmette A. 1931. Preventive Vaccination Against Tuberculosis with BCG. *Proc R Soc Med* 24:1481-1490.
- 484 6. Monteiro-Maia R, Pinho RT. 2014. Oral bacillus Calmette-Guerin vaccine against tuberculosis: why not? *Mem Inst Oswaldo Cruz* 109:838-45.
- 485 7. Moliva JI, Turner J, Torrelles JB. 2017. Immune Responses to Bacillus Calmette-Guerin Vaccination: Why Do They Fail to Protect against *Mycobacterium tuberculosis*? *Front Immunol* 8:407.
- 486 8. Moliva JI, Turner J, Torrelles JB. 2015. Prospects in *Mycobacterium bovis* Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? *Vaccine* 33:5035-41.
- 487 9. Grover A, Taylor J, Troutt J, Keyser A, Arnett K, Izzo L, Rholl D, Izzo A. 2009. Kinetics of the immune response profile in guinea pigs after vaccination with *Mycobacterium bovis* BCG and infection with *Mycobacterium tuberculosis*. *Infect Immun* 77:4837-46.
- 488 10. Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC, Ngwira B, Sichali L, Nazareth B, Blackwell JM, Branson K, Chaguluka SD, Donovan L, Jarman E, King E, Fine PE, Dockrell HM. 2002. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. *Lancet* 359:1393-401.
- 489 11. Chackerian AA, Perera TV, Behar SM. 2001. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with *Mycobacterium tuberculosis*. *Infect Immun* 69:2666-74.
- 490 12. Goter-Robinson C, Derrick SC, Yang AL, Jeon BY, Morris SL. 2006. Protection against an aerogenic *Mycobacterium tuberculosis* infection in BCG-immunized and DNA-vaccinated mice is associated with early type I cytokine responses. *Vaccine* 24:3522-9.
- 491 13. Andersen P, Woodworth JS. 2014. Tuberculosis vaccines--rethinking the current paradigm. *Trends Immunol* 35:387-95.
- 492 14. Andersen P, Doherty TM. 2005. The success and failure of BCG - implications for a novel tuberculosis vaccine. *Nat Rev Microbiol* 3:656-662.
- 493 15. Redford PS, Murray PJ, O'Garra A. 2011. The role of IL-10 in immune regulation during *M. tuberculosis* infection. *Mucosal Immunol* 4:261-270.
- 494 16. Turner J, Gonzalez-Juarrero M, Ellis DL, Basaraba RJ, Kipnis A, Orme IM, Cooper AM. 2002. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. *J Immunol* 169:6343-6351.
- 495 17. Olobo JO, Geletu M, Demissie A, Eguale T, Hiwot K, Aderaye G, Britton S. 2001. Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. *Scand J Immunol* 53:85-91.
- 496 18. Bonecini-Almeida MG, Ho JL, Boechat N, Huard RC, Chitale S, Doo H, Geng J, Rego L, Lazzarini LC, Kritski AL, Johnson WD, Jr., McCaffrey TA, Silva JR. 2004. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. *Infect Immun* 72:2628-2634.

- 523 19. Redford PS, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E, Bancroft GJ, O'Garra A. 2010.
524 Enhanced protection to *Mycobacterium tuberculosis* infection in IL-10-deficient mice is
525 accompanied by early and enhanced Th1 responses in the lung. *Eur J Immunol* 40:2200-2210.
526 20. Roach DR, Martin E, Bean AG, Rennick DM, Briscoe H, Britton WJ. 2001. Endogenous inhibition of
527 antimycobacterial immunity by IL-10 varies between mycobacterial species. *Scand J Immunol*
528 54:163-170.
529 21. Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M, de Waal MR, Vesosky B,
530 Turner J. 2008. Interleukin-10 promotes *Mycobacterium tuberculosis* disease progression in CBA/J
531 mice. *J Immunol* 181:5545-5550.
532 22. Cyktor JC, Carruthers B, Kominsky RA, Beamer GL, Stromberg P, Turner J. 2013. IL-10 Inhibits
533 Mature Fibrotic Granuloma Formation during *Mycobacterium tuberculosis* Infection. *J Immunol*
534 190:2778-2790.
535 23. Jones M, Ladell K, Wynn KK, Stacey MA, Quigley MF, Gostick E, Price DA, Humphreys IR. 2010. IL-
536 10 restricts memory T cell inflation during cytomegalovirus infection. *J Immunol* 185:3583-92.
537 24. Brooks DG, Walsh KB, Elsaesser H, Oldstone MB. 2010. IL-10 directly suppresses CD4 but not CD8
538 T cell effector and memory responses following acute viral infection. *Proc Natl Acad Sci U S A*
539 107:3018-23.
540 25. Biswas PS, Pedicord V, Ploss A, Menet E, Leiner I, Pamer EG. 2007. Pathogen-specific CD8 T cell
541 responses are directly inhibited by IL-10. *J Immunol* 179:4520-8.
542 26. Tian Y, Mollo SB, Harrington LE, Zajac AJ. 2016. IL-10 Regulates Memory T Cell Development and
543 the Balance between Th1 and Follicular Th Cell Responses during an Acute Viral Infection. *J
544 Immunol* 197:1308-21.
545 27. Singh AK, Thirumalapura NR. 2014. Early induction of interleukin-10 limits antigen-specific CD4(+)
546 T cell expansion, function, and secondary recall responses during persistent phagosomal infection.
547 *Infect Immun* 82:4092-103.
548 28. Pitt JM, Stavropoulos E, Redford PS, Beebe AM, Bancroft GJ, Young DB, O'Garra A. 2012. Blockade
549 of IL-10 signaling during bacillus Calmette-Guerin vaccination enhances and sustains Th1, Th17,
550 and innate lymphoid IFN-gamma and IL-17 responses and increases protection to *Mycobacterium*
551 tuberculosis infection. *J Immunol* 189:4079-4087.
552 29. Vesosky B, Flaherty DK, Turner J. 2006. Th1 cytokines facilitate CD8-T-cell-mediated early
553 resistance to infection with *Mycobacterium tuberculosis* in old mice. *Infect Immun* 74:3314-3324.
554 30. Beamer GL, Flaherty DK, Vesosky B, Turner J. 2008. Peripheral blood gamma interferon release
555 assays predict lung responses and *Mycobacterium tuberculosis* disease outcome in mice. *Clin
556 Vaccine Immunol* 15:474-83.
557 31. Ullman-Cullere MH, Foltz CJ. 1999. Body condition scoring: a rapid and accurate method for
558 assessing health status in mice. *Lab Anim Sci* 49:319-23.
559 32. Flaherty DK, Vesosky B, Beamer GL, Stromberg P, Turner J. 2006. Exposure to *Mycobacterium*
560 avium can modulate established immunity against *Mycobacterium tuberculosis* infection
561 generated by *Mycobacterium bovis* BCG vaccination. *J Leukoc Biol* 80:1262-1271.
562 33. Couper KN, Blount DG, Riley EM. 2008. IL-10: the master regulator of immunity to infection. *J
563 Immunol* 180:5771-7.
564 34. Kumar NP, Gopinath V, Sridhar R, Hanna LE, Banurekha VV, Jawahar MS, Nutman TB, Babu S. 2013.
565 IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary
566 tuberculosis. *PLoS One* 8:e59572.
567 35. Huber S, Gagliani N, Esplugues E, O'Connor W, Jr., Huber FJ, Chaudhry A, Kamanaka M, Kobayashi
568 Y, Booth CJ, Rudensky AY, Roncarolo MG, Battaglia M, Flavell RA. 2011. Th17 cells express
569 interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an
570 interleukin-10-dependent manner. *Immunity* 34:554-65.

- 571 36. Heo YJ, Joo YB, Oh HJ, Park MK, Heo YM, Cho ML, Kwok SK, Ju JH, Park KS, Cho SG, Park SH, Kim
572 HY, Min JK. 2010. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell
573 population of rheumatoid arthritis patients. *Immunol Lett* 127:150-6.
- 574 37. Ordway DJ, Shang S, Henao-Tamayo M, Obregon-Henao A, Nold L, Caraway M, Shanley CA,
575 Basaraba RJ, Duncan CG, Orme IM. 2011. *Mycobacterium bovis* BCG-mediated protection against
576 W-Beijing strains of *Mycobacterium tuberculosis* is diminished concomitant with the emergence
577 of regulatory T cells. *Clin Vaccine Immunol* 18:1527-35.
- 578 38. Jeon BY, Derrick SC, Lim J, Kolibab K, Dheenadhayalan V, Yang AL, Kreiswirth B, Morris SL. 2008.
579 *Mycobacterium bovis* BCG immunization induces protective immunity against nine different
580 *Mycobacterium tuberculosis* strains in mice. *Infect Immun* 76:5173-80.
- 581 39. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL,
582 Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. 2007. IL-23 and IL-17 in the
583 establishment of protective pulmonary CD4+ T cell responses after vaccination and during
584 *Mycobacterium tuberculosis* challenge. *Nat Immunol* 8:369-377.
- 585 40. Agger EM, Cassidy JP, Brady J, Korsholm KS, Vingsbo-Lundberg C, Andersen P. 2008. Adjuvant
586 modulation of the cytokine balance in *Mycobacterium tuberculosis* subunit vaccines; immunity,
587 pathology and protection. *Immunology* 124:175-85.
- 588 41. Gruppo V, Turner OC, Orme IM, Turner J. 2002. Reduced up-regulation of memory and
589 adhesion/integrin molecules in susceptible mice and poor expression of immunity to pulmonary
590 tuberculosis. *Microbiology (Reading)* 148:2959-2966.
- 591 42. Turner J, Gonzalez-Juarrero M, Saunders BM, Brooks JV, Marietta P, Ellis DL, Frank AA, Cooper
592 AM, Orme IM. 2001. Immunological basis for reactivation of tuberculosis in mice. *Infect Immun*
593 69:3264-70.
- 594 43. Moliva JI, Hossfeld AP, Sidiki S, Canan CH, Dwivedi V, Beamer G, Turner J, Torrelles JB. 2019.
595 Selective delipidation of *Mycobacterium bovis* BCG enables direct pulmonary vaccination and
596 enhances protection against *Mycobacterium tuberculosis*. *Mucosal Immunol* 12:805-815.
- 597 44. Castro AG, Neighbors M, Hurst SD, Zonin F, Silva RA, Murphy E, Liu YJ, O'Garra A. 2000. Anti-
598 interleukin 10 receptor monoclonal antibody is an adjuvant for T helper cell type 1 responses to
599 soluble antigen only in the presence of lipopolysaccharide. *J Exp Med* 192:1529-34.
- 600 45. Silva RA, Appelberg R. 2001. Blocking the receptor for interleukin 10 protects mice from lethal
601 listeriosis. *Antimicrob Agents Chemother* 45:1312-4.
- 602 46. Murray HW, Moreira AL, Lu CM, DeVecchio JL, Matsuhashi M, Ma X, Heinzel FP. 2003.
603 Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental
604 visceral leishmaniasis. *J Infect Dis* 188:458-64.
- 605 47. Chen S, Wang X, Wu X, Wei MQ, Zhang B, Liu X, Wang Y. 2014. IL-10 signalling blockade at the
606 time of immunization inhibits Human papillomavirus 16 E7 transformed TC-1 tumour cells growth
607 in mice. *Cell Immunol* 290:145-51.
- 608 48. Brooks DG, Lee AM, Elsaesser H, McGavern DB, Oldstone MB. 2008. IL-10 blockade facilitates DNA
609 vaccine-induced T cell responses and enhances clearance of persistent virus infection. *J Exp Med*
610 205:533-41.
- 611 49. Darrah PA, Hegde ST, Patel DT, Lindsay RW, Chen L, Roederer M, Seder RA. 2010. IL-10 production
612 differentially influences the magnitude, quality, and protective capacity of Th1 responses
613 depending on the vaccine platform. *J Exp Med* 207:1421-33.
- 614 50. Newton MR, Askeland EJ, Andresen ED, Chehval VA, Wang X, Askeland RW, O'Donnell MA, Luo Y.
615 2014. Anti-interleukin-10R1 monoclonal antibody in combination with bacillus Calmette-Guerin
616 is protective against bladder cancer metastasis in a murine orthotopic tumour model and
617 demonstrates systemic specific anti-tumour immunity. *Clin Exp Immunol* 177:261-8.

- 618 51. Sterne JA, Rodrigues LC, Guedes IN. 1998. Does the efficacy of BCG decline with time since
619 vaccination? *Int J Tuberc Lung Dis* 2:200-7.
- 620 52. Kernodle DS. 2010. Decrease in the effectiveness of Bacille Calmette-Guerin vaccine against
621 pulmonary tuberculosis: a consequence of increased immune suppression by microbial
622 antioxidants, not overattenuation. *Clin Infect Dis* 51:177-84.
- 623 53. Whittaker E, Nicol MP, Zar HJ, Tena-Coki NG, Kampmann B. 2018. Age-related waning of immune
624 responses to BCG in healthy children supports the need for a booster dose of BCG in TB endemic
625 countries. *Sci Rep* 8:15309.
- 626 54. Barbosa T, Arruda S, Fernandes BD, Carvalho LP, Cardoso S, Cunha S, Barreto ML, Pereira SM,
627 Rodrigues LC, Barral-Netto M. 2003. BCG (Bacille of Calmette-Guerin) revaccination leads to
628 improved in vitro IFN-gamma response to mycobacterial antigen independent of tuberculin
629 sensitization in Brazilian school-age children. *Vaccine* 21:2152-60.
- 630 55. Nabeshima S, Murata M, Yamaji K, Chong Y, Nomoto M, Hayashi J. 2005. Kinetic analysis of
631 *Mycobacterium tuberculosis*-specific cytokine production by PBMC in adults after BCG
632 vaccination. *J Infect Chemother* 11:18-23.
- 633 56. Soares AP, Scriba TJ, Joseph S, Harbacheuski R, Murray RA, Gelderbloem SJ, Hawkridge A, Hussey
634 GD, Maecker H, Kaplan G, Hanekom WA. 2008. *Bacillus Calmette-Guerin* vaccination of human
635 newborns induces T cells with complex cytokine and phenotypic profiles. *J Immunol* 180:3569-77.
- 636 57. Kaveh DA, Bachy VS, Hewinson RG, Hogarth PJ. 2011. Systemic BCG immunization induces
637 persistent lung mucosal multifunctional CD4 T(EM) cells which expand following virulent
638 mycobacterial challenge. *PLoS One* 6:e21566.
- 639 58. Junqueira-Kipnis AP, Turner J, Gonzalez-Juarrero M, Turner OC, Orme IM. 2004. Stable T-cell
640 population expressing an effector cell surface phenotype in the lungs of mice chronically infected
641 with *Mycobacterium tuberculosis*. *Infect Immun* 72:570-5.
- 642 59. Kipnis A, Irwin S, Izzo AA, Basaraba RJ, Orme IM. 2005. Memory T lymphocytes generated by
643 *Mycobacterium bovis* BCG vaccination reside within a CD4 CD44lo CD62 ligand(hi) population.
644 *Infect Immun* 73:7759-7764.
- 645 60. Olsen AW, Brandt L, Agger EM, van Pinxteren LA, Andersen P. 2004. The influence of remaining
646 live BCG organisms in vaccinated mice on the maintenance of immunity to tuberculosis. *Scand J
647 Immunol* 60:273-7.
- 648 61. Lindenstrom T, Knudsen NP, Agger EM, Andersen P. 2013. Control of chronic *mycobacterium*
649 tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. *J Immunol* 190:6311-9.
- 650 62. Lindenstrom T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA, Rosenkrands I, Andersen
651 P. 2009. Tuberculosis subunit vaccination provides long-term protective immunity characterized
652 by multifunctional CD4 memory T cells. *J Immunol* 182:8047-55.
- 653 63. Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S, Lazar D, Wagner I,
654 Mollenkopf HJ, Kaufmann SH. 2016. Deletion of nuoG from the Vaccine Candidate *Mycobacterium*
655 *bovis* BCG DeltaureC::hly Improves Protection against Tuberculosis. *MBio* 7.
- 656 64. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, Kaufmann SH. 2014.
657 Central memory CD4+ T cells are responsible for the recombinant *Bacillus Calmette-Guerin*
658 DeltaureC::hly vaccine's superior protection against tuberculosis. *J Infect Dis* 210:1928-1937.
- 659 65. Ottenhoff TH. 2012. New pathways of protective and pathological host defense to mycobacteria.
660 *Trends Microbiol* 20:419-28.
- 661 66. Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SH. 2011. Recombinant BCG
662 DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced
663 combination of type 1 and type 17 cytokine responses. *J Infect Dis* 204:1573-84.

- 664 67. Orr MT, Beebe EA, Hudson TE, Moon JJ, Fox CB, Reed SG, Coler RN. 2014. A dual TLR agonist
665 adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen
666 ID93. *PLoS One* 9:e83884.
- 667 68. Idoko OT, Owolabi OA, Owiafe PK, Moris P, Odutola A, Bollaerts A, Ogundare E, Jongert E,
668 Demoitie MA, Ofori-Anyinam O, Ota MO. 2014. Safety and immunogenicity of the M72/AS01
669 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label
670 randomized controlled trial. *Tuberculosis (Edinb)* 94:564-78.
- 671 69. Madura Larsen J, Benn CS, Fillie Y, van der Kleij D, Aaby P, Yazdanbakhsh M. 2007. BCG stimulated
672 dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper
673 2 bias in vitro. *Immunology* 121:276-82.
- 674 70. Jason J, Archibald LK, Nwanyanwu OC, Kazembe PN, Chatt JA, Norton E, Dobbie H, Jarvis WR. 2002.
675 Clinical and immune impact of *Mycobacterium bovis* BCG vaccination scarring. *Infect Immun*
676 70:6188-95.
- 677 71. Sendide K, Deghmane AE, Pechkovsky D, Av-Gay Y, Talal A, Hmama Z. 2005. *Mycobacterium bovis*
678 BCG attenuates surface expression of mature class II molecules through IL-10-dependent
679 inhibition of cathepsin S. *J Immunol* 175:5324-5332.
- 680 72. Xu H, Jia Y, Li Y, Wei C, Wang W, Guo R, Jia J, Wu Y, Li Z, Wei Z, Qi X, Li Y, Gao X. 2019. IL-10
681 Dampens the Th1 and Tc Activation through Modulating DC Functions in BCG Vaccination.
682 *Mediators Inflamm* 2019:8616154.
- 683 73. Moreira-Teixeira L, Redford PS, Stavropoulos E, Ghilardi N, Maynard CL, Weaver CT, Freitas do
684 Rosario AP, Wu X, Langhorne J, O'Garra A. 2017. T Cell-Derived IL-10 Impairs Host Resistance to
685 *Mycobacterium tuberculosis* Infection. *J Immunol* 199:613-623.
- 686 74. Mittal SK, Roche PA. 2015. Suppression of antigen presentation by IL-10. *Curr Opin Immunol*
687 34:22-7.
- 688 75. Perona-Wright G, Jenkins SJ, Crawford A, Gray D, Pearce EJ, MacDonald AS. 2006. Distinct sources
689 and targets of IL-10 during dendritic cell-driven Th1 and Th2 responses in vivo. *Eur J Immunol*
690 36:2367-75.
- 691 76. Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA,
692 Osterholzer JJ. 2014. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and
693 promotes fungal clearance in mice with cryptococcal lung infection. *J Immunol* 193:4107-16.
- 694 77. Vieira P, Rajewsky K. 1988. The half-lives of serum immunoglobulins in adult mice. *Eur J Immunol*
695 18:313-6.
- 696 78. Condotta SA, Richer MJ. 2017. The immune battlefield: The impact of inflammatory cytokines on
697 CD8+ T-cell immunity. *PLoS Pathog* 13:e1006618.
- 698 79. Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham QM, Zickovich JM, Lefrancois L. 2011. Pathogen-
699 induced inflammatory environment controls effector and memory CD8+ T cell differentiation. *J*
700 *Immunol* 187:4967-78.
- 701 80. Starbeck-Miller GR, Xue HH, Harty JT. 2014. IL-12 and type I interferon prolong the division of
702 activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. *J Exp Med* 211:105-20.
- 703 81. Richer MJ, Nolz JC, Harty JT. 2013. Pathogen-specific inflammatory milieux tune the antigen
704 sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. *Immunity* 38:140-52.

705

706

707

708

709

710 **Figure legends**

711 **Figure 1. IL-10 in the lung in response to BCG or BCG/αIL10-R1 administration.** WT mice
712 were immunized with saline or BCG by the subcutaneous route and euthanized at pre-determined
713 time points (A), or immunized with BCG/αIL-10R1 or BCG/IgG1 and euthanized at 1- or 7-weeks
714 post immunization (B). IL-10 was determined in lung homogenate by ELISA. Data represent the
715 mean ± SE of one of two independent experiments with 3-5 mice in each group at each time point.
716 Student's *t* test was performed to determine statistical significance between the saline and BCG
717 immunized groups (A) or between the BCG/IgG1 and BCG/αIL-10R1 groups (B). *P<0.05;
718 **P<0.001.

719

720 **Figure 2. Pro-inflammatory cytokines in the lung in response to BCG/αIL-10R1**
721 **administration.** WT mice were immunized with BCG/αIL-10R1 or BCG/IgG1 antibody
722 subcutaneously. Immunized mice were euthanized at 1- and 7-weeks post immunization. Lungs
723 were homogenized and centrifuged to obtain clarified homogenate. IFN-γ (A), TNF-α (B) IL-17
724 (C) and IL-12p70 (D) were measured by ELISA. Data represent the mean ± SE of one of two
725 independent experiments with 3-5 mice in each group at each time point. Student's *t* test was
726 performed to determine statistical significance between the BCG/IgG1 and BCG/αIL-10R1
727 experimental groups at 1- and 7-weeks post vaccination. *P<0.05; **P<0.01.

728

729 **Figure 3. BCG/αIL-10R1 administration causes accumulation of central memory cells in**
730 **lung.** WT mice were subcutaneously immunized with BCG/αIL-10R1 or BCG/IgG1. Immunized
731 mice were euthanized at 7 weeks post immunization and lung mononuclear cells were harvested
732 and stained with fluorescent dye tagged antibodies specific for CD4 and CD8 in combination with
733 CD44, CD62L and CCR7 and acquired by flow cytometry and analyzed by FlowJo software.

734 Absolute number of **(A)** CD4⁺, **(B)** CD4⁺ CD44^{hi} **(C)** CD4⁺ CD44^{hi} CD62L⁺ CCR7⁺ central memory,
735 **(D)** CD4⁺ CD44^{hi} CD62L⁻ CCR7⁻ effector memory, **(E)** CD8⁺, **(F)** CD8⁺ CD44^{hi}, **(G)** CD8⁺ CD44^{hi}
736 CD62L⁺ CCR7⁺ central memory, **(H)** CD8⁺ CD44^{hi} CD62L⁻ CCR7⁻ effector memory. Data represent
737 the mean \pm SE of one of two independent experiment with 3 to 5 mice in each group. Student's *t*
738 test was performed to determine the statistical significance between BCG/IgG1 and BCG/α-IL-
739 10R1 experimental groups. No statistical significant differences were found.

740

741 **Figure 4. BCG/αIL-10R1 administration increases antigen specific Th1 and Th17 cytokine**
742 **responses.** WT mice were immunized with BCG/αIL-10R1 or BCG/IgG1 **(A-C).** IL-10^{-/-} CBA/J
743 mice were vaccinated with saline or BCG **(D-F).** Mice were euthanized at 7 weeks post vaccination
744 and lung mononuclear cells *ex-vivo* stimulated without (medium) or with CFP for 48 hrs. Culture
745 supernatant were analyzed for the production of IFN- γ **(A, D)**, TNF- α **(B, E)** and IL-17 **(C, F)**
746 respectively. Student's *t* test was performed to determine statistical significance between the
747 response to CFP of BCG/IgG1 and BCG/αIL-10R1 experimental groups (A-C) or IL-10^{-/-} saline
748 and BCG experimental groups (D-F). *P<0.05.

749

750 **Figure 5. BCG/αIL-10R1 administration provides long-term protection against *M.tb***
751 **infection.** IL-10^{-/-} CBA/J mice were vaccinated with saline or BCG **(A, C).** WT mice were
752 immunized with saline or BCG/αIL-10R1 or BCG/IgG1 **(B, D).** Mice were infected with *M.tb* at 7-
753 week post vaccination. Lung CFU counts in IL-10^{-/-} **(A)** or WT **(B)**. Survival curve for IL-10^{-/-} **(C)**
754 and WT **(D)** mice. Data in figure 5B are a combined 1 to 3 independent experiments each having
755 5 mice in each group in all data points. Student's *t* test was performed to determine statistical
756 significance between BCG/α-IL-10R1 and BCG/IgG1 (WT) or between saline and BCG (IL-10^{-/-})
757 immunized experimental groups. *P <0.05; **P<0.01; and P ****P<0.0001. Data in C and D

758 represent a single experiment with 10-14 mice in each group. Log-rank test was used to determine
759 statistical significance of survival between BCG/αIL-10R1 and BCG/IgG1.

760

761 **Figure 6. BCG/αIL-10R1 administration reduces immuno-pathology in lungs after *M.tb***
762 **infection.** WT mice were immunized with saline, BCG/αIL-10R1 or BCG/IgG1 (**A-C**). IL-10^{-/-}
763 CBA/J mice were vaccinated with saline or BCG (**D-F**). Mice were infected with *M.tb* 7- weeks
764 post vaccination. WT and IL-10^{-/-} mice were euthanized at predetermined time points post
765 infection and the caudal lung lobe was quantified for pulmonary inflammation as percent of tissue
766 involved. Pulmonary inflammation in (**A**) WT mice at 4, 8, 12 and 17 weeks post infection, (**D**) IL-
767 10^{-/-} mice at 4, 12 and 47 weeks post infection. Percent affected area was quantified by calculating
768 the total area of the involved tissue over the total area of the lobe for each individual mouse and
769 graded as 1, 2, 3, 4 and 5 which corresponded to <10%, <25%, 50%, <75%, >75% of affected
770 tissue, respectively. ELISA was performed on lung homogenates to measure the level of TNF-α,
771 IL-17, IFN-γ and IL-10 in (**B**) WT mice at 4 weeks post infection, (**C**) WT mice at 12 weeks post
772 infection, (**E**) IL-10^{-/-} mice at 4 weeks post infection and (**F**) IL-10^{-/-} mice at 12 weeks post
773 infection. Data in Figure 6A-C represent the mean ± SE of one of two independent experiments
774 with 3 to 5 mice in each group at each time point. Student's *t* test was performed to determine
775 statistical significance between BCG/αIL-10R1 and BCG/IgG1 (WT mice) or between saline and
776 BCG (IL-10^{-/-} mice), immunized experimental groups. *P<0.05; **P<0.01.

777

778 **Figure 7. BCG/ αIL-10R1 administration enhances central memory T-cell responses in lung**
779 **of *M.tb* infected mice.** WT mice were subcutaneously immunized with saline, BCG/αIL-10R1 or
780 BCG/IgG1. 7 weeks later, mice were challenged with *M.tb* and euthanized at the 4- (**A-H**) and 8-
781 week (**I-P**) post infection. Figure represents absolute number of (A, I) CD4⁺, (B,J) CD4⁺ CD44^{hi},

782 (C,K) CD4⁺CD44^{hi}CD62L⁺CCR7⁺ central memory, (D,L) CD4⁺CD44^{hi}CD62L⁻CCR7⁻ effector
783 memory, (E,M) CD8⁺, (F,N) CD8⁺CD44^{hi}, (G,O) CD8⁺CD44^{hi}CD62L⁺CCR7⁺ central memory,
784 (H,P) CD8⁺CD44^{hi}CD62L⁻CCR7⁻ effector memory. Data are the mean \pm SE of one of the two
785 independent experiment with 3 to 5 mice in each group. Student's *t* test was performed to
786 determine the statistical significance between BCG/αIL-10R1 or BCG/IgG1 experimental groups.
787 *P<0.05; **P<0.01.

788

789 **Figure 8. BCG/αIL-10R1 administration enhances antigen specific IFN-γ and IL-17 levels in**
790 **lungs after *M.tb* infection.** WT mice were s.c. immunized with saline, BCG/αIL-10R1 or
791 BCG/IgG1. At 7 weeks later, mice were challenged with *M.tb* and euthanized at 4 and 8 weeks
792 post infection. Isolated lung mononuclear cells were *ex-vivo* stimulated with medium or *M.tb* CFP
793 for 48 hrs. Culture supernatant of WT mice were analyzed for the production of (A, C) IFN-γ and
794 (B, D) IL-17 by ELISA. Student's *t* test was performed to determine the statistical significance
795 between the medium and CFP stimulation within an experimental group and between the groups.
796 *P<0.05; **P<0.01.

797

798

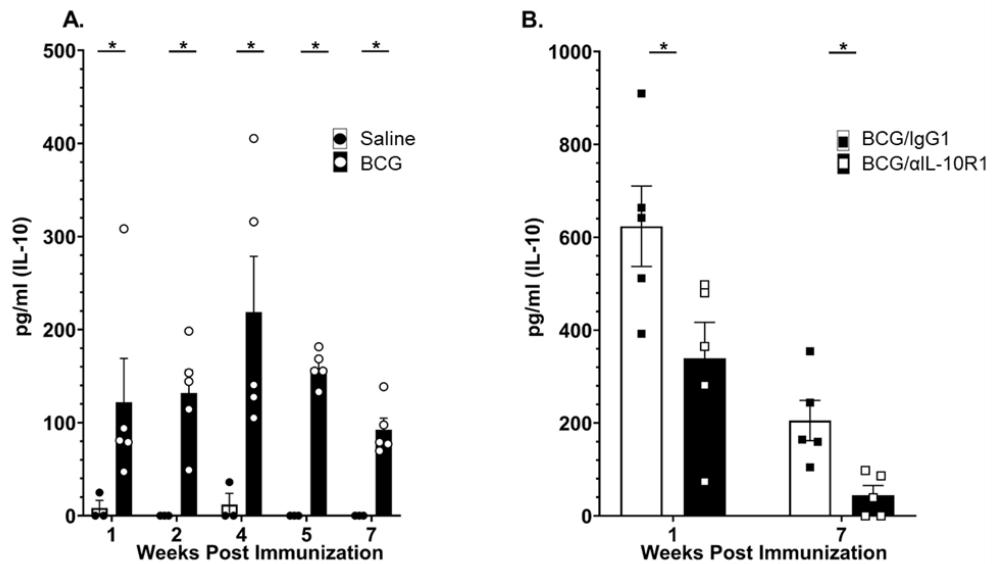
799

800

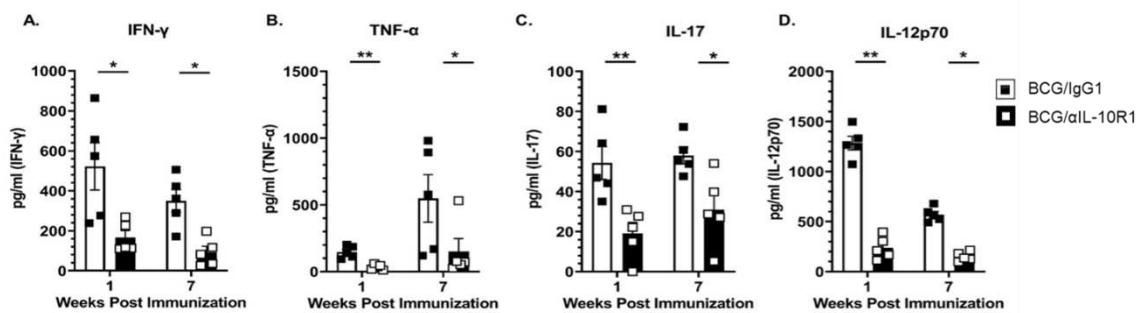
801

802

803

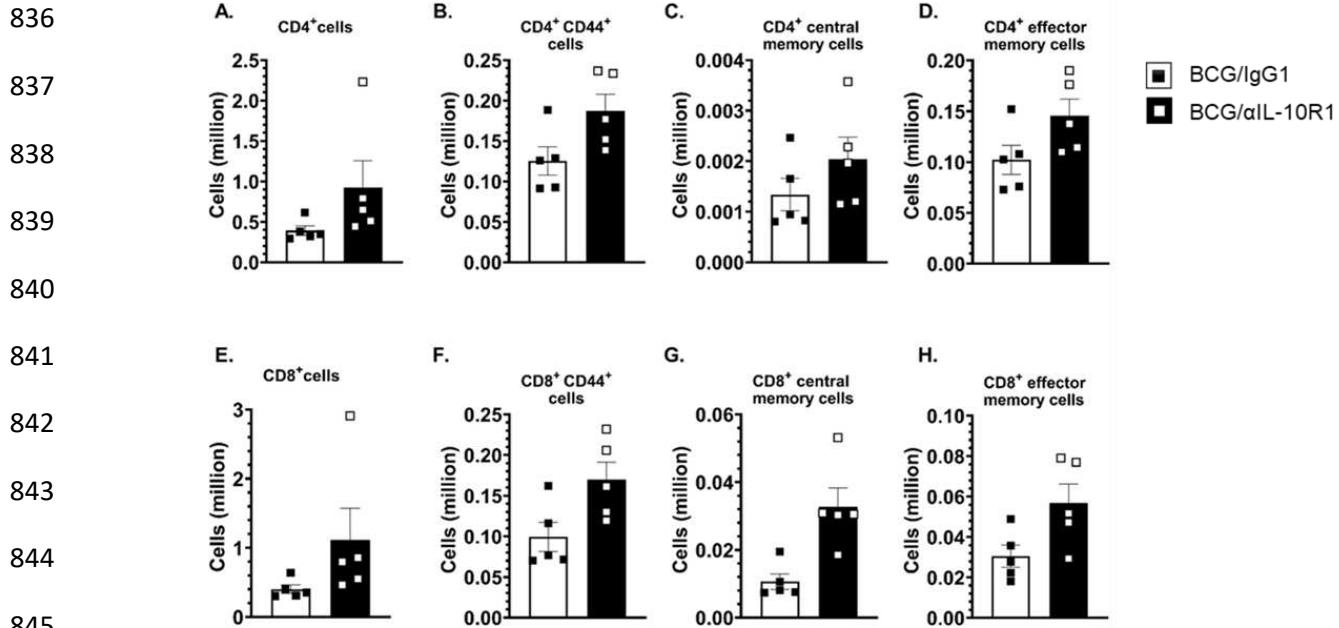

804

805


806

807

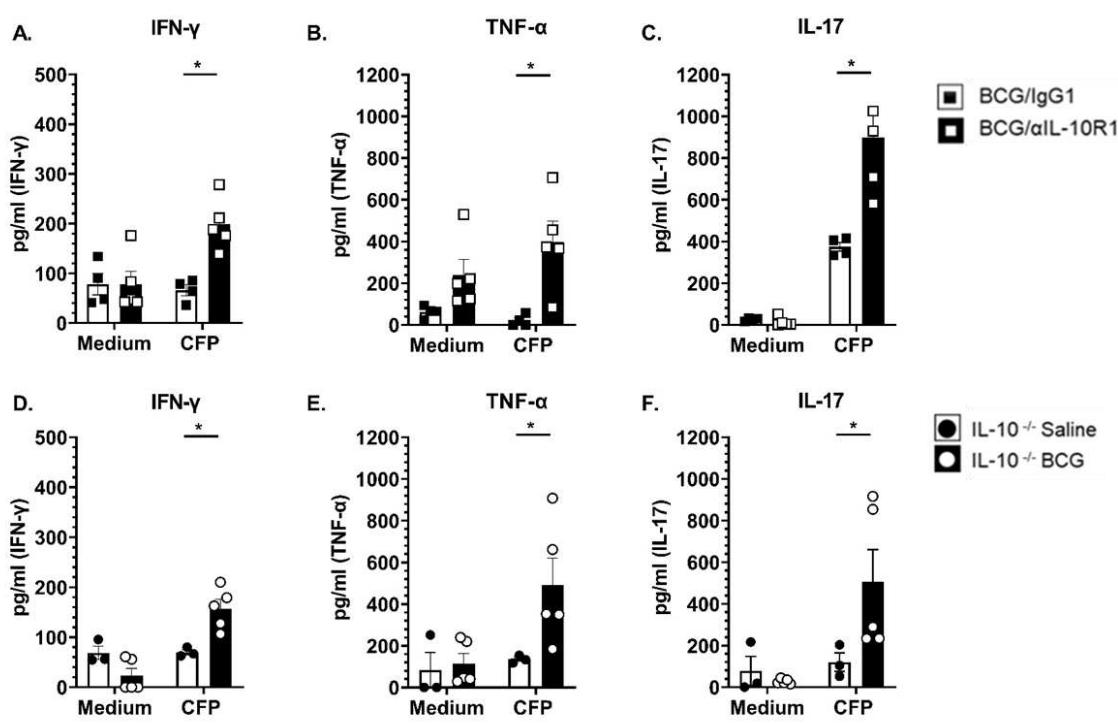
808 **Figure 1**


822 **Figure 2**

833

834 **Figure 3**

835



859

860 **Figure 4**

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

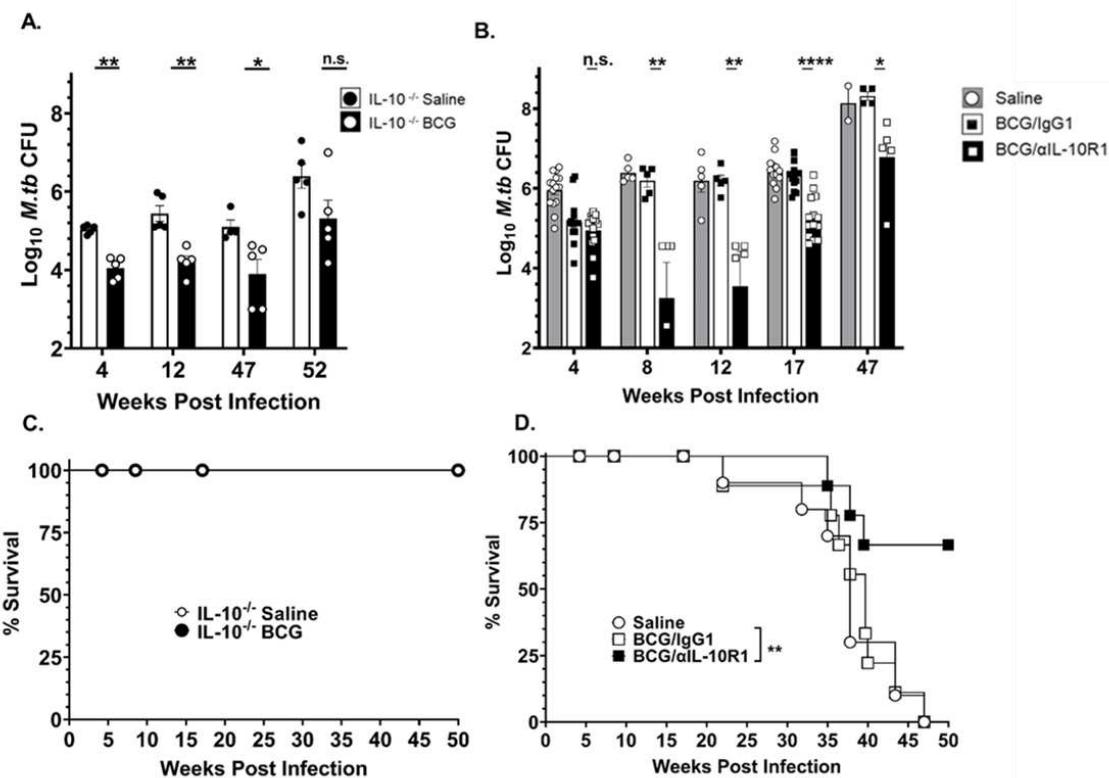
880

881

882

883

884

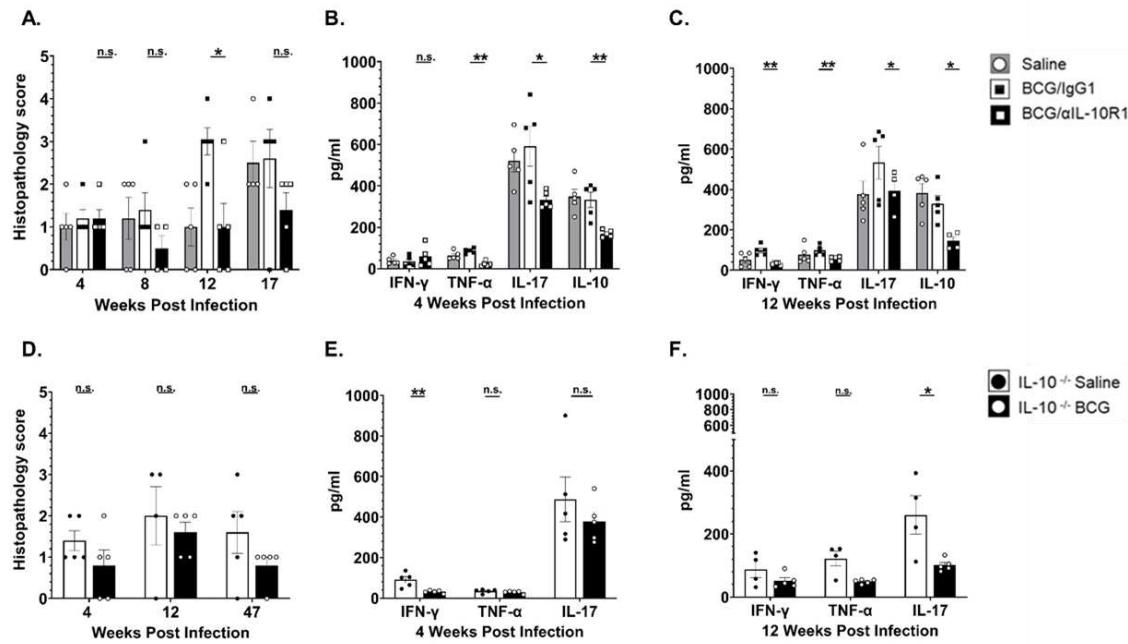

885

886 **Figure 5**

887

888

889



911

912 **Figure 6**

913

914

937

938 **Figure 7**

939

940

941

942

943

944

945

946

947

948

949

950

951

952

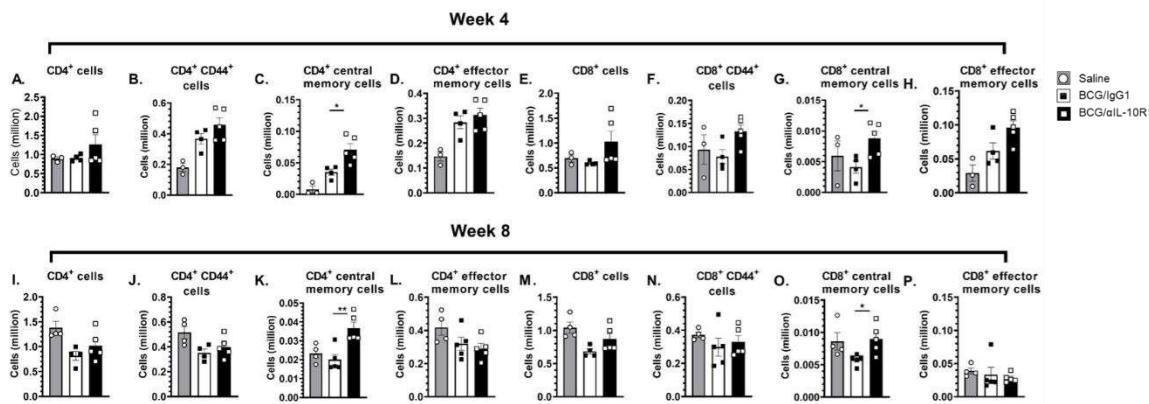
953

954

955

956

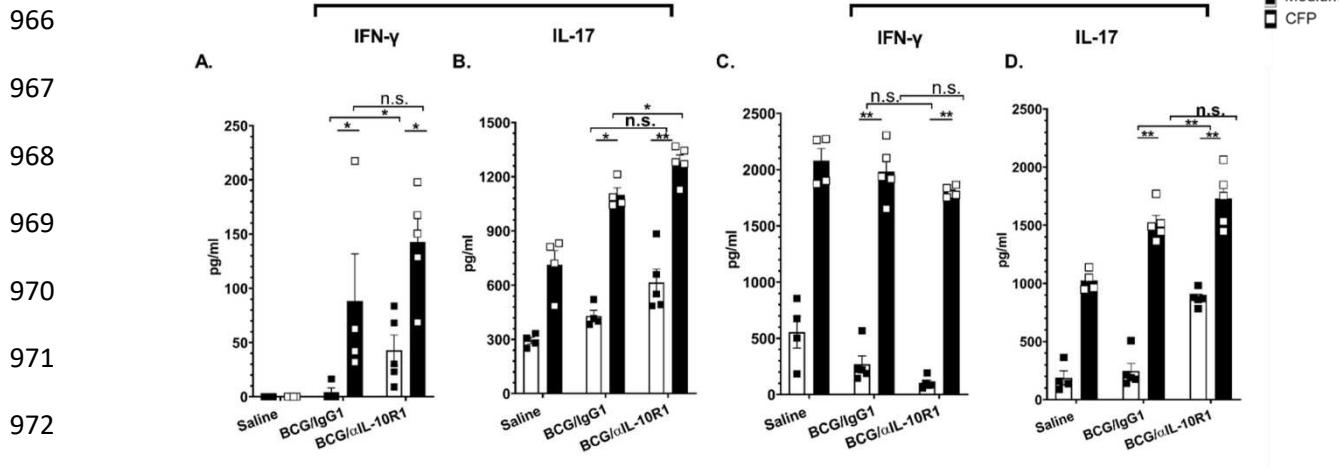
957


958

959

960

961


962

963

964 **Figure 8**

965

