

1

2 Title

3 **Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid**
4 **environment**

5

6 Authors

7 **Le Thi My Le^{1,†}, James Robert Thompson^{1,†}, Phuoc Xuan Dang¹, Janarjan Bhandari¹**
8 **& Amer Alam^{1,*}**

9

10

11 Affiliations

12 ¹ The Hormel Institute, University of Minnesota, Austin, Minnesota 55912 USA

13 [†] These authors contributed equally to this work

14 ^{*} Address correspondence to: Amer Alam, PhD, aalam@umn.edu

15

16

17 Abstract

18 The peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 is central to
19 cellular fatty acid catabolism and lipid biosynthesis. Its dysfunction underlies toxic cytosolic
20 accumulation of VLCFAs, progressive nervous system demyelination, and neurological
21 impairments including the potentially fatal disease X-linked adrenoleukodystrophy (X-
22 ALD). Molecular details underlying substrate recognition and transport by ABCD1 are
23 poorly understood. Here we determined cryo-EM structures of ABCD1 in phospholipid
24 nanodiscs in a nucleotide bound conformation open to the peroxisomal lumen and an inward
25 facing conformation open to the cytosol at up to 3.5 Å resolution that reveal key details of
26 its transmembrane cavity and ATP dependent conformational transitions. We identify
27 structural elements distinguishing ABCD1 from its closest homologs and show that
28 coenzyme A (CoA) esters of VLCFAs modulate ABCD1 activity in a species dependent
29 manner. Together, our data support a transport mechanism where only the CoA moieties of
30 VLCFA-CoAs enter the hydrophilic transmembrane cavity while the acyl chains extend out
31 into the surrounding membrane bilayer, help rationalize disease causing mutations, and
32 provide a framework for ABCD1 targeted structure-based drug design.

33

34 Keywords

35 ABCD1, ABC transporter, very long chain fatty acid, cryo-EM, X-linked
36 adrenoleukodystrophy

37

38 MAIN TEXT

39

40 Introduction

41 X-ALD (OMIM#300100) is the most common inherited peroxisomal disorder, with a
42 prevalence of approximately 1/20,000 births. Childhood-onset cerebral
43 adrenoleukodystrophy (CCALD) and adult-onset adrenomyeloneuropathy (AMN) are two
44 main forms of X-ALD (1). A feature of X-ALD is a build-up of high levels of VLCFAs
45 containing 24 or more carbons throughout the body, which can cause damage to the nervous
46 system due to progressive demyelination (2). While X-ALD presents as a metabolic
47 neurodegenerative disorder, phenotypic variability is high (3). Dysfunction of the
48 peroxisomal VLCFA transporter ABCD1/ALDP has been identified as an underlying cause
49 of X-ALD, with over 800 disease causing mutations of the *ABCD1* gene identified (4-7).

50 ABCD1 is a peroxisome-membrane spanning protein that mediates the import of various
51 VLCFAs into the peroxisome in an ATP hydrolysis dependent manner (8-12) for
52 peroxisome specific beta-oxidation. Accordingly, ABCD1 functional deficiency impairs the
53 degradation of VLCFAs (13-16) and may also alter distributions of phospholipid and
54 lysophospholipid species in different brain regions (17). ABCD1 is related to and displays
55 functional overlap with two other peroxisomal transporters: ABCD2, also known as ALD
56 related protein/ALDRP (18) and ABCD3, also known as peroxisome membrane protein
57 70/PMP70 (19, 20), with which it shares 62% and 39% sequence identity, respectively.
58 Despite substrate overlap, the three transporters display distinct specificities and only
59 mutations in ABCD1 are associated with X-ALD. A fourth ABCD family member, ABCD4
60 (24% sequence identity to ABCD1), is a lysosome specific transporter that transports
61 vitamin B12 (21-23). Unlike its peroxisomal counterparts as well as canonical ABC
62 exporters it shares a fold with, ABCD4 reportedly functions as an importer, with substrate
63 (Vitamin B12/Cobalamin) suggested to bind the ATP bound ‘outward’ facing conformation
64 open to the lysosomal lumen and its cytoplasmic release occurring from an ‘inward open’
65 conformation (24). All four ABCD proteins are half-transporters expressed as single
66 polypeptides containing a transmembrane domain (TMD) and a nucleotide-binding domain
67 (NBD) that must dimerize to form the functional transporter. While some evidence is
68 reported for the existence of ABCD heterodimers (11, 25, 26), functional homodimers
69 appear to be most prevalent *in vivo* (27, 28).

70 Structural insights into ABCD1 are currently limited to those gleaned from homology
71 models based on related transporters (29) and, more recently, the cryo-EM structure of
72 nucleotide bound ABCD4 in detergent (24). To define the ABCD1 structural elements that
73 enable ATP dependent and specific VLCFA transport at the molecular level, we determined
74 its structures in nanodisc reconstituted form in both a nucleotide-bound outward open (OO)
75 conformation open to the peroxisomal lumen and an inward open (IO) conformation open
76 to the cytosol. In conjunction with ATP-driven functional assessments, our data reveal the
77 conformational landscape associated with the ATP dependent transport cycle of ABCD1
78 and highlight key features of its TMD that offer insights into its potential substrate binding
79 mechanism. These structures also allow us to pinpoint the location of the most frequently
80 occurring disease causing mutations in the ABCD1 TMD that will allow for the
81 conceptualization of structure-function hypotheses based on X-ALD patient mutations (30).
82 Finally, these structures open the door for more accurate structure guided design of ABCD1

83 targeted small molecule therapeutics and computational studies of ABCD1 structure and
84 function.

85 **Results**

86 **ABCD1 *in vitro* activity is modulated by VLCFA-CoAs in a species dependent manner**

87 We utilized a tetracycline-inducible stable cell line to produce human ABCD1 in human
88 embryonic kidney (HEK) 293 cells and tested its ATPase activity in detergent and in
89 liposomes and nanodiscs comprising a mixture of porcine brain polar lipids (BPL) and
90 cholesterol previously used to characterize several other human ABC transporters (31, 32)
91 (Fig. 1A, Supplementary Figure 1A). Consistent with previously reported studies (33), ATP
92 hydrolysis rates for ABCD1 were in the range of $10 \text{ nmol min}^{-1} \text{ mg}^{-1}$ in liposomes (not
93 accounting for transporter orientation distribution) and nanodiscs, similar to values reported
94 by other groups (33, 34), and followed Michaelis-Menten kinetics with Michaelis constant
95 (K_m) values of 0.3-0.4 mM ATP (Fig. 1A). Mutation of a catalytic glutamate residue to
96 glutamine in the Walker B motif in the ABCD1 NBD (ABCD1_{EQ}) reduced ATPase rates by
97 ~50%, similar to observations for ABCD4 (24), and ATP hydrolysis was sensitive to
98 inhibition by sodium orthovanadate (VO₄) or the non-hydrolysable ATP analog ATP γ S
99 (Supplementary Figure 1B). We tested CoA esters of various VLCFAs at up to 1 mM
100 concentration for their ability to modulate the activity of ABCD1 as a readout for relevant
101 substrate interactions or in the absence of a direct transport assay. Detergent purified protein
102 was employed to avoid any complications arising from VLCFA-CoA mediated membrane
103 disruption in nanodiscs or liposomal samples. As shown in Fig. 1B, maximal ATPase rate
104 stimulation was observed for C24:0-CoA, followed by C26:0-CoA. Conversely, both
105 C22:6-CoA and acetyl-CoA alone had no observable effect on ATPase activity. To test
106 whether absence of stimulation in the presence of acetyl-CoA could be attributed to lack of
107 a physical interaction with ABCD1, we tested the effect of acetyl-CoA and C24:0-CoA
108 added together. Interestingly, this led to a marked decrease in the stimulatory effect of
109 C24:0-CoA alone, suggesting competition from acetyl-CoA for the same binding site. The
110 implications of these findings in context of substrate transport are discussed below.

111 **Overall structure of nucleotide bound ABCD1**

112 To determine the structure of human ABCD1 in a lipid environment mimicking its
113 physiological state, we reconstituted detergent purified ABCD1 in BPL/cholesterol
114 nanodiscs utilizing membrane scaffold protein (MSP) 1D1 in the presence of the non-
115 hydrolysable ATP analog, ATP γ S (Supplementary Figure 1B). We obtained multiple
116 structures from a single cryo-EM dataset, with a nucleotide bound OO state and an IO state
117 resolved to 3.5 and 4.4 Å, respectively (Fig. 1C, Figs. Supplementary Figure 1D and
118 Supplementary Figure 2). While we observed a range of IO conformations with differing
119 inter-NBD distances, we focus here on the highest resolution of these. The quality of EM
120 density for the higher resolution OO conformation allowed for *de novo* model building of a
121 near complete model of ABCD1. Nucleotide bound ABCD1 adopts a characteristic exporter
122 fold first identified in the bacterial ABC exporter Sav1866 (35), entailing a domain swapped

123 architecture where transmembrane helix (TM) 4 and TM5, along with the intervening
124 cytoplasmic helix (CH) from each protomer making extensive contacts with the TMD and
125 NBD of the opposite one (Fig. 1C). Each TMD contains six transmembrane helices that
126 extend well beyond the membrane lipid bilayer in both directions. Two nucleotides,
127 modeled as ATP γ S, and two Mg $^{2+}$ ions are bound to the Walker A, Q-loop and ABC
128 signature motifs that exist within the interface between the two NBD (Fig. 1D). The OO
129 conformation is characterized by a large cavity open to the peroxisome lumen and inner
130 peroxisomal membrane. This cavity is lined by polar and charged residues from all 6
131 transmembrane helices from each protomer and is more hydrophilic and deeper than the
132 corresponding cavities of ABCD4 or Sav1866 (Supplementary Figure 3). It is also
133 considerably wider, especially towards the opening to the peroxisomal lumen where TM5
134 and TM6 are splayed outward with a noticeable bend in TM6 and display considerable
135 conformational disorder as judged by discontinuous EM density. At the other end of the
136 cavity, a cytoplasmic gate formed by residue R280, stabilized by intrasubunit and
137 intersubunit electrostatic interactions with surrounding residues, seals off access to the
138 cytoplasm (Fig. 1E). The estimated cavity volume of ~28000 Å³ is large enough to
139 accommodate phospholipids present in the surrounding nanodisc. However, no evidence of
140 lipids was found inside the cavity, consistent with its overall hydrophilic nature.
141 Interestingly, we observed lipid-like density features at the outer peroxisomal membrane
142 opening of the OO structure that we tentatively modeled either as cholesterol molecules or
143 unspecified acyl chains (Fig. 1C, 1E). The opening to the inner peroxisomal membrane in
144 the OO cavity also revealed a similar, albeit weaker, stretch of density consistent with an
145 acyl chain. As discussed below, we speculate that the acyl chains of VLCFA-CoAs could
146 occupy similar positions while the CoA moieties bind within the TMD cavity during the
147 substrate transport cycle.

148 **Transition from OO to IO conformations**

149 Although of lower resolution than that of the OO conformation, the EM map quality of the
150 IO structure allowed for accurate placement of all TMs. Density for the TMD region was of
151 overall higher quality than that for the NBD (Supplementary Figure 2), which were modeled
152 by rigid body placement of the equivalent NBD from the OO structure without modeled
153 nucleotides. The reduced resolution for the NBDs is likely due to increased conformational
154 heterogeneity and is supported by the observation of several 3D classes leading to lower
155 resolution IO structures with varying extents of NBD separation (Supplementary Figure
156 1D). The final IO model comprised residues 67-443 and 460-684 and allowed for a direct
157 comparison of the IO and OO structures from the same dataset. We observed greater
158 continuity for TM5 and TM6 and the intervening extracellular region (Fig. 2A). This
159 region's EM density was modeled as a short helical stretch in agreement with secondary
160 structure prediction. Note that this helical stretch is comprised primarily of charged residues
161 that are missing in ABCD2 and ABCD3.

162 Despite the large-scale overall conformational change, TM1-TM2, TM3-TM6, and TM4-
163 TM5 pairs from the IO and OO conformations effectively move as rigid bodies, maintaining

164 their overall conformation, except for a noticeable bend in TM6 in the OO conformation.
165 These transitions follow conserved patterns previously described for type IV ABC
166 transporters/type II exporters (36). TM4 in both conformations contains a helical break
167 around residues P263 and G266. G266 is conserved in all three peroxisomal ABCD
168 transporters but not in ABCD4. Helical unwinding of TM4 was also found in ABCB1 and
169 is related to the formation of an occluded conformation with bound substrates or inhibitors
170 in association with its alternating-access mechanism (31). A similar break in TM4 of the
171 ABC transporter YbtPQ was proposed as key for substrate release (37). The OO-IO
172 transition involves an ~12 Å translation of the NBDs measured using inter CH1 distances
173 with residue Y296 serving as a reference (Fig. 2D). The resulting conformation creates a
174 large opening to the cytosol, disassembly of the cytoplasmic gating network via
175 repositioning of the residues involved in electrostatic stabilization of R280, and closure of
176 the external cavity and accompanying formation of an external gate that seals the cavity
177 from the peroxisomal lumen (Fig. 3A-C). Like the cavity seen in the OO conformation, the
178 IO cavity is also highly hydrophilic in nature and has openings to the outer peroxisomal
179 membrane leaflet (Fig. 3D), with an estimated volume of ~37000 Å³. As with the OO
180 conformation, no evidence of bound lipids was found within the IO cavity either.

181 **Analysis of ABCD1 disease causing mutations**

182 To date, over 800 mutations in the ABCD1 gene have been associated with X-ALD. Our
183 ABCD1 structures allow us to pinpoint the location of several single amino acid
184 substitutions and offer a basis for their associated pathogenic phenotype. Due to the high
185 degree of sequence and structural conservation amongst ABC transporter NBDs, we focus
186 here on TMD mutations, which can be further divided into several subsets. The first, a
187 cluster of mutations in TM1 and TM2, occur at the opening to the inner peroxisomal
188 membrane (Fig. 4A). It is plausible that this area is important for substrate transfer through
189 the lateral inner peroxisomal membrane opening of ABCD1 in the OO conformation. A
190 second cluster of mutations is comprised largely of residues from TM4 and TM5 and
191 includes R280 and surrounding residues, which we speculate may lead to destabilization of
192 the OO conformation and disruption of substrate transport. G266, also in TM4, is located at
193 the lateral opening of ABCD1 to the outer peroxisomal membrane in the IO conformation
194 (Fig. 4B). It is one of the most frequently mutated residues in ALDP patients and is likely
195 involved in allowing for secondary structure breaking and kinking of TM4. These data open
196 the door for the design and execution of future *in vitro* mutagenesis studies aimed at
197 analyzing the functional effects of select ABCD1 mutations.

198 **Discussion**

200 In the absence of a substrate bound state, the exact mechanisms of substrate recognition and
201 translocation by ABCD1 remain elusive. However, our data offer insights into how
202 VLCFA-CoA may be recognized, with the polar CoA moiety binding within a hydrophilic
203 cavity open to the cytoplasm (IO conformation). The opening to the outer peroxisomal
204 leaflet may offer a portal for the acyl chain to extend outside the cavity into the surrounding
205 membrane space. The ATP dependent switch to the OO conformation would entail a lateral

206 movement of the acyl chain towards the inner peroxisomal membrane. The observation of
207 lipid like density features at the outer peroxisomal membrane opening (Fig. 1C, E, Fig. 4C)
208 is in line with this hypothetical model. When mapped onto the IO ABCD1 structure, the
209 outer membrane density features observed in the OO structure fall at the outer leaflet
210 opening in the IO conformation (Fig. 4C). Moreover, our data show that while acetyl-CoA
211 itself is unable to stimulate ATPase hydrolysis in ABCD1, it can partially inhibit ATPase
212 stimulation by C24:0-CoA. Together, this points to both the binding of the CoA moiety to
213 ABCD1, and the requirement of the acyl chain to trigger the substrate induced
214 conformational changes promoting ATP binding and/or hydrolysis. Acyl chain flexibility
215 may play a key role here, which is supported by our observation that unlike C26:0-CoA and
216 C24:0-CoA, C22:6-CoA has no noticeable effect on ABCD1 ATPase activity.

217 It is currently unclear whether the fatty acyl chain is separated from its CoA ester for
218 subsequent re-esterification, as has been proposed for the homologous transporter
219 comatose/ABCD1 from *Arabidopsis thaliana* (34, 38). Our data lay the framework for
220 future studies looking at the exact nature of a substrate bound state of ABCD1,
221 characterization of its thioesterase activity, if any, and, if observed, delineating the
222 mechanism whereby it may be tied to ATP hydrolysis dependent substrate transport. Our
223 structures will also allow for generation of more accurate models for ABCD2 and ABCD3
224 to shed light on the molecular mechanisms that differentiate these three peroxisomal
225 transporters, which share overlapping but distinct substrate transport profiles. Finally, our
226 structures will prove valuable for design of computational studies aimed at deciphering the
227 fatty acid transport properties and lipid interactions of ABCD1 and provide a solid
228 foundation for structure-based design of correctors or potentiators of ABCD1 for
229 therapeutic use for X-ALD patients.

231 Materials and Methods

232 Protein expression and purification

233 We utilized the Flp-In TREX system (Thermo Fisher Scientific) to implement tetracycline
234 inducible expression of human ABCD1 to overcome several impediments associated with
235 weak and inconsistent protein yields from transiently transfected HEK293T cells. Briefly,
236 a synthetic gene construct of isoform 1 of human ABCD1 (Uniprot ID 095477) codon
237 optimized for human cell expression (GeneArt/ Scientific) was first cloned in an expression
238 vector comprising the pXLG gene expression cassette in a pUC57 vector backbone
239 (GenScript) between BamHI and SalI restriction sites as described (39). This added an
240 eYFP-Rho1D4 purification tag preceded by a 3C/precision protease site at the C-terminal
241 end of the construct. The full expression construct of ABCD1 or its EQ variant, generated
242 through site directed mutagenesis using forward primer:

243 5'-CGGCCTAAGTACGCCCTGCTGGACCAGTGTACAAGCGCCGTCCATCG-3'
244 and reverse primer:

245 5'CGTCGATGGACACGGCGCTTGTACACTGGTCCAGCAGGGCGTACTTAGG-3'
246 was transferred to a PCDNA5.1/FRT/TO vector between BamH1 and NotI restriction sites
247 and tetracycline inducible stable cell lines were generated as per manufacturer's protocol.
248 ABCD1 stable cells were grown in Dulbecco's Modified Eagle Medium (DMEM,

249 Scientific) supplemented with 9% Fetal Bovine Serum (FBS, Gibco),
250 penicillin/streptomycin mixture (Scientific) and antimycotic (Gibco) at 37°C and 5% CO₂
251 under humidified conditions. For ABCD1 protein production, cells at a confluence of ~80%
252 were induced with 0.6 µg/ml tetracycline in fresh DMEM supplemented with 2% FBS for
253 an additional 24 hours before being washed with Phosphate Buffered Saline (PBS),
254 harvested and flash frozen in liquid nitrogen. For ABCD1_{EQ} expression, ABCD1_{EQ} stable
255 expressing cells were induced and harvested after 72-hour culture.

256 For ABCD1/ABCD1_{EQ} purification, thawed cells were resuspended in a lysis buffer (25
257 mM Hepes pH 7.5, 150 mM sodium chloride (NaCl), 20% glycerol, and 1 mM Dithiothreitol
258 (DTT, Scientific) supplemented with one Complete EDTA free protease inhibitor tablet
259 (Roche) per 50 ml lysis buffer, 800 µM phenylmethylsulfonyl fluoride (PMSF, Sigma), and
260 20 µg/ml soybean trypsin inhibitor (Sigma). Cell lysate was dounce homogenized (8 strokes
261 with the A pestle) and a 1% Dodecyl maltoside (DDM)/0.2% Cholestryl hemisuccinate
262 (CHS) (Anatrace) w:w mixture was added for protein solubilization. Protein extraction
263 continued for 90 minutes at 4°C with gentle agitation, followed by centrifugation at 48,000
264 r.c.f for 30 minutes at 4°C. The supernatant was applied to a Rho-1D4 antibody (University
265 of British Columbia) coupled to cyanogen bromide activated Sepharose 4B resin (Cytiva)
266 and binding was allowed to proceed for 3 hours at 4°C. Beads were subsequently washed
267 with a 4 x 10 bed volume (BVs) of wash buffer (25 mM Hepes pH 7.5, 150 mM NaCl, 20%
268 glycerol, 0.02% DDM/0.004% w:w DDM/CHS, 1 mM DTT). Protein was eluted by
269 incubation with 3 BVs of elution buffer (wash buffer supplemented with 3C protease using
270 1 milligram 3C per milliliter BV) overnight at 4°C. The his-tagged 3C protease was
271 removed by flowing and washing off cleaved transporter protein over two 100 µl beds of
272 Ni-NTA Superflow resin in tandem (Qiagen). Eluent was concentrated using 100 kDa cut-
273 off Amicon Ultra filters (Millipore-Sigma).

274 **Nanodisc and liposome reconstitution**

275 Porcine BPL (Avanti) in chloroform were mixed with cholesterol (Sigma) at a final ratio of
276 80:20 w:w before being dried either under an Argon stream on ice or in a rotary evaporator
277 (Büchi) before resuspension in Di-ethyl ether (Merck) and drying again. For nanodisc
278 incorporation, detergent purified transporter lacking the fusion tag was mixed with
279 membrane scaffold protein (MSP1D1, purified as described (40)), and an 80:20 w:w
280 mixture of BPL and cholesterol containing 0.5% DDM/0.1% DDM/CHS using a 1:10:350
281 (ABCD1:MSP1D1:lipid mixture) molar ratio, and diluted with reconstitution buffer (25
282 mM Hepes pH 7.5, 150 mM NaCl) to reduce the glycerol concentration to 4% or lower.
283 Nanodisc reconstitution proceeded for 30 minutes at room temperature (RT), followed by
284 detergent removal using 0.8 mg pre-washed Biobeads SM-2 (Bio-Rad) per ml of reaction
285 mix for 2 hours at RT while slowly rolling. ABCD1 or ABCD1_{EQ} nanodiscs washed from
286 Biobeads were concentrated using a 100 kDa Amicon Ultra centrifugal filter (Millipore-
287 Sigma).

288 For liposome preparation, detergent purified ABCD1 was mixed with a 80:20 w:w
289 BPL/cholesterol lipid mixture at a protein:lipid ratio of 1:10 w:w, following established
290 protocols (41) with minor changes. Briefly 0.14% and 0.3% Triton X100 (Sigma) was added

291 to detergent purified ABCD1 concentrated to 1-1.5 mg/ml and BPL/Ch mix, respectively,
292 incubated for 30 minutes at room temperature before being mixed, incubated again for 60
293 min with gentle agitation. Detergent was removed during successive incubation steps using
294 20 mg fresh Biobeads SM2 per ml reaction mix each time. The incubation steps were carried
295 out with gentle rolling for 30 min at RT, 60 min @ 4°C, overnight @ 4°C, and 2 x 60 min
296 @ 4°C. The suspension was then centrifuged at 80K rpm for 30 min in an ultracentrifuge.
297 The supernatant was discarded, and the liposomal pellet was washed once with 1 ml of
298 reconstitution buffer per 1 ml original reaction volume. The centrifugation step was
299 repeated, supernatant discarded, and proteoliposomes resuspended in reconstitution buffer
300 to a concentration of 0.5-1 mg⁻¹ ml⁻¹.

301 **ATPase assays**

302 Proteins either in 0.02% DDM/0.004% w:w DDM/CHS detergent or reconstituted in 80:20
303 w:w BPL/cholesterol nanodiscs and liposomes were used in molybdate based calorimetric
304 ATPase assay (42) measured at 850 nm on a SYNERGY Neo 2 Multi-Mode microplate
305 reader (BioTek). The assay was carried out at 37°C in a 40- μ l volume in 96-well plates. The
306 reaction mixture contained 25 mM Hepes pH 7.5, 150 mM NaCl, 10 mM Magnesium
307 chloride (MgCl₂), and the protein concentration range was 0.1-0.2 mg ml⁻¹. The assays were
308 started by addition of 2 mM ATP, followed by a 40- or 60-minute incubation at 37°C, and
309 stopped by addition of 6% SDS. For ATP K_M determination, an ATP concentration range
310 of 0.0625 mM to 8 mM was used. Some experiments included ABCD1 ATPase inhibitors,
311 either 5 mM ATP γ S (TOCRIS) or 5 mM orthovanadate and 10 mM MgCl₂. A higher 5 mM
312 ATP concentration was used in experiments where ABCD1 was incubated with acetyl-
313 coenzyme A (CoA) or very-long-chain fatty acid-CoAs (VLCFA-CoAs: C26:0-CoA,
314 C24:0-CoA, and C22:0-CoA). Two different VLCFA-CoA concentrations (i.e., 1 mM and
315 100 μ M). Statistical analysis was done using GraphPad Prism 9. ATPase rates were
316 determined using linear regression, normalized to the basal ABCD1 ATPase rate. The K_M
317 and V_{max} of nanodisc and liposome reconstituted ABCD1 were determined from the fit to
318 the Michaelis-Menten equation of the corresponding ATPase rates. All assays were done at
319 least in triplicate of three independent experimental setups. In assays with substrates, the
320 means included nine replicates and six replicates for experiments with 1 mM and 100 μ M
321 VLCFA-CoAs, respectively. All VLCFA-CoAs were purchased from Avanti Polar Lipids
322 and resuspended as per manufacturer instructions. Protein concentrations were measured
323 using gel densitometry analyzed in Image Studio (LI-COR Biosciences) using detergent
324 purified proteins of known concentrations determined by A280 measurements as standards.

325 **Cryo-electron microscopy grid preparation and data collection**

326 Nanodisc reconstituted ABCD1 was further purified by size exclusion chromatography
327 (SEC) on a G4000swxl SEC column (TOSOH biosciences) pre-equilibrated with
328 reconstitution buffer on an Agilent 1260 Infinity II LC system (Agilent Technologies) at
329 4°C. Peak fractions were pooled and mixed with 5 mM ATP γ S (Sigma) and 10 mM MgCl₂
330 for 20 minutes at RT and concentrated to 0.5-1 mg ml⁻¹. A volume of 4 μ l protein samples
331 was applied to glow discharged Quantifoil R1.2/1.3 grids (Electron Microscopy Sciences,
332 Hatfield, PA, USA) using a Vitrobot Mark IV (Thermo Fisher Scientific) with a 4 sec

333 blotting time and 0 blotting force under >90% humidity at 4°C, then plunge frozen in liquid
334 ethane.

335 Images were collected under a 300 kV Titan Krios electron microscope equipped with a
336 Falcon 3EC direct electron detector (Thermo Fisher Scientific). Automated data collection
337 was carried out using the EPU software package (Thermo Fisher Scientific) at a nominal
338 magnification of 96,000x, corresponding to a calibrated pixel size of 0.895 Å with a defocus
339 range from -0.8 to -2.6 μm. Image stacks comprising 60 frames were recorded for 60 sec at
340 an estimated dose rate of 1 electron/Å²/frame.

341 **Image processing**

342 All data processing steps were carried out within Relion 3.1 beta and Relion 3.1 (43, 44).
343 Motion correction was done using Relion's implementation of MotionCor2 (45) and
344 contrast transfer function (CTF) correction was done using Relion's gctf (46) wrapper. For
345 initial processing, 3,402,440 particles picked from 8378 CTF corrected micrographs
346 extracted at a 3x downscaled pixel size of 2.685 Å/pixel and subjected to multiple rounds of
347 2D classification. 538,915 particles selected after 2D classification were used for 3D
348 classification (number of classes, K = 5) using a rescaled map of the cryo-EM structure of
349 ABCD4 (24) (EMDB-9791) as reference. C2 symmetry was applied for all 3D classification
350 and refinement steps. 2 main classes were obtained with NBDs dissociated (IO) or
351 dimerized (OO). The latter was refined to 7.5 Å and used as a reference for 3D classification
352 for the full data set comprising 9040835 particles picked from 19695 image stacks from
353 multiple data collections separated into subset 1 and subset 2. A flow chart depicting the
354 subsequent data processing steps is shown in Supplementary Figure 1D. For subset 1,
355 2845922 particles after 2D classification were used for 3D classification (K=8) using our
356 initial ABCD1 map as a 3D reference. The 4 highest resolution classes (highlighted blue)
357 were reclassified (K=5) to yield 2 main 3D classes for the OO (highlighted green) and IO
358 (highlighted yellow) conformations. The former was refined to 8.3 Å resolution and the
359 particles from this class were subjected to additional 2D classification from which 257981
360 selected particles were used for further 3D classification (K=8). The highest resolution of
361 these was combined with an equivalent class from dataset 2 processed similarly to dataset
362 1. 64750 combined particles were refined to 5.5 Å resolution before being re-extraction
363 using refined coordinates at a pixel size of 0.895 Å / pixel. After 3D refinement and Bayesian
364 polishing, a 3.8 Å resolution map was obtained. Signal subtraction was then done to remove
365 the nanodisc belt before an additional round of 3D classification (K=3). 37237 particles
366 from the highest resolution class was refined using original particles, followed by B-factor
367 sharpening and Post Processing to yield a final map (Map 1) at 3.5 Å resolution. A local
368 resolution filtered map was generated using relion's own algorithm.

369 The IO class from dataset 1 was refined to 7 Å resolution before being further 3D classified
370 (K=8). The three highest resolution classes from this round of 3D classification were
371 combined with 2 IO classes from Dataset 2 processed similarly to Dataset 1 and further 3D
372 classified (K=5). 3 highest resolution classes were subjected to 3D refinement and Bayesian
373 polishing to generate a 5.5 Å map. 2 similar classes from another round of 3D classification
374 (K=3) were further refined and the corresponding particles re-extracted to a new pixel size

375 of 1.79 Å/pixel using refined coordinates and subjected to a final round of Bayesian
376 polishing, 3D refinement, B-factor sharpening and Post processing to yield a 4.4 Å map
377 (Map 2) for the IO conformation.

378 **Model Building**

379 Model building was done in Chimera (47) and coot (48, 49). Map 1 and its local resolution
380 filtered version were used to build a model of the OO conformation of ABCD1 in coot using
381 a SWISS-MODEL (50) generated homology model of ABCD1 based on the published
382 ABCD4 structure as a starting point. The quality of EM density allowed accurate side chain
383 placement for the bulk of the NBD and TMD residues. Restrained real space refinement
384 was carried out in Phenix (51). For the IO conformation, TM1-TM2, TM4-TM5, and TM3-
385 TM6 pairs and NBDs from the OO conformation structure were individually rigid body
386 placed into Map 2 followed by manual adjustment as allowed for by the map. The region
387 between residues 361 and 370 was modeled as an alpha helix in agreement with secondary
388 structure predictions. Figures were prepared in Chimera, ChimeraX (52), and The PyMOL
389 Molecular Graphics System (Schrödinger, LLC).

390 **Acknowledgments:** We would like to thank the cryo-EM and shared instruments core
391 facilities at the Hormel Institute for help with experimental setup and Dr. Rhoderick Brown,
392 Dr. Jarrod French, and Dr. Jeppe Olsen for critical reading and discussion during manuscript
393 preparation. This work was supported in part by the Hormel Foundation (Institutional
394 research funds to AA), the United Leukodystrophy Foundation (ULF research grant to AA),
395 and the EAGLES Cancer Telethon Postdoctoral Fellowship (to LTML).

396 **Author contributions:** AA conceived the research. LTML, JRT, and AA performed all
397 research with technical assistance from PXD. JB helped with EM sample preparation and
398 handling and data collection. LTML, JRT, and AA wrote the manuscript with input from all
399 other authors.

400 **Conflict of interest:** Authors declare that they have no competing interests

401 **Data and materials availability:** The cryo-EM Maps for nanodisc reconstituted human
402 ABCD1 have been deposited at the Elecron Microscopy Databank (EMDB) under accession
403 codes EMD-24656 (Map 1, ABCD1-OO) and EMD-24657 (Map 2. ABCD1-IO)
404 respectively. The associated atomic coordinates have been deposited at the Protein Data
405 bank (PDB) under accession codes 7RR9 (ABCD1 OO) and 7RRA (ABCD1 IO).

406
407
408 **References**

1. H. W. Moser, K. D. Smith, P. A. Watkins, J. Powers, A. Moser, in *The Metabolic and Molecular Basis of Inherited Disease, 8th edition.* (McGraw-Hill, New York, 2002), pp. 3257-3301.
2. N. Shimozawa *et al.*, X-linked adrenoleukodystrophy: Diagnostic and follow-up system in Japan. *J Hum Genet* **56**, 106-109 (2011).

415 3. M. Engelen *et al.*, X-linked adrenoleukodystrophy (X-ALD): clinical presentation and
416 guidelines for diagnosis, follow-up and management. *Orphanet J Rare Dis* **7**, 51 (2012).

417 4. J. Mosser *et al.*, Putative X-linked adrenoleukodystrophy gene shares unexpected homology
418 with ABC transporters. *Nature* **361**, 726-730 (1993).

419 5. D. Trompier, S. Savary. (Morgan and Claypool Life Sciences Publishers, San Rafael, CA,
420 2013).

421 6. J. Berger, J. Gartner, X-linked adrenoleukodystrophy: clinical, biochemical and
422 pathogenetic aspects. *Biochim Biophys Acta* **1763**, 1721-1732 (2006).

423 7. S. Kemp *et al.*, ABCD1 mutations and the X-linked adrenoleukodystrophy mutation
424 database: role in diagnosis and clinical correlations. *Hum Mutat* **18**, 499-515 (2001).

425 8. J. Berger, S. Forss-Petter, F. S. Eichler, Pathophysiology of X-linked
426 adrenoleukodystrophy. *Biochimie* **98**, 135-142 (2014).

427 9. C. W. T. van Roermund, W. F. Visser, L. Ijlst, H. R. Waterham, R. J. A. Wanders,
428 Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid
429 beta-oxidation. *Bba-Mol Cell Biol L* **1811**, 148-152 (2011).

430 10. A. R. Tanaka *et al.*, Effects of mutations of ABCA1 in the first extracellular domain on
431 subcellular trafficking and ATP binding/hydrolysis. *J Biol Chem* **278**, 8815-8819 (2003).

432 11. A. R. Tanaka *et al.*, ATP binding/hydrolysis by and phosphorylation of peroxisomal ATP-
433 binding cassette proteins PMP70 (ABCD3) and adrenoleukodystrophy protein (ABCD1). *J
434 Biol Chem* **277**, 40142-40147 (2002).

435 12. K. Kawaguchi, M. Morita, ABC Transporter Subfamily D: Distinct Differences in Behavior
436 between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease.
437 *Biomed Res Int* **2016**, 6786245 (2016).

438 13. C. Wiesinger, M. Kunze, G. Regelsberger, S. Forss-Petter, J. Berger, Impaired very long-
439 chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a
440 direct consequence of ABCD1 transporter dysfunction. *J Biol Chem* **288**, 19269-19279
441 (2013).

442 14. S. Forss-Petter *et al.*, Targeted inactivation of the X-linked adrenoleukodystrophy gene in
443 mice. *J Neurosci Res* **50**, 829-843 (1997).

444 15. T. Kobayashi, N. Shinnoh, A. Kondo, T. Yamada, Adrenoleukodystrophy protein-deficient
445 mice represent abnormality of very long chain fatty acid metabolism. *Biochem Biophys Res
446 Commun* **232**, 631-636 (1997).

447 16. J. F. Lu *et al.*, A mouse model for X-linked adrenoleukodystrophy. *Proc Natl Acad Sci U S
448 A* **94**, 9366-9371 (1997).

449 17. K. Hama *et al.*, Profiling and Imaging of Phospholipids in Brains of Abcd1-Deficient Mice.
450 *Lipids* **53**, 85-102 (2018).

451 18. G. Lombard-Platet, S. Savary, C. O. Sarde, J. L. Mandel, G. Chimini, A close relative of
452 the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific
453 expression pattern. *Proc Natl Acad Sci U S A* **93**, 1265-1269 (1996).

454 19. K. Kamijo, S. Taketani, S. Yokota, T. Osumi, T. Hashimoto, The 70-kDa peroxisomal
455 membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein
456 superfamily. *J Biol Chem* **265**, 4534-4540 (1990).

457 20. V. Kos, R. C. Ford, The ATP-binding cassette family: a structural perspective. *Cellular and
458 Molecular Life Sciences* **66**, 3111-3126 (2009).

459 21. J. C. Kim *et al.*, Late onset of symptoms in an atypical patient with the *cblJ* inborn error of
460 vitamin B12 metabolism: diagnosis and novel mutation revealed by exome sequencing. *Mol*
461 *Genet Metab* **107**, 664-668 (2012).

462 22. D. Coelho *et al.*, Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism.
463 *Nat Genet* **44**, 1152-1155 (2012).

464 23. Y. Kashiwayama *et al.*, 70-kDa peroxisomal membrane protein related protein
465 (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal
466 hydrophobic property determines the subcellular localization of ABC subfamily D proteins.
467 *Exp Cell Res* **315**, 190-205 (2009).

468 24. D. Xu *et al.*, Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. *Cell Res*
469 **29**, 1039-1041 (2019).

470 25. F. Geillon *et al.*, Structure-function analysis of peroxisomal ATP-binding cassette
471 transporters using chimeric dimers. *J Biol Chem* **289**, 24511-24520 (2014).

472 26. E. C. Genin *et al.*, Substrate specificity overlap and interaction between
473 adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein
474 (ALDRP/ABCD2). *J Biol Chem* **286**, 8075-8084 (2011).

475 27. C. W. van Roermund *et al.*, The human peroxisomal ABC half transporter ALDP functions
476 as a homodimer and accepts acyl-CoA esters. *FASEB J* **22**, 4201-4208 (2008).

477 28. C. P. Guimaraes *et al.*, Mouse liver PMP70 and ALDP: homomeric interactions prevail in
478 vivo. *Biochim Biophys Acta* **1689**, 235-243 (2004).

479 29. P. Andreoletti *et al.*, Predictive Structure and Topology of Peroxisomal ATP-Binding
480 Cassette (ABC) Transporters. *Int J Mol Sci* **18**, (2017).

481 30. J. E. Richter, Jr. *et al.*, Characterization of a Pathogenic Variant in the ABCD1 Gene
482 Through Protein Molecular Modeling. *Case Rep Genet* **2020**, 3256539 (2020).

483 31. A. Alam, J. Kowal, E. Broude, I. Roninson, K. P. Locher, Structural insight into substrate
484 and inhibitor discrimination by human P-glycoprotein. *Science* **363**, 753-756 (2019).

485 32. N. M. I. Taylor *et al.*, Structure of the human multidrug transporter ABCG2. *Nature*, (2017).

486 33. T. Okamoto *et al.*, Characterization of human ATP-binding cassette protein subfamily D
487 reconstituted into proteoliposomes. *Biochem Biophys Res Commun* **496**, 1122-1127 (2018).

488 34. C. De Marcos Lousa *et al.*, Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP
489 binding cassette transporter is required for transport and metabolism of fatty acids. *Proc*
490 *Natl Acad Sci U S A* **110**, 1279-1284 (2013).

491 35. R. J. Dawson, K. P. Locher, Structure of a bacterial multidrug ABC transporter. *Nature* **443**,
492 180-185 (2006).

493 36. J. Y. Lee, J. G. Yang, D. Zhitnitsky, O. Lewinson, D. C. Rees, Structural basis for heavy
494 metal detoxification by an Atm1-type ABC exporter. *Science* **343**, 1133-1136 (2014).

495 37. Z. Wang, W. Hu, H. Zheng, Pathogenic siderophore ABC importer YbtPQ adopts a
496 surprising fold of exporter. *Sci Adv* **6**, eaay7997 (2020).

497 38. K. Kawaguchi *et al.*, Acyl-CoA thioesterase activity of peroxisomal ABC protein ABCD1
498 is required for the transport of very long-chain acyl-CoA into peroxisomes. *Sci Rep* **11**, 2192
499 (2021).

500 39. A. Alam *et al.*, Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1.
501 *Proc Natl Acad Sci U S A* **115**, E1973-E1982 (2018).

502 40. T. K. Ritchie *et al.*, Chapter 11 - Reconstitution of membrane proteins in phospholipid
503 bilayer nanodiscs. *Methods Enzymol* **464**, 211-231 (2009).

504 41. E. R. Geertsma, N. A. Nik Mahmood, G. K. Schuurman-Wolters, B. Poolman, Membrane
505 reconstitution of ABC transporters and assays of translocator function. *Nat Protoc* **3**, 256-
506 266 (2008).

507 42. S. Chifflet, A. Torriglia, R. Chiesa, S. Tolosa, A method for the determination of inorganic
508 phosphate in the presence of labile organic phosphate and high concentrations of protein:
509 application to lens ATPases. *Anal Biochem* **168**, 1-4 (1988).

510 43. S. H. Scheres, RELION: implementation of a Bayesian approach to cryo-EM structure
511 determination. *J Struct Biol* **180**, 519-530 (2012).

512 44. J. Zivanov, T. Nakane, S. H. W. Scheres, Estimation of high-order aberrations and
513 anisotropic magnification from cryo-EM data sets in RELION-3.1. *IUCrJ* **7**, 253-267
514 (2020).

515 45. S. Q. Zheng *et al.*, MotionCor2: anisotropic correction of beam-induced motion for
516 improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).

517 46. K. Zhang, Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12 (2016).

518 47. E. F. Pettersen *et al.*, UCSF Chimera--a visualization system for exploratory research and
519 analysis. *J Comput Chem* **25**, 1605-1612 (2004).

520 48. A. Brown *et al.*, Tools for macromolecular model building and refinement into electron
521 cryo-microscopy reconstructions. *Acta Crystallogr D Biol Crystallogr* **71**, 136-153 (2015).

522 49. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. *Acta
523 Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

524 50. A. Waterhouse *et al.*, SWISS-MODEL: homology modelling of protein structures and
525 complexes. *Nucleic Acids Res* **46**, W296-W303 (2018).

526 51. P. D. Adams *et al.*, PHENIX: a comprehensive Python-based system for macromolecular
527 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221 (2010).

528 52. E. F. Pettersen *et al.*, UCSF ChimeraX: Structure visualization for researchers, educators,
529 and developers. *Protein Sci* **30**, 70-82 (2021).

530

531

532

533

534

535

536

537

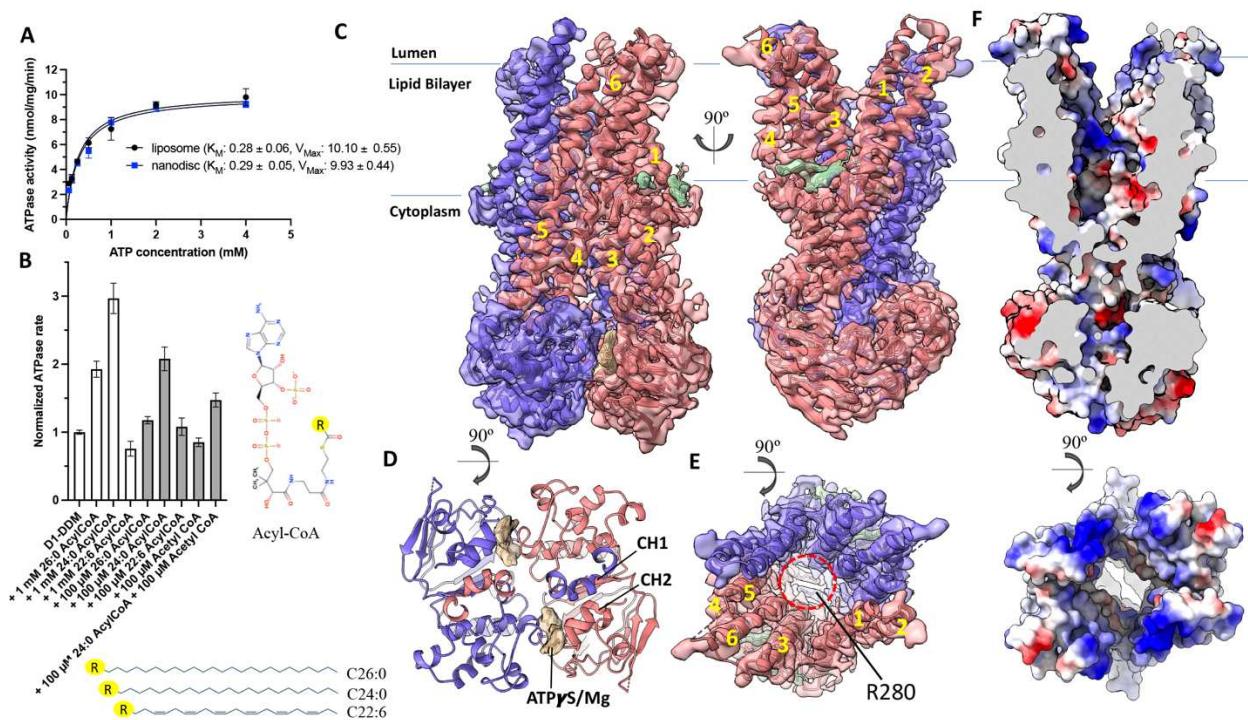
538

539

540

541

542


543

544

545

546

547 **Figure 1**

548

549

550 **Figure 1: Structural and Functional characterization of ABCD1 human ABCD1.** **(A)** ATPase activity
551 of ABCD1 reconstituted in liposomes or nanodiscs as a function of ATP concentration, n=3 and error bars
552 represent standard deviation **(B)** normalized ATPase activity of detergent purified ABCD1 in the presence
553 of CoA esters of varying acyl chain composition, n=6 (100μM) or 9 (1mM) and error bars represent standard
554 error of measurement **(C-E)** Structure of human ABCD1 homodimer viewed from the membrane plane (D),
555 peroxisomal lumen with TMDs removed for clarity, and (E) peroxisomal lumen with intracellular gate
556 circled (dashed red line). EM density (0.4 threshold) and ribbons are colored red and slate for each ABCD1
557 monomer. EM Density (0.4 threshold) for modeled lipid-like entities and bound nucleotides is colored green
558 and yellow, respectively. TMs are numbered **(F)** Electrostatic surface representation of ABCD1 viewed as
559 a slice from the membrane plane (top) or from peroxisomal lumen (bottom).

560

561

562

563

564

565

566

567

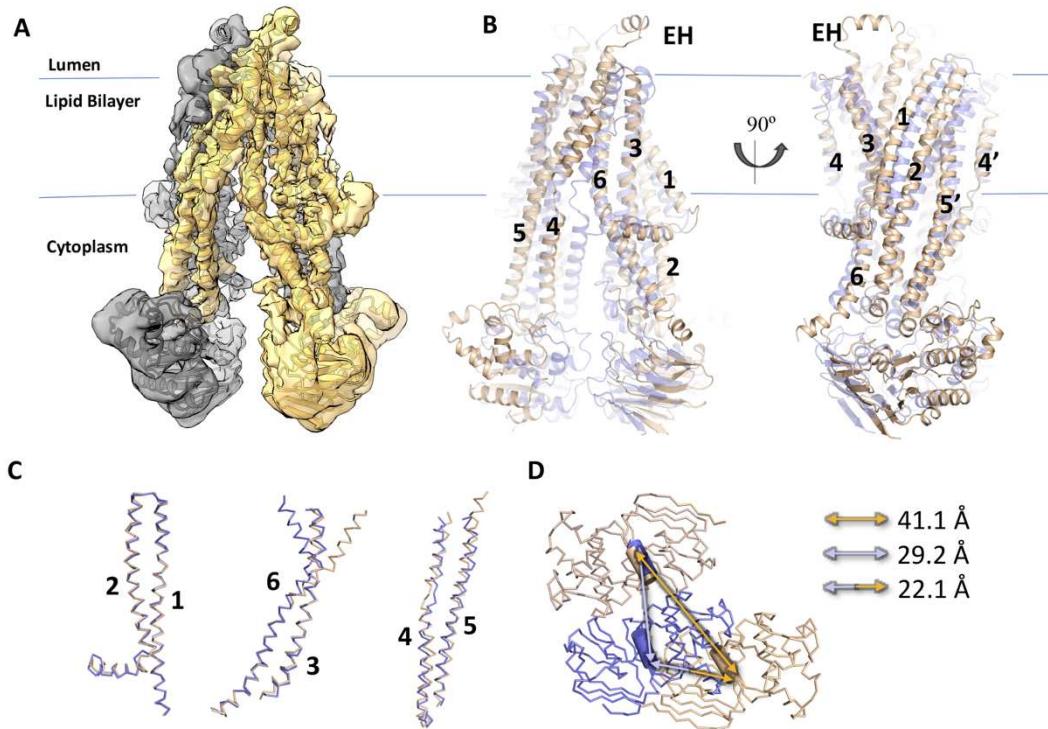
568

569

570

571

572


573

574

575

576

Figure 2

577

578

579 **Figure 2: Comparison of IO and OO conformations of ABCD1.** **A)** EM density map (0.5 threshold) of
580 human ABCD1 IO (cytoplasm facing) conformation colored yellow and grey for two monomers with
581 similarly colored ribbon representing the protein backbone. **(B)** Overlay of IO and OO structures of human
582 ABCD1 (gold and blue ribbons, respectively) with TMs numbered and external helix (EH) shown for IO
583 conformation. **(C)** Superposition of individual TM pairs from IO and OO structures. **(D)** Comparison of
584 NBDs of IO and OO structures aligned using a single NBD as a reference point. Arrows depict inter coupling
585 helix (cylinders) distances.

586

587

588

589

590

591

592

593

594

595

596

597

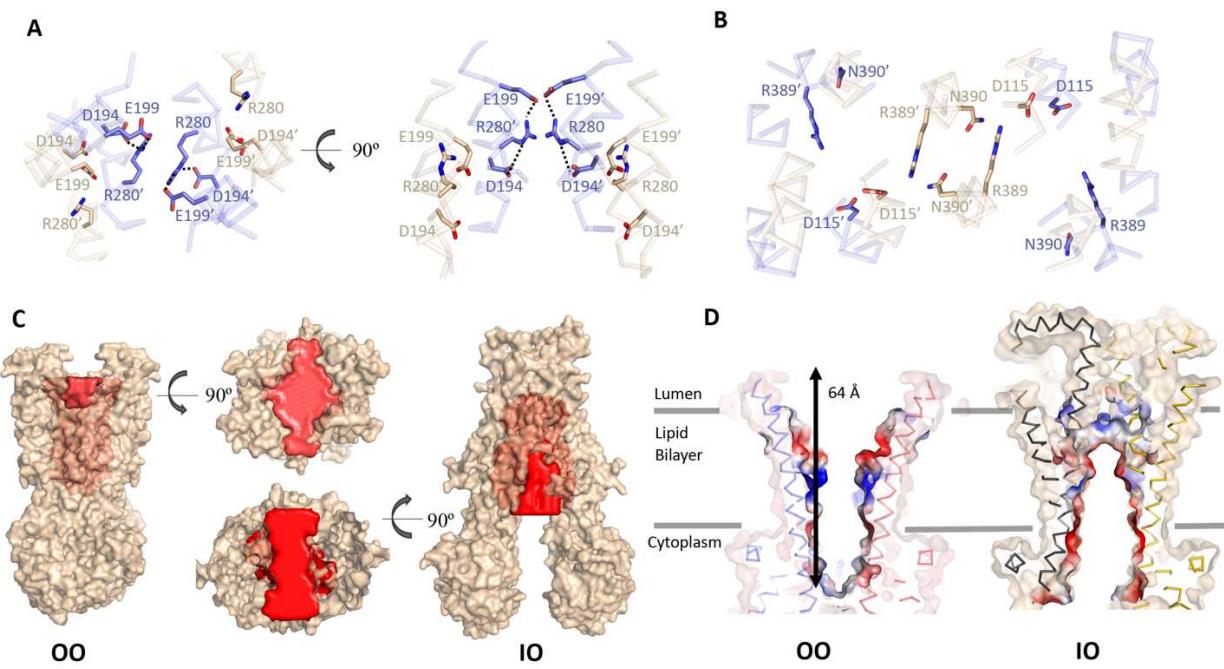
598

599

600

601

602


603

604

605

606

Figure 3

607

Figure 3: Comparison of IO and OO TMD cavities of ABCD1. **A)** Overlay of IO and OO ABCD1 structures (gold and blue sticks, respectively) but showing intracellular gate and surrounding residues viewed from the peroxisome lumen (left) and membrane plane (right). Equivalent residues from the two halves are distinguished by a prime symbol **B)** Same as (A) showing residues comprising the peroxisomal gate. **C)** Surface representation of OO and IO structures of ABCD1 with solvent exposed cavities colored red. **D)** Slice through electrostatic surfaces of OO and IO structures of ABCD1 focused on the TMD region.

614

615

616

617

618

619

620

621

622

623

624

625

626

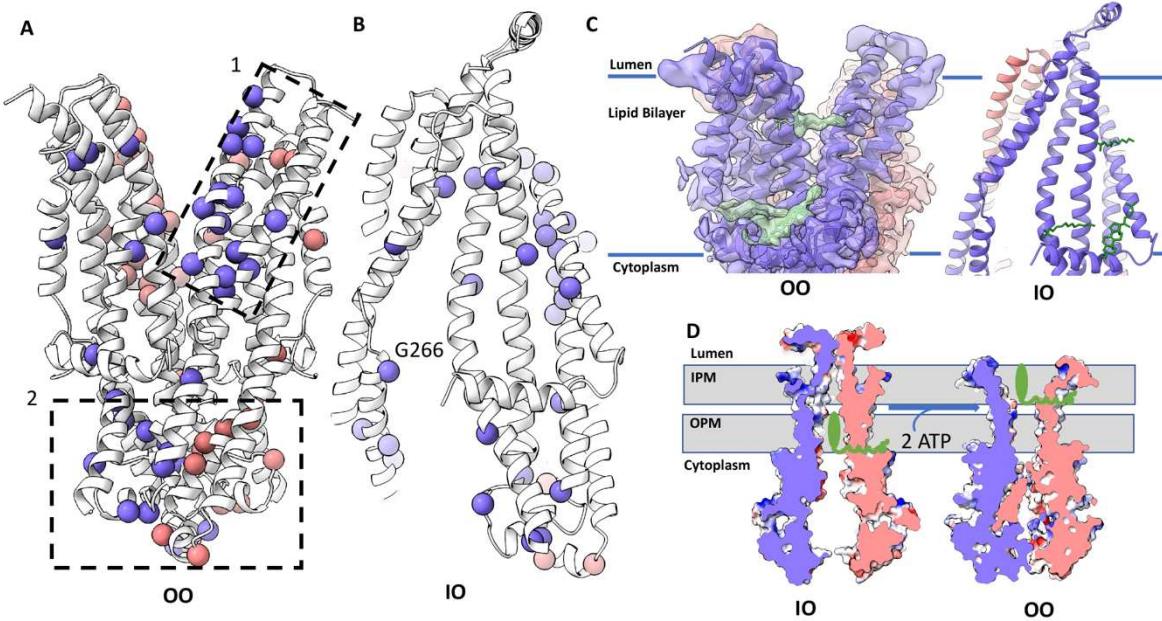
627

628

629

630

631


632

633

634

635
636
637
638

Figure 4

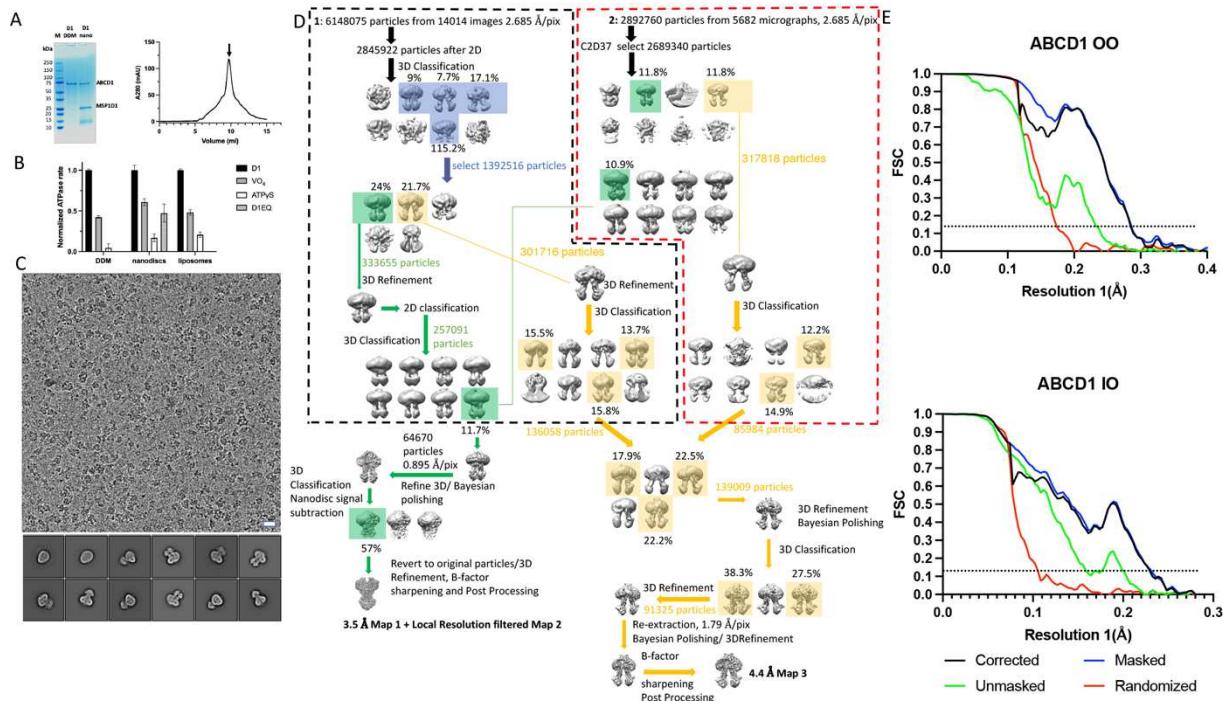

639
640
641
642
643
644
645
646
647

Figure 4: Analysis of TMD mutations in ABCD1 and proposed substrate interactions. **A)** ABCD1 TMD with Ca atoms of the most frequently mutated residues shown as spheres colored slate and pink for the two ABCD1 monomers and divided into two main clusters (dashed boxes 1 & 2). **B)** Select ABCD1 disease causing mutations mapped onto ABCD1 IO structure. **C)** EM density (0.4 threshold) of ABCD1 showing modeled lipid-like entities (green) observed in the OO structure (left) and mapped onto the IO structure (right, green sticks). **D)** Hypothetical mechanism of ATP dependent fatty-acyl-CoA (green) translocation across the peroxisomal membrane (grey) mediated by ABCD1.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

663
664
665

Supplementary Figure 1.

666
667 **Supplementary Figure 1: Functional reconstitution and structure determination of nanodisc**
668 **reconstituted human ABCD1. A)** 4-15% Coomassie stained gradient gel for detergent purified and
669 nanodisc reconstituted ABCD1. **B)** ATPase activity of wild type ABCD1 (D1) in the presence of sodium
670 orthovanadate (VO₄) and ATP γ S. ATPase rates in each case are normalized to activity of wildtype ABCD1
671 alone. N=3, error bars represent S.D **C)** Representative micrograph of nanodisc reconstituted ABCD1 at
672 ~2.5 μ M defocus along with representative 2D classes. **D)** Data processing flowchart. Classes leading to OO
673 and IO structures are highlighted green and yellow, respectively. Dashed lines represent individual datasets
674 before classes were combined for further processing. **E)** Fourier Shell correlation curves for ABCD1 IO and
675 OO maps. Dashed lines indicate 0.143 cutoff.

676

Supplementary Figure 2.

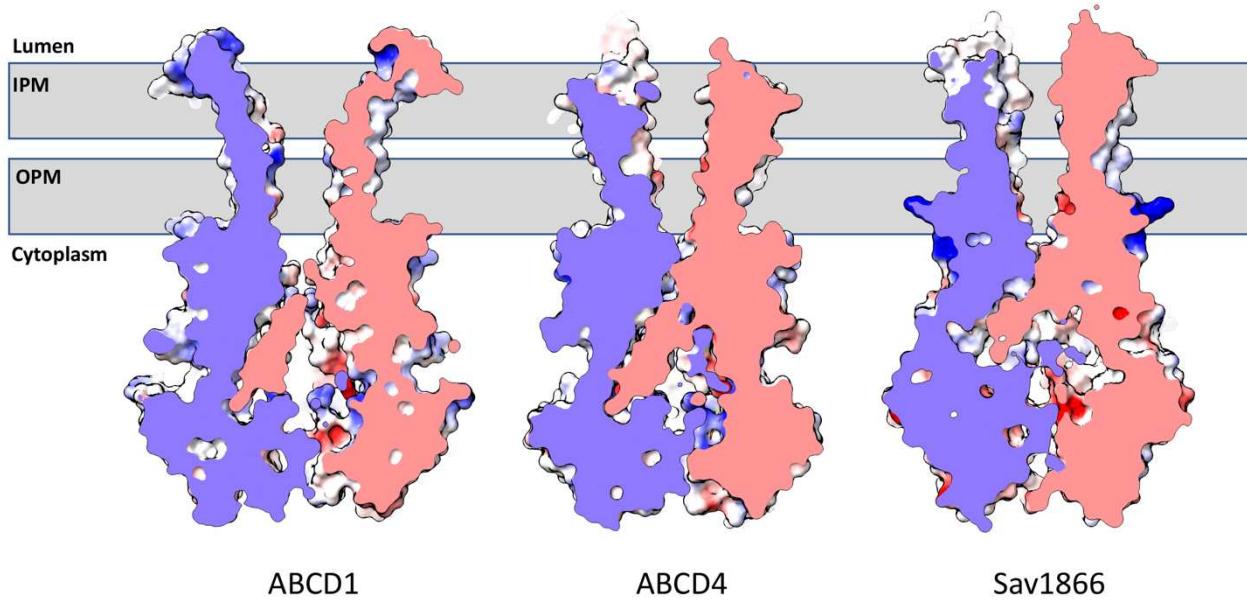
677

678 **Supplementary Figure 2: Local resolution variation in ABCD1 OO and IO maps.** Central slice through
679 local resolution filtered EM maps of nanodisc reconstituted human ABCD1 OO (left) and IO (right)
680 conformations with color key shown on left of each.

681

682

683


684

685

686

687

Supplementary Figure 3.

688

689 **Supplementary Figure 3:** Comparison of ABCD1 transmembrane cavity to that of ABCD4 and Sav1866. Grey bar
690 represents approximate position of peroxisomal membrane. IPM= Inner peroxisomal membrane, OPM=outer
691 peroxisomal membrane.

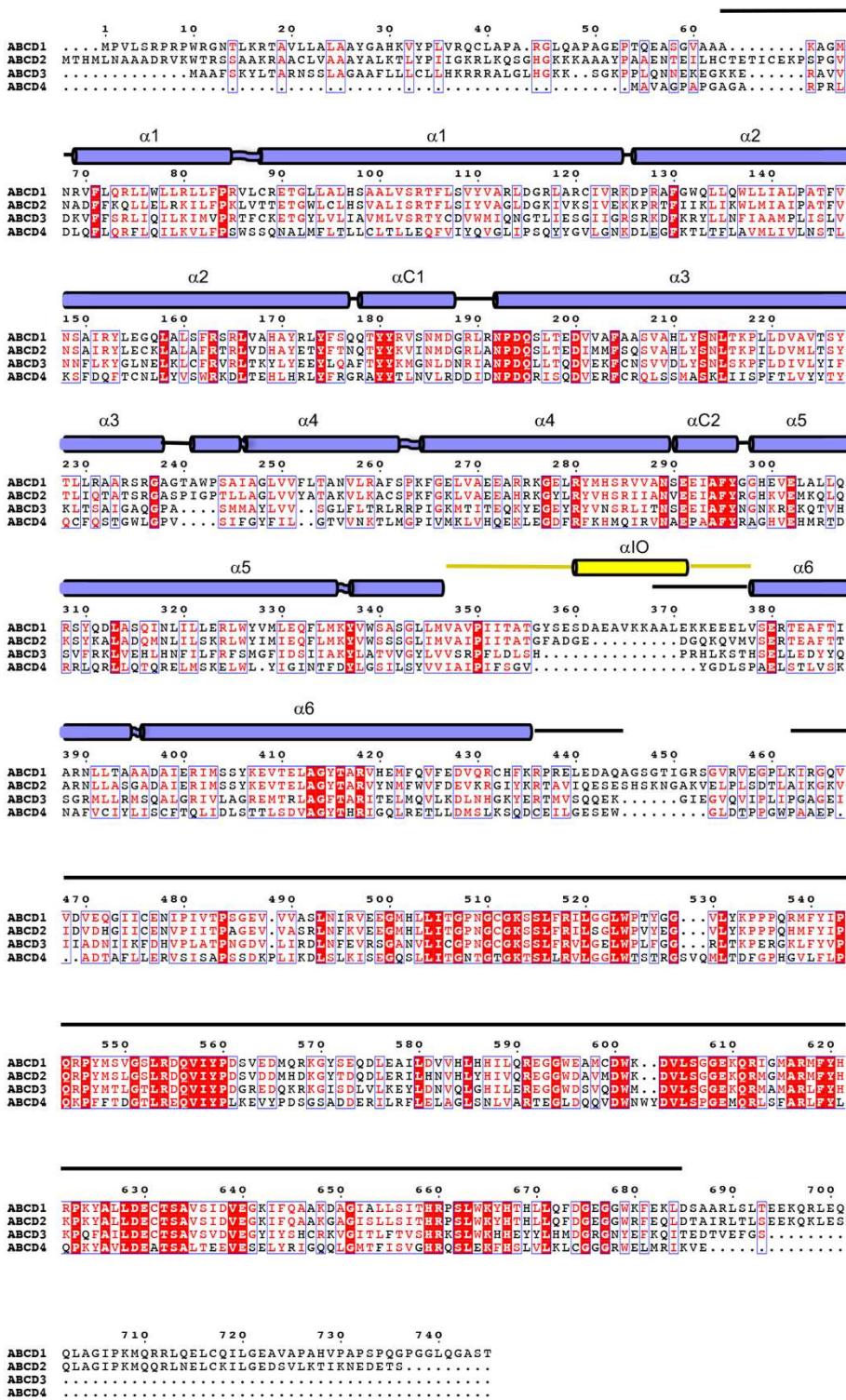
692

693

694

695

696


697

698

699

700

Supplementary Figure 4.

701

702 **Supplementary Figure 4:** Sequence alignment of human ABCD family transporters with secondary
703 structure assignment based on ABCD1 structures presented in this study shown.

704

Supplementary Table 1.

Dataset	Nanodisc reconstituted human ABCD1	
Magnification	96k	
Pixel Size (Å)	0.895	
Total Dose (e/Å²)	60	
Defocus Range (um)	-0.8 to 2.6	
Maps	Human ABCD1 OO	Human ABCD1 IO
EMDB ID	EMD-24656	EMD-24657
# Particles in final Class	37237	91325
Resolution (Å) (0.143 threshold)	3.5	4.4
Sharpening B factor	-65	-50
Refined Coordinates	Human ABCD1 OO	Human ABCD1 IO
PDB ID	7RR9	7RRA
# Residues/Non-hydrogen Atoms/Ligands	1130/9182/8	1204/9610
R.M.S deviations		
Bond Angles (Å)	0.650	0.831
Bond lengths (°)	0.005	0.006
MolProbity Statistics		
Molprobity Score	1.98	1.92
Clashscore	17.53	16.56
Poor rotamers (%)	0.11	0.59
Ramachandran statistics		
Favored (%)	96.42	96.82
Allowed (%)	3.58	3.18
Outliers (%)	0	0

705

706 **Supplementary Table 1: Data processing and refinement statistics**

707

708

709

710