

1 **Stimulus degradation impairs performance in a rodent continuous**
2 **performance test**

3
4
5 **Adrienne C. DeBrosse¹, Ye Li¹, Robyn Wiseman², Racine Ross^{1,3}, Sy'Keria**
6 **Garrison^{1,4}, Henry L. Hallock¹, James C. Barrow^{1,2}, Keri Martinowich^{1,5}, and**
7 **Gregory V. Carr^{1,2*}**

8
9 ¹Lieber Institute for Brain Development, Johns Hopkins University Medical Campus,
10 Baltimore, MD, USA.

11
12 ²Department of Pharmacology and Molecular Sciences, Johns Hopkins University School
13 of Medicine, Baltimore, MD, USA.

14
15 ³Kenyon College, Gambier, OH, USA.

16
17 ⁴Fayetteville State University, Fayetteville, NC, USA.

18
19 ⁵Department of Psychiatry and Behavioral Sciences and Solomon H. Snyder Department
20 of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA

21
22
23
24
25
26
27
28
29
30 *** Correspondence:**

31 Gregory V. Carr
32 Suite 300
33 855 North Wolfe Street
34 Baltimore, MD 21205
35 410-955-1000
36 greg.carr@libd.org

41 **Abstract**

42 Sustained attention is a core cognitive domain that is often disrupted in
43 neuropsychiatric disorders. Continuous performance tests (CPTs) are the most common
44 clinical assay of sustained attention. In CPTs, participants produce a behavioral
45 response to target stimuli and refrain from responding to non-target stimuli.
46 Performance in CPTs is measured as the ability to discriminate between targets and
47 non-targets. Rodent versions of CPTs (rCPT) have been developed and validated with
48 both anatomical and pharmacological studies, providing a translational platform for
49 understanding the neurobiology of sustained attention. In human studies, using
50 degraded stimuli (decreased contrast) in CPTs impairs performance and patients with
51 schizophrenia experience a larger decrease in performance compared to healthy
52 controls. In this study, we tested multiple levels of stimulus degradation in a
53 touchscreen version of the CPT in mice. We found that stimulus degradation
54 significantly decreased performance in both males and females. The changes in
55 performance consisted of a decrease in stimulus discrimination, measured as d' , and
56 increases in hit reaction time and reaction time variability. These findings are in line
57 with the effects of stimulus degradation in human studies. Overall, female mice
58 demonstrated a more liberal response strategy than males, but response strategy was
59 not affected by stimulus degradation. These data extend the utility of the mouse CPT by
60 demonstrating that stimulus degradation produces equivalent behavioral responses in
61 mice and humans. Therefore, the degraded stimuli rCPT has high translational value as
62 a preclinical assay of sustained attention.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79 **1. Introduction**

80 Sustained attention, the ability to focus on tasks over extended periods of time, is a
81 fundamental cognitive domain and it is impaired in many neuropsychiatric disorders
82 (Huntley, Hampshire, Bor, Owen, & Howard, 2017; J. Liu et al., 2021; S. K. Liu et al.,
83 2002). In schizophrenia specifically, when controlling for the severity of other
84 symptoms, functional outcome is correlated with sustained attention function (Green,
85 Kern, Braff, & Mintz, 2000). Therapeutics that improve sustained attention have been
86 approved for treating attention-deficit/hyperactivity disorder (ADHD), but the most
87 effective of these therapies, amphetamine and methylphenidate, have substantial abuse
88 liability and are contraindicated in other disorders characterized by attention deficits,
89 including schizophrenia (Berman, Kuczenski, McCracken, & London, 2009). Therefore,
90 novel therapeutics for attention deficits are needed.

91 Continuous performance tests (CPTs), first developed to identify attention
92 deficits in patients with brain lesions (Beck, Bransome, Mirsky, Rosvold, & Sarason,
93 1956), are the most commonly used clinical measures of sustained attention
94 (Nuechterlein et al., 2015; Riccio, Reynolds, Lowe, & Moore, 2002). CPTs are
95 characterized by target and non-target stimuli where participants are asked to respond
96 to targets and refrain from responding to non-targets. Trials are separated by short
97 inter-trial intervals during which no stimuli are present. Performance is usually
98 analyzed using components of signal detection theory, specifically the composite
99 measure of sensitivity (stimulus discrimination) called d' (Green and Swets, 1966). CPTs
100 are sensitive to the attentional deficits present across multiple neuropsychiatric
101 disorders including ADHD, schizophrenia, and major depressive disorder (Berger,
102 Slobodin, & Cassuto, 2017; Koetsier et al., 2002; Nuechterlein et al., 2015).

103 Different versions of the CPT have been designed to test particular components of
104 sustained attention (Borgaro et al., 2003). Degraded stimuli versions, where the
105 contrast between the stimuli and background is decreased, have been used to test the
106 stimulus detection and discrimination components of information processing in the CPT
107 (Nuechterlein, Parasuraman, & Jiang, 1983). In general, stimulus degradation impairs
108 performance in the CPT by making stimulus discrimination more difficult and
109 potentiating time on task decrements in vigilance (Grier et al., 2003). Patients with
110 schizophrenia tend to be more sensitive to stimulus degradation effects than other
111 participants (Nuechterlein, Edell, Norris, & Dawson, 1986; Nuechterlein et al., 2015).

112 Recently, a mouse version of the CPT using touchscreen-based operant chambers
113 was developed and validated (Kim et al., 2015). In the ensuing years, this CPT has been
114 used to test the procognitive effects of psychostimulants and identify brain regions
115 involved in sustained attention in mice (Caballero-Puntiverio, Lerdrup, Arvastson,
116 Aznar, & Andreasen, 2020; Caballero-Puntiverio et al., 2019; Hvoslef-Eide et al., 2018).
117 Kim and colleagues showed that decreasing image contrast in the touchscreen CPT
118 impairs performance (Kim et al., 2015). Here, we extend that result by including an
119 increased number of degradation levels and demonstrate the translational utility of this
120 CPT procedure by showing that mice performance is altered in similar ways compared
121 to human performance in the DS-CPT across multiple behavioral measures, including
122 overall sensitivity and reaction time variability.

123

124 **2. Materials and methods**

125 *2.1. Mice*

126 Eight-week-old male C57BL/6J mice (Strain #: 000664; The Jackson Laboratory, Bar
127 Harbor, ME, USA) were used in all experiments. The mice were group-housed in
128 disposable polycarbonate caging (Innovive, San Diego, CA, USA) and maintained on a
129 12/12 light/dark cycle (lights on at 0600 hours). Water was available in the home
130 cage *ad libitum* throughout all experiments. The mice were fed Teklad Irradiated Global
131 16% Protein Rodent Diet (#2916; Envigo, Indianapolis, IN, USA) in the home cage *ad*
132 *libitum* until the start of the food restriction protocol. Two separate cohorts of
133 mice (Cohort A, n = 7/male and 7/female; Cohort B, n = 7/male and 7/female) were
134 tested in these experiments and all testing was done Monday-Friday during the light
135 phase (1200-1600 hours). All experiments and procedures were approved by the Johns
136 Hopkins Animal Care and Use Committee and in accordance with the *Guide for the*
137 *Care and Use of Laboratory Animals*

138

139 **2.2 Food Restriction Protocol**

140 Upon arrival at the animal facility, mice were given at least 72 hours to acclimate to the
141 colony room before handling by experimenters. Mice were handled and weighed daily
142 from that point forward. After at least two days of handling, mice were food restricted to
143 3g of chow per mouse per day to maintain 85-90% of their predicted free-feeding weight
144 based on average growth-curve data for the strain (The Jackson Laboratory). To
145 familiarize the mice with the Nesquik® strawberry milk (Nestlé, Vevey, Switzerland)
146 reward used in the rCPT, we introduced the milk to the home cage on 4x4 inch weighing
147 paper (VWR, Radnor, PA, USA). The weighing paper was left in the cage until all mice
148 had sampled the strawberry milk. This procedure was repeated for a total of two days.

149 **2.3 rCPT procedure**

150 *2.3.1 Apparatus*

151 Eight Bussey-Saksida mouse touchscreen chambers (Lafayette Instruments, Lafayette,
152 IN, USA) running ABET II software (Campden Instruments, Loughborough, UK) were
153 used for the behavioral testing.

154 *2.3.2 rCPT Training*

155 *2.3.2.1 Habituation*

156 Mice were given 30-min habituation sessions to acclimate them to the touchscreen
157 chambers. In habituation sessions, 1 mL of strawberry milk was placed into the reward
158 tray. The screen was responsive to touch, but touches were not rewarded. Mice were
159 advanced to the next stage of training following three habituation sessions with at least
160 one session where the mouse had consumed all of the strawberry milk.

161 *2.3.2.2 Stage 1*

162 In Stage 1, mice were trained to touch a white square. Each session lasted for 45
163 minutes. The square was displayed for 10 seconds at a time, defined as the stimulus
164 duration (SD) followed by a 0.5 second limited hold (LH) period during which the
165 screen was blank, but a touch would still yield a reward. Upon interacting with the
166 stimulus, a one-second tone (3 kHz) would sound, a small amount of reward would be
167 dispensed, and the reward tray would be illuminated. Head entry into the reward tray
168 was detected by an IR beam, and following head entry the 2-sec intertrial interval (ITI)
169 would begin. If the mouse did not interact with the stimulus during the SD or LH, the
170 ITI would start and the next trial would follow. The criterion for advancement to Stage 2
171 was for a mouse to obtain 60 rewards within a single session.

172 *2.3.2.3 Stage 2*

173 In Stage 2, the white square pattern was replaced with either horizontal or vertical bars.
174 Sessions were still 45 minutes long. Each mouse was assigned one of the stimuli and this
175 would be that mouse's target, or S+, for the duration of the experiment and this S+
176 assignment was counterbalanced for each group. The SD was reduced from 10 seconds
177 to 2 seconds, and LH was increased from 0.5 seconds to 2.5 seconds. As in Stage 1,
178 criterion for advancement was 60 rewards earned within a single session.

179 **2.3.2.4 Stage 3**

180 In Stage 3, a non-target (S-) was added. On each trial, there was a 50% chance of either
181 S+ or S- presentation. SD and LH were identical to stage 2, but the ITI was increased to
182 5 seconds. Screen touches during S- trials would not yield a reward and would start the
183 ITI. The Stage 3 criteria for advancement were a minimum of seven sessions, during
184 which at least two consecutive sessions had a d' score of 0.6 or higher. The d'
185 discrimination index and other performance metrics are described in Table 1. Mice that
186 reached criterion on days other than Friday were held on Stage 3 training until the
187 following Monday.

188

189 **2.3.2.5 Degraded Stimuli Testing**

190 Following completion of Stage 3, mice in Cohort A moved to the degraded stimuli test
191 phase. Mice were exposed to four levels of degraded stimuli (50, 75, 87.5, and 93%
192 degraded; Figure 1). Degradation was achieved by editing the images using the add
193 noise filter in Photoshop (Version 2020, Adobe, San Jose, CA, USA). We randomly
194 changed a percentage of the pixels in each image according to a Gaussian distribution.
195 Degraded stimuli were the S+ and S- images from Stage 3 where the degradation
196 percentage represents the percentage of pixels replaced (Figure 1). Degraded stimuli

197 sessions were identical to Stage 3 except for the S+ and S-. Mice completed baseline
198 Stage 3 sessions on Monday, Wednesday, and Friday and degraded stimuli sessions on
199 Tuesday and Thursday. The degradation level order was counterbalanced within each
200 group.

201

202 *2.4 Data analysis*

203 Experiment databases were pulled from ABET II (Lafayette Instruments, Lafayette, IN,
204 USA) and initial processing was done in Excel. This initial processing involved
205 averaging the two baseline, non-degraded stimulus sessions from the day before and
206 after each degraded stimulus session. Prism 9 (GraphPad Software, LLC, San Diego,
207 CA, USA) was used for all data analysis. T-tests and ANOVAs were used for analysis
208 where appropriate. The significance threshold was set at $p < 0.05$. Sidak post hoc tests
209 were used where appropriate.

210

211 **3. Results**

212 *3.1 No sex difference in sessions to criterion during training*

213 Table 2 shows the summary data for the DS-CPT training stages. We found no difference
214 between males and females on the number of sessions to reach criterion in Stage 1 ($t_{26} =$
215 $0.6662, p = 0.5112$), Stage 2 ($t_{26} = 1.367, p = 0.1834$), or Stage 3 ($t_{26} = 0.3707, p =$
216 0.7139). Because there were two conditions for completion of Stage 3, we also analyzed
217 the number of sessions to reach the criterion of two consecutive sessions with a d' value
218 above 0.6. Here, we also found no difference between males and females on the Stage 3
219 d' criterion ($t_{26} = 1.436, p = 0.1629$).

220

221 *3.2 Male and female mice have similar baseline performance, but different response
222 strategies*

223 Although female mice advanced through training at a similar pace compared to male
224 mice, we noticed that female mice trended toward lower d' values during early training
225 sessions. We analyzed the last five Stage 3 sessions for a formal comparison. We chose
226 to focus on the last five sessions because mice did not complete the same number of
227 sessions, but all mice had d' values above 0.6 on their final session. We found that
228 performance improved across the five sessions for both males and females ($F_{4, 104} =$
229 $29.87, p < 0.0001$; Figure 2a) and that females had lower d' values across the sessions
230 ($F_{1, 26} = 5.051, p = 0.0333$). There were no session X sex interactions ($F_{4, 104} = 1.250, p =$
231 0.2944). Over these five sessions, female mice showed a more aggressive response
232 strategy quantified by a lower response criterion, c ($F_{1, 26} = 4.803, p = 0.0376$; Figure
233 2b). Response criterion was stable over time as there were no effects of session ($F_{4, 104} =$
234 $0.9266, p = 0.4515$) or session X sex interactions ($(F_{4, 104} = 2.143, p = 0.0807$). Despite
235 the lower d' scores for females early in training, males and females had similar scores by
236 the end of Stage 3 (Figure 2c). We compared the performance of male and female mice
237 on their final Stage 3 session and found no significant effect of sex on performance ($t_{26} =$
238 $0.8522, p = 0.4019$). Female mice still exhibited a more liberal response profile,
239 quantified as a lower c value (Figure 2d, $t_{26} = 2.240, p = 0.0338$). The more liberal
240 response strategy in females is not due to a difference in hit rates between males and
241 females (Figure 2e, $t_{26} = 1.424, p = 0.1633$), but results from a significantly higher false
242 alarm rate in females (Figure 2f, $t_{26} = 3.555, p = 0.0015$).

243

244 *3.3 Degraded stimuli impair CPT performance*

245 We next tested the effects of degraded stimuli on performance in Cohort A. We found
246 degraded stimuli significantly impaired performance as measured by d' in both male
247 and female mice ($F_{4, 48} = 12.10, p < 0.0001$; Figure 3a). There was no effect of sex on
248 performance ($F_{1, 12} = 2.290, p = 0.1561$) or any degradation X sex interactions ($F_{4, 48} =$
249 $0.4244, p = 0.7903$). Post hoc analyses showed that each of the degradation levels (50,
250 75, 87.5, and 93%) significantly impaired performance compared to baseline.

251 During training, female mice demonstrated a more liberal response strategy
252 compared to male mice. The liberal response strategy was characterized by an increased
253 false alarm rate and no change in the hit rate. Here, we normalized the response
254 criterion value within sex and analyzed the effect of stimulus degradation on this
255 measure. Degraded stimuli had no effect on response strategy in either males or females
256 ($F_{4, 48} = 0.3225, p = 0.8615$; Figure 3b). There were also no degradation X sex
257 interactions ($F_{4, 48} = 1.232, p = 0.3098$). As expected with a decrease in d' and no change
258 in c , degradation significantly decreased the hit rate ($F_{4, 48} = 5.851, p = 0.0006$; Figure
259 2d) and increased the false alarm rate ($F_{4, 48} = 4.123, p = 0.0060$; Figure 3c).

260

261 *3.4 Stimulus degradation increases response reaction times and reaction time
262 variability*

263 In human versions of the CPT, degraded stimuli are associated with longer reaction
264 times. Similarly, with our mouse version, we found response times on hit trials
265 increased as degradation level increased ($F_{4, 48} = 3.605, p = 0.0120$; Figure 4a). Female
266 mice had faster reaction times across all degradation levels ($F_{1, 12} = 7.988, p = 0.0153$)
267 and there were no significant degradation X sex interactions ($F_{4, 48} = 0.4259, p =$
268 0.7892).

269 We next tested whether the effects of degradation and sex on reaction times
270 during hit trials carried over to false alarm trials and latencies to collect reward
271 following correct trials. There were no significant effects of degradation ($F_{4, 48} = 0.6248$,
272 $p = 0.6471$), sex ($F_{1, 12} = 2.042$, $p = 0.1786$), or degradation X sex interactions ($F_{4, 48} =$
273 0.4097 , $p = 0.8008$; Figure 4b) on false alarm trials. Moreover, there were no effects of
274 degradation ($F_{4, 48} = 1.346$, $p = 0.2668$), sex ($F_{1, 12} = 3.839$, $p = 0.0737$), or degradation X
275 sex interactions ($F_{4, 48} = 1.247$, $p = 0.3038$; Figure 4c) on reward collection latency,
276 indicating degradation nor sex significantly affected motivation during sessions.

277 In human versions of the CPT, response time variability is often used as a
278 measure of performance alongside sensitivity measures and correlates with clinical
279 severity and drug response in attention-deficit/hyperactivity disorder (ADHD; Levy et
280 al., 2018). Here, we found that stimulus degradation increases reaction time variability
281 ($F_{4, 48} = 6.032$, $p = 0.0005$) and there were no significant effects of sex ($F_{1, 12} = 0.0160$, p
282 $= 0.9014$) or degradation X sex effects ($F_{4, 48} = 1.575$, $p = 0.1962$; Figure 3d) on this
283 measure.

284

285 **4. Discussion**

286 In these studies, we show that stimulus degradation decreases sensitivity (d'), slows
287 reaction times, and increases reaction time variability, all measures of impaired
288 performance, in a mouse touchscreen-based CPT. The changes in performance we
289 observed are qualitatively similar to what has been reported in people tested with
290 degraded stimuli versions of the CPT (Nuechterlein et al., 2015; Nuechterlein et al.,
291 1983). These data provide additional evidence for the translational value of this suite of
292 mouse touchscreen-based CPTs.

293 As demonstrated previously by multiple research groups, mice readily learn and
294 achieve a high level of proficiency in touchscreen-based CPTs (Caballero-Puntiverio et
295 al., 2020; Caballero-Puntiverio et al., 2019; Hvoslef-Eide et al., 2018). Here, we tested
296 mice on a simplified version of the CPT with parameters corresponding to Stage 3 of
297 training in previous datasets. This modification allowed us to decrease total training
298 time and focus on the effects of stimulus degradation on high-baseline performance. We
299 believe this modified protocol can serve as a platform for studying the neural circuits
300 involved in regulating stimulus discrimination in the CPT and screening of novel
301 therapeutic strategies.

302 In this study, we tested both male and female C57BL/6J mice. We saw no
303 significant differences in the primary measure of performance (d') in testing phases,
304 though females did take longer to reach their performance plateau. Additionally, there
305 were no sex differences in the effects of stimulus degradation. Interestingly, we did see
306 significant differences in the response strategy utilized throughout training and testing,
307 independent from stimulus degradation effects. We quantified response strategy using
308 the response criterion measure c from signal detection theory. Females demonstrated a
309 more liberal response strategy throughout the experiment. Liberal responding can
310 readout as a higher hit rate, higher false alarm rate, or some combination of both. In this
311 study, the female mice had significantly higher false alarm rates with no change in hit
312 rates compared to male mice.

313 The factors underlying the sex difference in response bias in our sample are
314 unclear and human studies in response strategy have shown mixed results. A meta-
315 analysis of children with ADHD and studies of adult participants indicate males have
316 more liberal response biases (Burton et al., 2010; Hasson & Fine, 2012). This difference

317 may be due to a species disconnect or differences in the CPT test parameters. Studies in
318 humans with direct comparisons between males and females have used the Conners'
319 CPT, which has a very high (>80%) target presentation rate, similar to the Five-Choice
320 Continuous Performance Task (5C-CPT) which is also used with mice (Young, Light,
321 Marston, Sharp, & Geyer, 2009). Due to the high target rate, the Conners' CPT is
322 thought to be a more sensitive measure of response inhibition where CPTs with lower
323 target rates are thought to be more sensitive measures of vigilance (Ballard, 2001).
324 These differences in task parameters may produce different response strategies and
325 biases. Future studies will need to address the effect of sex on performance in versions
326 of the rCPT that differ on the S+ probability rate and compare those results to human
327 versions with low target probability rates.

328 Reaction time and reaction time variability, measured as the standard deviation
329 of the reaction time, across a CPT session are sensitive measures of overall performance
330 and increased variability is correlated with impaired performance and treatment
331 response (Fredriksen, Egeland, Haavik, & Fasmer, 2021; Levy, Pipingas, Harris, Farrow,
332 & Silberstein, 2018). To our knowledge, reaction time variability has not been reported
333 in previous studies utilizing the rCPT. Here, we show that both reaction time and
334 reaction time variability increase with the level of stimulus degradation and are
335 correlated with impaired performance. Additional studies are required to determine if
336 reaction time is responsive to treatments that improve performance in mice.

337 The current studies provide additional evidence that the rCPT is a behavioral
338 assay with significant translational utility. Specifically, mice perform similarly to
339 humans in response to degraded stimuli. Therefore, degraded stimuli versions of the

340 rCPT have the potential to provide greater flexibility for the identification of
341 neurophysiological biomarkers and preclinical screening of novel cognitive enhancers.

342

343 **Data Availability Statement**

344 The datasets generated by this project are available upon request.

345 **Funding**

346 This work was supported by NIH grant R56MH126233 to GVC and KM.

347

348 **Acknowledgements**

349 The authors thank Michael Noback for technical assistance.

350 **Figure Legends**

351

352 *Figure 1 Stimulus exemplars.* S+'s consisted of either horizontal (shown) or vertical (not
353 shown) arrays of black and white boxes. The S- was a snowflake pattern. Stimulus
354 degradation was achieved by randomizing a set percentage of the pixels in the image
355 according to a Gaussian distribution.

356

357 *Figure 2 CPT performance during Stage 3 training.* (a) Discrimination (d') improved
358 across the last five sessions of training and males produced higher d' values compared to
359 females across the five sessions. (b) Females display a more liberal response criterion
360 compared to males. In the final training session, there was no difference on
361 discrimination between male and female mice (c), however, the difference in response
362 criterion was still present (d). The difference in response criterion was not driven by a
363 difference in the hit rate (e), but it appears to be driven by a significant difference in the
364 false alarm rate (f). n = 14/group and data are represented as the mean \pm SEM. *p <
365 0.05; **p < 0.01.

366

367 *Figure 3 CPT performance during stimulus degradation testing.* (a) d' is significantly
368 decreased by stimulus degradation at all levels tested. (b) There was no effect of
369 stimulus degradation on response criterion, but degradation did decrease the hit rate (c)
370 and increased the false alarm rate (d). n = 7/group and data are represented as the mean
371 \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001 compared to the baseline condition.

372

373 *Figure 4 Reaction times during stimulus degradation testing.* (a) Hit reaction time
374 increases as stimulus degradation increases while false alarm reaction time (b) and
375 reward latency (c) are unaffected. Additionally, the hit reaction time variability (d),
376 measured as the SD of the hit reaction time increases with stimulus degradation. n =
377 7/group and data are represented as the mean \pm SEM. *p < 0.05; **p < 0.01; ***p <
378 0.001 compared to the baseline condition.

379

380 **References**

381

382 Ballard, J. C. (2001). Assessing attention: comparison of response-inhibition and
383 traditional continuous performance tests. *J Clin Exp Neuropsychol*, 23(3), 331-
384 350. doi: 10.1076/jcen.23.3.331.1188

385 Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A
386 continuous performance test of brain damage. *J Consult Psychol*, 20(5), 343-350.
387 doi: 10.1037/h0043220

388 Berger, I., Slobodin, O., & Cassuto, H. (2017). Usefulness and Validity of Continuous
389 Performance Tests in the Diagnosis of Attention-Deficit Hyperactivity Disorder
390 Children. *Arch Clin Neuropsychol*, 32(1), 81-93. doi: 10.1093/arclin/acw101

391 Berman, S. M., Kuczenski, R., McCracken, J. T., & London, E. D. (2009). Potential
392 adverse effects of amphetamine treatment on brain and behavior: a review. *Mol
393 Psychiatry*, 14(2), 123-142. doi: 10.1038/mp.2008.90

394 Borgaro, S., Pogge, D. L., DeLuca, V. A., Bilginer, L., Stokes, J., & Harvey, P. D. (2003).
395 Convergence of different versions of the continuous performance test: clinical
396 and scientific implications. *J Clin Exp Neuropsychol*, 25(2), 283-292. doi:
397 10.1076/jcen.25.2.283.13646

398 Burton, L., Pfaff, D., Bolt, N., Hadjikyriacou, D., Silton, N., Kilgallen, C., . . . Allimant, J.
399 (2010). Effects of gender and personality on the Conners Continuous
400 Performance Test. *J Clin Exp Neuropsychol*, 32(1), 66-70. doi:
401 10.1080/13803390902806568

402 Caballero-Puntiverio, M., Lerdrup, L. S., Arvastson, L., Aznar, S., & Andreasen, J. T.
403 (2020). ADHD medication and the inverted U-shaped curve: A pharmacological
404 study in female mice performing the rodent Continuous Performance Test
405 (rCPT). *Prog Neuropsychopharmacol Biol Psychiatry*, 99, 109823. doi:
406 10.1016/j.pnpbp.2019.109823

407 Caballero-Puntiverio, M., Lerdrup, L. S., Grupe, M., Larsen, C. W., Dietz, A. G., &
408 Andreasen, J. T. (2019). Effect of ADHD medication in male C57BL/6J mice
409 performing the rodent Continuous Performance Test. *Psychopharmacology
(Berl)*, 236(6), 1839-1851. doi: 10.1007/s00213-019-5167-x

410 Fredriksen, M., Egeland, J., Haavik, J., & Fasmer, O. B. (2021). Individual Variability in
411 Reaction Time and Prediction of Clinical Response to Methylphenidate in Adult
412 ADHD: A Prospective Open Label Study Using Conners' Continuous Performance
413 Test II. *J Atten Disord*, 25(5), 657-671. doi: 10.1177/1087054719829822

414 Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and
415 functional outcome in schizophrenia: are we measuring the "right stuff"?
416 *Schizophr Bull*, 26(1), 119-136. doi: 10.1093/oxfordjournals.schbul.a033430

417 Green, D.M., & Swets, J.A. (1966). Signal detection theory and psychophysics. John
418 Wiley.Robyn

419 Grier, R. A., Warm, J. S., Dember, W. N., Matthews, G., Galinsky, T. L., & Parasuraman,
420 R. (2003). The vigilance decrement reflects limitations in effortful attention, not
421 mindlessness. *Hum Factors*, 45(3), 349-359. doi: 10.1518/hfes.45.3.349.27253

422 Hasson, R., & Fine, J. G. (2012). Gender differences among children with ADHD on
423 continuous performance tests: a meta-analytic review. *J Atten Disord*, 16(3), 190-
424 198. doi: 10.1177/1087054711427398

425

426 Huntley, J. D., Hampshire, A., Bor, D., Owen, A. M., & Howard, R. J. (2017). The
427 importance of sustained attention in early Alzheimer's disease. *Int J Geriatr
428 Psychiatry*, 32(8), 860-867. doi: 10.1002/gps.4537

429 Hvoslef-Eide, M., Nilsson, S. R., Hailwood, J. M., Robbins, T. W., Saksida, L. M., Mar,
430 A. C., & Bussey, T. J. (2018). Effects of anterior cingulate cortex lesions on a
431 continuous performance task for mice. *Brain Neurosci Adv*, 2. doi:
432 10.1177/2398212818772962

433 Kim, C. H., Hvoslef-Eide, M., Nilsson, S. R., Johnson, M. R., Herbert, B. R., Robbins, T.
434 W., . . . Mar, A. C. (2015). The continuous performance test (rCPT) for mice: a
435 novel operant touchscreen test of attentional function. *Psychopharmacology
436 (Berl)*, 232(21-22), 3947-3966. doi: 10.1007/s00213-015-4081-0

437 Koetsier, G. C., Volkers, A. C., Tulen, J. H., Passchier, J., van den Broek, W. W., &
438 Bruijn, J. A. (2002). CPT performance in major depressive disorder before and
439 after treatment with imipramine or fluvoxamine. *J Psychiatr Res*, 36(6), 391-397.
440 doi: 10.1016/s0022-3956(02)00026-2

441 Levy, F., Pipingas, A., Harris, E. V., Farrow, M., & Silberstein, R. B. (2018). Continuous
442 performance task in ADHD: Is reaction time variability a key measure?
443 *Neuropsychiatr Dis Treat*, 14, 781-786. doi: 10.2147/NDT.S158308

444 Liu, J., Liu, B., Wang, M., Ju, Y., Dong, Q., Lu, X., . . . Li, L. (2021). Evidence for
445 Progressive Cognitive Deficits in Patients With Major Depressive Disorder. *Front
446 Psychiatry*, 12, 627695. doi: 10.3389/fpsyg.2021.627695

447 Liu, S. K., Chiu, C. H., Chang, C. J., Hwang, T. J., Hwu, H. G., & Chen, W. J. (2002).
448 Deficits in sustained attention in schizophrenia and affective disorders: stable
449 versus state-dependent markers. *Am J Psychiatry*, 159(6), 975-982. doi:
450 10.1176/appi.ajp.159.6.975

451 Nuechterlein, K. H., Edell, W. S., Norris, M., & Dawson, M. E. (1986). Attentional
452 vulnerability indicators, thought disorder, and negative symptoms. *Schizophr
453 Bull*, 12(3), 408-426. doi: 10.1093/schbul/12.3.408

454 Nuechterlein, K. H., Green, M. F., Calkins, M. E., Greenwood, T. A., Gur, R. E., Gur, R.
455 C., . . . Braff, D. L. (2015). Attention/vigilance in schizophrenia: performance
456 results from a large multi-site study of the Consortium on the Genetics of
457 Schizophrenia (COGS). *Schizophr Res*, 163(1-3), 38-46. doi:
458 10.1016/j.schres.2015.01.017

459 Nuechterlein, K. H., Parasuraman, R., & Jiang, Q. (1983). Visual sustained attention:
460 image degradation produces rapid sensitivity decrement over time. *Science*,
461 220(4594), 327-329. doi: 10.1126/science.6836276

462 Riccio, C. A., Reynolds, C. R., Lowe, P., & Moore, J. J. (2002). The continuous
463 performance test: a window on the neural substrates for attention? *Arch Clin
464 Neuropsychol*, 17(3), 235-272.

465 Young, J. W., Light, G. A., Marston, H. M., Sharp, R., & Geyer, M. A. (2009). The 5-
466 choice continuous performance test: evidence for a translational test of vigilance
467 for mice. *PLoS One*, 4(1), e4227. doi: 10.1371/journal.pone.0004227

468

Figure 1

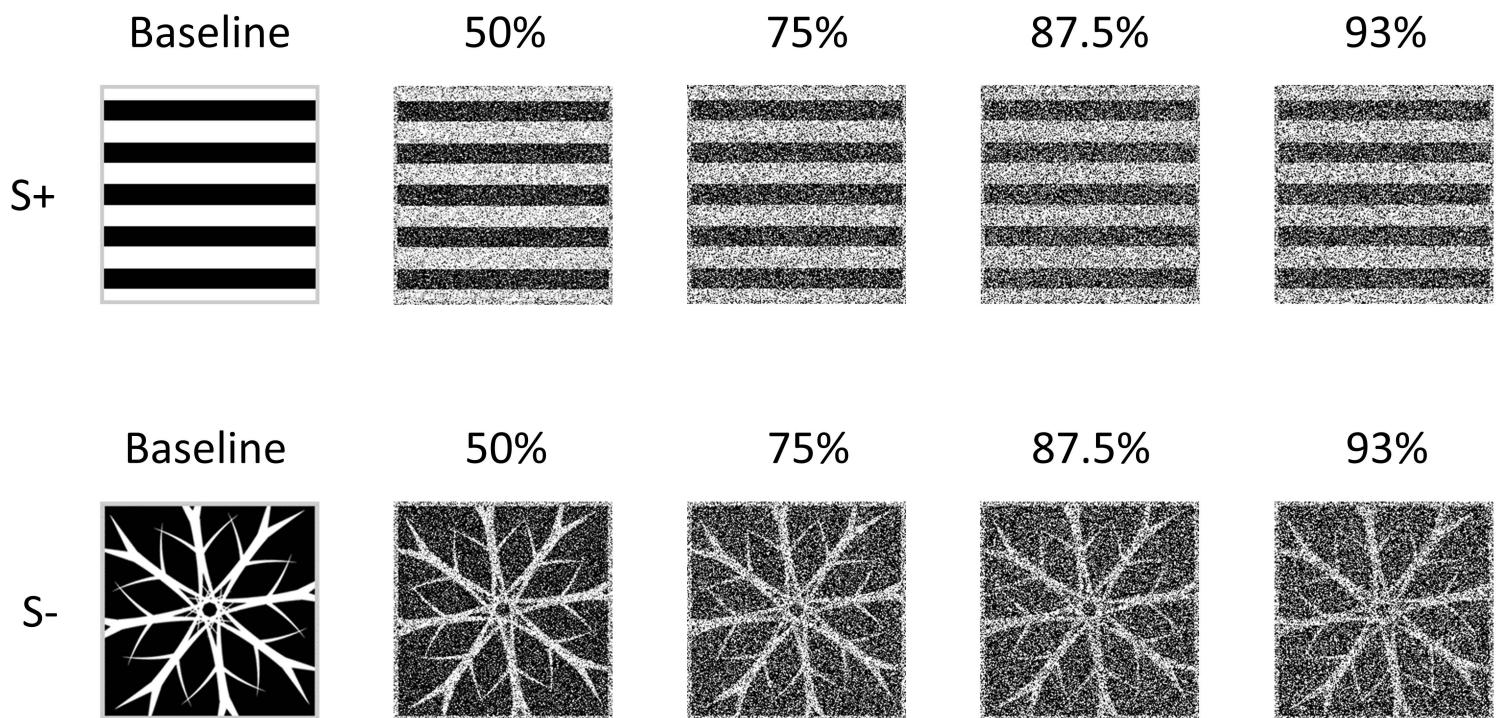


Figure 2

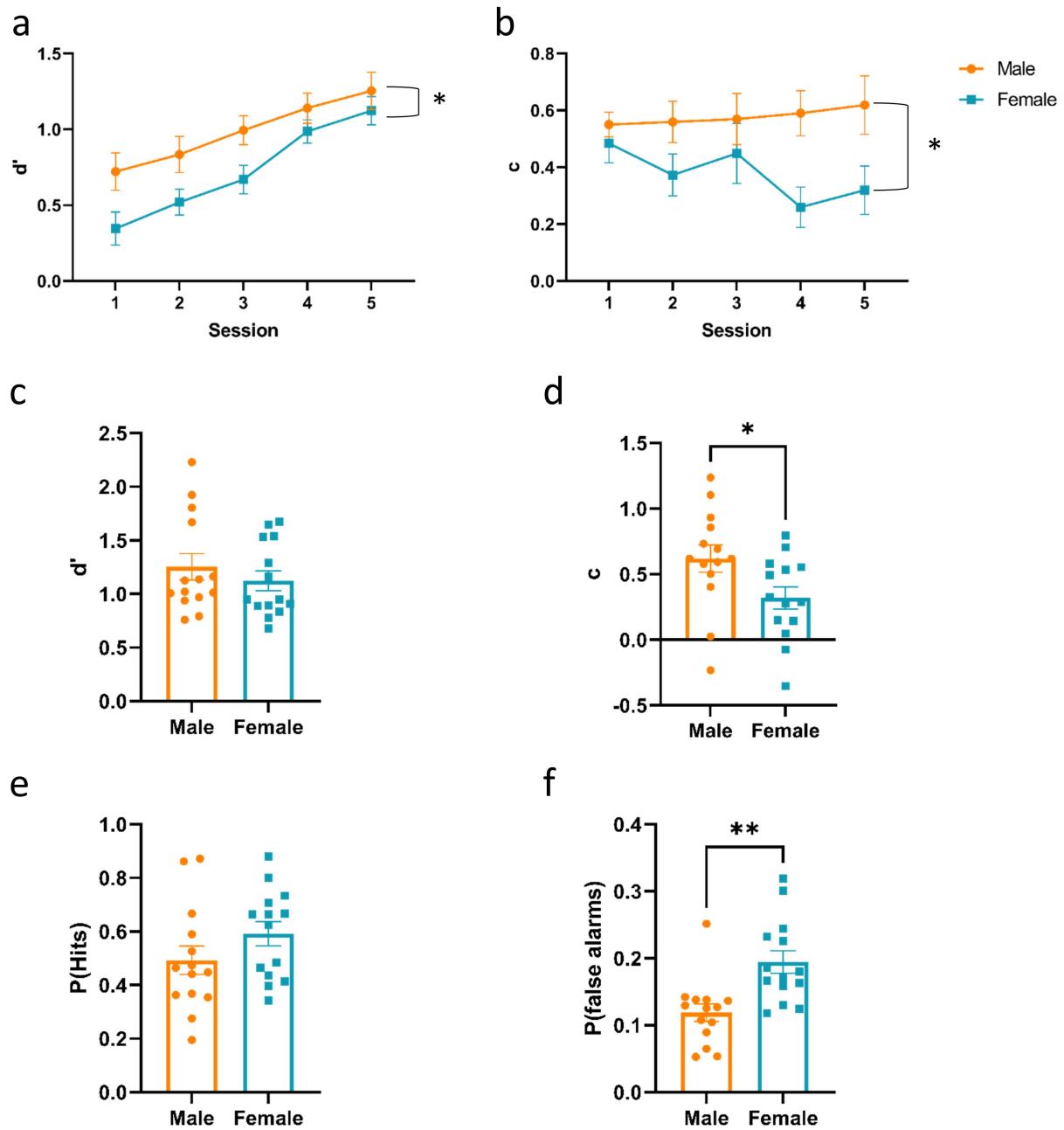


Figure 3

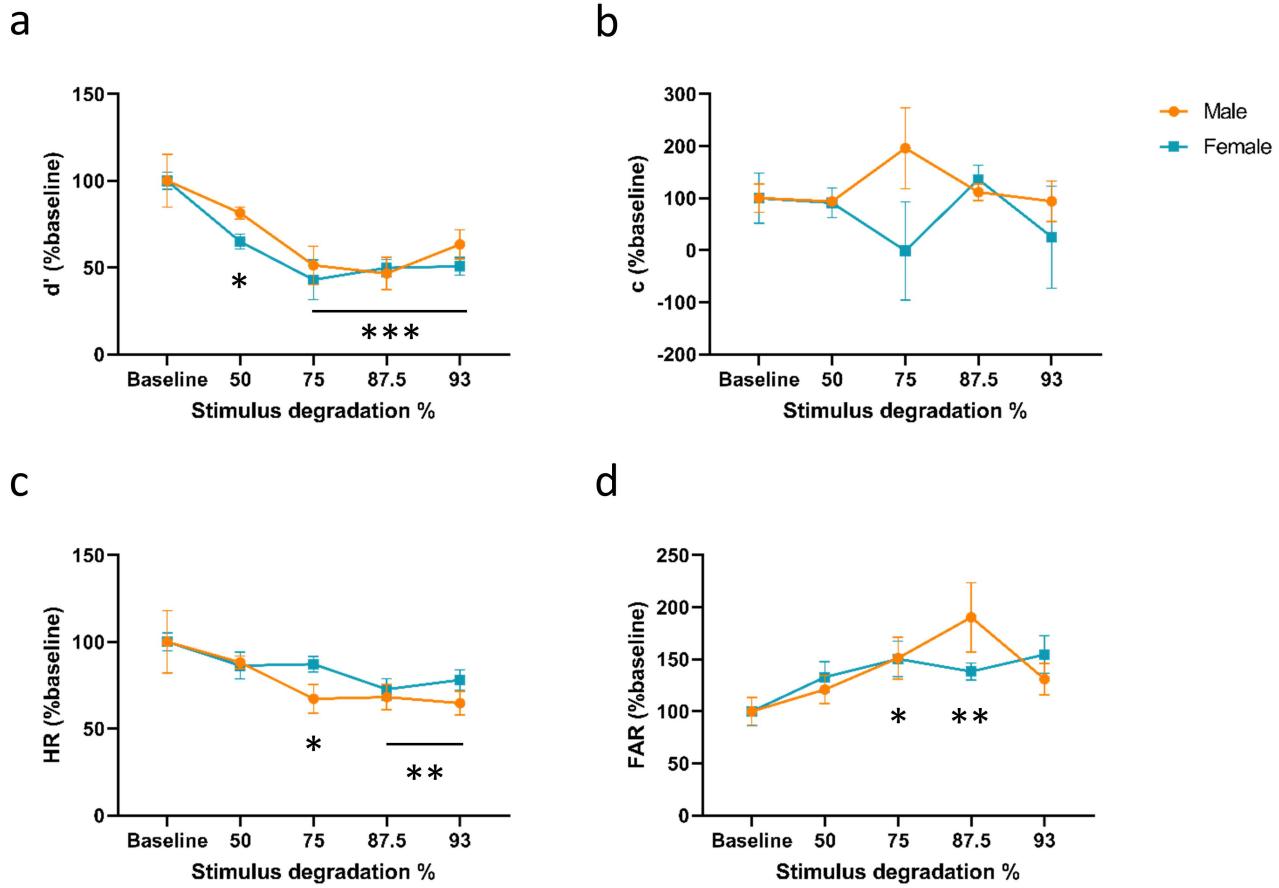
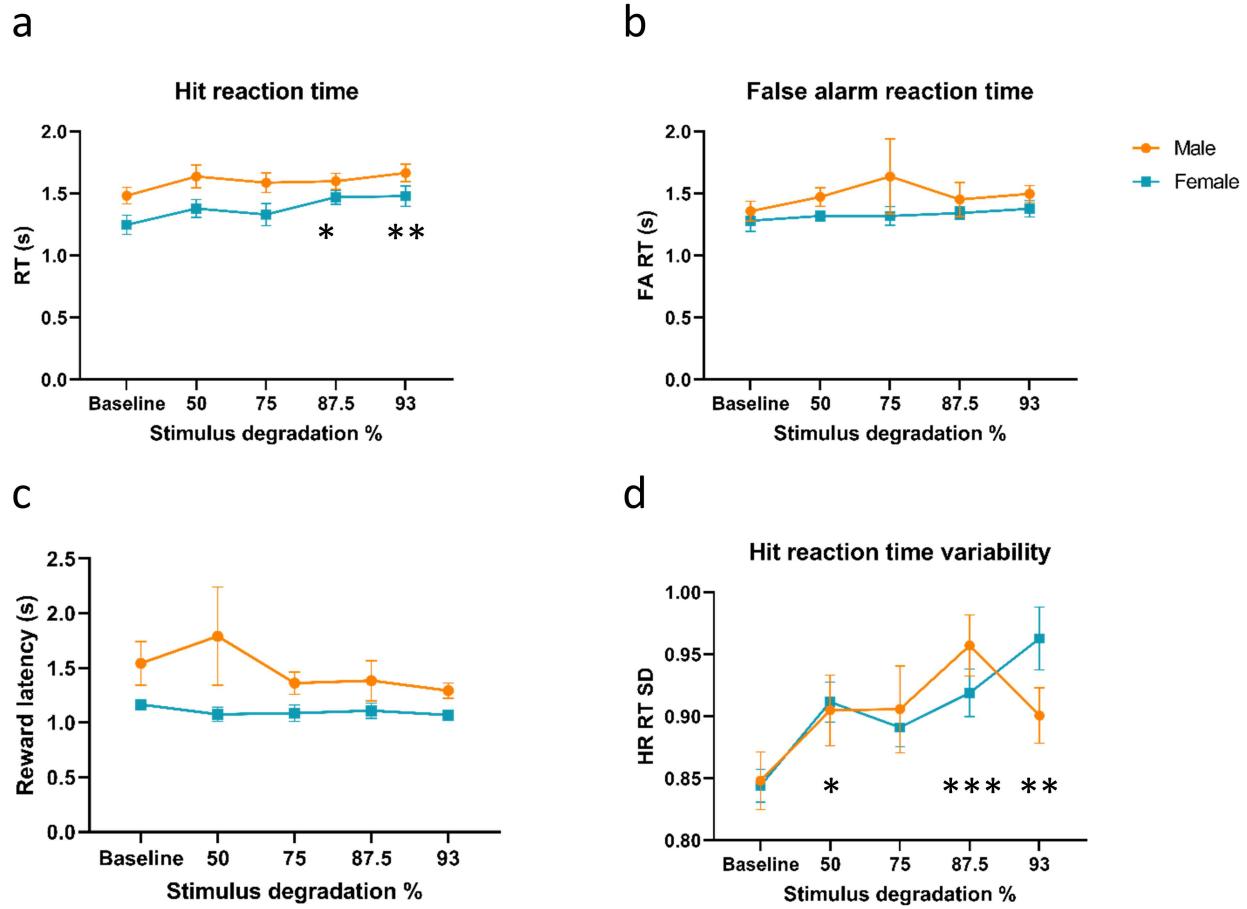



Figure 4

Parameter	Symbol	Formula	Description
Hit rate	HR	Hits/(Hits + Misses)	Correct response to S+
False alarm rate	FAR	False alarms/(False alarms + Correct rejections)	Incorrect response to S-
Sensitivity	d'	$z(HR) - z(FAR)$	Measure of ability to discriminate between S+'s and S-'s
Response criterion	c	$-(z(HR) + z(FAR))/2$	Measure of response bias; higher values corresponds to more conservative biases and vice versa

z = the inverse of the cumulative distribution function for the Gaussian distribution

Sessions to criterion

	Stage 1	Stage 2	Stage 3	Stage 3 d'
Male	5.79 ± 1.13	1.07 ± 0.07	7.64 ± 0.64	4.93 ± 0.83
Female	4.93 ± 0.62	1.57 ± 0.36	7.93 ± 0.43	6.36 ± 0.55