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Graphical abstract

SARS-CoV-2 main protease (M°™ or 3CLP™)

Validated Hits
boceprevir, telaprevir
narlaprevir,
calpain inhibitors 1l and XII

Invalidated hits

lopinavir, ritonavir, atazanavir
nelfinavir, cobicistat, manidipine
ebselen, disulfiram, carmofur,
PX-12, tideglusib, shikenin, baicalein,
chloroquine, hydroxychloroquine,
oxytetracycline, mentelukast,
candesartan, dipyridamole

Flip-GFP and Protease-Glo luciferase assays, coupled with the FRET and thermal shift
binding assays, were applied to validate the reported SARS-CoV-2 MP inhibitors.
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Abstract

SARS-CoV-2 main protease (MP™) is one of the most extensive exploited drug targets
for COVID-19. Structurally disparate compounds have been reported as MP™ inhibitors,
raising the question of their target specificity. To elucidate the target specificity and the
cellular target engagement of the claimed MP™ inhibitors, we systematically characterize
their mechanism of action using the cell-free FRET assay, the thermal shift-binding
assay, the cell lysate Protease-Gilo luciferase assay, and the cell-based Flip-GFP
assay. Collectively, our results have shown that majority of the MP™ inhibitors identified
from drug repurposing including ebselen, carmofur, disulfiram, and shikonin are
promiscuous cysteine inhibitors that are not specific to MP™®, while chloroquine,
oxytetracycline, montelukast, candesartan, and dipyridamole do not inhibit MP™® in any of
the assays tested. Overall, our study highlights the need of stringent hit validation at the

early stage of drug discovery.

Keywords: SARS-CoV-2, antiviral, main protease, ebselen, carmofur, Flip-GFP assay,
Protease-Glo luciferase assay.
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1. INTRODUCTION

SARS-CoV-2 is the causative agent for COVID-19, which infected 221 million
people and led to 4.44 million deaths as of August 23, 2021. SARS-CoV-2 is the third
coronavirus that causes epidemics and pandemics in human. SARS-CoV-2, along with
SARS-CoV and MERS-CoV, belong to the B genera of the coronaviridae family'. SARS-
CoV-2 encodes two viral cysteine proteases, the main protease (MP™) and the papain-
like protease (PLP™), that mediate the cleavage of viral polyproteins pp1a and pp1ab
during viral replication? 3. MP™ cleaves at more than 11 sites at the viral polyproteins and
has a high substrate preference for glutamine at the P1 site*. In addition, the MP™ s
highly conserved among coronaviruses that infect human including SARS-CoV-2,
SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, HCoV-229E, and HCoV-HKU1. For
these reasons, MP© becomes a high-profile drug target for the development of broad-
spectrum antivirals. Structurally disparate compounds including FDA-approved drugs
and bioactive compounds have been reported as MP™ inhibitors®”’, several of which also
have antiviral activity against SARS-CoV-2810,

FRET assay is the gold standard assay for protease and is typically used as a
primary assay for the screening of MP™ inhibitors. However, the FRET assay conditions
used by different groups vary significantly in terms of the protein and substrate
concentrations, pH, reducing reagent, and detergent. Reducing reagent is typically
added in the assay buffer to prevent the non-specific oxidation or alkylation of the
catalytic C145 in MP. Nonetheless, many studies do not include reducing reagents in
the FRET assay buffer, leading to debatable results®. Regardless of the assay
condition, FRET assay is a cell free biochemical assay, which does not mimic the
cellular environment; therefore, the results cannot be used to accurately predict the
cellular activity of the MP™ inhibitor or the antiviral activity. Moreover, one limiting factor
for MP™ inhibitor development is that the cellular activity has to be tested against
infectious SARS-CoV-2 in BSL-3 facility, which is inaccessible to many researchers. For
these reasons, there is a pressing need of secondary MP™ target-specific assays that

can closely mimic the cellular environment and be used to rule out false positives.
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95 In this study, we report our findings of validating or invalidating the literature
96 reported MP inhibitors using the cell lysate Protease-Glo luciferase assay and the cell-
97 based Flip-GFP assay, in conjunction to the cell-free FRET assay and thermal shift-
98  binding assay. The purpose is to elucidate their target specificity and cellular target
99 engagement. The Protease-Glo luciferase assay was developed in this study, and the
100  Flip-GFP assay was recently developed by us and others''-'4. Our results have
101 collectively shown that majority of the MP™ inhibitors identified from drug repurposing
102  screening including ebselen, carmofur, disulfiram, and shikonin are promiscuous
103  cysteine inhibitors that are not specific to MP™, while chloroquine, oxytetracycline,
104  montelukast, candesartan, and dipyridamole do not inhibit MP™ in any of the assays
105 tested. The results presented herein highlight the pressing need of stringent hit
106  validation at the early stage of drug discovery to minimize the catastrophic failure in the

107  following translational development.
108

109 2. RESULTS AND DISCUSSION
110 2.1. Assay validation using GC-376 and rupintrivir as positive and negative controls

111 The advantages and disadvantages of the cell lysate Protease-Glo luciferase assay and the
112 cell-based Flip-GFP assay compared to the cell free FRET assay are listed in Table 1. To

113 minimize the bias from a particular assay, we apply all these three functional assays together
114  with the thermal shift-binding assay for the hit validation.

115 Table 1. Advantages and disadvantages of the three functional assays used in this study.

Advantages Disadvantages
» Compounds that quench the fluorophore will show
up as false positives
« Assay interference from fluorescent compounds,
FRET assay « High-throughput detergents, and aggregators.
» Cannot be used to predict the cellular antiviral
activity
*» No standard condition among scientific community

+ Can rule out compounds that are
cytotoxic, membrane impermeable, or

substrates of drug efflux pump » The assay takes 48 hrs, thus it cannot be used for
Flip-GFP assay * A close mimetic of virus-infected cell cytotoxic compounds
+ Can be used to predict the cellular « Interference from fluorescent compounds

antiviral activity
» Reveals cellular target engagement
* High-throughput

Protease-Glo luciferase * Reveals cellular target engagement » Cannot be used to predict the cellular antiviral
assay » Can be used to test cytotoxic activity
compounds
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116

117 In the cell-based Flip-GFP assay, the cells were transfected with two plasmids, one

118  expresses the SARS-CoV-2 MP, and another expresses the GFP reporter's. The GFP reporter
119  plasmid expresses three proteins including the GFP 310-811 fragment flanked by the K5/E5
120  coiled coil, the GFP p1-9 template, and the mCherry (Fig. 1A). mCherry serves as an internal
121 control for the normalization of the expression level or the quantification of compound toxicity. In
122 the assay design, 10 and 11 were conformationally constrained in the parallel position by the
123 heterodimerizing K5/E5 coiled coil with a MP™ cleavage sequence (AVLQ|SGFR). Upon

124  cleavage of the linker by MP®, 310 and 311 become antiparallel and can associate with the 31-9
125 template, resulting in the restoration of the GFP signal. In principle, the ratio of GFP/mCherry
126  fluorescence is proportional to the enzymatic activity of MP. The Flip-GFP MP™ assay has been
127  used by several groups to characterize the cellular activity of MP© inhibitors': 13 14,

128 In the cell lysate Protease-Glo luciferase assay, the cells were transfected with

129  pGloSensor-30F luciferase reporter (Fig. 1B)'6. The pGloSensor-30F luciferase reporter plasmid
130  expresses two proteins, the inactive, circularly permuted firefly luciferase (FFluc) and the active
131 Renilla luciferase (Rluc). Renilla luciferase was included as an internal control to normalize the
132 protein expression level. The firefly luciferase was split into two fragments, the FF 4-354 and FF
133  358-544. The SARS-CoV-2 MP substrate cleavage sequence (AVLQ/SGFR) was inserted in
134  between the two fragments. Before protease cleavage, the pGloSensor-30F reporter comprises
135  aninactive circularly permuted firefly luciferase. The cells were lysed at 24 h post transfection,
136  and MP™ and the luciferase substrates were added to initiate the reaction. Upon protease

137  cleavage, a conformational change in firefly luciferase leads to drastically increases

138  luminescence. In principle, the ratio of FFluc/Rluc luminescence is proportional to the enzymatic
139  activity of MP©,

140 To calibrate the Flip-GFP and split-luciferase assays, we chose GC-376 and rupintrivir as
141  positive and negative controls, respectively. The ICso values for GC-376 in the Flip-GFP and

142  split-luciferase assays were 2.35 uM and 0.023 uM, respectively (Fig. 1C, D, and F). The ICso
143  value in the Flip-GFP assay is similar to its antiviral activity (Table 2), suggesting the Flip-GFP
144  can be used to predict the cellular antiviral activity. In contrast, rupintrivir showed no activity in
145  either the Flip-GFP (ICso > 50 uM) (Fig. 1C second row and 1E) or the Protease-Glo luciferase
146  assay (ICso > 100 pM) (Fig. 1G), which agrees with the lack of inhibition from the FRET assay
147  (ICso > 20 uM). Nonetheless, rupintrivir was reported to inhibit SARS-CoV-2 replication with an
148  ECso of 1.87 uM using the nanoluciferase SARS-CoV-2 reporter virus (SARS-CoV-2-Nluc) in
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A549-hACE2 cells'” (Table 2). The discrepancy indicates that the mechanism of action of
rupintrivir might be independent of MP inhibition. Overall, the Flip-GFP and Protease-Glo

luciferase assays are validated as target-specific assays for SARS-CoV-2 MP™,
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154  Figure 1. Principles for the Flip-GFP and Protease-Glo luciferase assays and assay validation
155  with control compounds. (A) Assay principle for the Flip-GFP assay. Diagram of the Flip-GFP
156  MPereporter plasmid is shown. (B) Assay principle for the Protease-Glo luciferase assay.

157  Diagram of pGlo-MP™ luciferase reporter in the pGloSensor-30F vector is shown. (C)

158  Representative images from the FlipGFP-MP™ assay. Dose-dependent decrease of GFP signal
159  was observed with the increasing concentration of GC-376 (positive control); almost no GFP
160  signal change was observed with the increasing concentration of Rupintrivir (negative control).
161  (D-E) Dose-response curve of the ratio of GFP/mCherry fluorescence with GC-376 and

162  rupintrivir; mCherry signal alone was used to normalize protein expression level or calculate
163  compound cytotoxicity. (F-G) Protease-Glo luciferase assay results of GC-376 and rupintrivir.
164  Left column showed Firefly and Renilla luminescence signals in the presences of increasing
165  concentrations of GC-376 and rupintrivir; Right column showed dose-response curve plots of

166 the ratio of FFluc/Rluc luminescence.

167  Table 2. Summary of results.

TSA " pGlo-Mpro o
FRET ICso ATm Flip-GFP ICso Luciferase Anti-viral (uM) PDB code Comment
(uM) C) (uM) M) Vero CPE
Control compounds
[¢)
NH
0.030 +0.008 BWTT2
g9 i 3.37 +1.68° 20 "
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">J)k LIRS >100?" 0.01 >50 >240 047" N-A. control
(l;
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o
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R, % v 221042 5187 238:65 10.99 £1.96 15 (9aTy oXaT Mo
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Chloroquine
SN m
m ~ 2;2108'3;3‘ 0.16% >200 >800 27110 7.36% NA. Nota W™
Hydroxychloroquine
. 5;6330_93‘ 0.16% 60 240 NA. NA. Nota WP
Oxytetracycline
135 fo‘_'sojo -0.68% 60 240 NA. NA. Nota W™
Montelukast
>60%° Not a MP®
Ki ; 85?'2 + 0.23% >60 >240 NA. NA. hibitor
Candesartan
0?2'04 110%213:‘ -0.19% >60 >240 NA. NA. ’\‘I‘;}]ﬁm’:ﬁ?n
Dipyridamole
168 N.A. = not available
169
170  2.2. HCV protease inhibitors
171 The HCV protease inhibitors have been proven a rich source of SARS-CoV-2 MP™

172  inhibitors? 2243, From screening a focused protease library using the FRET assay, we

173 discovered simeprevir, boceprevir, and narlaprevir as SARS-CoV-2 MP™ inhibitors with ICso

174  values of 13.74, 4.13, and 5.73 uM, respectively, while telaprevir was less active (31% inhibition
175  at 20 pM)2. The binding of boceprevir to MP© was characterized by thermal shift assay and

176  native mass spectrometry. Boceprevir inhibited SARS-CoV-2 viral replication in Vero E6 cells
177  with ECso values of 1.31 and 1.95 uM in the primary CPE and secondary viral yield reduction
178  assays, respectively (Table 2). In parallel, Fu et al also reported boceprevir as a SARS-CoV-2
179  MP?inhibitor with an enzymatic inhibition ICso of 8.0 uM and an antiviral ECso of 15.57 uM'8. The
180  X-ray crystal structure of MP™ with boceprevir was solved, revealing a covalent modification of
181  the C145 thiol by the ketoamide (PDBs: 6XQU*3, 7C6S'8, 7COM25).

182 In the current study, we found that boceprevir showed moderate inhibition in the cellular
183  Flip-GFP MP™ assay with an I1Cs of 18.33 uM (Fig. 2A and B), a more than 4-fold increase

184  compared to the ICsp in the FRET assay (4.13 uM). The ICso value of boceprevir in the cell

185 lysate Protease-Glo luciferase assay was 4.49 uM (Fig. 2E). In comparison, telaprevir and

186  narlaprevir showed weaker inhibition than boceprevir in both the Flip-GFP and Protease-Glo
187 luciferase assays (Fig. 2A, C, D, F, and G), which is consistent with their weaker potency in the

10
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188  FRET assay (Table 2). Overall, boceprevir, telaprevir, and narlaprevir have been validated as
189  SARS-CoV-2 MP inhibitors in both the cellular Flip-GFP assay and the cell lysate Protease-Glo
190 luciferase assay. Therefore, the antiviral activity of these three compounds against SARS-CoV-
191 2 are likely due to MP™ inhibition. Although the inhibition of MP™ by boceprevir is relatively weak
192  compared to GC-376, several highly potent MP™ inhibitors were subsequently designed as

193  hybrids of boceprevir and GC-376 including the Pfizer oral drug candidate PF-07321332, which
194  contain the dimethylcyclopropylproline at the P2 substitution'!: 2% 44,

A DMSO
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= 2 R -
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5 i 3 G
£ g g
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195

196  Figure 2: Validation/invalidation of hepatitis C virus NS3/4A protease inhibitors boceprevir,

197  telaprevir, and narlaprevir as SARS CoV-2 MP™ inhibitors using the Flip-GFP assay and

198  Protease-Glo luciferase assay. (A) Representative images from the Flip-GFP-MP™ assay. Dose-
199  dependent decrease of GFP signal was observed with the increasing concentration of

200  boceprevir, telaprevir or narlaprevir. (B-D) Dose-response curve of the GFP and mCherry

11
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201  fluorescent signals for boceprevir (B), telaprevir (C) or narlaprevir (D); mCherry signal alone was
202  used to normalize protein expression level or calculate compound toxicity. (E-G) Protease-Glo
203 luciferase assay results of boceprevir (E), telaprevir (F) or narlaprevir (G). Left column showed
204  Firefly and Renilla luminescence signals in the presences of increasing concentrations of

205  boceprevir, telaprevir or narlaprevir; Right column showed dose-response curve plots of the

206  ratio of FFluc/RIu luminescence. Renilla luminescence signal alone was used to normalize

207  protein expression level.
208

209  2.3. HIV protease inhibitors

210 HIV protease inhibitors, especially Kaletra, have been hotly pursued as potential COVID-19
211  treatment at the beginning of the pandemic. Kaletra was first tested in clinical trial during the

212 SARS-CoV outbreak in 2003 and showed somewhat promising results based on the limited

213 data*. However, a double-blinded, randomized trial concluded that Kaletra was not effective in
214  treating severe COVID-19%:47, In SARS-CoV-2 infection ferret models, Kaletra showed marginal
215  effect in reducing clinical symptoms, while had no effect on virus titers*.

216 Keletra is a combination of lopinavir and ritonavir. Lopinavir is a HIV protease inhibitor, and
217  ritonavir is used as a booster. Ritonavir does not inhibit the HIV protease and it is a cytochrome
218  P450-3A4 inhibitor*®. When used in combination, ritonavir can enhance other protease inhibitors
219 by preventing or slowing down the metabolism. In cell culture, lopinavir was reported to inhibit
220 the nanoluciferase SARS-CoV-2 reporter virus with an ECso of 9 uM'”. In two other studies,

221  lopinavir showed moderate antiviral activity against SARS-CoV-2 activity with ECso values of
222 19+8 pM?8 and 25 uM?. As such, it was assumed that lopinavir inhibited SARS-CoV-2 through
223 inhibiting the MP™. However, lopinavir showed no activity against SARS-CoV-2 MP in the FRET
224  assay from our previous study (ICso > 60 uM)2. Wong et al also showed that lopinavir was a

225  weak inhibitor against SARS-CoV MP™ with an ICso of 50 uM?®°. In the current study, we further
226  confirmed the lack of binding of lopinavir to SARS-CoV-2 MPin the thermal shift assay (ATm = -
227  0.60°C) (Table 2). The result from the Flip-GFP assay was not conclusive as lopinavir was

228  cytotoxic. Lopinavir was not active in the Protease-Glo luciferase assay. Taken together,

229  lopinavir is not a MP™ inhibitor.

230 We also tested additional HIV antivirals including ritonavir, atazanavir, nelfinavir, and
231  cobicistat. Atazanavir and nelfinavir were reported as a potent SARS-CoV-2 antiviral with ECsg
232 values of 2.0 £ 0.12%2 and 0.77 pM'"” using the infectious SARS-CoV-2 and the nanoluciferase
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reporter virus (SARS-CoV-2-Nluc), respectively. A drug repurposing screening similar identified
nelfinavir as a SARS-CoV-2 antiviral with an 1Cso of 3.3 uM?*. Sharma et al showed that
cobicistat inhibited MP™ with an ICso of 6.7 uM in the FRET assay®. Cobicistat was also reported
to have antiviral activity against SARS-CoV-2 with an ECso of 2.74 £ 0.20 uMusing the SARS-
CoV-2-Nluc reporter virus'”. However, our FRET assay showed that ritonavir, nelfinavir, and
cobicistat did not inhibit MP in the FRET assay (ICso > 20 pM), which was further confirmed by
the lack of binding to MP™ in the thermal shift assay (Table 2). The results from the Flip-GFP
assay were not conclusive due to compound cytotoxicity. None of the compounds showed
inhibition in the Protease-Glo luciferase assay.

Collectively, our results have shown that the HIV protease inhibitors including lopinauvir,
ritonavir, atazanavir, nelfinavir, and cobicistat are not MP™ inhibitors. Nonetheless, given the
potent antiviral activity of atazanavir and nelfinavir against SARS-CoV-2, it might be interesting

to conduct resistance selection to elucidate their drug target(s).
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247  Figure 3: Validation/invalidation of HIV protease inhibitors lopinavir, ritonavir, atazanavir,

248  nelfinavir, and cobicistat as SARS CoV-2 MP inhibitors using the Flip-GFP assay and Protease-
249  Gilo luciferase assay. (A) Representative images from the Flip-GFP-MP™© assay. (B-F)

250 Dose-response curve of the GFP and mCherry fluorescent signals for lopinavir (B), ritonavir
251 (C), atazanavir (D), nelfinavir (E), and cobicistat (F); mCherry signal alone was used to
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252 normalize protein expression level or calculate compound cytotoxicity. (G-K) Protease-Glo

253 luciferase assay results of lopinavir (G), ritonavir (H), atazanavir (1), nelfinavir (J), and cobicistat
254  (K). Left column showed Firefly and Renilla luminescence signals in the presences of increasing
255  concentrations of lopinavir, ritonavir, atazanavir, nelfinavir, and cobicistat; Right column showed
256  dose-response curve plots of ratio of FFluc/Rluc luminescence. Renilla luminescence signal
257  alone was used to normalize protein expression level. None of the compounds shows significant

258 inhibition in the presence of up to 240 uM compounds.

259
260 2.4. Bioactive compounds from drug repurposing

261 Several bioactive compounds have been identified as SARS-CoV-2 MP™ inhibitors through
262  either virtual screening or FRET-based HTS. We are interested in validating these hits using the
263  Flip-GFP and the Protease-Glo luciferase assays.

264 Manidipine was identified as a SARS-CoV-2 MP™ inhibitor from a virtual screening and was
265  subsequently shown to inhibit MP™ with an ICso of 4.81 uM in the FRET assay?*. No antiviral data
266  was provided. When we repeated the FRET assay, the 1Cso was 64.2 uM (Table 2). Manidipine
267  also did not show binding to MP™ in the thermal shift assay. Furthermore, manidipine showed no
268  activity in either the Flip-GFP assay or the Protease-Glo luciferase assay (Fig. 4A, B, and F).
269  Therefore, our results invalidated manidipine as a SARS-CoV-2 MP inhibitor.

270
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271

272  Figure 4. Validation/invalidation of manidipine, calpain inhibitors Il and XllI, and ebselen as
273  SARS CoV-2 Mr@ inhibitors using the Flip-GFP assay and Protease-Gilo luciferase assay. (A)
274  Representative images from the Flip-GFP-MP™ assay. (B-E) Dose-response curve of the GFP
275 and mCherry fluorescent signals for manidipine (B), calpain inhibitor Il (C), calpain inhibitor XII
276 (D), and ebselen (E); mCherry signal alone was used to normalize protein expression level or
277  calculate compound cytotoxicity. (F-1) Protease-Glo luciferase assay results of manidipine (F),
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278  calpain inhibitor Il (G), calpain inhibitor XII (H), and ebselen (I). Left column showed Firefly and
279  Renilla luminescence signals in the presences of increasing concentrations of lopinavir,

280 ritonavir, atazanavir, nelfinavir, and cobicistat; Right column showed dose-response curve plots
281  of the ratio of FFluc/Rluc luminescence. Renilla luminescence signal alone was used to

282  normalize protein expression level. (G-K) Antiviral activity of remdesivir (G), calpain inhibitor |
283  (K), and calpain inhibitor XII (L) against SARS-CoV-2 in Calu-3 cells.

284 In the same screening which we identified boceprevir as a SARS-CoV-2 MP™ inhibitor,

285  calpain inhibitors 1l and XII were also found to have potent inhibition against MP™ with 1Cso

286  values of 0.97 and 0.45 pM in the FRET assay?. Both compounds showed binding to MP© in the
287  thermal shift and native mass spectrometry assays. The Protease-Glo luciferase assay similarly
288  confirmed the potent inhibition of calpain inhibitors 1l and XII against MP™ with ICso values of 0.60
289 and 0.79 uM, respectively (Fig. 4G, H). However, calpain inhibitor Il had no effect on the cellular
290  MPe activity as shown by the lack of inhibition in the Flip-GFP assay (ICso > 60 uM) (Fig. 4A, C),
291  while calpain inhibitor Xl showed weak activity (ICso = 38.71 uM) (Fig. 4A, D). A recent study by
292  Liu et al using a MP™ trigged cytotoxicity assay similarly found the lack of cellular MP™ inhibition
293 by calpain inhibitors 1l and XII5'. These results contradict to the potent antiviral activity of both
294  compounds in Vero E6 cells?. It is noted that calpain inhibitors Il and XlI are also potent

295 inhibitors of cathepsin L with ICso values of 0.41 and 1.62 nM, respectively®. One possible

296  explanation is that the antiviral activity of calpain inhibitors 1l and XIl against SARS-CoV-2 might
297  be cell type dependent, and the observed inhibition in Vero E6 cells might be due to cathepsin L
298 inhibition instead of MP™ inhibition. Vero E6 cells are TMPRSS2 negative, and SARS-CoV-2

299  enters cell mainly through endocytosis and is susceptible to cathepsin L inhibitors®2. To further
300 evaluate the antiviral activity of calpain inhibitors Il and XII against SARS-CoV-2, we tested

301 them in Calu-3 cells using the immunofluorescence assay (Fig. 4G, K, L). Calu-3 is TMPRSS2
302 positive and it is a close mimetic of the human primary epithelial cell®®. As expected, calpain

303 inhibitors Il and XII displayed much weaker antiviral activity against SARS-CoV-2 in Calu-3 cells
304 thanin Vero EG6 cells with ECso values of 30.34 and 14.78 uM, respectively (Fig. 4K, L). These
305 results suggest that the Flip-GFP assay can be used to faithfully predict the antiviral activity of
306  MPeinhibitors. The lower activity of calpain inhibitors Il and Xll in the Flip-GFP assay and the
307 Calu-3 antiviral assay might due to the competition with host proteases, resulting in the lack of
308 cellular target engagement with MP™.

309 In conclusion, calpain inhibitors Il and XII are validated as MP™ inhibitors but their antiviral
310  activity against SARS-CoV-2 is cell type dependent. Accordingly, TMPRSS2 positive cell lines
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311  such as Calu-3 should be used to test the antiviral activity of calpain inhibitors 1l and XII
312  analogs.

313 Ebselen is among one of the most frequently reported promiscuous MP™inhibitors. It was
314  first reported by Yang et al that ebselen inhibits SARS-CoV-2 MP™ with an ICso of 0.67 uM and
315 the SARS-CoV-2 replication with an ECso of 4.67 uM2. However, it was noted that no reducing
316  reagent was added in the FRET assay, and we reasoned that the observed inhibition might be
317  due to non-specific modification of the catalytic cysteine 145 by ebselen. To test this hypothesis,
318  we repeated the FRET assay with and without reducing reagent DTT or GSH, and found that
319  ebselen completely lost the MP inhibition in the presence of DTT or GSH®. Similarly, ebselen
320 also non-specifically inhibited several other viral cysteine proteases in the absence of DTT

321 including SARS-CoV-2 PLP°, EV-D68 2AP™ and 3CP°, and EV-A71 2AP™ and 3CP°%. The

322 inhibition was abolished with the addition of DTT. Ebselen also had no antiviral activity against
323  EV-A71 and EV-D68, suggesting that the FRET assay results without reducing reagent cannot
324  be used to predict the antiviral activity. In this study, we found that ebselen showed no inhibition
325 in either the Flip-GFP assay or the split-luciferase assay (Fig. 4A, E, 1), providing further

326  evidence for the promiscuous mechanism of action of ebselen. Another independent study by
327 Deval et al using mass spectrometry assay reached similar conclusion that the inhibition of Mp™
328 by ebselen is non-specific and inhibition was abolished with the addition of reducing reagent
329  DTT or glutathione 54 In contrary to the potent antiviral activity reported by Yang et al, the study
330 from Deval et al found that ebselen was inactive against SARS-CoV-2 in Vero E6 cells (ECso >
331 100 uM). Lim et al reported that ebselen and disulfiram had synergistic antiviral effect with

332  remdesivir against SARS-CoV-2 in vero E6 cells®®. It was proposed that ebselen and disulfiram
333  act as zinc ejectors and inhibited not only the PLP™%, but also the nsp13 ATPase and nsp14
334  exoribonuclease activities®®, further casting doubt on the detailed mechanism of action of

335 ebselen.

336 Despite the accumulating evidence to support the promiscuous mechanism of action of
337 ebselen, several studies continue to explore ebselen and its analogs as SARS-CoV-2 MP™ and
338  PLP@inhibitors®:57-%8, A number of ebselen analogs were designed and found to have

339 comparable enzymatic inhibition and antiviral activity as ebselen. MR6-31-2 had slightly weaker
340 enzymatic inhibition against SARS-CoV-2 MP" compared to ebselen (ICso = 0.824 vs 0.67 uM),
341  however, MR6-31-2 had more potent antiviral activity than ebselen (ECso = 1.78 vs 4.67 pM)
342  against SARS-CoV-2 MP™ in Vero E6 cells. X-ray crystallization of SARS-CoV-2 MP™ with MR6-
343  31-2 (PDB: 7BAL) and ebselen (PDB: 7BAK) revealed nearly identical complex structures. It
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344  was found that selenium coordinates directly to Cys145 and forms a S-Se bond®*. Accordingly,
345 a mechanism involving hydrolysis of the organoselenium compounds was proposed. Similar to
346  their previous study, the MP™ enzymatic reaction buffer (50 mM Tris pH 7.3, 1 mM EDTA) did
347  not include the reducing reagent DTT. Therefore, the MP™ inhibition by these ebselen analogs
348  might be non-specific and the antiviral activity might arise from other mechanisms.*

349 Overall, it can be concluded that ebselen is not a specific MP inhibitor, and its antiviral
350 activity against SARS-CoV-2 might involve other drug targets such as nsp13 or nsp14.

351 Disulfiram is an FDA-approved drug for alcohol aversion therapy. Disulfiram has a

352  polypharmacology and was reported to inhibit multiple enzymes including urease®®,

353  methyltransferase®, and kinase® through reacting with cysteine residues. Disulfiram was also

354  reported as an allosteric inhibitor of MERS-CoV PLP©%'. Yang et al reported disulfiram as a MP°
355 inhibitor with an ICso of 9.35 uM. Follow up studies by us and others showed that disulfiram did
356  not inhibit MP in the presence of DTT. In this study, disulfiram had no inhibition against MP™ in

357 either the Flip-GFP assay or the Protease-Glo luciferase assay (Fig. 5A, B, N).

358 Similar to disulfiram, carmofur, PX-12 and tideglusib, which were previously claimed by

359  Yang et al as MP™ inhibitors, showed no inhibitory activity in either the Flip-GFP or Protease-Glo
360 luciferase assay (Fig. 5A, C, D, E, O, P, Q), which is consistent with their lack of inhibition in the
361  FRET assay in the presence of DTT.

362 Shikonin and baicalein are polyphenol natural products with known polypharmacology. Both
363  compounds showed no inhibition in either the Flip-GFP or the Protease-Glo luciferase assay
364  (Fig. 5A, F, G, R, S), suggesting they are not MP™ inhibitors. These two compounds were

365  previously reported to inhibit SARS-CoV-2 MP® in the FRET assay® and had antiviral activity

366  against SARS-CoV-2 in Vero E6 cells. However, our recent study showed that shikonin had no
367 inhibition against SARS-CoV-2 MP™ in the FRET assay in the presence of DTT®. Studies from
368 Deval et al using FRET assay and mass spectrometry assay reached the same conclusion. X-
369 ray crystal structure of SARS-CoV-2 MP™ in complex with Shikonin showed that shikonin binds

370 to the active site in a non-covalent manner.®

371 In addition to the proposed mechanism of action of MP™ inhibition, Schinazi et al showed
372  that baicalein and baicalin inhibit the SARS-CoV-2 RNA-dependent RNA polymerase®. Overall,
373  shikonin and baicalein are not MP™ inhibitors and the antiviral activity of baicalein against SARS-
374  CoV-2 might involve other mechanisms.
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375 A recent study from Luo et al identified several known drugs as SARS-CoV-2 MP™ inhibitors
376  from a virtual screening®. The identified compounds include chloroquine (ICso = 3.9 + 0.2 uM; K;
377 =0.56 £ 0.12 uM), hydroxychloroquine (ICso = 2.9 £ 0.3 uM; Ki = 0.36 £ 0.21 uM),

378  oxytetracycline (ICso = 15.2 £ 0.9 uM; Ki = 0.99 £ 0.06 uM), montelukast (ICso = 7.3 £ 0.5 uM; Ki
379 =0.48 £ 0.04 uM), candesartan (ICso = 2.8 £ 0.3 uM; K; = 0.18 + 0.02 uM), and dipyridamole (K;
380 =0.04 £0.001 uM). The discovery of chloroquine and hydroxychloroquine as MP inhibitor was
381  particularly intriguing. Several high-throughput screenings have been conducted for MP24. 64
382  and chloroquine and hydroxychloroquine were not among the list of active hits. In our follow up
383  study, we found that none of the identified hits reported by Luo et al inhibited MP™ either with or
384  without DTT in the FRET assay®°. In corroborate with our previous finding, the Flip-GFP and
385  Protease-Glo luciferase assays similarly confirmed the lack of inhibition of these compounds
386  against MP (Fig. 5A, H-M, T-Y). Therefore, it can be concluded that chloroquine,

387  hydroxychloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole are not

388 SARS-CoV-2 MP inhibitors. Other than the claims made by Luo et al, no other studies have
389 independently confirmed these compounds as MP™ inhibitors.
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394  Figure 5. Validation/invalidation of disulfiram, carmofur, PX-12, tideglusib, shikonin, baicalein,
395  chloroquine, hydroxychloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole
396 as SARS CoV-2 MPe inhibitors using the Flip-GFP assay and Protease-Glo luciferase assay. (A)
397 Representative images from the Flip-GFP-MP™ assay. (B-E) Dose-response curve of the ratio of
398  GFP/mCherry fluorescent signal for disulfiram (B), carmofur (C), PX-12 (D), tideglusib (E),

399  shikonin (F), baicalein (G), chloroquine (H), hydroxychloroquine (), oxytetracycline (J),

400  montelukast (K), candesartan (L), and dipyridamole (M); mCherry signal alone was used to

401  normalize protein expression level or calculate compound cytotoxicity. (N-Y) Protease-Glo

402 luciferase assay results of disulfiram (N), carmofur (O), PX-12 (P), tideglusib (Q), shikonin (R),
403  baicalein (S), chloroquine (T), hydroxychloroquine (U), oxytetracycline (V), montelukast (W),
404  candesartan (X), and dipyridamole (Y). Left column showed Firefly and Renilla luminescence
405  signals in the presences of increasing concentrations of disulfiram, carmofur, PX-12, tideglusib,
406  shikonin, baicalein, chloroquine, hydroxychloroquine, oxytetracycline, montelukast,

407  candesartan, and dipyridamole; Right column showed dose-response curve plots of the ratio of
408  FFluc/Rluc luminescence. Renilla luminescence signal alone was used to normalize protein

409  expression level.

410
411 3. CONCLUSION

412 The MP™is perhaps the most extensive exploited drug target for SARS-CoV-2. A variety of
413  drug discovery techniques have been applied to search for MP™ inhibitors. Researchers around
414  the world are racing to share their findings with the scientific community to expedite the drug
415  discovery process. However, the quality of science should not be compromised by the speed.
416  The mechanism of action of drug candidates should be thoroughly characterized in biochemical,
417  binding, and cellular assays. Pharmacological characterization should address both target

418  specificity and cellular target engagement. For target specificity, the drug candidates can be

419  counter screened against unrelated cysteine proteases such as the viral EV-A71 2AP™, EV-D68
420  2AP°, the host cathepsins B, L, and K, caspase, calpains I, Il, and Ill, and etc. Compounds

421  inhibit multiple cysteine proteases non-discriminately are most likely promiscuous compounds
422  that act through redox cycling, inducing protein aggregation, or alkylating catalytic cysteine

423  residue C145. For cellular target engagement, the Flip-GFP and Protease-Glo luciferase assays
424  can be applied. Both assays are performed in the presence of competing host proteins at the
425  cellular environment. Collectively, our study reaches the following conclusions: 1) for validated

426 MP™ inhibitors, the ICs values with and without reducing reagent should be about the same in
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427  the FRET assay; 2) validated MP™ inhibitors should show consistent results in the FRET assay,
428  thermal shift binding assay, and the Protease-Glo luciferase assay. For compounds that are not
429  cytotoxic, they should also be active in the Flip-GFP assay; 3) compounds that have antiviral
430  activity but lack consistent results from the FRET, thermal shift, Flip-GFP, and Protease-Glo
431 luciferase assays should not be classified as MP™ inhibitors; 4) compounds that non-specifically
432  inhibit multiple unrelated viral or host cysteine proteases are most likely promiscuous inhibitors
433  that should be triaged. 5) X-ray crystal structures cannot be used to justify the target specificity
434  or cellular target engagement. Promiscuous compounds have been frequently co-crystallized
435  with MP including ebselen, carmofur, and shikonin (Table 2).

436 Overall, we hope our studies will promote the awareness of the promiscuous SARS-CoV-2
437  MP™inhibitors and call for more stringent hit validation.

438
439 4. MATHODS AND MATERIALS

440  Protein Expression and Purification. The tag-free SARS CoV-2 MP™ protein with native N-
441  and C- termini was expressed in pPSUMO construct as described previously?.

442

443  Enzymatic Assays. The FRET-based protease was performed as described previously?.

444 Briefly, 100 nM of MP™ protein in the reaction buffer containing 20 mM HEPES, pH 6.5, 120 mM
445  NaCl, 0.4 mM EDTA, 4 mM DTT, and 20% glycerol was incubated with serial concentrations of
446  the testing compounds at 30 °C for 30 min. The proteolytic reactions were initiated by adding 10
447  uM of FRET- peptide substrate (Dabcyl-KTSAVLQ/SGFRKME(Edans)) and recorded in Cytation
448  5imaging reader (Thermo Fisher Scientific) with 360/460 filter cube for 1 hr. The proteolytic

449  reaction initial velocity in the presence or absence of testing compounds was determined by
450 linear regression using the data points from the first 15 min of the kinetic progress curves. 1Cso
451  values was calculated by a 4-parameter dose-response function in prism 8.

452

453  Thermal shift assay (TSA). Direct binding of testing compounds to SARS CoV-2 MP™ protein
454  was evaluated by differential scanning fluorimetry (DSF) using a Thermal Fisher QuantStudio 5
455  Real-Time PCR System as previously described?. Briefly, SARS CoV-2 MP* protein was diluted
456  into reaction buffer to a final concentration of 3 yM and incubated with 40 uM of testing

457  compounds at 30 °C for 30 min. DMSO was included as a reference. SYPRO orange (1x,

458  Thermal Fisher, catalog no. S6650) was added, and the fluorescence signal was recorded
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459  under a temperature gradient ranging from 20 to 95 °C with incremental step of 0.05 °C s™'. The
460  melting temperature (Tm) was calculated as the mid log of the transition phase from the native to
461  the denatured protein using a Boltzmann model in Protein Thermal Shift Software v1.3. ATn,

462  was the difference between Tr in the presence of testing compounds and T in the presence of
463  DMSO.

464

465  Flip-GFP MP™ Assay. The construction of FlipGFP-MP™ plasmid was described previously''.
466  The assay was carried out as follows: 293T cells were seeded in 96-well black, clear bottomed
467  Greiner plate (catalog no. 655090) and incubated overnight to reach 70— 90% confluency. 50 ng
468  of FlipGFP-MP™ plasmid and 50 ng SARS CoV-2 MP™ expression plasmid pcDNA3.1 SARSCoV-
469 2 MP™ were transfected into each well with transfection reagent TransIT-293 (Mirus catalog no.
470  MIR 2700) according to the manufacturer’s protocol. Three hours after transfection, 1 yL of

471  testing compound was directly added to each well without medium change. Two days after

472  transfection, images were taken with Cytation 5 imaging reader (Biotek) using GFP and

473  mCherry channels via 10x objective lens and were analyzed with Gen5 3.10 software (Biotek).
474  The mCherry signal alone in the presence of testing compounds was utilized to evaluate the
475  compound cytotoxicity.

476

477  Protease-Glo luciferase assay. pGlosensor-30F DEVD vector was obtained from Promega
478  (Catlog no. CS182101). pGloSensor-30F MP™ plasmid was generated by replacing the original
479  caspase cutting sequence (DEVDG) was with SARS CoV-2 MP™ cutting sequence

480 (AVLQ/SGFR) from BamHI/Hindlll sites. The DNA duplex containing MP™ cutting sequence was
481  generated by annealing two 5’-phosphoriated primers: forward:

482 GATCCGCCGTGCTGCAGAGCGGCTTCAGA; and reverse:

483 AGCTTCTGAAGCCGCTCTGCAGCACGGCG. Protease-Glo luciferase assay was carried out
484  as follows: 293T cells in 10 cm culture dish were transfected with pGlosensor-30F MP™ plasmid
485 in the presence of transfection reagent TransIT-293 (Mirus catalog no. MIR 2700) according to
486  the manufacturer’s protocol. 24 hrs after transfection, cells were washed with PBS once, then
487  each dish of cells was lysed with 5 ml of PBS+ 1% Trition-X100; cell debris was removed by
488  centrifuge at 2000g for 10 min. Cell lysates was freshly frozen to -80 °C until ready to use.

489  During the assay, 20 pl cell lysate was added to each well in 96-well flat bottom white plate

490  (Fisherbrand Catalog no. 12566619), then 1 pl of testing compound or DMSO was added to
491  each well and mixed at room temperature for 5 min. 5 pl of 200 nM E. Coli expressed SARS
492  CoV-2 MP protein was added to each well to initiate the proteolytic reaction (the final Mp™
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493  protein concentration is around 40 nM). The reaction mix was further incubated at 30 °C for 30
494  min. The firefly and renilla luciferase activity were determined with Dual-Glo Luciferase Assay
495  according to manufacturer’s protocol (Promega Catalog no. E2920). The efficacy of testing

496  compounds against MP™ was evaluated by plotting the ratio of firefly luminescence signal over
497  the renilla luminescence signal versus the testing compound concentrations with a 4-parameter
498  dose-response function in prism 8.

499

500 Antiviral assay in Calu-3 cells. The antiviral assay was performed as previously described®.
501 Calu-3 cells (ATCC, HTB-55) were plated in 384 well plates and grown in Minimal Eagles

502  Medium supplemented with 1% non-essential amino acids, 1% penicillin/streptomycin, and 10%
503 FBS. The next day, 50 nL of compound in DMSO was added as an 8-pt dose response with
504 three-fold dilutions between testing concentrations in triplicate, starting at 40 uM final

505 concentration. The negative control (DMSO, n=32) and positive control (10 uM Remdesivir,

506 n=32) were included on each assay plate. Calu-3 cells were pretreated with controls and testing
507 compounds (in triplicate) for 2 hours prior to infection. In BSL-3 containment, SARS-CoV-2

508 (isolate USA-WA1/2020) diluted in serum free growth medium was added to plates to achieve
509 an MOI of 0.5. Cells were incubated with compounds and SARS-CoV-2 virus for 48 hours.

510  Cells were fixed and then immunostained with anti-dsRNA (J2) and nuclei were counterstained
511  with Hoechst 33342 for automated microscopy. Automated image analysis quantifies the

512 number of cells per well (toxicity) and the percentage of infected cells (dsRNA+ cells/cell

513  number) per well. SARS-CoV-2 infection at each drug concentration was normalized to

514  aggregated DMSO plate control wells and expressed as percentage-of-control (POC=%

515 Infection sampie/Avg % Infection puso cont). A NON-linear regression curve fit analysis (GraphPad
516  Prism 8) of POC Infection and cell viability versus the logio transformed concentration values to
517  calculate ECso values for Infection and CCso values for cell viability. Selectivity index (Sl) was
518 calculated as a ratio of drug’s CCso and ECso values (S| = CCso/ICso).

519
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