

1 **Validation and invalidation of SARS-CoV-2 main protease inhibitors using the**
2 **Flip-GFP and Protease-Glo luciferase assays**

3 Chunlong Ma,^a Haozhou Tan,^a Juliana Choza,^a Yuying Wang,^a and Jun Wang,^{a,*}

4

5

6

7 ^aDepartment of Pharmacology and Toxicology, College of Pharmacy, The University of
8 Arizona, Tucson, USA, 85721.

9

10 *Address correspondence to Jun Wang, junwang@pharmacy.arizona.edu

11

12 Running title: Validation/validation of SARS-CoV-2 M^{pro} inhibitors

13

14

15

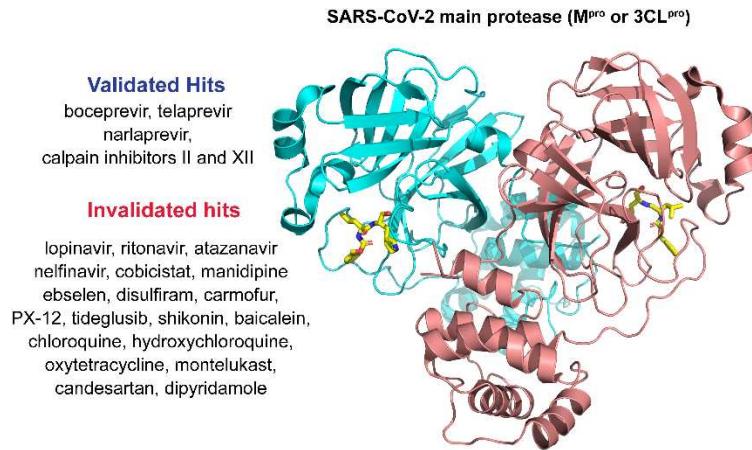
16

17

18

19

20


21

22

23

24

25 **Graphical abstract**

26

27 Flip-GFP and Protease-Glo luciferase assays, coupled with the FRET and thermal shift
28 binding assays, were applied to validate the reported SARS-CoV-2 M^{pro} inhibitors.

29

30

31

32

33

34

35

36

37

38

39

40 **Abstract**

41 SARS-CoV-2 main protease (M^{pro}) is one of the most extensive exploited drug targets
42 for COVID-19. Structurally disparate compounds have been reported as M^{pro} inhibitors,
43 raising the question of their target specificity. To elucidate the target specificity and the
44 cellular target engagement of the claimed M^{pro} inhibitors, we systematically characterize
45 their mechanism of action using the cell-free FRET assay, the thermal shift-binding
46 assay, the cell lysate Protease-Glo luciferase assay, and the cell-based Flip-GFP
47 assay. Collectively, our results have shown that majority of the M^{pro} inhibitors identified
48 from drug repurposing including ebselen, carmofur, disulfiram, and shikonin are
49 promiscuous cysteine inhibitors that are not specific to M^{pro} , while chloroquine,
50 oxytetracycline, montelukast, candesartan, and dipyridamole do not inhibit M^{pro} in any of
51 the assays tested. Overall, our study highlights the need of stringent hit validation at the
52 early stage of drug discovery.

53

54 **Keywords:** SARS-CoV-2, antiviral, main protease, ebselen, carmofur, Flip-GFP assay,
55 Protease-Glo luciferase assay.

56

57

58

59

60

61

62

63

64

65

66 **1. INTRODUCTION**

67 SARS-CoV-2 is the causative agent for COVID-19, which infected 221 million
68 people and led to 4.44 million deaths as of August 23, 2021. SARS-CoV-2 is the third
69 coronavirus that causes epidemics and pandemics in human. SARS-CoV-2, along with
70 SARS-CoV and MERS-CoV, belong to the β genera of the coronaviridae family¹. SARS-
71 CoV-2 encodes two viral cysteine proteases, the main protease (M^{pro}) and the papain-
72 like protease (PL^{pro}), that mediate the cleavage of viral polyproteins pp1a and pp1ab
73 during viral replication^{2,3}. M^{pro} cleaves at more than 11 sites at the viral polyproteins and
74 has a high substrate preference for glutamine at the P1 site⁴. In addition, the M^{pro} is
75 highly conserved among coronaviruses that infect human including SARS-CoV-2,
76 SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, HCoV-229E, and HCoV-HKU1. For
77 these reasons, M^{pro} becomes a high-profile drug target for the development of broad-
78 spectrum antivirals. Structurally disparate compounds including FDA-approved drugs
79 and bioactive compounds have been reported as M^{pro} inhibitors⁵⁻⁷, several of which also
80 have antiviral activity against SARS-CoV-2⁸⁻¹⁰.

81 FRET assay is the gold standard assay for protease and is typically used as a
82 primary assay for the screening of M^{pro} inhibitors. However, the FRET assay conditions
83 used by different groups vary significantly in terms of the protein and substrate
84 concentrations, pH, reducing reagent, and detergent. Reducing reagent is typically
85 added in the assay buffer to prevent the non-specific oxidation or alkylation of the
86 catalytic C145 in M^{pro} . Nonetheless, many studies do not include reducing reagents in
87 the FRET assay buffer, leading to debatable results⁸. Regardless of the assay
88 condition, FRET assay is a cell free biochemical assay, which does not mimic the
89 cellular environment; therefore, the results cannot be used to accurately predict the
90 cellular activity of the M^{pro} inhibitor or the antiviral activity. Moreover, one limiting factor
91 for M^{pro} inhibitor development is that the cellular activity has to be tested against
92 infectious SARS-CoV-2 in BSL-3 facility, which is inaccessible to many researchers. For
93 these reasons, there is a pressing need of secondary M^{pro} target-specific assays that
94 can closely mimic the cellular environment and be used to rule out false positives.

95 In this study, we report our findings of validating or invalidating the literature
96 reported M^{pro} inhibitors using the cell lysate Protease-Glo luciferase assay and the cell-
97 based Flip-GFP assay, in conjunction to the cell-free FRET assay and thermal shift-
98 binding assay. The purpose is to elucidate their target specificity and cellular target
99 engagement. The Protease-Glo luciferase assay was developed in this study, and the
100 Flip-GFP assay was recently developed by us and others¹¹⁻¹⁴. Our results have
101 collectively shown that majority of the M^{pro} inhibitors identified from drug repurposing
102 screening including ebselen, carmofur, disulfiram, and shikonin are promiscuous
103 cysteine inhibitors that are not specific to M^{pro}, while chloroquine, oxytetracycline,
104 montelukast, candesartan, and dipyridamole do not inhibit M^{pro} in any of the assays
105 tested. The results presented herein highlight the pressing need of stringent hit
106 validation at the early stage of drug discovery to minimize the catastrophic failure in the
107 following translational development.

108

109 **2. RESULTS AND DISCUSSION**

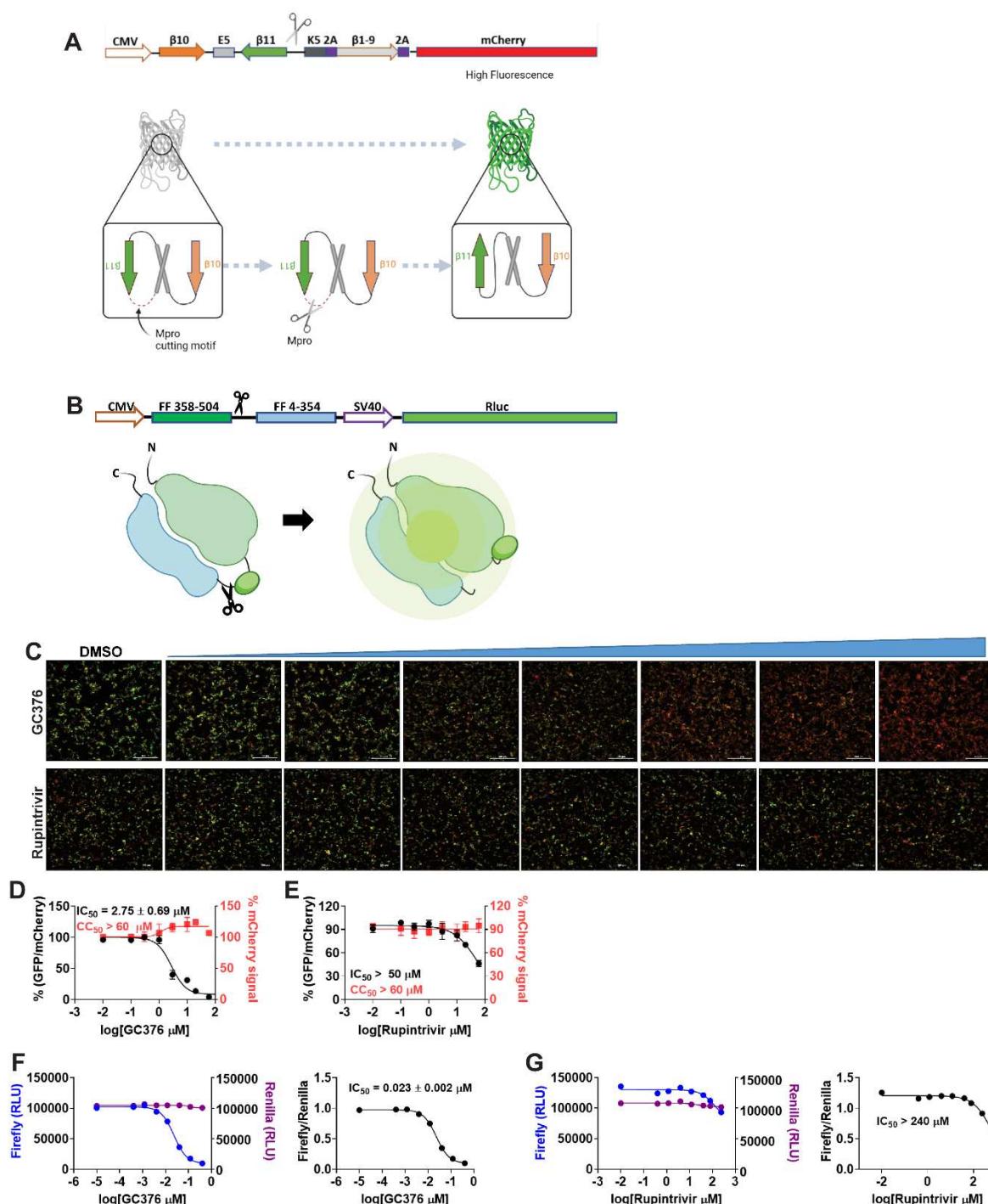
110 **2.1. Assay validation using GC-376 and rupintrivir as positive and negative controls**

111 The advantages and disadvantages of the cell lysate Protease-Glo luciferase assay and the
112 cell-based Flip-GFP assay compared to the cell free FRET assay are listed in Table 1. To
113 minimize the bias from a particular assay, we apply all these three functional assays together
114 with the thermal shift-binding assay for the hit validation.

115 **Table 1. Advantages and disadvantages of the three functional assays used in this study.**

	Advantages	Disadvantages
FRET assay	<ul style="list-style-type: none">• High-throughput	<ul style="list-style-type: none">• Compounds that quench the fluorophore will show up as false positives• Assay interference from fluorescent compounds, detergents, and aggregators.• Cannot be used to predict the cellular antiviral activity• No standard condition among scientific community
Flip-GFP assay	<ul style="list-style-type: none">• Can rule out compounds that are cytotoxic, membrane impermeable, or substrates of drug efflux pump• A close mimetic of virus-infected cell• Can be used to predict the cellular antiviral activity• Reveals cellular target engagement	<ul style="list-style-type: none">• The assay takes 48 hrs, thus it cannot be used for cytotoxic compounds• Interference from fluorescent compounds
Protease-Glo luciferase assay	<ul style="list-style-type: none">• High-throughput• Reveals cellular target engagement• Can be used to test cytotoxic compounds	<ul style="list-style-type: none">• Cannot be used to predict the cellular antiviral activity

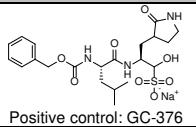
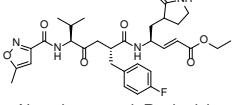
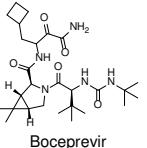
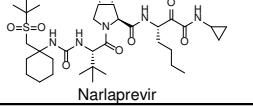
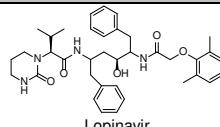
116

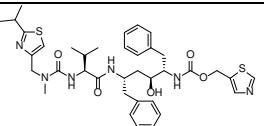
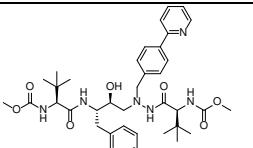
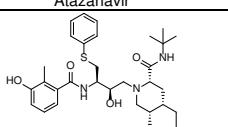
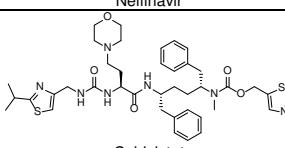
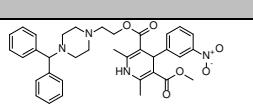
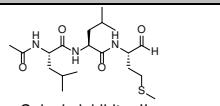
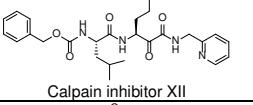
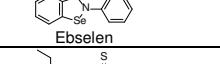
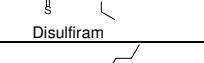
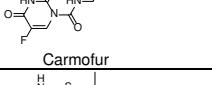
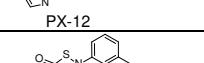
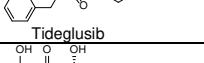
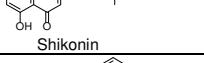
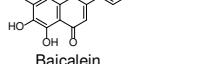
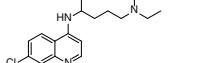

117 In the cell-based Flip-GFP assay, the cells were transfected with two plasmids, one
118 expresses the SARS-CoV-2 M^{pro}, and another expresses the GFP reporter¹⁵. The GFP reporter
119 plasmid expresses three proteins including the GFP β10-β11 fragment flanked by the K5/E5
120 coiled coil, the GFP β1-9 template, and the mCherry (Fig. 1A). mCherry serves as an internal
121 control for the normalization of the expression level or the quantification of compound toxicity. In
122 the assay design, β10 and β11 were conformationally constrained in the parallel position by the
123 heterodimerizing K5/E5 coiled coil with a M^{pro} cleavage sequence (AVLQ↓SGFR). Upon
124 cleavage of the linker by M^{pro}, β10 and β11 become antiparallel and can associate with the β1-9
125 template, resulting in the restoration of the GFP signal. In principle, the ratio of GFP/mCherry
126 fluorescence is proportional to the enzymatic activity of M^{pro}. The Flip-GFP M^{pro} assay has been
127 used by several groups to characterize the cellular activity of M^{pro} inhibitors^{11, 13, 14}.

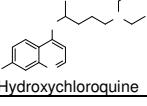
128 In the cell lysate Protease-Glo luciferase assay, the cells were transfected with
129 pGloSensor-30F luciferase reporter (Fig. 1B)¹⁶. The pGloSensor-30F luciferase reporter plasmid
130 expresses two proteins, the inactive, circularly permuted firefly luciferase (FFluc) and the active
131 Renilla luciferase (Rluc). Renilla luciferase was included as an internal control to normalize the
132 protein expression level. The firefly luciferase was split into two fragments, the FF 4-354 and FF
133 358-544. The SARS-CoV-2 M^{pro} substrate cleavage sequence (AVLQ/SGFR) was inserted in
134 between the two fragments. Before protease cleavage, the pGloSensor-30F reporter comprises
135 an inactive circularly permuted firefly luciferase. The cells were lysed at 24 h post transfection,
136 and M^{pro} and the luciferase substrates were added to initiate the reaction. Upon protease
137 cleavage, a conformational change in firefly luciferase leads to drastically increases
138 luminescence. In principle, the ratio of FFluc/Rluc luminescence is proportional to the enzymatic
139 activity of M^{pro}.

140 To calibrate the Flip-GFP and split-luciferase assays, we chose GC-376 and rupintrivir as
141 positive and negative controls, respectively. The IC₅₀ values for GC-376 in the Flip-GFP and
142 split-luciferase assays were 2.35 μM and 0.023 μM, respectively (Fig. 1C, D, and F). The IC₅₀
143 value in the Flip-GFP assay is similar to its antiviral activity (Table 2), suggesting the Flip-GFP
144 can be used to predict the cellular antiviral activity. In contrast, rupintrivir showed no activity in
145 either the Flip-GFP (IC₅₀ > 50 μM) (Fig. 1C second row and 1E) or the Protease-Glo luciferase
146 assay (IC₅₀ > 100 μM) (Fig. 1G), which agrees with the lack of inhibition from the FRET assay
147 (IC₅₀ > 20 μM). Nonetheless, rupintrivir was reported to inhibit SARS-CoV-2 replication with an
148 EC₅₀ of 1.87 μM using the nanoluciferase SARS-CoV-2 reporter virus (SARS-CoV-2-Nluc) in

149 A549-hACE2 cells¹⁷ (Table 2). The discrepancy indicates that the mechanism of action of
 150 rupintrivir might be independent of M^{pro} inhibition. Overall, the Flip-GFP and Protease-Glo
 151 luciferase assays are validated as target-specific assays for SARS-CoV-2 M^{pro}.






152


153

154 **Figure 1.** Principles for the Flip-GFP and Protease-Glo luciferase assays and assay validation
 155 with control compounds. (A) Assay principle for the Flip-GFP assay. Diagram of the Flip-GFP
 156 M^{pro} reporter plasmid is shown. (B) Assay principle for the Protease-Glo luciferase assay.
 157 Diagram of pGlo-M^{pro} luciferase reporter in the pGloSensor-30F vector is shown. (C)
 158 Representative images from the FlipGFP-M^{pro} assay. Dose-dependent decrease of GFP signal
 159 was observed with the increasing concentration of GC-376 (positive control); almost no GFP
 160 signal change was observed with the increasing concentration of Rupintrivir (negative control).
 161 (D-E) Dose-response curve of the ratio of GFP/mCherry fluorescence with GC-376 and
 162 rupintrivir; mCherry signal alone was used to normalize protein expression level or calculate
 163 compound cytotoxicity. (F-G) Protease-Glo luciferase assay results of GC-376 and rupintrivir.
 164 Left column showed Firefly and Renilla luminescence signals in the presences of increasing
 165 concentrations of GC-376 and rupintrivir; Right column showed dose-response curve plots of
 166 the ratio of FFluc/Rluc luminescence.

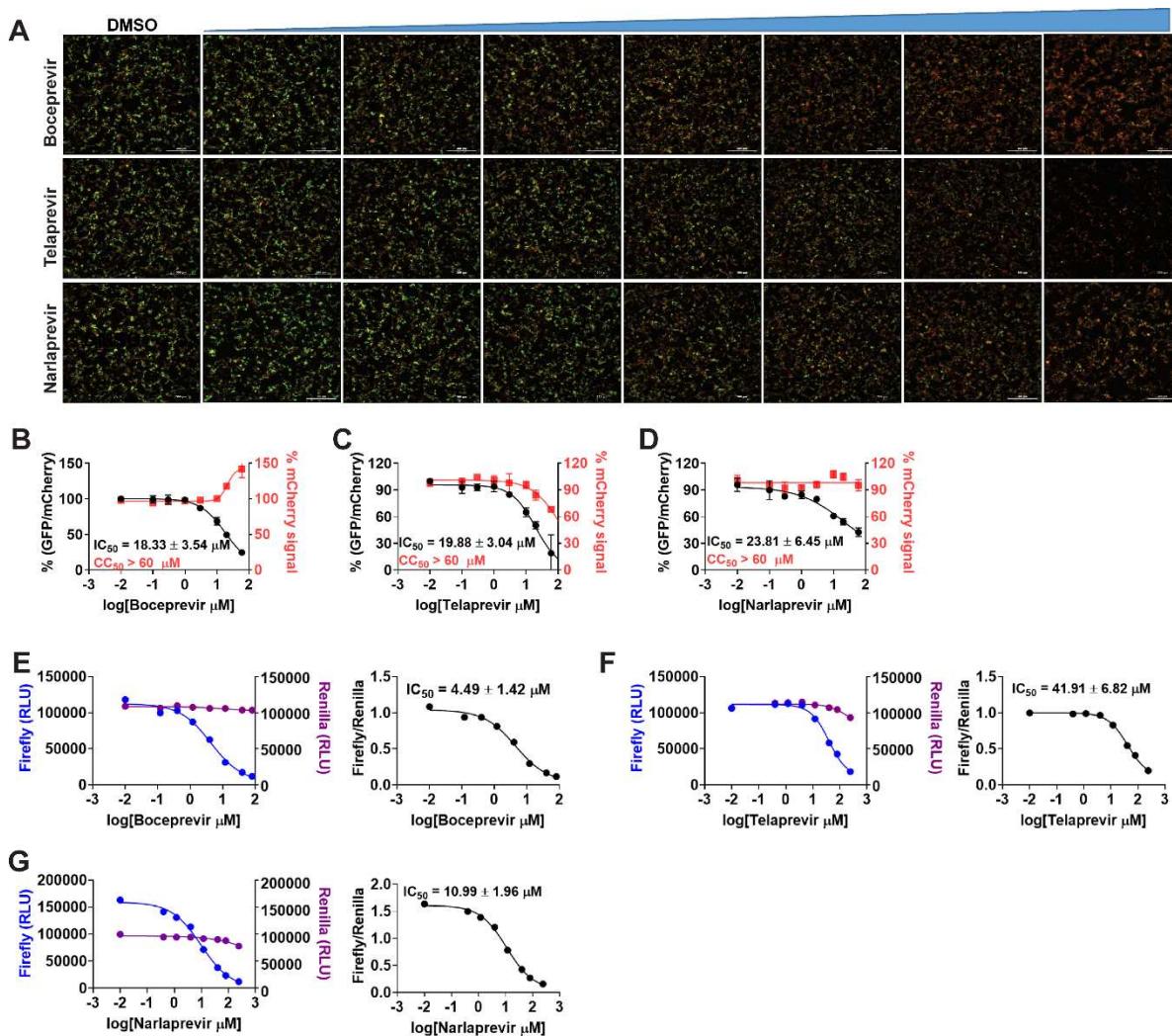
167 **Table 2. Summary of results.**

	FRET IC ₅₀ (μ M)	TSA ΔT_m ($^{\circ}$ C)	Flip-GFP IC ₅₀ (μ M)	pGlo-M ^{pro} Luciferase (μ M)	Anti-viral (μ M) Vero CPE	PDB code	Comment
Control compounds							
Positive control: GC-376 	0.030 \pm 0.008 0.15 \pm 0.03 ¹⁸ 0.052 \pm 0.007 ¹⁹	18.30 ²	2.35 \pm 1.06	0.023 \pm 0.002	3.37 \pm 1.68 ² 0.70 ¹⁹ 10 \pm 4.2 ¹⁹	6WTT ² 6WTJ ²⁰ 7C6U ¹⁸	Positive control
Negative control: Rupintrivir 	>20 ² >100 ²¹	0.01	>50	>240	(NLuc)1.87 \pm 0.47 ¹⁷	N.A.	Negative control
HCV protease inhibitors							
Boceprevir 	4.13 \pm 0.61 ² 2.9 \pm 0.6 ²² 8.0 \pm 1.5 ¹⁸ 3.1 ²³ 3.7 \pm 1.7 ²⁴	6.67 ²	18.33 \pm 3.54	4.49 \pm 1.42	1.31 \pm 0.58 ² 19.6 ²² 15.57 ¹⁸ >50 ²⁴ 5.4 (293T) ²²	6XQU ²³ 7C6S ¹⁸ 7COM ²⁵	Validated M ^{pro} inhibitor
Telaprevir 	24.2 \pm 6.1 18.7 \pm 6.4 ²² 18 ²³ 17.9 \pm 4.5 ²⁴	1.03	19.9 \pm 3.0	41.91 \pm 6.82	>50 ²² 20.5(293T) ²²	6XQS ²³ 7C7P ²⁵ 7LB ²⁶	Validated M ^{pro} inhibitor
Narlaprevir 	5.73 \pm 0.67 ² 2.2 \pm 0.4 ²² 5.1 ²³	5.18 ²	23.8 \pm 6.5	10.99 \pm 1.96	7.7 ² 15 (293T) ²²	6XQT ²³ 7D1O ²⁷	Validated M ^{pro} inhibitor
HIV protease inhibitors							
Lopinavir 	>60 ² 234 \pm 98 ²⁴	-0.60	>20	>240	(NLuc)9.00 \pm 0.42 ¹⁷ 19 \pm 8 ²⁸ 25 ²⁹	N.A.	Not a M ^{pro} inhibitor

Chemical Structure	IC ₅₀ (nM)	K _i (nM)	K _d (nM)	EC ₅₀ (nM)	IC ₅₀ (nM)	Cell line	Notes
	>20 ² >1000 ²⁴	-0.65	>20	>240	> 100 ²⁹	N.A.	Not a M ^{pro} inhibitor
	>60 ³⁰ 7.5 ± 0.3 ³¹	0.19 ^c	>60	>240	2.0 ± 0.12 ³²	N.A.	Not a M ^{pro} inhibitor
	>20 ² 118 ± 18 ²⁴	-0.60	>10	>240	3.3 ²⁴ (Nluc) 0.77 ± 0.32 ¹⁷ 3.1 ± 0.06 ²⁸	N.A.	Not a M ^{pro} inhibitor
	>20 ² 6.7 ± 0.6 ³³	-0.65	>20	>240	(Nluc) 2.74 ± 0.20 ¹⁷	N.A.	Not a M ^{pro} inhibitor
Calcium channel blocker							
	64.2 ± 9.8 4.81 ± 1.87 ³⁴	0.45	>10	>240	N.A.	N.A.	Not a M ^{pro} inhibitor
Hits from drug repurposing							
	0.97 ± 0.27 ² 8.98 ± 2.0 ¹⁹	6.65 ²	>60	0.60 ± 0.11	2.07 ± 0.76 ² 27 ± 1.4 ¹⁹	6XA4 ³	Validated M ^{pro} Inhibitor Cell-type dependent
	0.45 ± 0.06 ² 6.48 ± 3.4 ¹⁹	7.86 ²	38.71 ± 5.66	0.79 ± 0.10	0.49 ± 0.18 ² 1.3 ± 0.57 ¹⁹	6XBH ³	Validated M ^{pro} Inhibitor Cell-type dependent
	>60 ³⁵ 0.67 ± 0.09 ^{8,36} >100 ¹⁹	0.14 ³⁵	>60	>60	4.67 ± 0.80 ^{8,36} >100 ¹⁹	7BAK ³⁷	Not a M ^{pro} inhibitor
	>60 ³⁵ 9.35 ± 0.18 ⁸	0.21 ³⁵	>60	>240	not active ⁸	N.A.	Not a M ^{pro} inhibitor
	28.2 ± 9.5 ³⁵ 1.82 ± 0.06 ⁸ >100 ¹⁹	0.35 ³⁵	>60	>240	>100 ¹⁹	7BUY ³⁸	Not a M ^{pro} inhibitor
	>60 ³⁵ 21.39 ± 7.06 ⁸	-0.14 ³⁵	>60	>240	not active ⁸	N.A.	Not a M ^{pro} inhibitor
	>60 ³⁵ 1.55 ± 0.30 ⁸	-0.21 ³⁵	>60	>240	not active ⁸	N.A.	Not a M ^{pro} inhibitor
	>60 ³⁵ 15.75 ± 8.22 ⁸ 15.0 ± 3.0 ¹⁹	0.40 ³⁵	>20	>240	>100 ¹⁹	7CA8 ⁹	Not a M ^{pro} inhibitor
	>60 ³⁵ 0.39 ± 0.11 ³⁹ 0.94 ± 0.20 ⁴⁰	0.21	>60	>240	2.92 ± 0.06 ³⁹ 2.94 ± 1.19 ⁴⁰	N.A.	Not a M ^{pro} inhibitor
	>200 ³⁰ 3.9 ± 0.2 ³¹	0.09 ³⁰	>200	>800	1.13 ⁴¹	N.A.	Not a M ^{pro} inhibitor

Chloroquine							
	$>200^{30}$ 2.9 ± 0.3^{31}	0.16 ³⁰	>200	>800	2.71 to 7.36 ⁴²	N.A.	Not a M ^{pro} inhibitor
Oxytetracycline	$>60^{30}$ 15.2 ± 0.9^{31}	0.16 ³⁰	>60	>240	N.A.	N.A.	Not a M ^{pro} inhibitor
Montelukast	13.5 ± 1.0^{30} 7.3 ± 0.5^{31}	-0.68 ³⁰	>60	>240	N.A.	N.A.	Not a M ^{pro} inhibitor
Candesartan	$>60^{30}$ $Ki = 0.62 \pm 0.05^{31}$	0.23 ³⁰	>60	>240	N.A.	N.A.	Not a M ^{pro} inhibitor
Dipyridamole	29.4 ± 3.2^{30} 0.60 ± 0.01^{31}	-0.19 ³⁰	>60	>240	N.A.	N.A.	Not a M ^{pro} inhibitor

168 N.A. = not available


169

170 2.2. HCV protease inhibitors

171 The HCV protease inhibitors have been proven a rich source of SARS-CoV-2 M^{pro}
 172 inhibitors^{2, 22, 43}. From screening a focused protease library using the FRET assay, we
 173 discovered simeprevir, boceprevir, and narlaprevir as SARS-CoV-2 M^{pro} inhibitors with IC₅₀
 174 values of 13.74, 4.13, and 5.73 μ M, respectively, while telaprevir was less active (31% inhibition
 175 at 20 μ M)². The binding of boceprevir to M^{pro} was characterized by thermal shift assay and
 176 native mass spectrometry. Boceprevir inhibited SARS-CoV-2 viral replication in Vero E6 cells
 177 with EC₅₀ values of 1.31 and 1.95 μ M in the primary CPE and secondary viral yield reduction
 178 assays, respectively (Table 2). In parallel, Fu *et al* also reported boceprevir as a SARS-CoV-2
 179 M^{pro} inhibitor with an enzymatic inhibition IC₅₀ of 8.0 μ M and an antiviral EC₅₀ of 15.57 μ M¹⁸. The
 180 X-ray crystal structure of M^{pro} with boceprevir was solved, revealing a covalent modification of
 181 the C145 thiol by the ketoamide (PDBs: 6XQU⁴³, 7C6S¹⁸, 7COM²⁵).

182 In the current study, we found that boceprevir showed moderate inhibition in the cellular
 183 Flip-GFP M^{pro} assay with an IC₅₀ of 18.33 μ M (Fig. 2A and B), a more than 4-fold increase
 184 compared to the IC₅₀ in the FRET assay (4.13 μ M). The IC₅₀ value of boceprevir in the cell
 185 lysate Protease-Glo luciferase assay was 4.49 μ M (Fig. 2E). In comparison, telaprevir and
 186 narlaprevir showed weaker inhibition than boceprevir in both the Flip-GFP and Protease-Glo
 187 luciferase assays (Fig. 2A, C, D, F, and G), which is consistent with their weaker potency in the

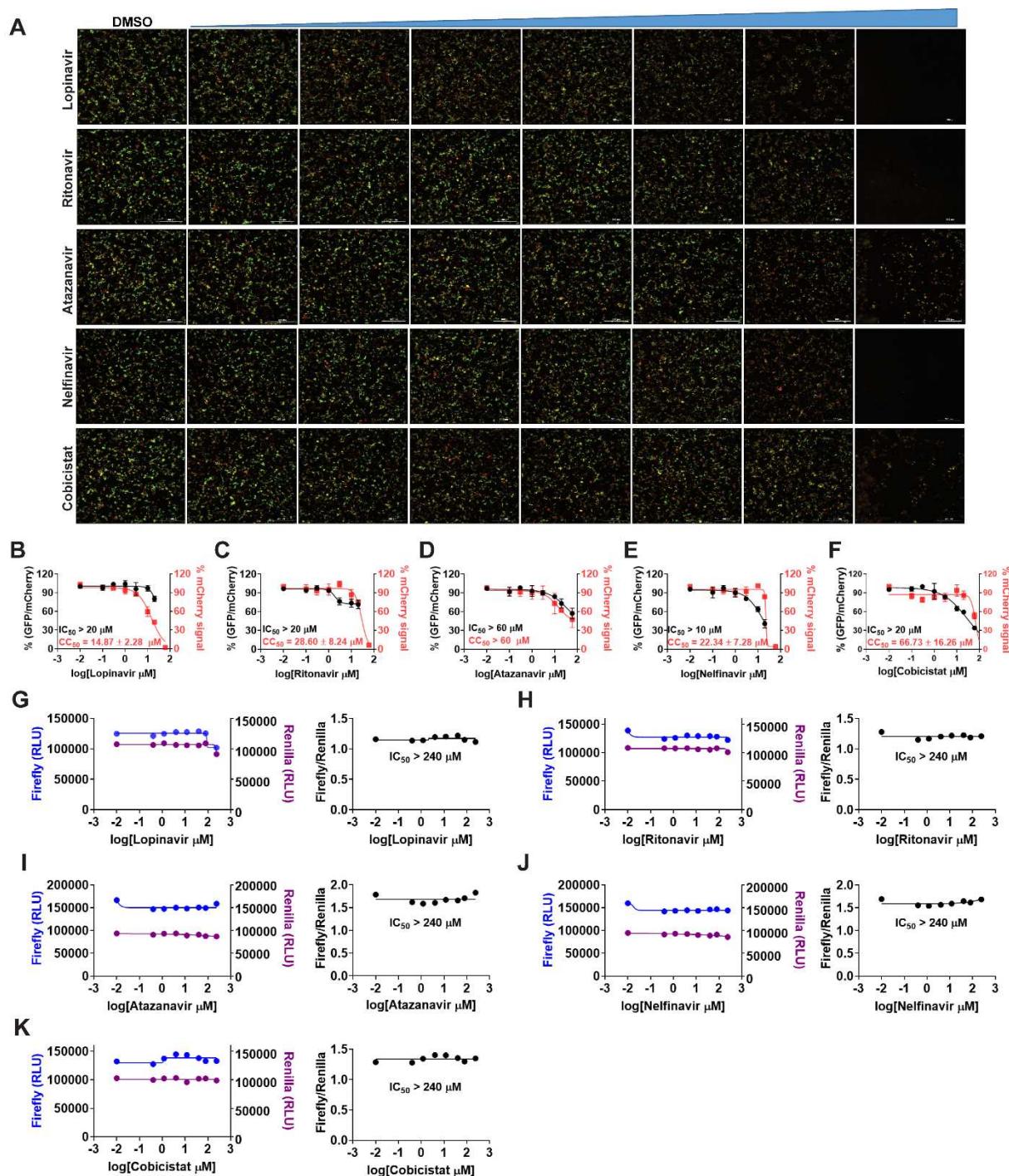
188 FRET assay (Table 2). Overall, boceprevir, telaprevir, and narlaprevir have been validated as
189 SARS-CoV-2 M^{pro} inhibitors in both the cellular Flip-GFP assay and the cell lysate Protease-Glo
190 luciferase assay. Therefore, the antiviral activity of these three compounds against SARS-CoV-
191 2 are likely due to M^{pro} inhibition. Although the inhibition of M^{pro} by boceprevir is relatively weak
192 compared to GC-376, several highly potent M^{pro} inhibitors were subsequently designed as
193 hybrids of boceprevir and GC-376 including the Pfizer oral drug candidate PF-07321332, which
194 contain the dimethylcyclopropylproline at the P2 substitution^{11, 25, 44}.

195
196 **Figure 2:** Validation/invalidation of hepatitis C virus NS3/4A protease inhibitors boceprevir,
197 telaprevir, and narlaprevir as SARS CoV-2 M^{pro} inhibitors using the Flip-GFP assay and
198 Protease-Glo luciferase assay. (A) Representative images from the Flip-GFP-M^{pro} assay. Dose-
199 dependent decrease of GFP signal was observed with the increasing concentration of
200 boceprevir, telaprevir or narlaprevir. (B-D) Dose-response curve of the GFP and mCherry

201 fluorescent signals for boceprevir (B), telaprevir (C) or narlaprevir (D); mCherry signal alone was
202 used to normalize protein expression level or calculate compound toxicity. (E-G) Protease-Glo
203 luciferase assay results of boceprevir (E), telaprevir (F) or narlaprevir (G). Left column showed
204 Firefly and Renilla luminescence signals in the presences of increasing concentrations of
205 boceprevir, telaprevir or narlaprevir; Right column showed dose-response curve plots of the
206 ratio of FFluc/Rlu luminescence. Renilla luminescence signal alone was used to normalize
207 protein expression level.

208

209 **2.3. HIV protease inhibitors**


210 HIV protease inhibitors, especially Kaletra, have been hotly pursued as potential COVID-19
211 treatment at the beginning of the pandemic. Kaletra was first tested in clinical trial during the
212 SARS-CoV outbreak in 2003 and showed somewhat promising results based on the limited
213 data⁴⁵. However, a double-blinded, randomized trial concluded that Kaletra was not effective in
214 treating severe COVID-19^{46, 47}. In SARS-CoV-2 infection ferret models, Kaletra showed marginal
215 effect in reducing clinical symptoms, while had no effect on virus titers⁴⁸.

216 Keletra is a combination of lopinavir and ritonavir. Lopinavir is a HIV protease inhibitor, and
217 ritonavir is used as a booster. Ritonavir does not inhibit the HIV protease and it is a cytochrome
218 P450-3A4 inhibitor⁴⁹. When used in combination, ritonavir can enhance other protease inhibitors
219 by preventing or slowing down the metabolism. In cell culture, lopinavir was reported to inhibit
220 the nanoluciferase SARS-CoV-2 reporter virus with an EC₅₀ of 9 μ M¹⁷. In two other studies,
221 lopinavir showed moderate antiviral activity against SARS-CoV-2 activity with EC₅₀ values of
222 19 \pm 8 μ M²⁸ and 25 μ M²⁹. As such, it was assumed that lopinavir inhibited SARS-CoV-2 through
223 inhibiting the M^{pro}. However, lopinavir showed no activity against SARS-CoV-2 M^{pro} in the FRET
224 assay from our previous study (IC₅₀ > 60 μ M)². Wong et al also showed that lopinavir was a
225 weak inhibitor against SARS-CoV M^{pro} with an IC₅₀ of 50 μ M⁵⁰. In the current study, we further
226 confirmed the lack of binding of lopinavir to SARS-CoV-2 M^{pro} in the thermal shift assay (ΔT_m = -
227 0.60°C) (Table 2). The result from the Flip-GFP assay was not conclusive as lopinavir was
228 cytotoxic. Lopinavir was not active in the Protease-Glo luciferase assay. Taken together,
229 lopinavir is not a M^{pro} inhibitor.

230 We also tested additional HIV antivirals including ritonavir, atazanavir, nelfinavir, and
231 cobicistat. Atazanavir and nelfinavir were reported as a potent SARS-CoV-2 antiviral with EC₅₀
232 values of 2.0 \pm 0.12³² and 0.77 μ M¹⁷ using the infectious SARS-CoV-2 and the nanoluciferase

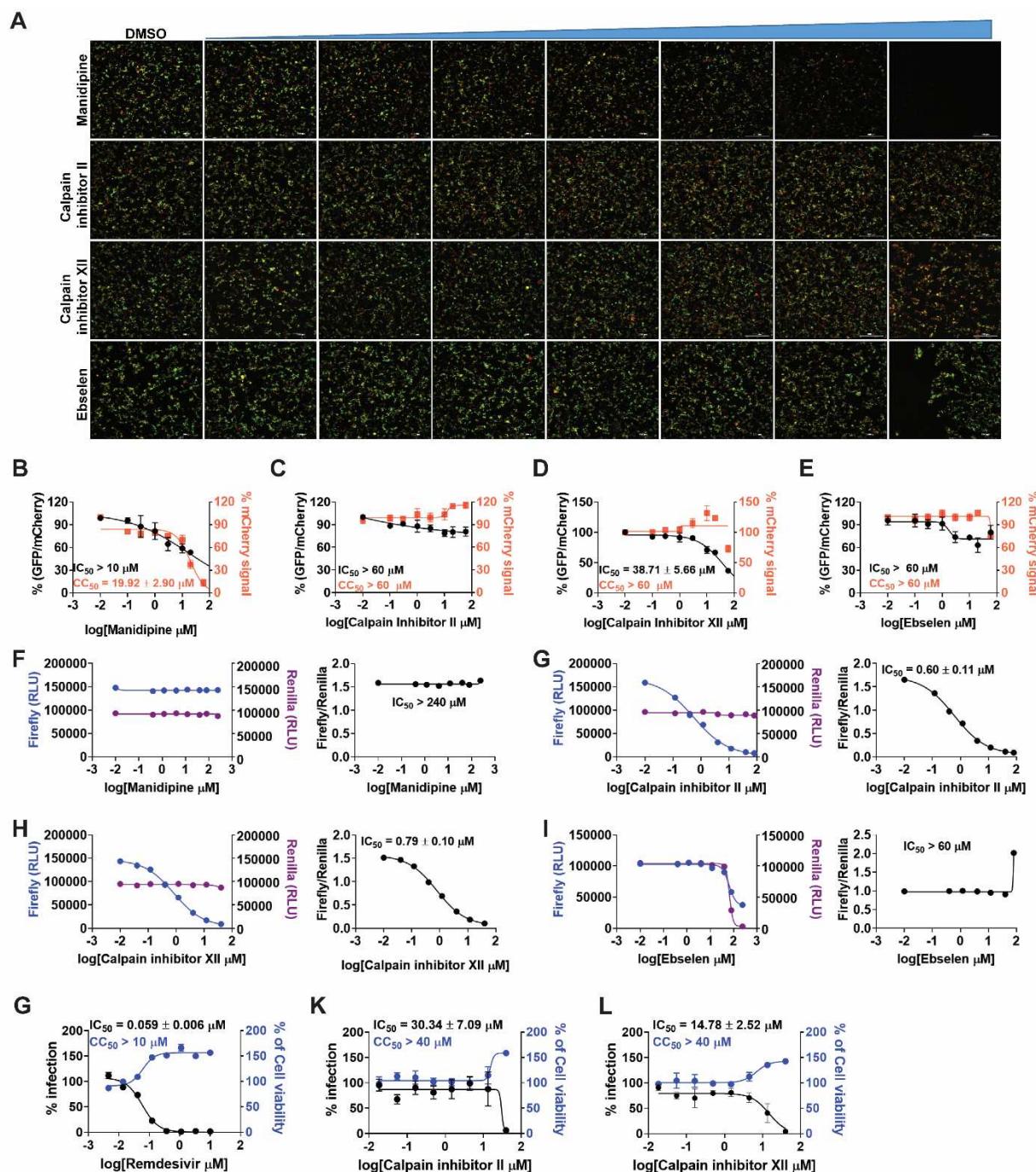
233 reporter virus (SARS-CoV-2-Nluc), respectively. A drug repurposing screening similar identified
234 nelfinavir as a SARS-CoV-2 antiviral with an IC_{50} of 3.3 μM^{24} . Sharma et al showed that
235 cobicistat inhibited M^{pro} with an IC_{50} of 6.7 μM in the FRET assay³³. Cobicistat was also reported
236 to have antiviral activity against SARS-CoV-2 with an EC_{50} of $2.74 \pm 0.20 \mu M$ using the SARS-
237 CoV-2-Nluc reporter virus¹⁷. However, our FRET assay showed that ritonavir, nelfinavir, and
238 cobicistat did not inhibit M^{pro} in the FRET assay ($IC_{50} > 20 \mu M$), which was further confirmed by
239 the lack of binding to M^{pro} in the thermal shift assay (Table 2). The results from the Flip-GFP
240 assay were not conclusive due to compound cytotoxicity. None of the compounds showed
241 inhibition in the Protease-Glo luciferase assay.

242 Collectively, our results have shown that the HIV protease inhibitors including lopinavir,
243 ritonavir, atazanavir, nelfinavir, and cobicistat are not M^{pro} inhibitors. Nonetheless, given the
244 potent antiviral activity of atazanavir and nelfinavir against SARS-CoV-2, it might be interesting
245 to conduct resistance selection to elucidate their drug target(s).

246

247 **Figure 3: Validation/invalidation of HIV protease inhibitors lopinavir, ritonavir, atazanavir,**
 248 **nelfinavir, and cobicistat as SARS CoV-2 M^{pro} inhibitors using the Flip-GFP assay and Protease-**
 249 **Glo luciferase assay. (A) Representative images from the Flip-GFP-M^{pro} assay. (B-F)**
 250 **Dose-response curve of the GFP and mCherry fluorescent signals for lopinavir (B), ritonavir**
 251 **(C), atazanavir (D), nelfinavir (E), and cobicistat (F); mCherry signal alone was used to**

252 normalize protein expression level or calculate compound cytotoxicity. (G-K) Protease-Glo
253 luciferase assay results of lopinavir (G), ritonavir (H), atazanavir (I), nelfinavir (J), and cobicistat
254 (K). Left column showed Firefly and Renilla luminescence signals in the presences of increasing
255 concentrations of lopinavir, ritonavir, atazanavir, nelfinavir, and cobicistat; Right column showed
256 dose-response curve plots of ratio of FFluc/Rluc luminescence. Renilla luminescence signal
257 alone was used to normalize protein expression level. None of the compounds shows significant
258 inhibition in the presence of up to 240 μ M compounds.


259

260 **2.4. Bioactive compounds from drug repurposing**

261 Several bioactive compounds have been identified as SARS-CoV-2 M^{pro} inhibitors through
262 either virtual screening or FRET-based HTS. We are interested in validating these hits using the
263 Flip-GFP and the Protease-Glo luciferase assays.

264 Manidipine was identified as a SARS-CoV-2 M^{pro} inhibitor from a virtual screening and was
265 subsequently shown to inhibit M^{pro} with an IC_{50} of 4.81 μ M in the FRET assay³⁴. No antiviral data
266 was provided. When we repeated the FRET assay, the IC_{50} was 64.2 μ M (Table 2). Manidipine
267 also did not show binding to M^{pro} in the thermal shift assay. Furthermore, manidipine showed no
268 activity in either the Flip-GFP assay or the Protease-Glo luciferase assay (Fig. 4A, B, and F).
269 Therefore, our results invalidated manidipine as a SARS-CoV-2 M^{pro} inhibitor.

270

271

272 **Figure 4.** Validation/invalidation of manidipine, calpain inhibitors II and XII, and ebselen as
 273 SARS CoV-2 M^{pro} inhibitors using the Flip-GFP assay and Protease-Glo luciferase assay. (A)
 274 Representative images from the Flip-GFP-M^{pro} assay. (B-E) Dose-response curve of the GFP
 275 and mCherry fluorescent signals for manidipine (B), calpain inhibitor II (C), calpain inhibitor XII
 276 (D), and ebselen (E); mCherry signal alone was used to normalize protein expression level or
 277 calculate compound cytotoxicity. (F-I) Protease-Glo luciferase assay results of manidipine (F),

278 calpain inhibitor II (G), calpain inhibitor XII (H), and ebselen (I). Left column showed Firefly and
279 Renilla luminescence signals in the presences of increasing concentrations of lopinavir,
280 ritonavir, atazanavir, nelfinavir, and cobicistat; Right column showed dose-response curve plots
281 of the ratio of FFluc/Rluc luminescence. Renilla luminescence signal alone was used to
282 normalize protein expression level. (G-K) Antiviral activity of remdesivir (G), calpain inhibitor II
283 (K), and calpain inhibitor XII (L) against SARS-CoV-2 in Calu-3 cells.

284 In the same screening which we identified boceprevir as a SARS-CoV-2 M^{pro} inhibitor,
285 calpain inhibitors II and XII were also found to have potent inhibition against M^{pro} with IC₅₀
286 values of 0.97 and 0.45 μ M in the FRET assay². Both compounds showed binding to M^{pro} in the
287 thermal shift and native mass spectrometry assays. The Protease-Glo luciferase assay similarly
288 confirmed the potent inhibition of calpain inhibitors II and XII against M^{pro} with IC₅₀ values of 0.60
289 and 0.79 μ M, respectively (Fig. 4G, H). However, calpain inhibitor II had no effect on the cellular
290 M^{pro} activity as shown by the lack of inhibition in the Flip-GFP assay (IC₅₀ > 60 μ M) (Fig. 4A, C),
291 while calpain inhibitor XII showed weak activity (IC₅₀ = 38.71 μ M) (Fig. 4A, D). A recent study by
292 Liu et al using a M^{pro} triggered cytotoxicity assay similarly found the lack of cellular M^{pro} inhibition
293 by calpain inhibitors II and XII⁵¹. These results contradict to the potent antiviral activity of both
294 compounds in Vero E6 cells². It is noted that calpain inhibitors II and XII are also potent
295 inhibitors of cathepsin L with IC₅₀ values of 0.41 and 1.62 nM, respectively³. One possible
296 explanation is that the antiviral activity of calpain inhibitors II and XII against SARS-CoV-2 might
297 be cell type dependent, and the observed inhibition in Vero E6 cells might be due to cathepsin L
298 inhibition instead of M^{pro} inhibition. Vero E6 cells are TMPRSS2 negative, and SARS-CoV-2
299 enters cell mainly through endocytosis and is susceptible to cathepsin L inhibitors⁵². To further
300 evaluate the antiviral activity of calpain inhibitors II and XII against SARS-CoV-2, we tested
301 them in Calu-3 cells using the immunofluorescence assay (Fig. 4G, K, L). Calu-3 is TMPRSS2
302 positive and it is a close mimetic of the human primary epithelial cell⁵³. As expected, calpain
303 inhibitors II and XII displayed much weaker antiviral activity against SARS-CoV-2 in Calu-3 cells
304 than in Vero E6 cells with EC₅₀ values of 30.34 and 14.78 μ M, respectively (Fig. 4K, L). These
305 results suggest that the Flip-GFP assay can be used to faithfully predict the antiviral activity of
306 M^{pro} inhibitors. The lower activity of calpain inhibitors II and XII in the Flip-GFP assay and the
307 Calu-3 antiviral assay might due to the competition with host proteases, resulting in the lack of
308 cellular target engagement with M^{pro}.

309 In conclusion, calpain inhibitors II and XII are validated as M^{pro} inhibitors but their antiviral
310 activity against SARS-CoV-2 is cell type dependent. Accordingly, TMPRSS2 positive cell lines

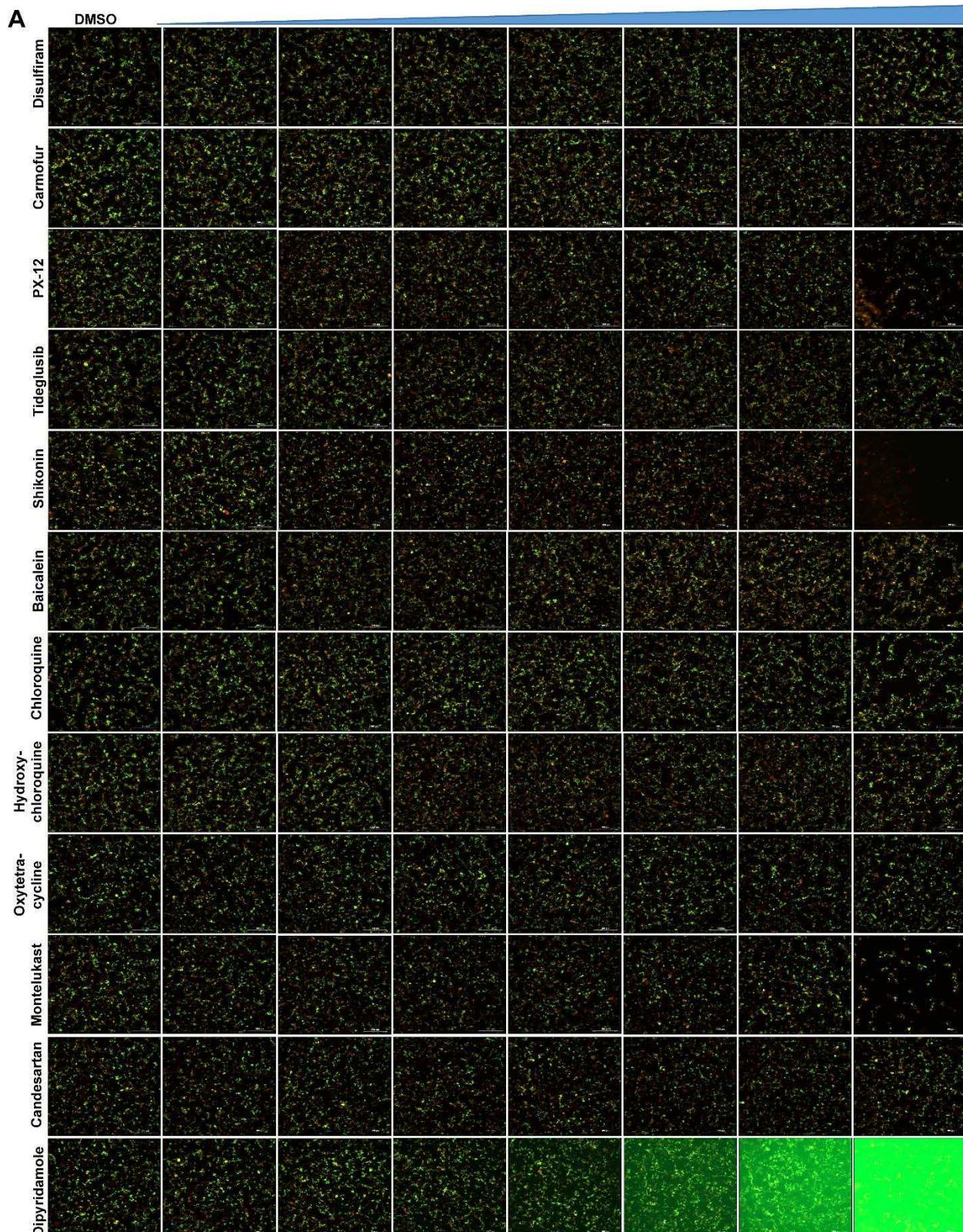
311 such as Calu-3 should be used to test the antiviral activity of calpain inhibitors II and XII
312 analogs.

313 Ebselen is among one of the most frequently reported promiscuous M^{pro} inhibitors. It was
314 first reported by Yang et al that ebselen inhibits SARS-CoV-2 M^{pro} with an IC_{50} of 0.67 μM and
315 the SARS-CoV-2 replication with an EC_{50} of 4.67 μM ⁸. However, it was noted that no reducing
316 reagent was added in the FRET assay, and we reasoned that the observed inhibition might be
317 due to non-specific modification of the catalytic cysteine 145 by ebselen. To test this hypothesis,
318 we repeated the FRET assay with and without reducing reagent DTT or GSH, and found that
319 ebselen completely lost the M^{pro} inhibition in the presence of DTT or GSH³⁵. Similarly, ebselen
320 also non-specifically inhibited several other viral cysteine proteases in the absence of DTT
321 including SARS-CoV-2 PL^{pro} , EV-D68 $2A^{pro}$ and $3C^{pro}$, and EV-A71 $2A^{pro}$ and $3C^{pro}$ ³⁵. The
322 inhibition was abolished with the addition of DTT. Ebselen also had no antiviral activity against
323 EV-A71 and EV-D68, suggesting that the FRET assay results without reducing reagent cannot
324 be used to predict the antiviral activity. In this study, we found that ebselen showed no inhibition
325 in either the Flip-GFP assay or the split-luciferase assay (Fig. 4A, E, I), providing further
326 evidence for the promiscuous mechanism of action of ebselen. Another independent study by
327 Deval et al using mass spectrometry assay reached similar conclusion that the inhibition of M^{pro}
328 by ebselen is non-specific and inhibition was abolished with the addition of reducing reagent
329 DTT or glutathione⁵⁴. In contrary to the potent antiviral activity reported by Yang et al, the study
330 from Deval et al found that ebselen was inactive against SARS-CoV-2 in Vero E6 cells ($EC_{50} >$
331 100 μM). Lim et al reported that ebselen and disulfiram had synergistic antiviral effect with
332 remdesivir against SARS-CoV-2 in vero E6 cells⁵⁵. It was proposed that ebselen and disulfiram
333 act as zinc ejectors and inhibited not only the PL^{pro} ⁵⁶, but also the nsp13 ATPase and nsp14
334 exoribonuclease activities⁵⁵, further casting doubt on the detailed mechanism of action of
335 ebselen.

336 Despite the accumulating evidence to support the promiscuous mechanism of action of
337 ebselen, several studies continue to explore ebselen and its analogs as SARS-CoV-2 M^{pro} and
338 PL^{pro} inhibitors^{36, 57, 58}. A number of ebselen analogs were designed and found to have
339 comparable enzymatic inhibition and antiviral activity as ebselen. MR6-31-2 had slightly weaker
340 enzymatic inhibition against SARS-CoV-2 M^{pro} compared to ebselen ($IC_{50} = 0.824$ vs 0.67 μM),
341 however, MR6-31-2 had more potent antiviral activity than ebselen ($EC_{50} = 1.78$ vs 4.67 μM)
342 against SARS-CoV-2 M^{pro} in Vero E6 cells. X-ray crystallization of SARS-CoV-2 M^{pro} with MR6-
343 31-2 (PDB: 7BAL) and ebselen (PDB: 7BAK) revealed nearly identical complex structures. It

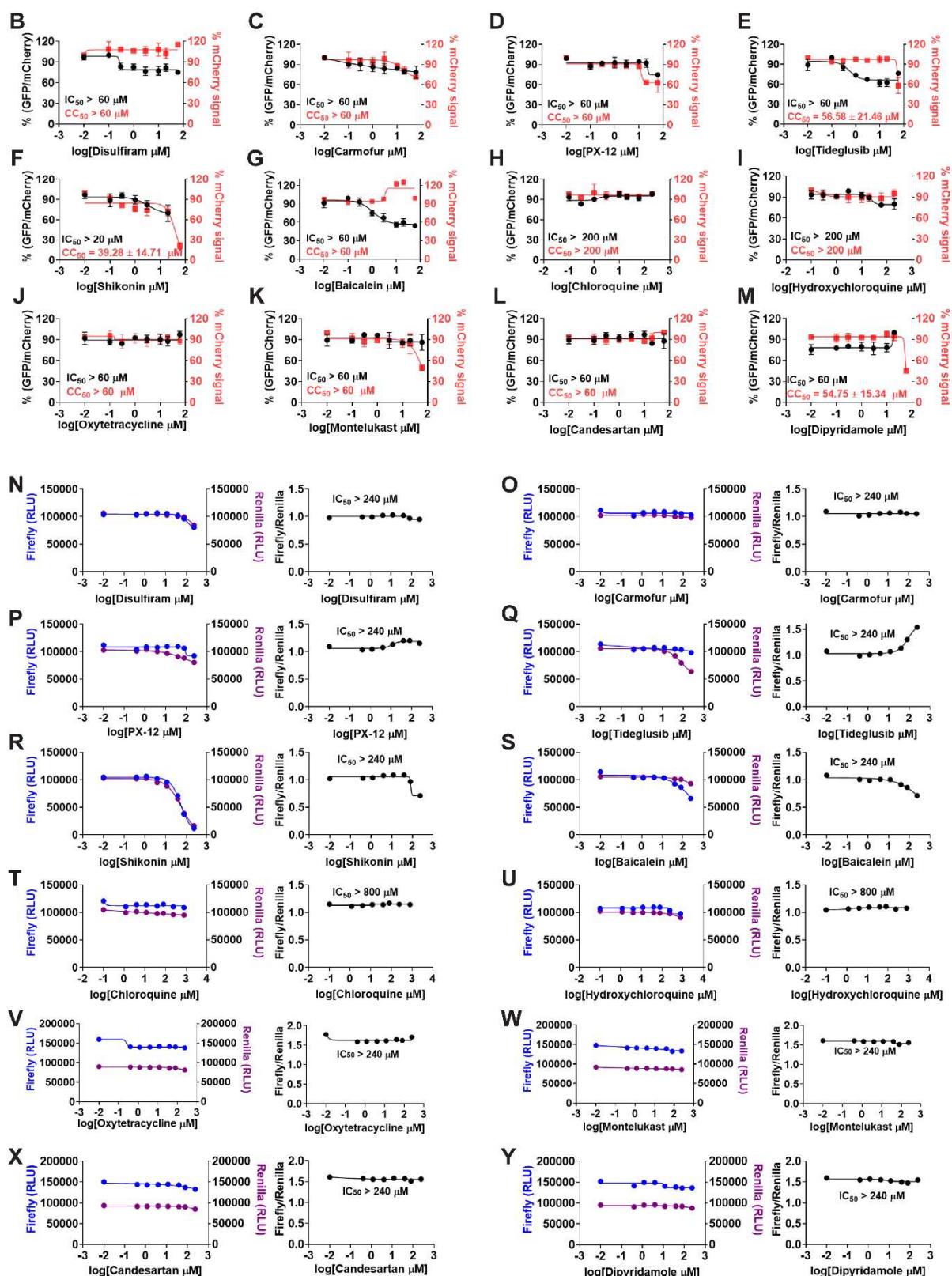
344 was found that selenium coordinates directly to Cys145 and forms a S-Se bond³⁶. Accordingly,
345 a mechanism involving hydrolysis of the organoselenium compounds was proposed. Similar to
346 their previous study, the M^{pro} enzymatic reaction buffer (50 mM Tris pH 7.3, 1 mM EDTA) did
347 not include the reducing reagent DTT. Therefore, the M^{pro} inhibition by these ebselen analogs
348 might be non-specific and the antiviral activity might arise from other mechanisms.³⁶

349 Overall, it can be concluded that ebselen is not a specific M^{pro} inhibitor, and its antiviral
350 activity against SARS-CoV-2 might involve other drug targets such as nsp13 or nsp14.


351 Disulfiram is an FDA-approved drug for alcohol aversion therapy. Disulfiram has a
352 polypharmacology and was reported to inhibit multiple enzymes including urease⁵⁹,
353 methyltransferase⁶⁰, and kinase⁵⁹ through reacting with cysteine residues. Disulfiram was also
354 reported as an allosteric inhibitor of MERS-CoV PL^{pro}⁶¹. Yang et al reported disulfiram as a M^{pro}
355 inhibitor with an IC₅₀ of 9.35 μM. Follow up studies by us and others showed that disulfiram did
356 not inhibit M^{pro} in the presence of DTT. In this study, disulfiram had no inhibition against M^{pro} in
357 either the Flip-GFP assay or the Protease-Glo luciferase assay (Fig. 5A, B, N).

358 Similar to disulfiram, carmofur, PX-12 and tideglusib, which were previously claimed by
359 Yang et al as M^{pro} inhibitors, showed no inhibitory activity in either the Flip-GFP or Protease-Glo
360 luciferase assay (Fig. 5A, C, D, E, O, P, Q), which is consistent with their lack of inhibition in the
361 FRET assay in the presence of DTT³⁵.

362 Shikonin and baicalein are polyphenol natural products with known polypharmacology. Both
363 compounds showed no inhibition in either the Flip-GFP or the Protease-Glo luciferase assay
364 (Fig. 5A, F, G, R, S), suggesting they are not M^{pro} inhibitors. These two compounds were
365 previously reported to inhibit SARS-CoV-2 M^{pro} in the FRET assay⁸ and had antiviral activity
366 against SARS-CoV-2 in Vero E6 cells. However, our recent study showed that shikonin had no
367 inhibition against SARS-CoV-2 M^{pro} in the FRET assay in the presence of DTT³⁵. Studies from
368 Deval et al using FRET assay and mass spectrometry assay reached the same conclusion. X-
369 ray crystal structure of SARS-CoV-2 M^{pro} in complex with Shikonin showed that shikonin binds
370 to the active site in a non-covalent manner.⁹


371 In addition to the proposed mechanism of action of M^{pro} inhibition, Schinazi et al showed
372 that baicalein and baicalin inhibit the SARS-CoV-2 RNA-dependent RNA polymerase⁶². Overall,
373 shikonin and baicalein are not M^{pro} inhibitors and the antiviral activity of baicalein against SARS-
374 CoV-2 might involve other mechanisms.

375 A recent study from Luo et al identified several known drugs as SARS-CoV-2 M^{pro} inhibitors
376 from a virtual screening⁶³. The identified compounds include chloroquine (IC₅₀ = 3.9 ± 0.2 μM; K_i
377 = 0.56 ± 0.12 μM), hydroxychloroquine (IC₅₀ = 2.9 ± 0.3 μM; K_i = 0.36 ± 0.21 μM),
378 oxytetracycline (IC₅₀ = 15.2 ± 0.9 μM; K_i = 0.99 ± 0.06 μM), montelukast (IC₅₀ = 7.3 ± 0.5 μM; K_i
379 = 0.48 ± 0.04 μM), candesartan (IC₅₀ = 2.8 ± 0.3 μM; K_i = 0.18 ± 0.02 μM), and dipyridamole (K_i
380 = 0.04 ± 0.001 μM). The discovery of chloroquine and hydroxychloroquine as M^{pro} inhibitor was
381 particularly intriguing. Several high-throughput screenings have been conducted for M^{pro}^{24, 64},
382 and chloroquine and hydroxychloroquine were not among the list of active hits. In our follow up
383 study, we found that none of the identified hits reported by Luo et al inhibited M^{pro} either with or
384 without DTT in the FRET assay³⁰. In corroborate with our previous finding, the Flip-GFP and
385 Protease-Glo luciferase assays similarly confirmed the lack of inhibition of these compounds
386 against M^{pro} (Fig. 5A, H-M, T-Y). Therefore, it can be concluded that chloroquine,
387 hydroxychloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole are not
388 SARS-CoV-2 M^{pro} inhibitors. Other than the claims made by Luo et al, no other studies have
389 independently confirmed these compounds as M^{pro} inhibitors.

390

391

394 **Figure 5.** Validation/invalidation of disulfiram, carmofur, PX-12, tideglusib, shikonin, baicalein,
395 chloroquine, hydroxychloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole
396 as SARS CoV-2 M^{pro} inhibitors using the Flip-GFP assay and Protease-Glo luciferase assay. (A)
397 Representative images from the Flip-GFP-M^{pro} assay. (B-E) Dose-response curve of the ratio of
398 GFP/mCherry fluorescent signal for disulfiram (B), carmofur (C), PX-12 (D), tideglusib (E),
399 shikonin (F), baicalein (G), chloroquine (H), hydroxychloroquine (I), oxytetracycline (J),
400 montelukast (K), candesartan (L), and dipyridamole (M); mCherry signal alone was used to
401 normalize protein expression level or calculate compound cytotoxicity. (N-Y) Protease-Glo
402 luciferase assay results of disulfiram (N), carmofur (O), PX-12 (P), tideglusib (Q), shikonin (R),
403 baicalein (S), chloroquine (T), hydroxychloroquine (U), oxytetracycline (V), montelukast (W),
404 candesartan (X), and dipyridamole (Y). Left column showed Firefly and Renilla luminescence
405 signals in the presences of increasing concentrations of disulfiram, carmofur, PX-12, tideglusib,
406 shikonin, baicalein, chloroquine, hydroxychloroquine, oxytetracycline, montelukast,
407 candesartan, and dipyridamole; Right column showed dose-response curve plots of the ratio of
408 FFluc/Rluc luminescence. Renilla luminescence signal alone was used to normalize protein
409 expression level.

410

411 3. CONCLUSION

412 The M^{pro} is perhaps the most extensive exploited drug target for SARS-CoV-2. A variety of
413 drug discovery techniques have been applied to search for M^{pro} inhibitors. Researchers around
414 the world are racing to share their findings with the scientific community to expedite the drug
415 discovery process. However, the quality of science should not be compromised by the speed.
416 The mechanism of action of drug candidates should be thoroughly characterized in biochemical,
417 binding, and cellular assays. Pharmacological characterization should address both target
418 specificity and cellular target engagement. For target specificity, the drug candidates can be
419 counter screened against unrelated cysteine proteases such as the viral EV-A71 2A^{pro}, EV-D68
420 2A^{pro}, the host cathepsins B, L, and K, caspase, calpains I, II, and III, and etc. Compounds
421 inhibit multiple cysteine proteases non-discriminately are most likely promiscuous compounds
422 that act through redox cycling, inducing protein aggregation, or alkylating catalytic cysteine
423 residue C145. For cellular target engagement, the Flip-GFP and Protease-Glo luciferase assays
424 can be applied. Both assays are performed in the presence of competing host proteins at the
425 cellular environment. Collectively, our study reaches the following conclusions: 1) for validated
426 M^{pro} inhibitors, the IC₅₀ values with and without reducing reagent should be about the same in

427 the FRET assay; 2) validated M^{pro} inhibitors should show consistent results in the FRET assay,
428 thermal shift binding assay, and the Protease-Glo luciferase assay. For compounds that are not
429 cytotoxic, they should also be active in the Flip-GFP assay; 3) compounds that have antiviral
430 activity but lack consistent results from the FRET, thermal shift, Flip-GFP, and Protease-Glo
431 luciferase assays should not be classified as M^{pro} inhibitors; 4) compounds that non-specifically
432 inhibit multiple unrelated viral or host cysteine proteases are most likely promiscuous inhibitors
433 that should be triaged. 5) X-ray crystal structures cannot be used to justify the target specificity
434 or cellular target engagement. Promiscuous compounds have been frequently co-crystallized
435 with M^{pro} including ebselen, carmofur, and shikonin (Table 2).

436 Overall, we hope our studies will promote the awareness of the promiscuous SARS-CoV-2
437 M^{pro} inhibitors and call for more stringent hit validation.

438

439 **4. METHODS AND MATERIALS**

440 **Protein Expression and Purification.** The tag-free SARS CoV-2 M^{pro} protein with native N-
441 and C- termini was expressed in pSUMO construct as described previously³.

442

443 **Enzymatic Assays.** The FRET-based protease was performed as described previously².
444 Briefly, 100 nM of M^{pro} protein in the reaction buffer containing 20 mM HEPES, pH 6.5, 120 mM
445 NaCl, 0.4 mM EDTA, 4 mM DTT, and 20% glycerol was incubated with serial concentrations of
446 the testing compounds at 30 °C for 30 min. The proteolytic reactions were initiated by adding 10
447 μM of FRET- peptide substrate (Dabcyl-KTSAVLQ/SGFRKME(Edans)) and recorded in Cytation
448 5 imaging reader (Thermo Fisher Scientific) with 360/460 filter cube for 1 hr. The proteolytic
449 reaction initial velocity in the presence or absence of testing compounds was determined by
450 linear regression using the data points from the first 15 min of the kinetic progress curves. IC₅₀
451 values was calculated by a 4-parameter dose-response function in prism 8.

452

453 **Thermal shift assay (TSA).** Direct binding of testing compounds to SARS CoV-2 M^{pro} protein
454 was evaluated by differential scanning fluorimetry (DSF) using a Thermal Fisher QuantStudio 5
455 Real-Time PCR System as previously described². Briefly, SARS CoV-2 M^{pro} protein was diluted
456 into reaction buffer to a final concentration of 3 μM and incubated with 40 μM of testing
457 compounds at 30 °C for 30 min. DMSO was included as a reference. SYPRO orange (1×,
458 Thermal Fisher, catalog no. S6650) was added, and the fluorescence signal was recorded

459 under a temperature gradient ranging from 20 to 95 °C with incremental step of 0.05 °C s⁻¹. The
460 melting temperature (T_m) was calculated as the mid log of the transition phase from the native to
461 the denatured protein using a Boltzmann model in Protein Thermal Shift Software v1.3. ΔT_m
462 was the difference between T_m in the presence of testing compounds and T_m in the presence of
463 DMSO.

464

465 **Flip-GFP M^{pro} Assay.** The construction of FlipGFP-M^{pro} plasmid was described previously¹¹.
466 The assay was carried out as follows: 293T cells were seeded in 96-well black, clear bottomed
467 Greiner plate (catalog no. 655090) and incubated overnight to reach 70– 90% confluence. 50 ng
468 of FlipGFP-M^{pro} plasmid and 50 ng SARS CoV-2 M^{pro} expression plasmid pcDNA3.1 SARSCoV-
469 2 M^{pro} were transfected into each well with transfection reagent TransIT-293 (Mirus catalog no.
470 MIR 2700) according to the manufacturer's protocol. Three hours after transfection, 1 μ L of
471 testing compound was directly added to each well without medium change. Two days after
472 transfection, images were taken with Cytation 5 imaging reader (Biotek) using GFP and
473 mCherry channels via 10 \times objective lens and were analyzed with Gen5 3.10 software (Biotek).
474 The mCherry signal alone in the presence of testing compounds was utilized to evaluate the
475 compound cytotoxicity.

476

477 **Protease-Glo luciferase assay.** pGlosensor-30F DEVD vector was obtained from Promega
478 (Catlog no. CS182101). pGloSensor-30F M^{pro} plasmid was generated by replacing the original
479 caspase cutting sequence (DEVDG) was with SARS CoV-2 M^{pro} cutting sequence
480 (AVLQ/SGFR) from BamHI/HindIII sites. The DNA duplex containing M^{pro} cutting sequence was
481 generated by annealing two 5'-phosphorilated primers: forward:
482 GATCCGCCGTGCTGCAGAGCGGCTTCAGA; and reverse:
483 AGCTTCTGAAGCCGCTCTGCAGCACGGCG. Protease-Glo luciferase assay was carried out
484 as follows: 293T cells in 10 cm culture dish were transfected with pGlosensor-30F M^{pro} plasmid
485 in the presence of transfection reagent TransIT-293 (Mirus catalog no. MIR 2700) according to
486 the manufacturer's protocol. 24 hrs after transfection, cells were washed with PBS once, then
487 each dish of cells was lysed with 5 ml of PBS+ 1% Triton-X100; cell debris was removed by
488 centrifuge at 2000g for 10 min. Cell lysates was freshly frozen to -80 °C until ready to use.
489 During the assay, 20 μ l cell lysate was added to each well in 96-well flat bottom white plate
490 (Fisherbrand Catalog no. 12566619), then 1 μ l of testing compound or DMSO was added to
491 each well and mixed at room temperature for 5 min. 5 μ l of 200 nM *E. Coli* expressed SARS
492 CoV-2 M^{pro} protein was added to each well to initiate the proteolytic reaction (the final M^{pro}

493 protein concentration is around 40 nM). The reaction mix was further incubated at 30 °C for 30
494 min. The firefly and renilla luciferase activity were determined with Dual-Glo Luciferase Assay
495 according to manufacturer's protocol (Promega Catalog no. E2920). The efficacy of testing
496 compounds against M^{pro} was evaluated by plotting the ratio of firefly luminescence signal over
497 the renilla luminescence signal versus the testing compound concentrations with a 4-parameter
498 dose-response function in prism 8.

499

500 **Antiviral assay in Calu-3 cells.** The antiviral assay was performed as previously described⁶⁵.
501 Calu-3 cells (ATCC, HTB-55) were plated in 384 well plates and grown in Minimal Eagles
502 Medium supplemented with 1% non-essential amino acids, 1% penicillin/streptomycin, and 10%
503 FBS. The next day, 50 nL of compound in DMSO was added as an 8-pt dose response with
504 three-fold dilutions between testing concentrations in triplicate, starting at 40 µM final
505 concentration. The negative control (DMSO, n=32) and positive control (10 µM Remdesivir,
506 n=32) were included on each assay plate. Calu-3 cells were pretreated with controls and testing
507 compounds (in triplicate) for 2 hours prior to infection. In BSL-3 containment, SARS-CoV-2
508 (isolate USA-WA1/2020) diluted in serum free growth medium was added to plates to achieve
509 an MOI of 0.5. Cells were incubated with compounds and SARS-CoV-2 virus for 48 hours.
510 Cells were fixed and then immunostained with anti-dsRNA (J2) and nuclei were counterstained
511 with Hoechst 33342 for automated microscopy. Automated image analysis quantifies the
512 number of cells per well (toxicity) and the percentage of infected cells (dsRNA+ cells/cell
513 number) per well. SARS-CoV-2 infection at each drug concentration was normalized to
514 aggregated DMSO plate control wells and expressed as percentage-of-control (POC=%
515 Infection_{sample}/Avg % Infection_{DMSO cont}). A non-linear regression curve fit analysis (GraphPad
516 Prism 8) of POC Infection and cell viability versus the log₁₀ transformed concentration values to
517 calculate EC₅₀ values for Infection and CC₅₀ values for cell viability. Selectivity index (SI) was
518 calculated as a ratio of drug's CC₅₀ and EC₅₀ values (SI = CC₅₀/IC₅₀).
519

520

Author contributions

521 Chunlong Ma performed the Flip-GFP assay, Protease-Glo luciferase assay, and thermal shift
522 assay with the assistance from Haozhou Tan. Juliana Choza and Yuying Wang expressed the
523 M^{pro} and performed the FRET assay. Jun Wang wrote the draft manuscript with the input from
524 others; Jun Wang submitted this manuscript on behalf of other authors.

525

526 **Declaration of competing interest**

527 The authors have no conflicts of interest to declare.

528

529 **Acknowledgments**

530 This research was supported by the National Institute of Allergy and Infectious Diseases of
531 Health (NIH) (grants AI147325, AI157046, and AI158775) and the Arizona Biomedical Research
532 Commission Centre Young Investigator grant (ADHS18-198859) to J. W. The SARS-CoV-2
533 antiviral assay in Calu-3 cells was conducted by Drs. David Schultz and Sara Cherry at the
534 University of Pennsylvania through the NIAID preclinical service under a non-clinical evaluation
535 agreement.

536

537 **References**

538

- 539 1 Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. *Nat Rev Microbiol* 2021; **19**: 141-54.
- 540 2 Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. *Cell Res* 2020; **30**: 678-92.
- 541 3 Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M(pro) and cathepsin L. *Sci Adv* 2020; **6**: eabe0751.
- 542 4 Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, et al. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. *Nat Chem Biol* 2021; **17**: 222-8.
- 543 5 Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-CoV-2 and Covid-19 Therapeutics. *ChemMedChem* 2020; **15**: 907-32.
- 544 6 Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. *Bioorg Med Chem Lett* 2020; **30**: 127377.

555 7 Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, et al. Bepridil
556 is potent against SARS-CoV-2 in vitro. *Proc Natl Acad Sci U S A* 2021; **118**:
557 e2012201118.

558 8 Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M(pro) from SARS-CoV-2
559 and discovery of its inhibitors. *Nature* 2020; **582**: 289-93.

560 9 Li J, Zhou X, Zhang Y, Zhong F, Lin C, McCormick PJ, et al. Crystal structure of SARS-
561 CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a
562 unique binding mode. *Sci Bull (Beijing)* 2021; **66**: 661-3.

563 10 Drayman N, DeMarco JK, Jones KA, Azizi S-A, Froggatt HM, Tan K, et al. Masitinib is a
564 broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. *Science* 2021;
565 **373**: 931-6.

566 11 Xia Z, Sacco M, Hu Y, Ma C, Meng X, Zhang F, et al. Rational Design of Hybrid SARS-
567 CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with
568 the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. *ACS Pharmacol
569 Transl Sci* 2021.

570 12 Ma C, Sacco MD, Xia Z, Lambrinidis G, Townsend JA, Hu Y, et al. Discovery of SARS-
571 CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput
572 Screening and a FlipGFP-Based Reporter Assay. *ACS Cent Sci* 2021; **7**: 1245-60.

573 13 Froggatt HM, Heaton BE, Heaton NS. Development of a Fluorescence-Based, High-
574 Throughput SARS-CoV-2 3CL(pro) Reporter Assay. *J Virol* 2020; **94**: e01265-20.

575 14 Li X, Lidsky P, Xiao Y, Wu C-T, Garcia-Knight M, Yang J, et al. Ethacridine inhibits
576 SARS-CoV-2 by inactivating viral particles in cellular models. *bioRxiv* 2020:
577 2020.10.28.359042.

578 15 Zhang Q, Schepis A, Huang H, Yang J, Ma W, Torra J, et al. Designing a Green
579 Fluorogenic Protease Reporter by Flipping a Beta Strand of GFP for Imaging Apoptosis
580 in Animals. *J Am Chem Soc* 2019; **141**: 4526-30.

581 16 Wigdal SS, Anderson JL, Vidugiris GJ, Shultz J, Wood KV, Fan F. A novel
582 bioluminescent protease assay using engineered firefly luciferase. *Curr Chem Genomics*
583 2008; **2**: 16-28.

584 17 Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, et al. A
585 nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-
586 infective drugs for COVID-19. *Nat Commun* 2020; **11**: 5214.

587 18 Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, et al. Both Boceprevir and GC376
588 efficaciously inhibit SARS-CoV-2 by targeting its main protease. *Nature Communications*
589 2020; **11**: 4417.

590 19 Gurard-Levin ZA, Liu C, Jekle A, Jaisinghani R, Ren S, Vandyck K, et al. Evaluation of
591 SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption
592 ionization mass spectrometry. *Antiviral Res* 2020; **182**: 104924.

593 20 Vuong W, Khan MB, Fischer C, Arutyunova E, Lamer T, Shields J, et al. Feline
594 coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication.
595 *Nat Commun* 2020; **11**: 4282.

596 21 Liu C, Boland S, Scholle MD, Bardiot D, Marchand A, Chaltin P, et al. Dual inhibition of
597 SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development.
598 *Antiviral Res* 2021; **187**: 105020.

599 22 Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, et al. Hepatitis C virus
600 drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to
601 suppress viral replication in cell culture. *Cell Rep* 2021; **35**: 109133.

602 23 Kneller DW, Galanis S, Phillips G, O'Neill HM, Coates L, Kovalevsky A. Malleability of
603 the SARS-CoV-2 3CL M(pro) Active-Site Cavity Facilitates Binding of Clinical Antivirals.
604 *Structure* 2020; **28**: 1313-20 e3.

605 24 Jan JT, Cheng TR, Juang YP, Ma HH, Wu YT, Yang WB, et al. Identification of existing
606 pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. *Proc Natl
607 Acad Sci U S A* 2021; **118**.

608 25 Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, et al. SARS-CoV-2 M(pro) inhibitors
609 with antiviral activity in a transgenic mouse model. *Science* 2021; **371**: 1374-8.

610 26 Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. Direct Observation
611 of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding
612 with Neutron Crystallography. *J Med Chem* 2021; **64**: 4991-5000.

613 27 Bai Y, Ye F, Feng Y, Liao H, Song H, Qi J, et al. Structural basis for the inhibition of the
614 SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. *Signal Transduct Target
615 Ther* 2021; **6**: 51.

616 28 Hattori SI, Higashi-Kuwata N, Raghavaiah J, Das D, Bulut H, Davis DA, et al. GRL-0920,
617 an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. *mBio* 2020;
618 **11**: e01833-20.

619 29 Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir,
620 lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro.
621 *Antiviral Research* 2020; **178**: 104786.

622 30 Ma C, Wang J. Dipyridamole, chloroquine, montelukast sodium, candesartan,
623 oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors. *Proc Natl
624 Acad Sci U S A* 2021; **118**.

625 31 Li Z, Li X, Huang YY, Wu Y, Liu R, Zhou L, et al. Identify potent SARS-CoV-2 main
626 protease inhibitors via accelerated free energy perturbation-based virtual screening of
627 existing drugs. *Proc Natl Acad Sci U S A* 2020; **117**: 27381-7.

628 32 Fintelman-Rodrigues N, Sacramento CQ, Ribeiro Lima C, Souza da Silva F, Ferreira
629 AC, Mattos M, et al. Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-
630 CoV-2 Replication and Proinflammatory Cytokine Production. *Antimicrob Agents
631 Chemother* 2020; **64**.

632 33 Gupta A, Rani C, Pant P, Vijayan V, Vikram N, Kaur P, et al. Structure-Based Virtual
633 Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-
634 CoV-2 Main Protease. *ACS Omega* 2020; **5**: 33151-61.

635 34 Ghahremanpour MM, Tirado-Rives J, Deshmukh M, Ippolito JA, Zhang CH, Cabeza de
636 Vaca I, et al. Identification of 14 Known Drugs as Inhibitors of the Main Protease of
637 SARS-CoV-2. *ACS Med Chem Lett* 2020; **11**: 2526-33.

638 35 Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A, et al. Ebselen,
639 Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous
640 SARS-CoV-2 Main Protease Inhibitors. *ACS Pharmacol Transl Sci* 2020; **3**: 1265-77.

641 36 Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, Zhao Y, et al. Inhibition
642 mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. *Nat Commun*
643 2021; **12**: 3061.

644 37 Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, Zhao Y, et al. Inhibition
645 mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. *Nature
646 Communications* 2021; **12**: 3061.

647 38 Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, et al. Structural basis for the inhibition of
648 SARS-CoV-2 main protease by antineoplastic drug carmofur. *Nat Struct Mol Biol* 2020;
649 **27**: 529-32.

650 39 Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. Scutellaria baicalensis extract and
651 baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. *J Enzyme
652 Inhib Med Chem* 2021; **36**: 497-503.

653 40 Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, et al. Anti-SARS-CoV-2 activities in
654 vitro of Shuanghuanglian preparations and bioactive ingredients. *Acta Pharmacol Sin*
655 2020; **41**: 1167-77.

656 41 Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine
657 effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res*
658 2020; **30**: 269-71.

659 42 Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic
660 derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. *Cell*
661 *Discovery* 2020; **6**: 16.

662 43 Kneller DW, Galanis S, Phillips G, O'Neill HM, Coates L, Kovalevsky A. Malleability of
663 the SARS-CoV-2 3CL Mpro Active-Site Cavity Facilitates Binding of Clinical Antivirals.
664 *Structure* 2020; **28**: 1313-20.e3.

665 44 Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An
666 Oral SARS-CoV-2 M^{pro} Inhibitor Clinical Candidate for the Treatment of
667 COVID-19. *medRxiv* 2021: 2021.07.28.21261232.

668 45 Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of
669 lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. *Thorax*
670 2004; **59**: 252-6.

671 46 Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir–Ritonavir in
672 Adults Hospitalized with Severe Covid-19. *New England Journal of Medicine* 2020; **382**:
673 1787-99.

674 47 Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a
675 randomised, controlled, open-label, platform trial. *Lancet* 2020; **396**: 1345-52.

676 48 Park SJ, Yu KM, Kim YI, Kim SM, Kim EH, Kim SG, et al. Antiviral Efficacies of FDA-
677 Approved Drugs against SARS-CoV-2 Infection in Ferrets. *mBio* 2020; **11**.

678 49 Zeldin RK, Petruschke RA. Pharmacological and therapeutic properties of ritonavir-
679 boosted protease inhibitor therapy in HIV-infected patients. *Journal of Antimicrobial*
680 *Chemotherapy* 2004; **53**: 4-9.

681 50 Wu C-Y, Jan J-T, Ma S-H, Kuo C-J, Juan H-F, Cheng Y-SE, et al. Small molecules
682 targeting severe acute respiratory syndrome human coronavirus. *Proc Natl Acad Sci U S*
683 *A* 2004; **101**: 10012-7.

684 51 Cao W, Cho C-CD, Geng ZZ, Ma XR, Allen R, Shaabani N, et al. Cellular Activities of
685 SARS-CoV-2 Main Protease Inhibitors Reveal Their Unique Characteristics. *bioRxiv*
686 2021: 2021.06.08.447613.

687 52 Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. Boceprevir, Calpain Inhibitors II and
688 XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. *ACS*
689 *Infect Dis* 2021; **7**: 586-97.

690 53 Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al.
691 SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically
692 Proven Protease Inhibitor. *Cell* 2020; **181**: 271-80 e8.

693 54 Gurard-Levin ZA, Liu C, Jekle A, Jaisinghami R, Ren S, Vandyck K, et al. Evaluation of
694 SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption
695 ionization mass spectrometry. *Antiviral Research* 2020; **182**: 104924.

696 55 Chen T, Fei C-Y, Chen Y-P, Sargsyan K, Chang C-P, Yuan HS, et al. Synergistic
697 Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir. *ACS*
698 *Pharmacology & Translational Science* 2021; **4**: 898-907.

699 56 Sargsyan K, Lin C-C, Chen T, Grauffel C, Chen Y-P, Yang W-Z, et al. Multi-targeting of
700 functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-
701 ejectors. *Chemical Science* 2020; **11**: 9904-9.

702 57 Weglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S.
703 Identification of ebselen and its analogues as potent covalent inhibitors of papain-like
704 protease from SARS-CoV-2. *Scientific Reports* 2021; **11**: 3640.

705 58 Sun LY, Chen C, Su J, Li JQ, Jiang Z, Gao H, et al. Ebsulfur and Ebselen as highly
706 potent scaffolds for the development of potential SARS-CoV-2 antivirals. *Bioorg Chem*
707 2021; **112**: 104889.

708 59 Galkin A, Kulakova L, Lim K, Chen CZ, Zheng W, Turko IV, et al. Structural basis for
709 inactivation of Giardia lamblia carbamate kinase by disulfiram. *J Biol Chem* 2014; **289**:
710 10502-9.

711 60 Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS. Disulfiram is a
712 direct and potent inhibitor of human O 6 -methylguanine-DNA methyltransferase
713 (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating
714 DNA damage. *Carcinogenesis* 2013; **35**: 692-702.

715 61 Lin M-H, Moses DC, Hsieh C-H, Cheng S-C, Chen Y-H, Sun C-Y, et al. Disulfiram can
716 inhibit MERS and SARS coronavirus papain-like proteases via different modes. *Antiviral*
717 *Research* 2018; **150**: 155-63.

718 62 Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, et al. Baicalein and Baicalin
719 Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. *Microorganisms* 2021; **9**.

720 63 Li Z, Li X, Huang Y-Y, Wu Y, Liu R, Zhou L, et al. Identify potent SARS-CoV-2 main
721 protease inhibitors via accelerated free energy perturbation-based virtual screening of
722 existing drugs. *Proceedings of the National Academy of Sciences* 2020; **117**: 27381-7.
723 64 Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, et al. Identification of SARS-CoV-2 3CL
724 Protease Inhibitors by a Quantitative High-Throughput Screening. *ACS Pharmacology &*
725 *Translational Science* 2020; **3**: 1008-16.
726 65 Kitamura N, Sacco MD, Ma C, Hu Y, Townsend JA, Meng X, et al. Expedited Approach
727 toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. *J
728 Med Chem* 2021.

729