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Abstract

As the neuroimaging field moves towards detecting smaller effects at higher spatial
resolutions, and faster sampling rates, there is increased attention given to the deleterious
contribution of unstructured, thermal noise. Here, we critically evaluate the performance of a recently
developed reconstruction method, termed NORDIC, for suppressing thermal noise using datasets
acquired with various field strengths, voxel sizes, sampling rates, and task designs.

Following minimal preprocessing, statistical activation (t-values) of NORDIC processed data
was compared to the results obtained with alternative denoising methods. Additionally, we examined
the consistency of the estimates of task responses at the single-voxel, single run level, using a finite
impulse response (FIR) model. To examine the potential impact on effective image resolution, the
overall smoothness of the data processed with different methods was estimated. Finally, to determine
if NORDIC alters or removes important temporal information, we employed an exhaustive leave-p-out
cross validation approach, using FIR task responses to predict held out timeseries, quantified using
R?,

After NORDIC, the t-values are increased, an improvement comparable to what could be
achieved by 1.5 voxels smoothing, and task events are clearly visible and have less cross-run error.
These advantages are achieved in the absence of large changes in estimates of spatial smoothness.
Cross-validated R?s based on the FIR models show that NORDIC is not measurably distorting the
temporal structure of the data and is the best predictor of non-denoised time courses. The results
demonstrate that analyzing 1 run of data after NORDIC produces results equivalent to using 2 to 3
original runs and that NORDIC performs equally well across a diverse array of functional imaging

protocols.
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Significance Statement

For functional neuroimaging, the increasing availability of higher field strengths and ever higher
spatiotemporal resolutions has led to concomitant increase in concerns about the deleterious effects
of thermal noise. Historically this noise source was suppressed using methods that reduce spatial
precision such as image blurring or averaging over a large number of trials or sessions, which
necessitates large data collection efforts. Here, we critically evaluate the performance of a recently
developed reconstruction method, termed NORDIC. Across datasets varying in field strength, voxel
sizes, sampling rates, and task designs, NORDIC produces substantial gains in data quality. Both
conventional t-statistics derived from general linear models and coefficients of determination for
predicting unseen data are improved, while avoiding meaningful increases in typical estimates of

image smoothness or substantial losses of temporal information.
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Introduction

The growing use of high (3 to 7 Tesla) and ultrahigh field (UHF, defined as =27 Tesla) magnetic
fields for functional magnetic resonance imaging (fMRI) of brain activity has led to increases in the
available signal-to noise-ratio (SNR) and subsequently corresponding interest in smaller voxel sizes
and/or shorter repetition times. Early fMRI experiments tended to sample units of tissue that were on
the order of 30 pL in voxel volume, a volume that potentially contains millions of neurons. In contrast,
contemporary UHF high resolution fMRI studies, enabled by the significantly higher SNR and
functional contrast-to-noise ratios (fCNR) available at UHF (Ugurbil, 2018, 2014), have attained
resolutions that have ~0.5 pL voxel volumes (e.g. ~0.8 mm isotropic voxel dimensions). These
developments, together with the early demonstration that neurovascular coupling has specificity at
the level of mesoscopic scale organizations of the brain (Duong et al., 2001; Ugurbil, 2016), have led
to a series of fMRI studies on cortical columns and layers (reviews (De Martino et al., 2018; Dumoulin
et al., 2018; Finn et al., 2021; Lawrence et al., 2019; Norris and Polimeni, 2019; Polimeni and Uludag,
2018; Weldon and Olman, 2021; Zaretskaya, 2021)). The use of high resolution functional imaging,
largely initiated by the imaging of orientation domains together with ocular dominance columns for the
first time in the human brain (Yacoub et al., 2008) and other fine scale organizations (e.g. (Huber et
al., 2020; Stringer et al., 2011)) is growing more common.

The small voxel volumes in such high-resolution fMRI studies, however, have pushed the SNR
of individual images and consequently the temporal SNR (tSNR) of the fMRI time series into a low
SNR regime where the detectability of the functional responses become a major challenge. With this
low SNR the thermal noise of the MR measurement begins to dominate the tSNR over signal
fluctuations induced by physiological processes (often referred to as “physiological noise”)
(Triantafyllou et al., 2011, 2005). Similarly, the use of highly accelerated fMRI approaches, introduced
for rapid coverage of large volumes at high spatial resolution using UHF (Moeller et al., 2010; Ugurbil

et al., 2013), has increasingly become the method of choice for data acquisition. These methods,
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popularized by the Human Connectome Project (Smith et al., 2013; Ugurbil et al., 2013), also push
gradient echo (GE)-based fMRI data towards the thermal noise-dominated regime as repetition times
and, consequently, flip angles and the signal magnitude detected in each image decreases (Smith et
al., 2013; Ugurbil et al., 2013). While rapid sampling has led to a greater understanding of neural
functioning and the BOLD response (Dowdle et al., 2021a; Polimeni and Lewis, 2021), it is not
without consequences. The spatially non-uniform noise amplification introduced by parallel imaging
reconstructions (i.e., the g-factor noise (Pruessmann et al., 1999)) further exacerbates the thermal
noise penalty (Pruessmann et al., 1999; Todd et al., 2017). The resulting low SNR regime leads to
difficulties in estimating the fine scale detail of the hemodynamic response, a critical goal given the
variability of the hemodynamic response across large (Gonzalez-Castillo et al., 2012; Handwerker et
al., 2004; Taylor et al., 2018) and small (Warren et al., 2014) regions of the brain. While there are
potential statistical benefits for thermal noise dominance in meeting parametric assumptions in fMRI
analyses (Wald and Polimeni, 2017), most researchers aim to remove it.

Unfortunately, the thermal noise associated with the MR measurement is not directly targeted
by the various denoising approaches intended to suppress the contributions of structured, i.e. non-
white, noise in an fMRI time series, emanating from physiological processes (e.g., (Bianciardi et al.,
2009; Glover et al., 2000; Hu and Kim, 1994; Kay et al., 2013; Lund et al., 2006; Shmueli et al.,
2007)), low-frequency signal drift, or motion. Spatial filtering (i.e. “smoothing”), on the other hand,
does reduce the thermal noise contribution and hence is a commonly used approach to improve
tSNR (Triantafyllou et al., 2006), and is a valuable approach when not fine detail is not desired (Wald
and Polimeni, 2017). However, the addition of smoothing is often undesirable in high resolution fMRI
as it results in substantial losses in spatial precision (Triantafyllou et al., 2006). Similarly, combining
data from several different subjects reduces noise in general via group averaging; however, this
option is not a desirable approach for high resolution studies because it inevitably incurs some

degree of spatially non-uniform complex blurring nor is it valid for studies focused on single subject

responses or inter-subject variability. Notably, in single subject statistical analysis approaches, such
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as multivoxel pattern analyses (MVPA) (Haxby et al., 2014) or encoding models (Kay et al., 2008;
Naselaris et al., 2011; Vu et al., 2011), separate runs are typically leveraged in order to determine
cross validated accuracy. In SNR-starved regimes in which neither smoothing nor group averaging
are possible, these methods become difficult to implement, thereby limiting the range of possible
scientific questions that can be addressed.

The growing focus on more spatially and temporally precise fMRI measurements, has recently
led to the development of a denoising method, Noise Reduction with Distribution Corrected
(NORDIC) PCA (Moeller et al., 2021; Vizioli et al., 2021). NORDIC suppresses Gaussian distributed
noise associated with the MR detection process in repetitively acquired images, reducing thermal
noise contributions throughout the image. The goal of NORDIC is to focus only on removing
components of the timeseries which cannot be distinguished from Gaussian distributed noise, leaving
the aforementioned non-white noise sources, such as physiological effects, signal drift or head motion
as well as signals of interest, intact.

Prior work (Vizioli et al., 2021) with NORDIC primarily focused on submillimeter 7T fMRI data
with an eye towards examining the functional point spread on the cortical surface of the primary visual
cortex in response to a block design. The findings on such data were encouraging, suggesting no
loss in functional precision or signal magnitude. However, it remained unclear if those findings would
generalize to other fMRI acquisition paradigms and sequences. In this work, we further evaluate
NORDIC's utility as a denoising method for fMRI and compare it to a number of other noise
suppression approaches using a variety of different datasets, which vary in field of view (up to whole
brain), voxel size (0.8 to 2mm), repetition time (0.35 to 2.1s), field strength (3 and 7 Tesla), and use
both block and event related task designs. The results obtained on 8 data sets (obtained from 3
subjects) provide a more detailed analysis of the NORDIC method and its generalizability. We find
that NORDIC consistently leads to substantial gains in fMRI under a conventional generalized least-

squares (GLSQ) framework and produces better single-run, single-voxel hemodynamic response

function (HRF) estimates. Critically these effects are achieved with negligible increases of estimates
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of image smoothness. Collectively our findings suggest that these benefits are obtained while

minimally affecting the intrinsic information present in the fMRI signal.

Methods

Stimuli and Datasets

For this manuscript, a total of 8 datasets (DS1 — 8) obtained from 3 subjects were considered
(1 subject scanned 6 times, 2 others scanned once each). Two datasets (DS1,2) were examined
under a different analytical framework in prior work, while portions of 4 others (DS3,4,6,7) were used
for visualization purposes in supplemental material (Vizioli et al., 2021), but otherwise not analyzed.
These datasets were chosen for their variability across multiple dimensions including field strength (3
or 7 T), sequence parameters (e.g., varying TR or voxel size), type of experimental design (block vs
event) and field of view. For all stimuli, participants viewed the images though a mirror attached to the
head coil. Datasets 1, 2, 5, 6, and 7 (DS1, DS2, DS5, DS6, and DS7) are block designs which used a
flashing checkerboard (8Hz) positioned either in a center position (‘target’) or in a surround with the
center cut out (“surround”), centered on a gray background. The center stimulus subtended
approximately 6.5 degrees of visual angle, as did the width of the surround border. Stimuli were
presented in a standard 12 s on 12 s off block design paradigm. At 7T, stimuli were presented on a
Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at the head of the scanner
bed (resolution 1920 x 1080 at 120 Hz), whereas at 3T the stimuli were presented using a NEC
NP4000 projector, using a projection screen placed at the end of the bore of the MR scanner
(resolution 1024 x 768 at 60 Hz).

Dataset 3 (DS3) used an event related design in which full-color, intact and phase (of the
image content) scrambled faces were presented. Stimuli were centered on a gray background.
Stimuli were on screen for 2 seconds and separated by at least a 2 s interstimulus interval (ISl). For

all runs, blank trials (2 per run) were included to jitter the stimulus presentation.
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For Dataset 4 (DS4), we used an event related design with grayscale images of faces (20
male, 20 female) presenting neutral expressions. We manipulated the phase coherence of the image
of each face from to produce 5 visual conditions, producing in 200 unique stimuli (5 visual conditions
x 20 identities x 2 genders), as in previous work (Dowdle et al., 2021b). Stimuli approximately
subtended 9° of visual angle. Stimulus presentation began and ended with a 12 s fixation period and
had a duration of approximately 3 mins and 22 s. Within each run, we showed 40 images, each
presented for 2 s, with a 2 s ISI as well as 10% blank trials (i.e., 4 s of fixation) randomly interspersed
amongst the 40 images, effectively jittering the ISI.

For Dataset 8 (DS8), we used a modified rotating wedge retinotopy paradigm. The frequency
of ring sweeps was approximately 0.05Hz. The subject maintained fixation on a central point
throughout the task. The wedge extended from the central fixation point to the edge of the screen,
with a width of 20 degrees.

For DS1- 7, stimulus presentation was controlled using Psychophysics Toolbox (3.0.15)-based

scripts on a Mac Pro Computer. For DS8, the stimulus was controlled using custom, inhouse
developed software.
MRI Acquisition

All functional MRI data were collected with either a 7T Siemens Magnetom System with a
single channel transmit and 32-channel receive NOVA head coil or a 3T Siemens Magnetom
Prisma™ system using the Siemens 32-channel head coil. All functional images were obtained using
T2*-weighted, simultaneous multislice (SMS)/multiband(MB) gradient echo, Echo Planar (GE-EPI)
(Moeller et al., 2010) as developed and implemented in the Human Connectome Project (Ugurbil et
al., 2013).

7T fMRI Data (DS1 to DS5, and DS8). For DS1 and DS2 imaging was restricted to the
posterior occipital lobe, capturing 42 slices using a right to left phase encoding direction. DS3 images

captured 42 slices of the occipital pole and ventral temporal lobe using an anterior to posterior phase
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encoding direction. For DS4 and DS5, whole brain images were collected, with 85 slices using an
anterior to posterior phase encoding direction, with parameters matched to the HCP 7T Protocol. DS8
images captured only 32 slices of the occipital pole using a left to right phase encoding direction.

3T fMRI Data (DS6 and DS7). DS6 was acquired with a higher resolution than typically used
at 3T studies (1.2 mm isotropic), capturing most of the brain with 100 slices, excluding the
cerebellum, with anterior-to-posterior phase encoding.

DS7 was a whole brain study, 72 slices were acquired using an HCP-like 3T protocol. (See

Table 1 for full details).
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O
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7

0.8

0.8

1.35

1.35

26.4

26.4

2

3

58.2

58.2

R/L

R/L

1190

1190

1.0

1.0

6/8th

6/8th

12

12

Block

Block

8

159.3

159.3

Center and
surround
flickering

checkerboard

Center and
surround
flickering

checkerboard

DS3

DS4

0.8

1.6

1.4

27.4

22.2

78

78

AIP

AP

1190

1925

1.03

0.64

6/8th

7/8th

Event

Event

265

205

Faces, 100%
and 0% phase
coherence
("scrambled")
with mixed
gender and
expression
Faces with
varying phase
coherence, 0 to
40%

DS5

1.6

12

2.1

22.2

32.6

78

78

AIP

AP

1925

1595

0.64

0.76

7/8th

7/8th

12

12

Block

Block

160

159.6

Center and
surround
flickering

checkerboard

Center and
surround
flickering

checkerboard

7

13

0.8

0.35

37

23

4

n/a

2

52

32

AIP

R/L

2290

1865

0.58

0.586

n/a

6/8

12

n/a

Block

Retinotopy

8

158.4

186.55

Center and
surround
flickering

checkerboard
Rotating
wedges

Table 1. Dataset Acquisition and Task Details. Parameters are shown for all 8 datasets considered in the present work. TR: repetition time, TE: echo time, MB

Factor: Multiband acceleration factor, R Factor: GRAPPA acceleration factor, FA: flip angle, BW: Bandwidth, 1SI: Interstimulusinterval, s. seconds.
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Anatomical Imaging: T1-weighted anatomical images were obtained for DS1-DS7 using an
MPRAGE (Mugler and Brookeman, 1991) sequence (192 slices; TR=1900 ms; FOV: 256 x 256 mm);
flip angle= 9°; TE= 2.52 ms; spatial resolution 0.8 mm isotropic voxels) which were collected with a
3T Siemens Magnetom Prisma™ system. The anatomical images for DS8 were acquired using a
MP2RAGE (Marques et al., 2010) sequence (192 slices; TR=4300 ms; FOV: 240 x 225 mm; flip
angle= 4°; TE= 2.27 ms; spatial resolution 0.8 mm isotropic voxels) collected with a 7T Siemens
Magnetom scanner. Anatomical images were used only to visualize data and define regions of
interest (ROIs, see Region of Interest Creation, below).

Initial MR Image Preprocessing. Two separate reconstruction methods were used in all
subsequent analyses described below. Following data acquisition, the k-space data files for each
receive channel produced by the SIEMENS system were saved. These were reconstructed offline (as
opposed to using the scanners inbuilt reconstruction algorithms) using standard techniques (noise-
decorrelation between channels, zero-filling for partial Fourier, split slice-GRAPPA for joint SMS and
GRAPPA reconstruction (7x7 kernel), SENSE1 for multichannel combination with ESPIRIT calculated
sensitivity profiles, and g-factor calculated from the SMS kernels and sensitivity profiles) implemented
in-house to produce magnitude images with minimal processing, similar to the typical DICOM images
produced by the default Siemens reconstruction. These minimally processed data are referred to as
the “Standard” reconstruction, to emphasize the fact that this is a standard or typical reconstruction of
the magnitude images.

The second image reconstruction, which is the primary consideration of this manuscript, is
derived from the same raw k-space files and reconstruction steps, however, we applied additional
denoising steps that aim to suppress thermal noise with NORDIC (Moeller et al., 2021; Vizioli et al.,
2021). In brief, this method uses a patch based, PCA approach to identify and discard components of
the data that are indistinguishable from zero-mean, normally distributed (i.e., thermal) noise, using the
magnitude and complex portions of the MRI signal as input. NORDIC share similarities with existing

low-rank methods (Candeés et al., 2013; Haldar and Liang, 2011; Meyer, et al., 2020; Thomas et al.,
11
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2002; Veraart et al., 2016) but differs in key aspects. For example, NORDIC determines a noise
threshold using noise estimates from the data itself and furthermore does so after correcting for
spatial variability in noise (“g-factor”). In addition, NORDIC performs phase normalization, and is able
to use larger patch sizes than comparable methods (Moeller et al., 2021; Vizioli et al., 2021). We
used the default settings of NORDIC on all datasets, which maintains a minimum 11:1 ratio between
spatial and temporal dimensions. In the datasets considered here this resulted in patches of size 113
voxels for DS1,2; 122 for DS3,5; 14° for DS4, 7; 10° for DS6 and 20° for DS8. We refer to these data
as “NORDIC” throughout the remainder of the manuscript. The use of an offline reconstruction for
these data, rather than the typical scanner reconstruction assured that, other than the denoising step,
all other reconstruction steps were identical.

In addition to the Standard and NORDIC reconstructions, we also considered a third approach
referred to as dwidenoise (Cordero-Grande et al., 2019; Veraart et al., 2016) as provided with version
3.0.0 of MRtrix3 (Tournier et al., 2019), which was applied to the Standard magnitude images. In
brief, dwidenoise, like NORDIC, also aims to suppress normally distributed noise using a patched-
based denoising approach. Noise components for each patch are estimated on the basis of
Mar&enko-Pastur principal component analysis (MPPCA) which attempts to account for spatial
variability in the noise. The recommended and validated default settings were used, with the size of
the patch depending primarily on timeseries length. For DS1, DS2 and DSB8, this led to a 5° voxel
patch size, whereas Datasets DS3, DS4, DS5 and DS7 had a 7° patch size. We chose dwidenoise as
a comparison as it is in active use and development, with a publicly available implementation. The
“Standard” data was considered the reference point for further analyses.

Prior to any additional processing, we examined the noise removed by NORDIC and
dwidenoise. Specifically, the noise removed by NORDIC was calculated by taking the mean of the
magnitude of the complex difference between the Standard and NORDIC data. The noise removed
by dwidenoise residuals was calculated as the absolute value of the mean difference between the

Standard and dwidenoise data. Maps of the g-factor were derived from the k-space data files.
12
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Processing

All subsequent fMRI processing was performed using AFNI (Cox, 1996) and was identical for
preparations of the data. For all datasets and denoising methods, we used conventional processing
steps, with settings chosen to minimize any loss of precision. First, slice timing was corrected by
using Fourier interpolation, with the first slice as the reference timepoint. Motion correction was then
performed using the first volume of the first run from the Standard reconstruction as the registration
target, with the ‘Fourier’ estimation and interpolation option chosen. Using the same target for motion
correction across all reconstruction methods allows for subsequent voxel to voxel comparisons
between the different methods. Regardless of whether we used standard or denoised data were used
as input, the estimated motion parameters are highly similar with an average Pearson’s correlation
coefficient > 0.99 (See Supplemental Table 2 for all values).

In order to compare the signal characteristics of NORDIC to more typical approaches that aim
to reduce thermal noise, we created three additional comparator datasets from the standard data.
These are 1) data smoothed with a FWHM gaussian kernel equivalent in size to one voxel (hereafter
labeled “+1 voxel FWHM”"), 2) data smoothed with a FWHM gaussian kernel equivalent in size to 1.5
voxels (“+1.5 voxel FWHM”), and 3) data temporally smoothed (“+temporal smoothing”) using a
sliding window average approach with window sized between 9 and 10.5 s.

Data were then scaled voxel-wise to have a temporal mean intensity of 100 per run, which
eases percent signal change calculations. In order to evaluate the fMRI statistical performance of

each data set we considered two general linear modeling frameworks.
Task Event Modeling

GLM One (Conventional Approach). The scaled data were passed through a generalized
least squares (GLSQ) regression model using a conventional hemodynamic response. Here we

specifically used the double gamma hemodynamic response estimate provided with AFNI, “SPMGL1”,

13
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with approximate peaks at 6 seconds (positive peak) and 17 seconds (negative undershoot). This
was convolved with the stimulus time courses associated with each event type to produce the
predictive model. GLSQ regression produced betas (i.e., parameter estimates/activation amplitudes)
and t-statistics from the model fit for each event on a per run basis for each of the 9 (DS6), 8 (DS1,
DS2, DS5, DS7), or 6 (DS3, DS4) runs. This was performed using AFNI's 3dREMLit, which
calculates an autoregressive moving average (ARMA(1,1)) model to estimate the temporal
autocorrelation on a voxel by voxel basis, thereby improving the accuracy of t-statistic estimates
(Olszowy et al., 2019).

GLM Two: Finite Impulse Response (FIR) Model. To investigate the temporal information
present in each functional acquisition, we also used a finite impulse response (FIR) model using
AFNTI's 3dDeconvolve function with TENT estimators. These are ‘tent’ or ‘hat’ functions which are
identical to delta functions when the stimuli rounded to each TR. The window for which these
estimates were created varied between datasets, ranging from 15 to 29.4 seconds out from stimulus
onset, but was identical between processing methods. This approach uses the repetition of identical
stimuli within a run to estimate the voxel-by-voxel response to each stimulus class in a flexible
manner, with no a priori assumptions regarding its specific shape.

The events for DS3 were separated by 1-second steps. Thus, the data for the FIR model was
simultaneously slice time corrected and up-sampled to a 1-second sampling rate using in-house code
prior to processing in AFNI. This step was performed in an identical manner for the Standard,
NORDIC, and dwidenoise data, and was performed only for the FIR model. Though we show time
courses for the HRF estimates for only the “Target” condition, the full model was used for cross
validated prediction accuracy introduced below (see Temporal Precision).

Region of Interest (ROI) Creation

Anatomical ROIs: Anatomical images for each dataset were segmented into different tissues

and skull-stripped using the Segment tool from SPM12 (Ashburner and Friston, 2005). These skull-
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stripped anatomical images were aligned (rigid-body) to the mean of the first run of the standard data,
after it had undergone motion correction, using a local Pearson correlation estimator (Saad et al.,
2009) (3dAllineate). We then applied the rigid-body transformations to the first three tissue class
images, corresponding to gray matter, white matter and a mixture of CSF and vasculature (hereafter
just CSF) such that they overlapped with the functional imaging data. The aligned tissue probability
maps were then converted to binary masks, with a threshold of 0.95 probability for each class and
then resampled to match each dataset’s EPI grid. These ROIs were then further restricted to voxels
that contained sufficient functional image signal using a binary mask. This binary mask, automatically
generated during processing, is a contiguous volume produced by an interactively clipping process
which excludes the background and very low intensity values (3dAutomask) in the functional image.
This mask will be subsequently described as the “EPI mask”. This masking was performed to
minimize the amount of each anatomical ROI that includes voxels outside of the acquired field of view
or overlapped with areas of near-complete signal dropout. These steps produced grey matter, white
matter, and CSF regions of interest (ROIs) which are aligned to each unique functional dataset. Note
that no distortion correction was applied to the functional data to minimize any additional blurring.
Functional ROIs: Multiple ROIs were created using all runs of the Standard data. We used
the t-statistics derived from the GLSQ model’s fit corresponding to the contrasts of interest from each
dataset. For all datasets (except DS4, DS8) we created a “Target ROI”, which was created by
combining the multiple clusters with more than 10 contiguous activated (defined as contact via faces,
edges, or corners) voxels using a voxel threshold of p<0.001 for contrast of the target stimulus (center
or faces) vs the alternative stimulus (surround or scrambled faces).
To arrive at the minimum cluster size threshold of 10 voxels, we estimated the cluster size

(number of voxels) required to obtain a cluster family wise error rate of p<0.05 using a Monte Carlo
method as implemented in 3dClustSim. This AFNI tool uses the smoothness estimates of the

residuals to simulate 10,000 smoothness matched, noise-only datasets. This creates a create a null

distribution of cluster sizes, from which a cluster size threshold can be obtained. This was done only
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for the Standard data and these cluster thresholds were only used to control false positives in the
ROIs and not considered further. For all datasets and contrasts, 10 contiguous voxels at this
threshold produced clusters that exceed the typical prwe<0.05 threshold.

For DS4, which used face stimuli with variable phase coherence, the ROIs were generated
from a separate localizer analysis of Standard data, using Faces greater than Scrambled Faces
contrast. No functional ROIs were created for DS8, as it was only used for the frequency spectrum
analysis (see Temporal Precision Evaluation).

In a similar way, a “Non-Target” ROl was also created by selecting all clusters greater than 10
contiguous voxels at a voxel-wise threshold of p<0.001 and positive signal associated with the
alternative condition, that is, surround or scrambled faces, only. The use of these two different
contrasts produced a complementary selection of voxels.

Collectively we produced 2 functional ROIs and 3 anatomically derived ROIs, per dataset.
These were then used to summarize the distribution of the values from other voxel wise measures
(e.g., t-statistics).

Spatial Precision Evaluation.

Global Smoothness: Spatial precision was estimated using smoothness estimates produced
from each dataset within the previously described EPI mask. These smoothness estimates, produced
by 3dFWHMX, were conducted for three stages in processing and analysis. This measure is based on
estimating the spatial autocorrelation function in each of the 3 voxel dimensions within a mask and
reporting the average for the image volume. Any spatial smoothing introduced by post-acquisition
data manipulations shows up as an increase in the estimate (in units: mm FWHM) relative to the
Standard data. As this captures the average smoothness of the entire image volume, we refer to this
as ‘global smoothness’. Specifically, we calculated global smoothness on each dataset prior to any
processing, after processing and on the residuals from the conventional GLM. For the first two

stages, the data were detrended (including removal of the mean) to remove temporal drifts and
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variation in voxel intensities related to anatomy. Significance was evaluated using paired t-tests
between the 3 primary types of processing (Standard, NORDIC, dwidenoise).

Local Smoothness: In addition, we performed an analysis using the AFNI function
3dLocalACF, which estimates a voxel-wise spatial autocorrelation function, using a spherical local
neighborhood with a radius of 10 voxels. This tool examines each voxel within a brain mask and
correlates its timeseries with that of its neighbors. The gaussian + mono-exponential autocorrelation
function is then fit to the resulting map of Pearson’s correlations, to provide a voxel-by-voxel estimate
of smoothness. We refer to this as local smoothness since the parameter is estimated on a voxel
wise basis and is expected to highlight regional variations in image smoothness. As this method is
highly sensitive to trends within the data, this local smoothness was estimated only on the residuals
of the conventional GLM. This was done independently per run, and then averaged. Values, in mm
FWHM, were then summarized in each of our three tissue masks: gray matter, white matter and CSF
(See Region of Interest Creation).

Naturally, the GLM residuals used in both the global and local smoothness calculations will
retain some structure not attributable to thermal noise and not captured by the task and nuisance

regressors of the GLM, but in working with real-world data, this is the best available approximation to

structure-free data.
Temporal Precision Evaluation.

Fourier Spectrum Analysis: Using DS7 and DS8, which were sampled at 800 and 350ms
respectively, we performed a fast Fourier transform across time on each independent run of the data,
doing this for the Standard and NORDIC data. The FFT was performed on the scaled data, which is
the final output of the magnitude data preprocessing pipelines. To show the frequency spectrums and
their variability within each tissue class we took the mean of the absolute value across voxels within
each tissue class (GM, WM, CSF), and then the mean and standard deviation across each

independent run. We then examined the normalized frequency spectrum within each ROl up the
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Nyquist frequencies (DS7: 0.625Hz, DS8: 1.429Hz) to determine how NORDIC processing altered
the frequency spectrum and if physiological frequency peaks remained in the data. For DS7, the CSF,
gray matter and white matter ROIs contained 13314, 66664 and 42356 voxels respectively. For DSS8,
the CSF, gray matter and white matter ROIs contained 2367, 51797 and 19281 voxels respectively.

Cross validation: We used an exhaustive Leave-p-Out permutation approach to evaluate the
accuracy of the estimated HRF time courses derived from the full FIR model (*GLM Two”, see above)
and to determine if the NORDIC denoising method altered their temporal structure. Specifically, we
varied the number of runs, P which ranged between the total number of runs-1 (N-1) and 1 to be used
as atest set and trained with the remaining runs. Prior to being entered into the model, we projected
out polynomials (up to order = run duration in minutes - 1) to remove low frequency drift and masked
the data using the EPI data mask derived from the Standard data.

In order to limit our analysis to voxels that were plausibly task responsive, we determined the
overall leave-one-out cross validated coefficient of determination R? using all runs of each Standard
dataset in a model with a conventional HRF. This generated one map of R? across the whole brain for
each Dataset. This map was used only to summarize the subsequent exhaustive FIR based cross-
validation scheme.

In each fold, we used N-P runs to estimate the FIR model, constructing a series of betas for
each stimulus, corresponding to the estimated BOLD response over time to each stimulus on a voxel-
by voxel basis. These estimates were then multiplied by a design matrix for the held-out runs (P) to
generate predicted timeseries for each voxel. We then determined how well the predicted timeseries
matched the true timeseries using the coefficient of determination, R%. We first considered the P=N-1
case, in which one run was used to predict the timeseries of all remaining runs. The R? (and standard
error over permutations) of the FIR cross-validation scheme was calculated for voxels ranging from
5% of variance explained in the conventional model to the max R? for that dataset.

For 1<P<N-2, we summarized error across permutations using a R>15% mask from the

conventional model. This process was repeated to generate the following three comparisons:
18


https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457833; this version posted November 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Standard predicting Standard, NORDIC predicting NORDIC, and, most importantly, NORDIC
predicting Standard. This final comparison is significant, as it represents the NORDIC data predicting
the non-denoised data, which has undergone minimal processing, and retains all of the signals of

interest, albeit mixed with noise.

Results

Three representative datasets (of 8) were selected to present in figures. Unless indicated
otherwise, the summary metrics provided in the results refer to the mean across 7 datasets (DS1- 7;
DS8 was only considered for FFT analyses), normalized if necessary (i.e., due to different voxel

sizes).

Conventional General Linear Model (GLM) results

Figure 1 shows the distribution of t-values from the conventional GLM analysis on all runs
combined, using a canonical HRF. Processing with NORDIC leads to an increase in the t-values,
visible as a large rightward shift in their distribution relative to the data reconstructed with the
Standard data. The t-values were extracted from an identical ROI, created based on the Standard
data (See Methods). This increase in t-values is found within both the Target ROI (DS1,DS6: center >
surround checkerboard; DS3: faces > scrambled) as well as the non-Target ROI (DS1, DS6:
response to surround checkerboard; DS3: scrambled stimuli only). This effect is consistent across all
7 Datasets (Supplemental Figure S1); the mean of the one-sided t-statistic across datasets within the
non-target ROI was 8.7+5.0 for NORDIC and 5.67+3.6 for the Standard Reconstruction. In the Target

ROI these values were 9.9+4.5 for NORDIC and 6.16+3.6 for Standard.
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Caption Figure 1. The distributions of t-Statistics from the model using all runs of data are shown. Distributions show the
t-statistics of voxels from Non-Target (Ieft) and Target (right) ROIs, defined as those that displayed significant positive
stimulus-evoked changes relative to baseline (Non-Target) or in the contrast between Target and Non-Target conditions
(Target) in the Standard data. Functional maps of the corresponding contrast are shown for visual reference at a t-value
threshold of 3.3, corresponding to voxel-wise p<0.001 (uncorrected). NORDIC and Standard reconstructed functional
maps are identified by the color of the border of the two images shown for each dataset (blue=Standard,
orange=NORDIC). Across all datasets and both ROIs, the distribution of t-statistics for NORDIC was higher, with a
longer tail.
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Comparison with Other Noise Reduction Methods.

To evaluate the relative performance of NORDIC compared to other methods that seek to
reduce normally distributed noise, we ran identical general linear models (GLMs) on data that were
additionally processed with dwidenoise (Cordero-Grande et al., 2019; Veraart et al., 2016), spatially
(1 and 1.5 voxels FWHM) or temporally (sliding window ~10s) smoothed following preprocessing
(See Methods). Here we only consider the Target ROI. T-Statistic distributions for DS1, 3, and 6 are
shown in Figure 2. Results for all datasets are given in Supplementary Figure S2.

Distributions for NORDIC and Standard are identical to that given in Figure 1, with the mean
across all datasets at 9.9+4.5 and 6.16+3.6, respectively. The mean for t-statistics for these other
methods are as follows: 9.2+4.5 for dwidenoise, 8.5+4.2 for 1 voxel of additional smoothing, 10.1+4.9
for 1.5 voxels of additional spatial smoothing, and 6.6+4.4 for temporal smoothing (Supplemental Fig.
S2).

Temporal smoothing appears to confer minimal benefits with respect to (autocorrelation
corrected) t-statistic distributions for the block designs used in DS1 and DS6 (Fig. 1); as can be
expected, it begins to fail as a processing method when used on the fast event related design in DS3,
yielding t-statistics that decrease and approach zero due to blending the events that are closely
spaced in time. No such effect is seen in the NORDIC reconstruction, which is in fact right-shifted with
no negative values. The performance of dwidenoise approaches NORDIC, in terms of t-statistics but,

as discussed later, has a complex spatial smoothing effect on the data.
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Caption Figure 2. Distributions of t-statistics from alternative noise reduction methods within the Target ROI. Left
column shows data from Standard, NORDIC and spatial smoothing with 1 and 1.5 voxel FWHM spatial smoothing. Right
column compares the same Standard and NORDIC data against temporal smoothing and dwidenoise denoising. T-values
were extracted from the Target ROl defined using the Standard data. The t-values obtained with NORDIC (Orange,
dashed) processed data is comparable to the effects of an additional 1 or 1.5 voxels FWHM gaussian smoothing. While
temporal smoothing (brown) did increase t-statistics for Dataset 1, note that for the fast event-related design (Dataset 3)
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this led to a temporal blending of neighboring events, leading to positive and negative t-values, an effect not found in
NORDIC data.

Effects of Denoising on Global Image Smoothness

Image smoothness was estimated from the data both prior to and subsequent to processing
steps that corrected for slice timing and motion (labeled as Pre- and Post-Processing in Figure 3) and
on the residuals from the conventional GLM (Figure 3) (see Methods). Any spatial smoothing
introduced by post-acquisition data manipulations shows up as an increase in FWHM relative to the
Standard data.

The nominal resolution specified for image acquisition for these datasets was 0.8, 0.8, and
1.2mm isotropic, respectively. The FWHM measured in the Standard data before any processing
were 0.887+0.002mm, 0.900+0.003mm, and 1.244+0.002mm, respectively, which is marginally
higher than the nominal resolution specified for image acquisition. In examining the NORDIC datasets
for the smoothness prior to any processing, we found a small increase in estimated smoothness
associated with the NORDIC reconstruction (Table 2, Figure 3). The NORDIC data smoothness,
relative to the Standard reconstruction values, corresponds to an average increase in estimated
image smoothness of 5.13% across the 3 datasets shown in Figure 3. For dwidenoise, a much larger
increase in smoothness was evident, with an estimated FWHM before processing corresponding to a
22% increase on average. Across all 7 Datasets (Supplemental Figure S4), NORDIC led to a 5.6%
average increase in estimated image smoothness, whereas dwidenoise led to a 16% increase in

image smoothness, prior to motion correction and slice timing.

Before Processing (‘Pre’) Post Processing Residuals
DS1 DS3 DS6 DS1 DS3 DS6 DS1 DS3 DS6

Standard 0.8910.002 |0.9%+0.003 1.24+0.002 |0.89+0.006 |0.911+0.012 |1.25+0.006 |0.85+0.004 |0.87+0.004 1.22+0.002
NORDIC 0.9210.009 |0.92%-0.01 1.35£0.006 |0.91+0.009 |0.941+0.024 |1.311+0.012 |0.86+0.009 |0.89+0.01 1.3+0.014
dwidenoise |1.0210.003 |0.99%£0.009 |1.78+0.039 |0.98%£0.004 |0.98+0.008 |1.4910.048 |0.92+0.005 |0.9410.009 1.36+0.015
+1 Voxel - - - 1.331£0.005 1.341£0.012 |1.85+0.006 |1.33+0.005 1.310.015 1.83+0.004
FWHM

+1.5 Voxel - - - 2.1+0.007 2.0510.014 |2.9+0.01 2.1+£0.007 2.01+-0.012 2.910.006
FWHM
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Table 2. Estimated Smoothness in millimeters (FWHM). The first set of columns shows the estimated smoothness

before any additional processing, within a brain mask made from the first run. The next set shows the estimated

smoothness after motion correction and dlice timing, with the bottom two rows reporting the effects of explicit, intentional

smoothing. The final set of columns shows the estimated smoothness of the residuals from the conventional GLM. Across

all processing timepoints the NORDIC data is minimally smoother than the Standard data. VValues are mean across runs,

plus/minus standard deviation.

Following the pre-processing steps, which were identical for all subsequent applications of
“denoising”, smoothness estimates remained similar for the 3 datasets reported here (Column 2
Table 2, Figure 3). The mean increase in estimated smoothness for all 7 datasets, relative to the
Standard post-processed data, was estimated to be larger by 3.3% for NORDIC, 9.3% for
dwidenoise, 51% for 1 additional voxel of smoothing, and 140% for 1.5 voxels of smoothing.

Following a conventional GLM, the mean increase in estimated smoothness of the residuals
for all 7 datasets, relative to the Standard post-processed data, was 3.7% for NORDIC, 8.0% for
dwidenoise, 52.7% for 1 additional voxel of smoothing, and 142.8% for 1.5 additional voxels of
smoothing.

For all processing stages, the increase in estimated smoothness of NORDIC was significant

(all p<<0.001), as was the increase in estimated smoothness due to dwidenoise (all p<<0.001). In

addition, NORDIC was significantly less smooth at all stages compared to dwidenoise processed data

(all p<0.001).
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Caption Figure 3. Estimated spatial smoothness in mm (FWHM) at various processing stages for each method. Prior to
processing (left), NORDIC results in an average increase in 5.1% in smoothness and dwidenoise results in an increase of
22.4% on average. After processing, but prior to the GLM (middle) this trend remains. Note that the image smoothness of
the Standard, NORDIC, and dwidenoise data are substantially below the level of the additional 1 or 1.5 voxels of
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additional smoothing. These trends remain the same for the residuals (right) after the conventional GLM. Error bars

indicate standard deviation over runs.

Effects of Denoising on Local Image Smoothness

Local smoothness estimates, in mm FWHM, are presented in Figure 4. We focus on the
0.8mm high resolution Datasets (DS1 — DS3) for which spatial precision is most important. The first
column in Figure 4 shows the slice presented in the subsequent columns. Visual inspection of the
next 3 panels shows that the local smoothness varies across the brain and tissue classes in the
residuals of the task GLM; such a variation can be expected due to processes such as spatially
correlated spontaneous neuronal activity (e.g. (Smith et al., 2009)) or the propagation of the high
temporal fluctuations associated by veins (Chen et al., 1999; Kim et al., 1994; Zhao et al., 2006) to
neighboring voxels due to the BOLD effect. These effects were minimal in the Standard data (Fig. 4A,
2" row from left), though punctate regions of high local smoothness, reminiscent of blood vessel
cross sections, were visible likely as a result of the aforementioned, temporally correlated fluctuations
associated with veins.

Following NORDIC processing, voxels within regions corresponding to white matter have
similar or reduced spatial correlation of temporal signatures (Fig. 4A and 4B), whereas gray matter is
more variable across these presented datasets; the punctate regions present in the Standard are now
more clearly visible (Fig.5A, 3" row from left). Following dwidenoise, there is a general increase in the
local FWHM estimates across the entire brain (Fig.5A, 4™ row from left, and Fig. 4B). The
distributions of the local smoothness estimates for all voxels within each tissue class from
segmentation are shown in Figure 4B. Across the three high resolution (0.8mm isotropic) datasets
shown, the mean FWHM with the gray matter mask was 0.87+0.02mm for Standard, 0.87+0.05mm
for NORDIC, and 0.96+0.0mm for dwidenoise. The mean FWHM in white matter was 0.90+0.02mm

for Standard, 0.89+0.04mm for NORDIC and 0.93+0.06mm for dwidenoise. The mean FWHM in CSF
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was 0.88+0.04mm for Standard, 0.91+0.04mm for NORDIC and 0.98+0.03mm for dwidenoise (see
Supplemental Table S1 for individual dataset values).

Across all 7 datasets, relative to the Standard data, the mean local smoothness estimates for
NORDIC were 2.9% smaller in gray matter, 9.5% smaller in white matter and 11.7% larger in CSF (all
p<0.001). For dwidenoise, smoothness estimates were 2.8% greater in gray matter, 7.9% smaller in
white matter and 14.3% larger in CSF (all p<0.001). For all tissue classes, NORDIC had significantly

lower estimates of local smoothness relative to dwidenoise (all p<0.001).
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Caption Figure 4. Local smoothness estimated from GLM residuals, across all runs. A) Selected slices and local
smoothness estimates, in FWHM mm. The leftmost panel shows the selected EPI dlice. The next three panels show the
estimated, voxel-wise (local) spatial smoothness for the three different processing methods, Standard (blue border),
NORDIC (orange) and dwidenoise (green), with the scales identical between the different processing types. Note that the
local spatial smoothness is often highest in dark areas of the EPI image, likely associated with veins. B) Full
distributions of voxel-wise local smoothness estimates within different tissue classes. These kernel density estimates
show the distributions of the local spatial smoothness estimates in tissue classes derived from a T1-weighted anatomical
image for Standard (blue), NORDIC (orange) and dwidenoise (green). Local smoothness is somewhat decreased
following NORDIC, except within the CSF mask. All datasets had a prescribed resolution of 0.8mm isotropic.
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Spatial Characteristics of Extracted Noise

Following image reconstruction and denoising, we first examined the spatial characteristics of
the noise amplification due to accelerated image acquisition (‘g-factor’) as well as the noise removed
from the data timeseries by NORDIC and dwidenoise. Figure 5 shows the images for 3 data sets
comparing the temporal mean of the extracted noise from the first run with the maps of the g-factor
produced from the raw k-space data. The g-factor maps essentially reflect the spatial distribution of
the thermal noise component in the data with the spatially non-uniform amplification that comes from
the use of parallel imaging. NORDIC processed data demonstrate that the image of what is removed
looks similar to the g-factor map, without any hint of brain related structures or edges. In contrast,

anatomical boundaries are visible in the dwidenoise data.
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Caption Figure 5. Comparing Residuals from Denoising Methods. The first column shows the selected views using the

reconstructed EPI images. The next column shows the g-factor maps cal culated from the raw k-space data. The last two

columns show the temporal mean (absolute values) of the extracted noise from the first run for NORDIC (column 3) and

dwidenoise (column 4).
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Evaluating temporal precision

Fourier Analysis: The normalized power spectra for DS7 and DS8 show that denoising by
NORDIC results in a wide reduction in power across frequency bands, with the effects most apparent
at higher frequencies where thermal noise is the dominant noise source (Fig. 6). This effect is most
visible in DS8, which was collected at a TR of 350ms. At this sampling rate, the frequency associated
with cardiac noise (~1Hz) is clearly visible in the data and clearer after NORDIC processing. The task
related frequency (0.05Hz) is also more pronounced after NORDIC for DS8. Though this effect is
most visible in the gray matter partition, it is also visible in the white matter. This is likely a
consequence of both partial volume effects and imperfect ROI overlap between the anatomically

derived tissue segmentation and the distorted EPI images.
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Caption Figure 6. Frequency Plots from FFT analysis. Panel A) Normalized power spectra from DS7, a 3T, HCP-like
acquisition with 800ms TR. NORDIC processing reduces power throughout most frequency bands, with effects such as a
task harmonic (~0.2 Hz) and the respiratory band (~0.3 Hz) becoming more visible. Insets show power from 0.01 through
0.2. Panel B) Normalized power spectra from DS8, a rapidly sampled acquisition with 350ms TR. The effect of NORDIC
in broadly reducing power remains pronounced throughout higher frequencies. Here the respiratory and cardiac signals
are clear at ~0.3 and ~1 Hz respectively. In the gray matter, a clear peak at 0.05Hz, corresponding the task frequency is
also clearer after NORDIC processing (see inset). Shading shows standard deviation across independent runs for both A

and B.
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Cross Validation: Following NORDIC processing, estimates of single-run and single voxel

HRFs from the FIR model were markedly improved. We find that following processing with NORDIC,
the FIR time courses are more consistent with typical hemodynamic-like responses (i.e., approximate
a double gamma) and display, on average, 33% less variability across runs (Supplemental Table 3
shows average variability for each dataset within the Target ROI). To see the origin of these
improvements, we consider 81 voxels selected from DS1 focusing on an area that features both
target and non-target sensitive voxels. Figure 7A (top row) shows the underlying data and activation
maps from the conventional GLM across all runs of the Standard processed data, highlighting in the
inset containing the 81 voxels considered for Figures 7B and 7C. Visual inspection of individual voxel
time courses (with activation map overlaid) from a single run (the first run) of DS1 in Figure 7B shows
that the reduction in noise from the NORDIC method (right panel) does not lead to a spread of the
activation (consistent with the negligible change in spatial smoothness) but instead reduces the noise
level such that stimulus-coupled signal changes becomes more visible. The selected 81 voxels
contain responses to the target (indicated by #1, #2), responses to target and surround (within grey
boundary), and responses only to the surround (indicated by #3). Despite identical voxels being
selected for the Standard data (left panel), stimulus-evoked responses are difficult to see. Though the
spatial maps presented in Figure 7A (upper row) was derived from the full 8-runs, the task events are
visible in the individual voxels of the single run after NORDIC processing (Fig. 7B, right panel) but
generally not in the Standard. Section C shows response estimates from an finite impulse response

(FIR) model for the selected voxels, showcasing improvements in single-run, single voxel FIR

estimates.
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Caption Figure 7. Example of activation, improved time courses and FIR estimatesin run 1 of DS1, Panel A, upper row
Different views of the area under consideration from Standard reconstruction: Left column shows the mean GE-EPI
values for the area under consideration. Right shows the activation amplitude (-12 to 12 % signal change) in the selected
dlice for all runs, Center > Surround from the Standard data (map threshold from t-stat > 3.3). Inset boxes in panel A show
the 81 voxels considered in Panel B. B) Time courses from first run for 81 voxels. To visualize task responsive voxels,
we shade them based on the contrast from all runs of Standard data, as seen in Pandl A, right. The stimulus-evoked signal
amplitude changes associated with the three surround and the three target stimulus epochs are clearly visible in the
NORDIC processed (Right) timeseries of the corresponding voxels but are largely invisible in the Standard (Left) data due
to high noise levels. C) Single Run FIR Estimates for the Target Condition. Responses to the target (center) are
illustrated in selected voxels 1 and 2 for individual runs are shown. The final columns show the across-run average and

standard deviation respectively. Shading in the across-run average plot shows standard deviation from the mean, which is

33


https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457833; this version posted November 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

also plotted separately for clarity (note that the deviation associated with the Standard data far exceeds that of NORDIC).
Voxel 3, which is sensitive to the surround condition, remains closer to the expected zero amplitude (i.e., non-responsive).

Thisis particularly true for NORDIC processed data, which is associated with lower standard deviation.

To further investigate whether NORDIC processing does indeed preserve the inherent signal
present in the fMRI data (i.e., only suppressing thermal noise), we considered an exhaustive Leave-p-
Out cross validation scheme to determine how effectively FIR model results could predict held-out
timeseries quantified with the coefficient of determination, R? (See Methods).

Panel A in Figure 8 shows the performance of a single run of Standard and NORDIC data in
predicting the full timeseries of held out data. In general, the R? metric increases as voxels with better
predicative accuracy in the full model are included, with all lines tending to increase from left to right.
Notably, however, a single run of NORDIC is better able to predict the held out runs of Standard data
compared to the Standard data itself. Further, this benefit is maintained even for voxels that had a
high signal to noise ratio (i.e., far right of the graph). Exemplar estimates from the finite impulse
response (FIR) model which produces an estimate of the HRF are shown for a single voxel from a
single run in the lower right of each graph in Figure 8A. As expected for such high-resolution data, the
estimates from the Standard data (blue) are noisy. However, following NORDIC processing, these
single run estimates show clear HRF-like properties.

To quantify this improvement across all voxels and runs we varied the number of testing runs,
P, from 2 to the number of runs-1 (Figure 8B). Using a threshold of voxels that were able to explain
15% of the variance in the full model (vertical lines in panel A), we can see that training with one run
of NORDIC is able to predict a held out timeseries as well as 2 to 3 runs of Standard data (horizontal
dashed line, Panel B), and two runs of NORDIC are nearly able to predict as well as any number of
Standard runs combined. Across all thresholds and folds, NORDIC processed data is also always
able to better predict the timeseries of data that has undergone NORDIC processing - which would be

the typical use case. These findings apply to all datasets considered (Supplemental Figure S5).
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Caption Figure 8. NORDIC processing leads to higher cross-validation performance, predicting from a finite impulse
response model. Panel A) Exhaustive cross validation performance when training on using only one run. Cross validated
R? is shown for training on Standard data and predicting held-out Standard data (blug), training on NORDIC data and
predicting held-out NORDIC data (yellow), and training on NORDIC data and predicting held-out Standard data
(Orange). X-Axis indicates voxel inclusion threshold derived from leave-one-out cross-validated R* using a canonical
HRF on Standard data. Insets show example single voxel single run FIR model estimates for Standard (blue) and
NORDIC (Orange). NORDIC processing can produce estimates that better predict Standard data compared to Standard
data itself. Error bars are standard error over permutations. Dashed lines show an R* threshold of 15% used in panel B.
Panel B) Leave-p-Out training was repeated for all Ps less than the number of runs, N-1. Colors are as above; the number
of runsincluded in the training vary across the X -axis, with bar height reflecting the R? obtained. Dashed line indicates the
performance of training on one run of NORDIC data, which is equivalent in cross validation performance to using 2 or 3
runs of Standard data. Including more data allows Standard models to approach, but not reach 2 to 3 runs of NORDIC
data. Error bars again show standard error across permutations. Error bars in A indicate standard error and those in B
indicate standard deviation.
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Discussion

Most applications of the MRI method are highly SNR limited. As such, it is common to perform
some sort of noise mitigation procedure in post-acquisition data processing in order to increase the
SNR of the data. Although the ultimate goal is to do so without compromising any information,
conventional methods produce a trade-off, such as reducing effective spatial and/or temporal
precision. For example, spatial smoothing, an extremely common strategy, achieves SNR gains by
averaging the data over spatial coordinates of the image, thus inducing blurring. More contemporary
denoising methods (e.g. (Pruim et al., 2015; Thomas et al., 2002; Veraart et al., 2016), and
references therein) try to characterize the components of the data and selectively remove some of
them. As it is always possible that the effects of denoising can be deleterious, is imperative that a
careful and critical evaluation is performed when deploying such an approach, especially when
substantial and potentially transformative gains are promised for the field of interest, as is the case
with the application of NORDIC to fMRI (Vizioli et al., 2021).

In this paper, we extend an evaluation of the recently described NORDIC denoising method as
applied to fMRI to a wider variety of field strengths, voxel sizes, TRs, and stimulus designs. We find
that NORDIC-processed fMRI data removes noise that matches g-factor maps (Fig. 5), producing
much higher t-values under a conventional fMRI modeling framework (Figs.1, 2), consistent with the
prior report (Vizioli et al., 2021). The fMRI t-statistics achieved after NORDIC denoising are
approximately equivalent to those produced by smoothing the data using a kernel of 1.5 voxels;
however, analysis of the NORDIC-processed data does not show any comparable increase in
smoothness (Figs. 3,4). The frequency spectrum of data following NORDIC shows a widespread
reduction, consistent with white-noise suppression (Fig. 6). These SNR gains are also reflected in
markedly improved single run, single voxel FIR estimates, which in turn produce better predictions of

held-out, non-denoised Standard data (Fig. 7,8), compared to the Standard data itself. Collectively
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these findings support the use of NORDIC for a wide variety of fMRI applications, ranging from HCP-
like data obtained at 3T to cutting edge high-resolution fMRI data acquired at ultrahigh magnetic
fields.

Conventional GLMs

The t-statistic is widely used in the fMRI literature to report the statistical veracity of signal
increases and decreases as spatial maps. Consistent with our prior report (Vizioli et al., 2021), we
find that NORDIC-processed data had substantially larger t-values compared to the Standard data
alone (Figure 1). These gains are similar to or greater in magnitude than those reported by others
using denoising methods to remove structured noise such as multi-echo denoising (Gonzalez-Castillo
et al., 2016; Kundu et al., 2017), ICA-based denoising strategies such as ICA-AROMA (Pruim et al.,
2015) or using SNR efficient accelerated imaging sequences like SMS/MB (Moeller et al., 2010) to
collect more data in a given period of time (Smith et al., 2013). However, NORDIC is a complement
rather than a replacement to these methods as it focuses on suppressing thermal noise. We observe
that this gain is not due to a large shift in the estimated activation amplitude, as the betas remain
highly similar following NORDIC processing (Supplemental Figure S6).

Of the other processing methods examined here, the performance of NORDIC with respect to
t-statistics exceeds all but the 1.5 voxel spatial smoothing (Figure 2), even in the data with relatively
large voxels (i.e., 2mm isotropic resolution 3T HCP protocol). Of course, as previously mentioned,
NORDIC accomplishes this without meaningful increases in estimates of blurring. NORDIC also
outperformed the benefits one would get with temporal smoothing, even in cases where long duration
(i.e., 12s) events were separated by long inter-stimulus intervals. While NORDIC does produce a
timeseries that is less corrupted by thermal noise, we did not detect effects that would be consistent
with averaging over a temporal window. This is most clear in DS3, which used a fast event related
design. Following temporal smoothing, the t-values for the face condition in this design decreased.

This reflects the mixing of neighboring events due to the short ISI of 2 seconds. The opposite effect is
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found following NORDIC processing, in other words, t-values increased, and negative t-values were
absent. Under this approach, we did not observe that temporal precision was lost after NORDIC
processing. Both spatial and temporal smoothing also, as expected, additionally alter activation
amplitudes an effect which is not observed on the NORDIC processed data (Supplemental Figure
S6).

These findings present the possibility of new avenues of research, ultrahigh spatial and/or
temporal resolution studies, the use of smaller ROIs for ROI-based analysis, or examining single-trial
response estimates (Chen et al., 2021), all of which represent important but often SNR-starved
analysis strategies.

Image Smoothness.

Despite the similarity of the distributions of the t-values between NORDIC and spatially
smoothed data, the NORDIC data is not associated with a comparable increase in the estimated
spatial smoothness (e.g., +1.5 voxel FWHM smoothness estimated to be 132% larger; Figure 3). In
fact, at its maximum, NORDIC only increased the estimated smoothness by 6.1%. This is smaller
than the effect often observed with conventional preprocessing methods, which are known to produce
images with greater spatial smoothness characteristics due to the need to interpolate values on a
new image grid (Polimeni et al., 2018). While these effects were significant, they were very small
(more than 1 or 2 orders of magnitude less than 1 or 1.5 voxels of spatial smoothing respectively) and
did not compromise cross-validation accuracy (Figure 8, S5), nor do they match the effects of spatial
smoothing when comparing betas (Figure S6).

Here we considered estimates of global smoothness at all stages of data processing in the
fMRI data analysis (Figure 3). While typical smoothing estimates use the residuals of the data as an
estimate of the overall smoothness of the noise, it is possible for these estimates to be overestimated.
For example, coherent areas of signal change could remain due to a mismatch between the

canonical HRF and the subject’s response. The patterns of smoothness reported here are consistent
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among processing stages, supporting the argument for minimal image smoothing due to the NORDIC
method. This global measure of image smoothness is often used in the context of cluster correction,
as it is thought to reflect the underlying smoothness of the acquired image (Cox et al., 2017), but has
also been used to evaluate processing and acquisition approaches (Esteban et al., 2019; Friedman et
al., 2008, 2006; Marcus et al., 2013).

This finding is further corroborated when we examine the spatial autocorrelation of each
voxel’s correlations with its neighbors, which we have termed ‘local smoothness’. NORDIC
processing produced local smoothness estimates that were nearly equivalent to the standard data
(Figure 4). We did observe a small decrease in the estimated local smoothness following NORDIC
processing for gray and white matter. As this metric is computed on the residuals of the GLM, it is
plausible that the model obtained a better fit for task responses or structured noise, such as motion,
after NORDIC processing. As such, this is not reflecting an increase in the spatial resolution of data
following NORDIC processing, but instead likely highlights that the model captured more of the
structured variance in the signal.

We observed a larger positive deviation within the CSF mask, which includes features such the
superior sagittal sinus as well as punctate regions likely associated with cross sections of blood
vessels, which, in case of veins, appear as also dark punctate structures in the anatomical images
(Figure 4a, left most column). Macroscopic blood vessels large enough to be seen in these images
are expected to have relatively large signal fluctuations, as was shown for veins in previous fMRI
studies (Chen et al., 1999; Kim et al., 1994; Zhao et al., 2006). These fluctuations exist independent
of the stimulus or task in an fMRI experiment. Especially in case of the veins, these fluctuations will
extend beyond the boundaries of the blood vessel into neighboring voxels due to the BOLD effect.
Such correlations are expected to be “unmasked” and easier to detect after the suppression of

thermal noise, leading to an increase in the size of the region of locally smooth, correlated voxels.

Similarly, when the thermal noise is suppressed by NORDIC, it unmasks higher local correlation due
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to the BOLD effect associated with pial veins as well as to other physiological processes such as
pulsations due to heartbeat and respiration in the CSF space.

These local smoothness findings are different from the global smoothness estimates, in that,
on average, NORDIC processed data had marginally less estimated smoothness in both gray and
white matter. One possible source of this difference is likely due to the difference in analytical
methods. For example, global smoothness estimates consider each volume independently, in effect
examining the variance across space. In contrast, local smoothness considers autocorrelation of each
voxel’s timeseries correlation within a local neighborhood. It is plausible that neighboring voxels could
have highly correlated timeseries, despite large differences in signal magnitude (i.e., high spatial
variance), such as at gray/white matter boundaries due to partial volume effects. It is also possible
that the global smoothness after NORDIC seemed slightly increased in the GM due to effects similar
to those described above for the CSF mask. Nevertheless, both global and local smoothness
estimates provide evidence that NORDIC processing is not leading to meaningful increases in
smoothness. The spatial autocorrelation methods (both global and local) to estimate smoothness in
this work are different from approaches that estimate a functional point spread function (Shmuel et
al., 2007), which instead attempts to quantify the functional precision available in the maps of
functional responses. For the latter, prior work found that NORDIC had no impact on the functional
point spread of the BOLD signal (Vizioli et al., 2021). To further validate these results we performed
an initial evaluation using the local perturbation response (LPR) method (Chan and Haldar, 2021) and
were able to recover the injected synthetic sparse signal, though sufficiently low intensity
perturbations (i.e. below or near thermal noise level) were not perfectly recovered (See Supplement,
Figures S8, S13). Further work is required to determine interpreting these results, as with all synthetic
manipulations, it is difficult to match all of the properties of the natural fMRI signal.

Together, these reports show that NORDIC is able to suppress thermal noise at a level similar

to that of 1 or 1.5 voxels of smoothing but avoids the increases in spatial autocorrelation associated

with such levels of blurring, and instead only marginally affects the spatial properties of the signal.
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Temporal Precision.

The use of NORDIC produced fMRI voxel time courses in which responses to task events
were more visible and not subject to any apparent smoothing (Figure 7). We first examined the
normalized power spectrum of DS7 (800ms TR) and DS8 (350ms TR). For both datasets, task and
physiologically related frequencies are clearer after NORDIC processing, relative to the Standard
data (Fig. 6). In general, there is a large reduction of power at nearly all frequencies, consistent with
the reduction of normally distributed noise. This corresponds to an increased ability to identify and
resolve frequencies associated with physiological noise in each individual voxel timeseries, however
the potential utility of this for physiological denoising was not explored.

We then used the estimates of the hemodynamic response function (HRF), produced by finite
impulse response (FIR) models, to simultaneously examine the denoising performance of NORDIC
and whether this resulted in a substantial (i.e. affecting cross-run accuracy) loss of temporal
information. NORDIC produced FIR estimates that were associated with less cross-run variability
(Figure 7, Supplemental Table 3). In many cases, particularly in high-resolution studies, these types
of response estimates are produced by simultaneously modeling multiple runs or averaging the signal
within an ROI. Here, however, we show that single-run estimates are reliable, even at the single-voxel
level.

The primary concern is that these estimates are the result of suppressing both signal and
noise. That is, the process of removing thermal noise has also removed signal sufficient to alter the
measurable temporal information in the fMRI time course. We do not observe this effect in the
NORDIC data as shown by the fact that these FIR estimates accurately reconstruct data that were
held-out from the model. This was performed in an exhaustive Leave-p-Out fashion, considering all
combinations of 1<P<Number of runs. Based on the coefficient of determination (R?), not only was
NORDIC data better able to predict held out NORDIC data, but that it was also better able to predict

held-out Standard data (Figure 8). This is a critical feature in considering the performance of a

41


https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

e N e
denoising method and, of course, is not always achieved. For example, large amounts of spatial
smoothing will lead to increased t-values, but the voxel-wise HRFs derived from smoothed data will
no longer correspond to the precise spatial location of voxels in unsmoothed data. Additionally, these
activation amplitudes will have altered magnitudes (Supplemental Figure S6).

Across all datasets, the NORDIC data were better able to predict the Standard data as
measured by the coefficient of determination, including datasets using acquisition methods for which
the thermal noise contribution is lower (i.e., datasets with larger voxels) relative to physiological
fluctuations. In order to further examine the possibility of a loss of temporal precision we also probed
the neighboring timepoints in the previously mentioned LPR analysis (Chan and Haldar, 2021) and
while this sparse (i.e. does not repeat over the timeseries) and synthetic signal is measurable at
subsequent timepoints following denoising with NORDIC (Figure S8), the artifact was nearly 2 orders
of magnitude smaller than intrinsic timeseries fluctuations (Figure S11) and as such, is effectively
invisible in voxel time courses (S10).

The NORDIC processed data were also able to better predict NORDIC timeseries (Figure 8).
While less critical than the above demonstration of signal preservation, this indicates that the effects
of NORDIC are consistent from run to run. In this context, one (DS1, DS6) or two (DS3) runs of
NORDIC have better cross validated performance using voxels that survive the 15% R? threshold
(Figure 8) than any number runs of Standard data. As the typical fMRI experiment would employ
similarly denoised data throughout all analyses, rather than testing against the standard data (as was
done here for validation), these large SNR gains represent the expected benefit of using NORDIC.
Since NORDIC denoising is done for each run separately, the data from separate runs remains
statistically independent. This, in conjunction with the large gains in cross validated performance may
allow analyses approaches which previously required large regions of interest to be performed on the
level of individual voxels. Furthermore, these improvements could translate to shorter scanning times,

with many added advantages, for example, decreasing the possibility of motion and time burden for

participants or patients.
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NORDIC is expected to complement denoising strategies that remove structure noise, such as
ICA-AROMA (Pruim et al., 2015), multi-echo ICA denoising with tedana (DuPre et al., 2021; Kundu et
al., 2017) or those that leverage multiple runs, such as GLMDenoise (Kay et al., 2013); however
experimental demonstration of this remains to be performed.

Comparison with Alternative Methods

Widely used methods to remove thermal noise have only recently developed and evaluated for
diffusion MRI. In functional imaging, the growing interest in higher and higher resolutions and the
capability of collecting such data with reasonable sampling rates has led to increased attention to the
thermal noise contribution. While thermal noise is not typically the dominant noise source in most
fMRI studies (Triantafyllou et al., 2011), thermal noise begins to dominate with voxel volumes below
approximately 3mm isotropic at 7T and therefore substantially impede accurate detection of signals of
interest.

Choices for the reduction of thermal noise are limited, and functional neuroimaging has
primarily depended on temporal averaging or spatial smoothing. Averaging requires large time
commitments and can be complicated by difficulty in aligning across multiple runs, sessions or
participants, while spatial smoothing with gaussian kernels unavoidably leads to a loss in spatial
precision which is often the expressed purpose of high-resolution fMRI. While more advanced
smoothing methods have been developed, which constrain smoothing on the basis of anatomy
(Blazejewska et al., 2019; Huber et al., 2021), these methods are associated with a tradeoff — for
example averaging across cortical depth may allow for high resolution analyses across the cortical
surface, but necessitates the loss of depth dependent activity profiles, which are not uniform.

An alternate PCA based denoising method considered in this manuscript, dwidenoise, was
developed primarily to suppress thermal noise in diffusion imaging (Cordero-Grande et al., 2019;
Veraart et al., 2016); it has recently been used for resting state fMRI (Adhikari et al., 2019) and fMRI

for evaluate for presurgical mapping (Ades-Aron et al., 2021, p.). However, these studies lacked a
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detailed analysis of the impact and the generalizability of denoising on the fMRI data, and critically,
did not examine higher (sub-millimeter) resolution fMRI where thermal noise dominates. Here we find
that dwidenoise does offer large improvements in typical task-based activation measures such as t-
statistics; however, this appears to be at the cost of increases in estimated image smoothness. This
is most apparent for the high-resolution 7T (0.8mm; DS 1, 2, 3) and 3T (1.2mm; DS6) datasets, for
which precision is most desired (Figure 3). Most importantly, an image of the components removed
by dwidenoise demonstrate the presence of structures that correspond to the anatomy of the imaged
object, indicating that components removed are not just thermal noise. This is consistent with the
suggestion that it is difficult to precisely identify the components that are removed in the
MPPCA/dwidenoise approach, although its application leads to apparently better results (Moeller et
al., 2021).

While these conclusions hold for our usage of dwidenoise in the present work, it is entirely
plausible that further improvements could be achieved by manipulating various elements of the
dwidenoise implementation. For example, it is plausible that the default settings of dwidenoise which
were validated on diffusion imaging data should be altered when applying to fMRI images. In addition,
it is possible to apply dwidenoise (at least for diffusion data) in complex space (Cordero-Grande et al

2019). While this or other manipulations of dwidenoise for fMRI were not tested in the current work, it

is possible that this would lead to improvements in the performance of dwidenoise.
Limitations

Although a large variety of datasets were considered in this work, including different TRs, voxel
sizes, event designs, stimulus categories, and field strengths, the present work only evaluated
gradient echo BOLD functional imaging, by far the most commonly employed strategy for functional
imaging. The principles of NORDIC are expected to work equally well with other approaches of
functional mapping, such as spin echo (SE) based BOLD fMRI (e.g. (Yacoub et al., 2003)), or

functional mapping based on non-BOLD contrast mechanisms such as blood flow changes (e.g. ASL
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(Roberts et al., 1994) and VASO (Huber et al., 2018)). NORDIC will likely be more useful for these
other functional imaging approaches since they inherently have poor sensitivity and, at any given
spatial resolution, will be more limited by thermal noise associated with the MR measurement
compared to GE BOLD fMRI.

Our current work suggests that NORDIC can be viewed as another processing step in fMRI
which is associated with measurable, but small changes in data parameters. As such, researchers
should inspect their data following NORDIC to ensure that the data is not adversely affected,
particular in low SNR areas or task designs. In the datasets considered for this manuscript, the gains
of NORDIC were achieved with minimal impacts on estimated image smoothness. Here we used
estimates of image smoothness over global and local scales. While such FWHM measures are widely
used, are sensitive to the application of image smoothing and agree with our findings in prior work
which examined the functional point spread (Vizioli et al 2021), it is possible that they do not capture
all of the effects of NORDIC processing. Likewise, it is possible that some temporal information is
lost, however, we did not detect any negative effects in the cross-validation approach used here, and
additionally observed that the fMRI signals of interest following NORDIC processing were more
similar from run to run.

While NORDIC was highly effective in the data shown here, further work evaluating the effects

of NORDIC, particularly for other fMRI sequences and a larger array of brain areas, is needed.

Conclusion

The NORDIC method is suitable for use across a diverse array of functional imaging acquisition
strategies in order to decrease the contribution of thermal noise. Processing data with NORDIC
consistently results in substantial gains in t-values, such as those seen following smoothing, without a
comparable or even moderate increase in estimates of image smoothness. In addition, NORDIC
preserves the voxel-wise temporal information and is better able to predict held out data. These

findings support the use of NORDIC to increase the functional contrast-to-noise ratio of fMRI, thereby
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improving HRF estimates and/or permitting reduced fMRI acquisition times — potentially enabling
entirely new study designs and statistical approaches to data analysis. These attributes are of
particular importance for ultra-high spatial resolution functional neuroimaging data targeting
mesoscopic scale organizations, which are SNR-starved even at ultrahigh magnetic fields and even
after extremely long data acquisitions. Similarly, acquisitions that use high temporal sampling rate of
the fMRI time course, as desired for example in resting state fMRI, are also SNR starved in the

individual images acquired should benefit from NORDIC substantially.
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Figure S1. T-statistic histograms comparing Standard and NORDIC data within the Non-Target and

Target ROIs. The distributions of t-Statistics from the model using all runs of data are shown.

Distributions show the t-statistics of voxels from Non-Target (left) and Target (right) ROIs, defined as

those that displayed significant positive stimulus-evoked changes relative to baseline (Non-Target) or

in the contrast between Target and Non-Target conditions (Target) in the Standard data.
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Figure S2. T-statistic values from Datasets 1 through 7 in the Target ROI, under different processing
schemes within the Target ROI. Left column shows data from Standard, NORDIC and spatial
smoothing with 1 and 1.5 voxel FWHM spatial smoothing. Right column compares the same Standard
and NORDIC data against temporal smoothing and dwidenoise denoising. T-values were extracted
from the Target ROI defined using the Standard data. The t-values obtained with NORDIC (Orange,
dashed) processed data is comparable to the effects of an additional 1 or 1.5 voxels FWHM gaussian

smoothing.
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Figure S3. Global Smoothness Estimates for Datasets 1 — 7. Estimated spatial smoothness in mm
(FWHM) at various processing stages for each method. Note that the image smoothness of the
Standard, NORDIC, and dwidenoise data are substantially below the level of the additional 1 or 1.5
voxels of additional smoothing. These trends remain the same for the residuals (last columns) after

the conventional GLM. Error bars indicate standard deviation over runs.
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NORDIC (orange) and dwidenoise (green).
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Supplemental Figure S5. Cross Validated R? for Datasets 1 through 7 Leave-p-Out training was repeated for all vales
of p greater than 1 and less than the number of runs. The number of runs included in the training vary across the X-axis,
with bar height reflecting the R? obtained. Including more data allows Standard models to approach, but not reach 2 to 3
runs of NORDIC data. Error bars indicate standard deviation.

57


https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457833; this version posted November 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Standard & NORDIC

Standard & Spatial Smoothing

Standard & Temporal Smoothing

DS1, non-Target ROI. R2:0.97

DS1, non-Target ROI. R2:0.86

DS1, non-Target ROI. R2:0.97
-

18 21

3 6 e] 12 15
Standard Betas

18 21

3 6 e] 12 15
Standard Betas

36 36
30 o 30 830
jol @
%] °© m
©
T 24 m 24 £ 24
s3] = S
3 < £
o 18 =18 » 18
@ o s
o S g
Z 12 g g12
* @
6 6 6
6 12 18 24 30 36 6 12 18 24 30 36 6 12 18 24 30 36
Standard Betas Standard Betas Standard Betas
DS2, non-Target ROI. R2:0.95 DS2, non-Target ROI. R2:0.84 DS2, non-Target ROI. R2:0.97
.\‘:‘..m.;tﬁ;.:.;:“.\.... JE‘LH
30 30 30
25 » 25 825
o ©
8 @ @
B 20 @ 5 £ 20
fei} = g
Q < £
g 15 215 % 15
% % L
=4 i s
10 <10 g10
" @
5 5 5
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Standard Betas Standard Betas Standard Betas
DS3, non-Target ROI. R2:0.95 DS3, non-Target ROI. R2:0.83 DS3, non-Target ROI. R2:0.76
21 21 21
18 » 18 818
o 2 @
£ 15 & 15 £ 15
fei} = g
O 12 L2 E 12
o = w
3o % o g
2 g g
6 8 E 6
3 3 3 k

g 12 15 18 21
Standard Betas

3 6

58


https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457833; this version posted November 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

DSz}, non-Target ROI. R2:0.96 DSz}, non-Target ROI. R2:0.78 DS4, non-Target ROI. R2:0.83
%]
[} 0]
" 8 =
g 5 £
@ = 3
o é £
=] w
@ [T =
@] % ©
= s g
0 2 4 6 8 10 0 2 4 6 8 10
Standard Betas Standard Betas Standard Betas
DS5, non-Target ROI. R2:1.0 DS5, non-Target ROI. R2:0.76 DS5, non-Target ROI. R2:0.99
20 20
%]
[} 0]
P 16 g 216
o s £
o 12 2 2 12
a = @
< x T
= 8 ‘g é— 8
+
4 2 4
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
Standard Betas Standard Betas Standard Betas
DS6, non-Target ROI. R2:0.95 DS6, non-Target ROI. R2:0.85 DS6, non-Target ROI. R2:0.98
36 36 36
30 530 830
[ [}
8 k] @
g 24 m 24 £ 24
fan] = S
(8] < E
o 18 E 18 w18
S X 2
Z12 212 B 12
’ @
6 6 6
6 12 18 24 30 36 6 12 18 24 30 36 6 12 18 24 30 36
Standard Betas Standard Betas Standard Betas



https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457833; this version posted November 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

DS7, non-Target ROI. R2:0.99

\_

NORDIC Betas
o © N o o

w

3 6 9 12 15 18
Standard Betas

+1vox FWHM Betas

DS7, non-Target ROI. R2:0.78

3 6 9 12 15 18
Standard Betas

Temporal Smooth Betas

(=]

(9]

L]

w

(=2}

w

DS7, non-Target ROI. R2:0.99

\_

3 6 9 12 15 18
Standard Betas

Supplemental Figure S6. Scatter plots showing the relationship between the activation amplitude (i.e.

beta, in percent signal change) within the large Non-Target ROI for the Standard data and NORDIC

(1% column), +1 Voxel spatial smoothing (2" column) or temporal smoothing (3" column). The black

line is unity. The red line shows a regression line fit to the points. Distributions for each datatype are

shown above and to the right to highlight that the vast majority of activation amplitudes are
concentrated in the lower left-hand corner of the plot. The coefficient of determination, R?, is provided

in each plot’s title.
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Local Perturbation Response analysis

Following the reviewers suggestion we implement the local perturbation response (LPR) method for
evaluating non-linear reconstructions from Chan, C.C. and Haldar, J.P., 2021.

We tested the LPR technique on in-vivo data, and also used it on a numerical simulation with random
matrices. In LPR, a checker-board pattern of small amplitude is added to a single time-point, and for a
measurement model, Y, the difference NORDIC (Y) - NORDIC (Y+LPR), in reconstruction is
evaluated for the ability to recover the injected LPR signal and the effect of spreading of the injected
LPR signal at other time-points.

In NORDIC the effect of the LPR can be tested on the hard threshold part for each patch by
considering a model Y=X+N. If the model X, has a low-rank representation, then the LPR, which is
simultaneously a low-rank and a sparse signal, is not necessarily aligned with the subspace
containing X. Thus, intuitively only its projection onto this subspace can be recovered. It should be
noted that if the additional LPR signal is expected to represent what is observed in fMRI data, its
recovery may be tackled with robust PCA, designed for a low-rank + sparse model (Candés et al.,
2011), but which has additional parameters as compared with hard thresholding. However, in our
experience, we do not expect such vastly different patterns to be present for a single time-frame and
vanish subsequently.

For the numerical simulation for Y=X+LPR +N, LPR was selected as a 36x36 checkerboard with 6x6
squares, both X and N had dimensions 1296 x 100, to maintain a ratio of 11:1. The entries of both X

and N were i.i.d. and real valued distributed with variance 1.3, and 1 respectively, and X = quXng
was the R-dimensional low-rank representation of X = uysyvs, such that for n<R the n™ singular-
value sy = sy and for n>R, sy, = 0. For the simulation, both the case of low-rank and full-rank model
were evaluated with both separated and overlapping spectrum of singular values for the model and
the added noise. As a quantitative metric for assessing the combination of noise and signal in time-
points not probed by the LPR, the ratio € = || - |[5t«t, /|| - |12¢=t, Was used. The four cases of LPR
recovery and spreading are shown in figure S7, along with their € value. For these cases, when X is
low-rank the residual from LPR is more noticeable than when X is full-rank.
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Figure S7. Numerical simulation. Four difference cases for utilizing an LPR (max(LPR)=0))
are illustrated, for two models (low rank and full rank) and for two different noise-levels
(overlapping and separated spectra of singular values).

We next added the LPR, at varying magnitudes relative to the measured thermal noise level, onto in
vivo data, and performed NORDIC denoising. We then subtracted the original NORDIC data from the

LPR+NORDIC data to examine to what extent the injected signal could be recovered following
NORDIC.

When we consider all LPR intensities, we observe that the checkerboard LPR can be recovered, to
some extent, even when it was of very low intensity relative to the thermal noise level of the data
(Figure S8). At higher signal levels, recovery performance is increased and the checkerboard is clear.
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Figure S8. In vivo, recovery of injected LPR for different SNR levels. We observe that the
LPR (a checkerboard) can be recovered even when the original LPR was very low in
magnitude.

For a neighboring timepoint (Figure S9), we find that there is very limited artifactual signal from the
injected LPR, with the highest relative energy at the lower LPR magnitudes. While there is some

artifact just visible, the level of this artifact is order of magnitude lower than the original thermal noise

or the fMRI signal fluctuations of interest.
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Figure S9. In vivo, comparison of neighboring timepoint after NORDIC in data with and
without the LPR. The artifactual signal is at a very low intensity relative to the original
injected LPR and primarily present at lower original LPR intensities (color map limits set to
25% of original LPR magnitude).

To examine the effect of this artifact, we can examine voxel time courses. Figure S10 shows the time
course of 3 voxels for the original data (NO NORDIC), NORDIC and then NORDIC with 3 different
LPR magnitudes. The largest effect is the suppression of thermal noise visible as the differences
between the dashed black lines and the others. The effect of the spreading artifact would show up as
differences between the blue lines and the 3 LPR levels — and is effectively invisible.

Figure S10. The minimal impact of the LPR artifact on voxel time courses. The black line shows
the original data prior to NORDIC. Additional lines show the NORDIC data without the LPR
(blue), and the NORDIC data with the injected LPR at various levels. While the artifact is
measurable (Figures S11-S14) here we see that its effect is not meaningful. The time courses
following NORDIC with and without the LPR are nearly indistinguishable.
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To quantify this effect over all voxels and LPR magnitudes, we can consider the relationship between
the magnitude of artifactual signal fluctuations and the magnitude of the signal fluctuations (Figure
S11) following NORDIC (i.e. the temporal standard deviation). On average, this reaches a maximum
of 0. Note that this means not that the artifact is causing 2% signal change, but rather that that the
artifact is only 2% of the intrinsic fluctuations and thus causes negligible signal changes (as visible in
the voxel time courses, Figure S10).
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Figure S11. The magnitude of the artifactual fluctuations relative to intrinsic timeseries
fluctuations. While Figures S12 and S13 showed the magnitude relative to the original LPR
injection, here we are showing the magnitude of this artifact relative to the fluctuations in the
denoised timeseries. While the artifact is visible (when data with and without the LPR are
directly contrasted) its impact is minimal.

We can also summarize this as to the relationship of the recovered LPR and artifact signal to the
original LPR signal. With an LPR for different thermal noise levels, the amount of energy recovered is
close to the probed signal, and the residual is less than 1/10 of the probed signal, the plots of the
simulation are shown in figure S12, with the in vivo signal shown in Figure S13.
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Figure S12. Plot of residual signal to LPR for different noise-regimes used in the simulation,
showing recovery of LPR (blue) and LPR “artifact” at adjacent timepoints (orange).
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Figure S13 In vivo version of S8 showing recovery of LPR (blue) and LPR “artifact” at adjacent

timepoints (orange).
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From the numerical simulation the effect on the SVD of (X+LPR) vs the SVD of X for an LPR with a
lower amplitude than the components in X is that the r first eigenvectors of both are almost the same,
such that LPR is expressed into these basis functions, and then an r+1’th basis function is mostly
identified with the remaining parts since it will be a “component”. This last basis function may or may
not be recoverable, depending on the amplitude of the probed LPR. When recoverable, the
representation of the LPR is the combination of the projection of the LPR onto the subspace spanned
by X and any added basis function. The temporal sparse signal is likewise not described in a single
explicit eigenvector but in the combination of eigenvectors. When the LPR is large, it is a large “peak”
with noisy ripples for the primary eigenvector. When the LPR is low, the peak for representing a
sparse signal is only achievable through the combination of eigenvectors.

A component not obtainable as being representable by uys}v% and which consistently is estimated
as being (fully or partially) in uy sy v%, will persist in the final estimation of uys,v%. Such a residual
component will be of less magnitude than uy s;v% since for some patches it otherwise would be
estimated as being in uys{v%. What is being discarded in NORDIC are those singular vector which
are embedded in the distribution of the singular vectors of Gaussian noise. The associated
eigenvectors are a low-rank representation of the observed full rank noise, and those eigenvectors
are indiscriminately removed.

In combination the simulation and the in-vivo data shows that for probing date with a sparse signal at
the noise level, using hard thresholding on the singular values for noise removal, a residual

perturbation in the denoised signal at less than 1/10 the amplitude is observable, which reflects both
that not all noise is removed, and that the model in NORDIC was chosen to recover low-rank signals.

What do we mean by removing components of the timeseries which cannot be distinguished
from Gaussian distributed noise?

For the SVD in NORDIC, the decomposition of the acquired signal may be written as

uysyv, =Y = X + N = uysyvs + uysyvy
Uy STVL + uy sy vl = uygsy vl + uysyvy

Where u and v are matrices with eigenvectors and where sy and s, are diagonal matrices with the
singular values for the signal and noise respectively, and s, may be of full rank. The
decomposition s, = s3 + sy is such that min (s3) > max (s ) and max (sy) < max (sy). The
estimated noise with hard thresholding in NORDIC is uy sy v%, which is an approximation of the
noise uy sy VY%, such that all the singular values in sy is less than the largest one in sy. It may
be worth noting that the hard thresholding in NORDIC is lower than the optimal hard
thresholding (Gavish and Donoho, 2014) or a low-rank signal. Likewise it may be informative to
note that SVD is an orthonormal basis decomposition, where the observed signal (a row in Y)
is typically represented

by the combination of all eigenvectors in the decomposition of Y, unless the decomposition happens

to create an eigenvector that exactly matches such an observed signal. By extension the estimated
eigenvectors for X will be impacted by the noise observed in Y and affecting the eigenvectors in the
decomposition to most compactly model X. In NORDIC, the basis functions which have an
importance (i.e. corresponding singular value) less than what is observable from Gaussian noise is
discarded.
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DS1

DS2

DS3

DS4

DS5

DS6

DS7

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

NORDIC
Standard
dwidenoise

Gray Matter

White Matter

CSE

0.82+0.148
0.87+0.084
0.91+0.153

0.88+0.133
0.89+0.074
0.97+0.133

0.91+0.147
0.91+0.10
0.98+0.15

1.53+0.657
1.57+0.301
1.62+0.592

1.6+0.476
1.58+0.287
1.53+0.569

0.93+0.238
1.04+0.154
1.00+0.289

1.54+0.57
1.57+0.344
1.58+0.6

0.85+0.056
0.88+0.039
0.87+0.094

0.90+0.082
0.90+0.041
0.96+0.102

0.92+0.089
0.92+0.062
0.97+0.102

1.22+0.32
1.59+0.159
1.34+0.357

1.47+0.268
1.58+0.157
1.21+0.336

0.81+0.191
1.03+0.102
0.94+0.247

1.26+0.273
1.46+0.236
1.18+0.311

0.89+0.214
0.88+0.119
0.98+0.207

0.88+0.204
0.84+0.151
0.96+0.195

0.95+0.192
0.92+0.138
1.02+0.19

1.96+0.749
1.74+0.487
1.95+0.667

1.98+0.622
1.76+0.449
1.97+0.649

1.24+0.36
1.13+0.202
1.25+0.33

2.5%£1.15
1.82+0.473
2.36+0.929

Supplemental Table S1. Mean and Standard Deviation of Local Smoothness Estimates in mm FWHM

for Datasets 1 through 7.
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NORDIC, dwidenoise Standard, dwidenoise | NORDIC, Standard

DS1 0.999+0.0008 0.999+0.0014 0.999+0.0012

DS2 0.997+0.003 0.992+0.0058 0.993+0.0054

DS3 | 0.998+0.0031 0.998+0.0024 0.99710.0044

D34 1+0.0001 1+0.0003 1+0.0003

DS5 1+0.0001 1+0.0002 1+0.0002

DS6 0.999+0.0018 0.993+0.0098 0.989+0.0173

DS7 1+0.0002 0.999+0.001 0.999+0.001

Supplemental Table 2. The average Pearson correlations between the motion correction parameter

estimates, with standard deviation over independent runs.
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Standard Variability NORDIC Variability % Reduction
DS1 122.36 71.96 41.2
DS2 123.56 63.60 48.5
DS3 48.39 30.15 37.7
DS4 43.58 30.21 30.7
DS5 65.60 54.68 16.6
DS6 102.41 59.67 41.7
DS7 103.55 83.07 19.8

Supplemental Table 3. A comparison of the variability of FIR estimates within the target ROI for each

dataset. This was calculated as the average (over voxels within the ROl mask) sum (over the time
axis of the FIR) of the voxel-wise standard deviation over runs of the FIR response curves for the

main task in each dataset (e.g. The center condition for DS1).
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