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Abstract:

How to retrieve latent neurobehavioral processes from complex neurobiological
signals is an important yet unresolved challenge. Here, we develop a novel approach,
orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent
neurobehavioral processing and show that its performance is superior to traditional non-
orthogonal decoding in terms of both false inference and robustness. Processing value
and salience information are two fundamental but mutually confounded pathways of
reward reinforcement essential for decision making. During reward/punishment
anticipation, we applied DeCoP to decode brain-wide responses into spatially
overlapping, yet functionally independent, evaluation and readiness processes, which
are modulated differentially by meso-limbic vs nigro-striatal dopamine systems. Using
DeCoP, we further demonstrated that most brain regions only encoded abstract
information but not the exact input, except for dACC and insula. Furthermore, our novel
analytical principle could be applied generally to decode multiple latent
neurobehavioral processes and thus advance both the design and hypothesis testing for
cognitive tasks.

Keywords: reward/punishment anticipation, orthogonal decoding, task fMRI,
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Introduction

The brain frequently engages parallel processing involving different latent
behavioral processes mediated by functionally distinct, though spatially overlapping,
neural networks [1]. Previously, human functional neuroimaging studies have had
difficulty in unravelling these processes from basal compound physiological signals [2-
4], which has made it difficult to build process-specific and mechanistic models of the
brain [5].

Reward/punishment processing is perhaps the most adaptive function of the
behavioral control system, optimizing outcomes through both positive and negative
reinforcement [6]. Recent overarching frameworks propose two different cognitive
processes engaged in parallel during reward or punishment behavior, namely evaluation
(i.e., scaling signal values from reward to punishment) and response readiness
(subsuming arousal and attentional salience, contributing to response preparatory
processes) [6, 7]. The evaluation process is essential for guiding upcoming action
selections based on their value, for which the brain has evolved dedicated
regions/circuits [8-13]. Complementary to evaluation, both reward and punishment, as
highly salient events, attract greater attention than neutral stimuli, also engaging greater
levels of motor preparation and emotional arousal [14-16], hence contributing to
response readiness. Therefore, evaluation and readiness signals are inevitably
confounded with each other during reward/punishment processing. Unfortunately,
decomposing this compound signal, for example in human fMRI studies, has proven
challenging because these two components cannot be identified by using only reward
(or only punishment) stimuli in many experimental paradigms. Previous attempts have
been made to overcome this problem by decoding evaluation and readiness signals
using the trial-level or first-level data and identifying their corresponding spatially
dissociated brain regions [2, 3, 17]. However, these approaches have failed to
disentangle signals in brain regions known to encode both evaluation and readiness
signals, for example, in the striatum and the ventromedial prefrontal cortex (vmPFC)
[7, 16, 18]. Further, the existing studies have not provided convincing evidence to

clarify the assumption of functional independence of the evaluation and readiness
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processes.

To resolve this complex theoretical issue, we developed a novel analytical
approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP). Through this
innovative approach, for the first time, we have achieved a brain-wide voxel-wise
orthogonal decomposition of process-specific neural representations of complex
neurobehavioral processes. We further demonstrated that our approach not only
provided a valid theoretical statistical inference for the functional independence
between the spatially overlapping signals but had wide application for decoding the
latent neurobehavioral processes from compound neuroimaging signals, hence further
advancing our understanding of the neural basis involved in cognitive processing.
Results
Participants and experiment designs

A modified version of the monetary incentive delay (MID) task [19], one of the
classical and widely used fMRI paradigms for reward processing, was conducted in
1939 children aged 9-11 from the Adolescent Brain Cognitive Development (ABCD)
cohort [20] (Table S1). The MID task consists of five levels of incentive: large loss,
small loss, neutral, small win and large win (i.e., -5.0, -0.2, 0, 0.2 and 5.0 $ respectively,
Fig. 1a; also see Supplementary Methods for details). There was a discrepancy between
the undifferentiated behavioural performance in the contrast of reward vs punishment
(Reaction Time: t7,927 = -1.65, Cohen's d = -0.04, p = 0.10; Accuracy: ¢1,927 = 0.71,
Cohen's d=0.02, p=0.48; Fig. 1c¢) and the unbalanced corresponding activation in two
of the most critical brain regions (i.e., the vimPFC: #1027 = 9.83, Cohen's d = 0.22, p
<1E-21 and the striatum: #7927 = 10.77, Cohen's d = 0.25, p <1E-25; Fig. 1b), hence
indicating that simple contrasts for activation detection may not be sufficient to capture
latent neurobehavioural processes underlying tasks with multiple cognitive processes.
A novel orthogonal decoding approach

Previous attempts have tried to decode the latent neural representation of different
cognitive processing signals using a model-based linear decomposition at the first level
analysis. Briefly, for each individual, each trial (i.e., one of -5.0 $, -0.2 $,0, 0.2 $ or 5.0

$) was assigned with a corresponding index from either the evaluation model [-2, -1, 0,
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1, 2] or the readiness model [2, 1, 0, 1, 2], and then the observed BOLD signals were
regressed against either series of trial-wise indices (convolved with the HRF) in a linear
model to compute the corresponding univariate model contribution (Fig. 1d, also see
Supplementary Methods for details). However, the above approach suffers a significant
drawback: while both evaluation and readiness models are designed to be 'orthogonal'
(i.e., the inner product is null), their actual trial-wise indices used in the actual linear
models can hardly be uncorrelated (Fig. Sla upper). This can be attributed to both a
systematic bias introduced by the process of convolution with HRF and unbalanced
trial numbers that may arise even from a balanced design, e.g. different failing rates
across experimental conditions. Using a real data simulation with two independent
latent signals (see Methods for details), we demonstrated that the univariate estimates
of signal strength could seriously deviate from the simulated value due to the signal
admixture (Fig. S1a lower) and decoded signals are inevitably correlated (7mean = 0.12,
Fig. 1f, also see Supplementary Results for more details). Therefore, the decoding
approach based on time series data generally failed to acquire orthogonal signal
decompositions (referred to as 'non-orthogonal' in the rest of the manuscript), and hence
no meaningful inference for the independence of underlying latent processes could be
made.

Here, we introduced a novel approach, the orthogonal-Decoding of multi-
Cognitive Processes (DeCoP), that not only can provide a model-based unbiased
orthogonal decomposition at the condition level, but also enables a statistical evaluation
of whether the decomposed signals are indeed independent (also see Methods for
details). The central idea to note is that there are five experimental conditions in the
MID task that can evoke condition-specific neuronal responses, thus allowing four
underlying orthogonal contrasts (or patterns of responses) over the five conditions plus
a constant term. Crucially, these orthogonal contrasts should have a clear interpretation,
by design, in terms of latent neurobehavioural processes. Specifically, in the second-
level analyses of BOLD signals, two readily plausible orthogonal contrasts (i.e., their
covariance equals 0) are evaluation (i.e., [-2, -1, 0, 1, 2]) and readiness (i.e., [2, 1, 0, 1,

2]) that respectively reflected putative hypothetical processes of value and salience
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information across five task conditions. In addition to the two primary contrasts above,
their complementary orthogonal contrasts (i.e., the N-shape model: [-1, 2, 0, -2, 1] and
the W-shape model: [1, -2, 2, -2, 1]) are also available and can explain information not
accounted for by the hypothetical contrasts for evaluation and readiness. With the above
orthogonal settings, we were thus able to retrieve the orthogonally decomposed signal
components of underlying latent processes and assess their respective representations
over the entire brain (Fig. 1¢). Notably, DeCoP allows us to make meaningful inference
regarding the independence of underlying latent processes, i.e., uncorrelation is
equivalent to independence in our settings (real data simulation |[rmean| < 0.01, Fig. 1f,
also see Supplementary Methods and Results for the detailed proof).
Decomposed neural representations with DeCoP

In our initial report of the results, we will focus on the evaluation and readiness
components. Notably, the vimPFC (Brodmann area [BA] 10-11; Peak MNI: [-9, 49, -9],
Cluster: 615 voxels, prwe-corr = 1.87E-08) and ventral striatum (VS, Peak MNI: [-7, 25,
-3], Cluster: 634 voxels, prwg-cor = 1.36E-08) were the most prominent regions
identified in the evaluation model (Fig. 2a upper left & 2b), thus being highly sensitive
for tracking the entire dimension from punishment to reward. These areas coincide with
the terminal regions of the dopamine neuron projections from the ventral tegmental area
(VTA), i.e. the meso-corticolimbic dopamine system [21-23]. For the readiness model,
however, the signals were more widely dispersed across cortical and subcortical areas,
including motor-somatosensory, salience and attention networks, and regions such as
the dorsal striatum (DS, Peak MNI: [8, 10, 4], Cluster: 1688 voxels, prwg-corr = 1.75E-
14) and thalamus (THA, Peak MNI: [13, -6, 16], Cluster: 2267 voxels, prwg-corr = 1.11E-
16) (Fig. 2a upper right & 2b), consistent with their engagement in processing both
reward and punishment [24].
Neural circuits for decomposed signals

We then investigated whether the neural representations of evaluation and
readiness signals were underpinned by different neural circuits, in particular those
modulated putatively by the midbrain dopaminergic projections originating from either

the substantia nigra pars compacta (SNc) or the VTA, which plays a central role in
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reward prediction and approach [21, 22]. We found regions of the evaluation model
with higher functional connectivity (FC) to VTA than to SNc¢ (paired t-test: t1s3 = 14.84,
Cohen's d = 1.10, p < 10E-32), and regions of the readiness model with higher FC to
the SNc than to the VTA (paired t-test: tis3 = 3.63, Cohen's d = 0.27, p = 0.0004, Fig.
3a) based on 7T high-resolution resting-state fMRI data from the Human Connectome
Project (HCP) [25]. Further, we extracted the -maps of the difference between the seed-
based FC from VTA and SNc (i.e., 'VTA > SNc¢') (Fig. 3b), which exhibited high
similarities, although in opposite directions, with the ~-maps of both evaluation (r =
0.22, padj < 10E-20) and readiness (r = -0.12, paaj < 10E-12, Fig. 3¢) models. Thus, the
separate VTA and SNc dopamine projections could be the putative source of evaluation
and readiness signals, respectively.
Decomposed processes affect distinct cognition components

We further implemented a weighted voxel co-activation network analysis
(WVCNA, see Supplementary Methods for details) to capture the most informative
brain-wide signal clusters [26] and identified 55 and 194 clusters for the evaluation and
readiness processes, respectively (Fig. S2 & Table S2-3). Using the canonical
correlation analysis (CCA, see Supplementary Methods for details), we then found
significant associations between variations in the decomposed neural signal and distinct
cognitive components across eight reward-processing-related behaviours for both
evaluation and readiness (evaluation: adjusted n? (adj-#°) = 0.033, pperm = 0.0241;
readiness: adj-n° = 0.113, pperm = 0.0001, Table S4). For the evaluation process, higher
behavioral inhibition and crystallized intelligence were mainly associated with reduced
sensitivity in the bilateral inferior temporo-occipital junction, middle cingulate cortex,
nucleus accumbens (NAcc) and left dorsal anterior cingulate cortex (dACC), and
hyperactivity of these regions may lead to internalizing disorders (such as anxiety and
depression) (presented by the first component, Fig. 4a upper & Table S5). Further,
higher activations in the vmPFC and subgenual ACC (sgACC) were also associated
with fun-seeking and externalizing problems (such as rule-breaking and aggressive
behavior) (presented by the second component, Fig. 4a lower & Table S5). The

readiness process seemingly involved two competing processes regulating the
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adaptation of external stimulus and incentive salience. Specifically, the first cognition
component may represent the ability of positive reinforcement learning and flexibility
of adaptation, given the positive loadings of reward responsiveness and fluid
intelligence as well as the negative loading of internalizing scores, which were mainly
negatively associated with dACC, rostral ACC (rACC), right thalamus, putamen, insula
and inferior/middle frontal cortex (IFC/MFC) (Fig. 4b upper & Table S6). Nevertheless,
the dACC and right insula, commonly considered the critical regions of the salience
network, were also activated by incentive motivation (i.e., higher reward
responsiveness and drive in the third component, Fig. 4b lower & Table S6).
Differentiated activations between the left and right sensorimotor area combined with
positive activations of right [IFC/MFC and insula may contribute to the action control,
hence leading the persistent pursuit of desired goals [27](presented by the second
component, Fig. 4b middle & Table S6).

Independence of evaluation and readiness

We further demonstrated that the above spatially overlapping cognitive processes
modulated by distinct neural pathways were indeed functionally independent, which
could be directly inferred from uncorrelated signal components at the co-activated
regions (see Supplementary Methods for the detailed proof). Based on our simulation
results, if and only if the compound signals were indeed a combination of independent
signals, and the correct orthogonal contrasts were applied, the decomposed signals
could be uncorrelated (|rmean|] < 0.001, the 'Independent’ model). Otherwise, the
decomposed signals were highly correlated and hence inseparable as modulations of
latent signals (the 'One Signal' model: 7mean = 0.54; the 'Push and Pull' model: #mean = -
0.45; Fig. 5a & Table S7).

Using DeCoP we have thus demonstrated that evaluation and readiness are indeed
functionally independent processes at each co-activated voxel across the whole brain
(Fmean = 0.006, 95%Cls = [-0.009, 0.021], proorsirap = 0.4142, where 99.5% voxels with
|r| < 0.1; Fig. 3b), while traditional 'non-orthogonal' decoding would find both
decomposed signals to be significantly correlated (#mean = 0.071, 95%CIs = [0.044 to

0.103], phootstrap < 0.0001; Fig. Sb). We also observed brain-wide low inter-correlations
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between evaluation and readiness clusters (7mean = 0.01, range = -0.08~0.11, prootstrap =
0.8379; Fig. 3¢), in contrast to the very high intra-correlations within each of evaluation
and readiness clusters (#mean = 0.345, poorsrap = 0.0042, Fig. 5c), hence further
supporting their neural functional independence. Therefore, the observed unbalanced
sensitivity towards reward and punishment in brain regions such as VS and vmPFC
(Fig. 1b) could be parsed into two spatially overlapped though functionally independent
balanced signal components.

Fewer false inferences using DeCoP

With simulated phenotypes (Fig. 5d, also see Methods for details), we first
demonstrated that univariate 'mon-orthogonal' decoding could lead to a seriously
inflated false positive rate because the thus decomposed signals are a mixture of
underlying latent components (Fig. 5d Left). An intuitive correction for this signal
admixture was to mutually control for the other non-orthogonally decoded component.
However, while this mutually control approach could largely alleviate the inflated false
positive (Fig. 5d Left), it also significantly reduced the statistical power (Fig. 5d Right),
again because of the signal admixture. In contrast, DeCoP could provide uniformly
better performance with a properly controlled false positive rate and greater statistical
power across all simulation settings (Fig. 5d).

In the real data, the mean reaction time of the MID task could be found in
association with both evaluation and readiness processing with either DeCoP or non-
orthogonal decoding after mutually controlling for both processes (Fig. 5e & Fig. S3).
However, DeCoP demonstrated significantly increased statistical power, i.e. exhibited
more explained variance than 'non-orthogonal' decoding at both the network level (>
45% additionally explained variance exceeding the significant threshold at 0.05, pperm<
0.01; Fig. 5e Left & Fig. 3) and the ROI level (for instance, the NAcc could only be
identified with DeCoP with twice the variance explained; Steiger's test Z = 2.11, pone-
miled = 0.02; Fig. 5e Right & Fig. S3). Hence, the functional independence advocated by
our novel approach of DeCoP is essential for revealing independent neurobehavioral
processes.

Complementary components using DeCoP
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Additionally, we found that the signals attributed to evaluation and N-shape
models (dependent signals: 7mean = -0.093, proosrrap < 0.0001) together described the
sensitivity of evaluation from punishment to reward. Further, signals of evaluation and
N-shape models were independent (evaluation vs W-shape: rmean = -0.008, ppootstrap =
0.3358; N-shape vs readiness: 7mean = -0.001, proorsrap = 0.8432) of those attributed to
the readiness and W-shape models (dependent signals: #mean = -0.159, prootstrap < 0.0001),
which together described the differentiated engagement of readiness from the neutral
condition to reward/punishment conditions (Fig. 6a). Hence, the complementary N-
shape and W-shape models account for the deviation from the latent evaluation and
readiness signals of the proposed evaluation and readiness models respectively (Fig.
4b). The N-shape model was only observed with significant signals in the primary
visual cortex (BA 17; Peak MNI: [4, -81, 1], t1,927 = 7.65, Cohen's d = 0.17, Cluster:
233 voxels, prwe-corr = 2.91E-05, Fig. 2a lower left & 2b). For the W-shape model, the
most prominent regions were bilateral anterior insula (aINS, BA 38, Peak MNI: [49, 25,
91, t1,927 = 14.83, Cohen's d = 0.34; Cluster: 1177 voxels, prwg-cor = 4.41E-05) and
anterior cingulate cortex (ACC, BA 32, Peak MNI: [7, 49, 22], t1,927=11.51, Cohen's d
= 0.26; Cluster: 881 voxels, prwe-corr = 2.87E-10, Fig. 2a lower right & 2b). We further
demonstrated that the signal strength of the additional complementary orthogonal
contrasts could provide a useful measurement of the distance between the latent
independent signals and the proposed models (see Supplementary Methods for details).
Converging evidence indicated that most brain regions distinguish reward from
punishment signals with their relative rank, hence processing highly abstract
information only (Fig. 5c-d & Table S8). However, the bilateral aINS and dorsal ACC
were most likely tracking the parametric nature of the experimental design (i.e., [-5, -

0.2, 0, 0.2, 5]; Fig. S4; also see Supplementary Results for more details).

Discussion
In the present study, we introduced a novel orthogonal decomposition approach
DeCoP that demonstrated superior performance superior to the traditional 'non-

orthogonal' method in terms of both lower false inference and greater robustness for
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unbalanced study designs. Further, using DeCoP, we successfully disentangled two
functionally independent processes (i.e., evaluation and readiness) from a complex
neurobehavioral signal compound during motivational processing (i.e.,
reward/punishment anticipation during the monetary incentive delay task).

Our findings provide insight into the common ambiguous observations in fMRI
tasks that involve multiple interferential latent behavioral or cognitive processes. For
example, vimPFC, as a key node in the neural circuitry underlying reward processing
and value-based decision making [28-30], was paradoxically 'inactive' during the large-
win vs neutral contrast. This unexpected 'inactivation' could now be understood as a
product of a trade-off between two independent processes: activation by reward stimuli
(i.e., of the evaluation process) and deactivation as part of the default mode network
(i.e., of the readiness process). Similarly, the unbalanced sensitivity toward reward and
punishment in the ventral striatum could also be explained as a combination of two
balanced independent processes for evaluation and readiness. Furthermore, our findings
also demonstrated that the independence of evaluation and readiness processing in the
brain putatively is modulated by differential neural circuits targeting VTA and SNc,
respectively. This finding provides novel evidence that reward processing is linked to
the midbrain dopaminergic system and that evaluation and readiness processes involve
distinct underlying neural mechanisms [7, 23, 31].

Further, our novel approach also enables direct statistical inference concerning the
functional independence among decomposed latent neurobehavioral processes based
on predefined orthogonal latent contrasts. This demonstration may have revolutionary
implications for analyzing experimental designs of theoretical neurobehavioral models.
While existing research frameworks attempted to identify spatially separated brain
regions that activate specifically under a particular neurobehavioral model [5, 18], such
a 'specific' activation is highly subjective to the selected threshold for significance and
hence may not be truly 'specific'. More problematically, even if the activation is indeed
specific to a particular model and null in the other, their underlying signals might still
be related. For instance, while the N-shape model was barely activated brain-wide, it

nevertheless showed strong negative correlations with the evaluation model in voxels
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that were 'specifically’ activated for the evaluation models. Hence, both signals were
not independent of each other. Therefore, the statistical framework provided by DeCoP
is vital for any meaningful inference for the independence of decomposed signals.
Moreover, such a statistical framework enables a computational decomposition for any
potentially independent cognitive processes, so long as the experimental design allows
a meaningful orthogonal decomposition (i.e. based on the theoretical neurobehavioral
models). We therefore expect this new approach to promote new study designs for
cognitive processes that were previously theoretically distinct but almost inseparable
with common experimental designs.

Finally, DeCoP could comprehensively describe any possible outcomes across all
experimental conditions. Complementary to the proposed theoretical neurobehavioral
models (for instance the evaluation and the readiness), the other orthogonal components
from the same orthogonal basis could also provide valuable information. For instance,
in the present study, the complementary orthogonal components, the N-shape and W-
shape models, were highly correlated with the evaluation and readiness components,
respectively. Therefore, both complementary models modified the response to small
monetary stimuli of the corresponding primary models during reward/punishment
anticipation. It turns out that while the dACC encoded the exact monetary magnitude
of the experimental design in both evaluation and readiness models, most other regions
encode only highly abstracted information. These results were consistent with the role
of dACC in updating and maintaining subjective value information [32, 33]. Besides
dACC, the bilateral insula also favours the exact monetary magnitude scale for the
readiness-related signals. However, an unexpected increase in the neutral condition was
observed for bilateral insula, rendering the best model in fitness as the W-shape model,
instead of the V-shape readiness model. In fact, the W-shape activation was also
observed in several previous studies on reward-related decision making [3, 17], though
without further discussion. The insula was seemingly involved in two competing
processes in regulating incentive salience and the adaptation of external stimulus [34-
36], in that higher engagement of dorsal insula could lead to more incentive motivation,

but the hyperactive ventral insula was associated with the status of anxiety and
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maladaptive performance. This observation may help to understand the W-shape
activation of aINS as a combination of two competing processes (for instance, positive
and negative V-shape activations). Hence, DeCoP could further strengthen our
understanding of latent neurobehavioral processes through additionally retrieving
complementary components.
Conclusions

In summary, we have developed and evaluated a universally applicable, novel
signal decomposition strategy, 'DeCoP', to dissociate behavioral processes that
confound the observation of functional neuroimaging signals. This new approach
demonstrated superior performance superior to the traditional "non-orthogonal' method
in terms of both fewer false inference and higher robustness. Through DeCoP, we
demonstrated the independence of evaluation and readiness processing in the brain,
putatively modulated differentially by neural circuits targeting VTA and SNc; we also
demonstrated that most brain regions, including the ventral striatum, encode signals
based on abstract information instead of the observed exact monetary magnitude scale,
except for the salience network, i.e., pgACC/dACC and aINS. Most importantly, we
demonstrated that DeCoP could help to resolve common paradoxical observations in
fMRI tasks which involve complex latent behavioral or cognitive processes, for
example, the unexpectedly 'inactive’ vmPFC in the contrast of large reward vs no
reward. We expect that DeCoP could be usefully applied to many other comparably
ambiguous datasets and also improve experimental designs for complex cognitive
processing.
Materials and methods
Participants

The dataset used for this study was selected (see Supplementary Methods for
details)  from  Annual  Curated Data  Release  2.01  (https://data-

archive.nimh.nih.gov/abcd/) of the Adolescent Brain Cognitive Development (ABCD)

cohort, which recruited 11,875 children between 9—11 years of age from 21 sites across
the United States [20]. The study conforms to each site's Institutional Review Board's

rules and procedures, and all participants provide informed consent (parents) or
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informed assent (children). More details of the subjects and the data collection are

provided at the ABCD website (https://abcdstudy.org/scientists/protocols/).

Orthogonally Decoding multi-Cognitive Processes (DeCoP)

Here, we propose a novel approach to decompose each participant's brain

activations at varied conditions (denoted as y ) with a set of orthogonal basis
X= (Xi ,...X.) , where 'orthogonal' means that any pairwise covariances of vectors all
equal zero, i.e., COV(X;,X;) = E(X,X;)—E(%)E(X;) =0. In this way, the regression

coefficients P=(f,...4) (i.e., the strength of signals) estimated from a multiple

linear model with all vectors were the same as those estimated univariately (of simple
linear models), i.e., T(B|Y,X.B)=T(B|Y,%), where T(-) stands for the best

linear unbiased estimator. With the above orthogonal settings, the estimated signal
strength does not depend on the rest coexisting latent processes and hence is free from
signal admixtures. We also proposed that the above individual-level orthogonal
decomposition eliminates spurious correlations of signal components (i.e., f)
introduced by related contrasts (i.e., x; are correlated), thus allowing us to make
meaningful inferences regarding signal independence at the group-level (also see

Supplementary Methods).

The simulation with the real data

We first assumed that the neural response (i.e., the simulated BOLD signal) was
indeed a combination of the above two independent signals of evaluation and readiness.
Then we generated the simulated BOLD signals with the combinations of the real

model-modulated series from 1000 participants randomly sampled from all or part of

SampleS, i-e-, Y :ﬁlxevaluation +ﬁ2Xreadiness+N0ise ’ where X and X

evaluation readiness
represented the evaluation and readiness model-modulated signals, respectively,
B, =0,~N(0,1) and Noise was the white noise with a variance of 1. Next, we

decomposed the simulated signals by the univariate decoding approach (non-

orthogonal decoding) and DeCoP and then estimated the differences between the
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decomposed signals and ground truth. Similarly, we could also generate the simulations
under different task designs by randomly selecting the task trials. Each simulation was
repeated 1000 times.

We further investigated whether this kind of orthogonal decoding could improve
the statistical power of the associations for function-specific phenotypes. We extracted
each individual’s brain activation of both evaluation and readiness models decoded by
different approaches in NAcc (which responded to both processes simultaneously). For
the null hypothesis, we assumed that the simulated phenotype was only associated with
evaluation signals. For the alternative hypothesis, we assumed that the simulated
phenotype was associated with both evaluation and readiness signals. Then we
computed the correlations between the simulated phenotypes and the decoded readiness
signals with or without the regression of the corresponding evaluation signals. For each

simulation, we simulated with 1000 independent individuals for 1000 times.
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Supplementary data

Supplementary materials consist of a text with Supplementary Methods and
Supplementary Results, Supplementary Figures 1-6 and Suppelementary Tables 1-8.
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Fig. 1. The experimental design and decoding approaches. a. Procedure of the monetary incentive
delay (MID) task. b. Activation detection with setting simple contrasts of task conditions. ¢. The task
performances (including reaction time and accuracy) among the participants. d. An illustration of
univariate decoding at first-level. e. An illustration of our novel approach, orthogonal-Decoding of multi-
Cognitive Processes (DeCoP). f. The simulation results of decomposed signals with univariate decoding

and DeCoP. Also, see Methods for details of the simulation.
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Fig. 2. Neural representations of the orthogonal decomposition. a. Brain-wide T-maps of decomposed

signals for orthogonal contrasts. b. Decomposed signals in highlighted brain regions. Brain-wide
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Fig. 3. The decomposed evaluation and readiness processing targets VTA and SNc neural circuits,
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and readiness regions identified in Fig. 2. Right: Paired t-tests between FCs to VTA and SNc¢ from
evaluation and readiness. b. The brain-wide patterns of seed-based FC from regions of interest (ROIs).
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based FCs patterns from VTA and SNc. ¢. Brain-wide pattern similarities between the strength of
decomposition signals (left: evaluation; right: readiness) and the differences of seed-based FCs from

VTA and SNc.
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Fig. 4. Impacts of evaluation and readiness processing on cognitive function. The canonical
correlation analysis (CCA) was implemented to further segregate signal components that demonstrated
differential associations with distinct cognition components (a. for evaluation processing and b. for
readiness processing). The loadings of behaviors are shown in the left of the subgraphs. The loadings of
brain activations were represented by the correlations with the cognition components. Only the

significant regions were reported in the subgraphs. Also see Table S4-6.
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Fig. 5. Valid infernece for functional independence and higher statistical power provided by DeCoP.
a. Correlations between decomposed signals based on different simulation models. Also see Table S7. b.
The distributions of the correlations between the decomposed signals at each voxel. ¢. The correlation
matrix of signals from the evaluation and readiness clusters identified by WVCNA. d. With simulated
phenotypes, DeCoP provided less false positive rate and higher statistical power. e. In the real task,
DeCoP also provided more variance explained at both the network level and the ROI level (Left NAcc

as an instance). Also see Fig. S3.
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Fig. 6. The modulation effects of the additional complementary orthogonal contrasts and the

optimal models for latent neurobehavioral signals. a. The distributions of pair-wise correlations

between signals of orthogonal contrasts at each voxel. Mean correlations deviated from 0 would indicate

a pair of related signals. b. An illustration of how related signals could describe the evaluation-related

and readiness-related processing. ¢. The bimodal distribution of voxels favoring the exact-scale or

relative-scale settings in evaluation and readiness processing. The typical regions favoring the exact-

scale setting were illustrated in the corresponding lower subplots. d. The favored neural representations

(i.e. relative-scale vs exact-scale) demonstrated better predictions for task performance. *significant at

level 0.05, ** significant at level 0.01.
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