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Abstract: 

How to retrieve latent neurobehavioral processes from complex neurobiological 

signals is an important yet unresolved challenge. Here, we develop a novel approach, 

orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent 

neurobehavioral processing and show that its performance is superior to traditional non-

orthogonal decoding in terms of both false inference and robustness. Processing value 

and salience information are two fundamental but mutually confounded pathways of 

reward reinforcement essential for decision making. During reward/punishment 

anticipation, we applied DeCoP to decode brain-wide responses into spatially 

overlapping, yet functionally independent, evaluation and readiness processes, which 

are modulated differentially by meso-limbic vs nigro-striatal dopamine systems. Using 

DeCoP, we further demonstrated that most brain regions only encoded abstract 

information but not the exact input, except for dACC and insula. Furthermore, our novel 

analytical principle could be applied generally to decode multiple latent 

neurobehavioral processes and thus advance both the design and hypothesis testing for 

cognitive tasks. 

Keywords: reward/punishment anticipation, orthogonal decoding, task fMRI, 

evaluation, salience 
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Introduction 

The brain frequently engages parallel processing involving different latent 

behavioral processes mediated by functionally distinct, though spatially overlapping, 

neural networks [1]. Previously, human functional neuroimaging studies have had 

difficulty in unravelling these processes from basal compound physiological signals [2-

4], which has made it difficult to build process-specific and mechanistic models of the 

brain [5].  

Reward/punishment processing is perhaps the most adaptive function of the 

behavioral control system, optimizing outcomes through both positive and negative 

reinforcement [6]. Recent overarching frameworks propose two different cognitive 

processes engaged in parallel during reward or punishment behavior, namely evaluation 

(i.e., scaling signal values from reward to punishment) and response readiness 

(subsuming arousal and attentional salience, contributing to response preparatory 

processes) [6, 7]. The evaluation process is essential for guiding upcoming action 

selections based on their value, for which the brain has evolved dedicated 

regions/circuits [8-13]. Complementary to evaluation, both reward and punishment, as 

highly salient events, attract greater attention than neutral stimuli, also engaging greater 

levels of motor preparation and emotional arousal [14-16], hence contributing to 

response readiness. Therefore, evaluation and readiness signals are inevitably 

confounded with each other during reward/punishment processing. Unfortunately, 

decomposing this compound signal, for example in human fMRI studies, has proven 

challenging because these two components cannot be identified by using only reward 

(or only punishment) stimuli in many experimental paradigms. Previous attempts have 

been made to overcome this problem by decoding evaluation and readiness signals 

using the trial-level or first-level data and identifying their corresponding spatially 

dissociated brain regions [2, 3, 17]. However, these approaches have failed to 

disentangle signals in brain regions known to encode both evaluation and readiness 

signals, for example, in the striatum and the ventromedial prefrontal cortex (vmPFC) 

[7, 16, 18]. Further, the existing studies have not provided convincing evidence to 

clarify the assumption of functional independence of the evaluation and readiness 
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processes. 

To resolve this complex theoretical issue, we developed a novel analytical 

approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP). Through this 

innovative approach, for the first time, we have achieved a brain-wide voxel-wise 

orthogonal decomposition of process-specific neural representations of complex 

neurobehavioral processes. We further demonstrated that our approach not only 

provided a valid theoretical statistical inference for the functional independence 

between the spatially overlapping signals but had wide application for decoding the 

latent neurobehavioral processes from compound neuroimaging signals, hence further 

advancing our understanding of the neural basis involved in cognitive processing. 

Results 

Participants and experiment designs 

 A modified version of the monetary incentive delay (MID) task [19], one of the 

classical and widely used fMRI paradigms for reward processing, was conducted in 

1939 children aged 9-11 from the Adolescent Brain Cognitive Development (ABCD) 

cohort [20] (Table S1). The MID task consists of five levels of incentive: large loss, 

small loss, neutral, small win and large win (i.e., -5.0, -0.2, 0, 0.2 and 5.0 $ respectively, 

Fig. 1a; also see Supplementary Methods for details). There was a discrepancy between 

the undifferentiated behavioural performance in the contrast of reward vs punishment 

(Reaction Time: t1,927 = -1.65, Cohen's d = -0.04, p = 0.10; Accuracy: t1,927 = 0.71, 

Cohen's d = 0.02, p = 0.48; Fig. 1c) and the unbalanced corresponding activation in two 

of the most critical brain regions (i.e., the vmPFC: t1,927 = 9.83, Cohen's d = 0.22, p 

<1E-21 and the striatum: t1,927 = 10.77, Cohen's d = 0.25, p <1E-25; Fig. 1b), hence 

indicating that simple contrasts for activation detection may not be sufficient to capture 

latent neurobehavioural processes underlying tasks with multiple cognitive processes. 

A novel orthogonal decoding approach 

Previous attempts have tried to decode the latent neural representation of different 

cognitive processing signals using a model-based linear decomposition at the first level 

analysis. Briefly, for each individual, each trial (i.e., one of -5.0 $, -0.2 $, 0, 0.2 $ or 5.0 

$) was assigned with a corresponding index from either the evaluation model [-2, -1, 0, 
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1, 2] or the readiness model [2, 1, 0, 1, 2], and then the observed BOLD signals were 

regressed against either series of trial-wise indices (convolved with the HRF) in a linear 

model to compute the corresponding univariate model contribution (Fig. 1d, also see 

Supplementary Methods for details). However, the above approach suffers a significant 

drawback: while both evaluation and readiness models are designed to be 'orthogonal' 

(i.e., the inner product is null), their actual trial-wise indices used in the actual linear 

models can hardly be uncorrelated (Fig. S1a upper). This can be attributed to both a 

systematic bias introduced by the process of convolution with HRF and unbalanced 

trial numbers that may arise even from a balanced design, e.g. different failing rates 

across experimental conditions. Using a real data simulation with two independent 

latent signals (see Methods for details), we demonstrated that the univariate estimates 

of signal strength could seriously deviate from the simulated value due to the signal 

admixture (Fig. S1a lower) and decoded signals are inevitably correlated (rmean = 0.12, 

Fig. 1f, also see Supplementary Results for more details). Therefore, the decoding 

approach based on time series data generally failed to acquire orthogonal signal 

decompositions (referred to as 'non-orthogonal' in the rest of the manuscript), and hence 

no meaningful inference for the independence of underlying latent processes could be 

made.  

Here, we introduced a novel approach, the orthogonal-Decoding of multi-

Cognitive Processes (DeCoP), that not only can provide a model-based unbiased 

orthogonal decomposition at the condition level, but also enables a statistical evaluation 

of whether the decomposed signals are indeed independent (also see Methods for 

details). The central idea to note is that there are five experimental conditions in the 

MID task that can evoke condition-specific neuronal responses, thus allowing four 

underlying orthogonal contrasts (or patterns of responses) over the five conditions plus 

a constant term. Crucially, these orthogonal contrasts should have a clear interpretation, 

by design, in terms of latent neurobehavioural processes. Specifically, in the second-

level analyses of BOLD signals, two readily plausible orthogonal contrasts (i.e., their 

covariance equals 0) are evaluation (i.e., [-2, -1, 0, 1, 2]) and readiness (i.e., [2, 1, 0, 1, 

2]) that respectively reflected putative hypothetical processes of value and salience 
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information across five task conditions. In addition to the two primary contrasts above, 

their complementary orthogonal contrasts (i.e., the N-shape model: [-1, 2, 0, -2, 1] and 

the W-shape model: [1, -2, 2, -2, 1]) are also available and can explain information not 

accounted for by the hypothetical contrasts for evaluation and readiness. With the above 

orthogonal settings, we were thus able to retrieve the orthogonally decomposed signal 

components of underlying latent processes and assess their respective representations 

over the entire brain (Fig. 1e). Notably, DeCoP allows us to make meaningful inference 

regarding the independence of underlying latent processes, i.e., uncorrelation is 

equivalent to independence in our settings (real data simulation |rmean| < 0.01, Fig. 1f, 

also see Supplementary Methods and Results for the detailed proof). 

Decomposed neural representations with DeCoP 

In our initial report of the results, we will focus on the evaluation and readiness 

components. Notably, the vmPFC (Brodmann area [BA] 10-11; Peak MNI: [-9, 49, -9], 

Cluster: 615 voxels, pFWE-corr = 1.87E-08) and ventral striatum (VS, Peak MNI: [-7, 25, 

-3], Cluster: 634 voxels, pFWE-corr = 1.36E-08) were the most prominent regions 

identified in the evaluation model (Fig. 2a upper left & 2b), thus being highly sensitive 

for tracking the entire dimension from punishment to reward. These areas coincide with 

the terminal regions of the dopamine neuron projections from the ventral tegmental area 

(VTA), i.e. the meso-corticolimbic dopamine system [21-23]. For the readiness model, 

however, the signals were more widely dispersed across cortical and subcortical areas, 

including motor-somatosensory, salience and attention networks, and regions such as 

the dorsal striatum (DS, Peak MNI: [8, 10, 4], Cluster: 1688 voxels, pFWE-corr = 1.75E-

14) and thalamus (THA, Peak MNI: [13, -6, 16], Cluster: 2267 voxels, pFWE-corr = 1.11E-

16) (Fig. 2a upper right & 2b), consistent with their engagement in processing both 

reward and punishment [24].  

Neural circuits for decomposed signals 

We then investigated whether the neural representations of evaluation and 

readiness signals were underpinned by different neural circuits, in particular those 

modulated putatively by the midbrain dopaminergic projections originating from either 

the substantia nigra pars compacta (SNc) or the VTA, which plays a central role in 
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reward prediction and approach [21, 22]. We found regions of the evaluation model 

with higher functional connectivity (FC) to VTA than to SNc (paired t-test: t183 = 14.84, 

Cohen's d = 1.10, p < 10E-32), and regions of the readiness model with higher FC to 

the SNc than to the VTA (paired t-test: t183 = 3.63, Cohen's d = 0.27, p = 0.0004, Fig. 

3a) based on 7T high-resolution resting-state fMRI data from the Human Connectome 

Project (HCP) [25]. Further, we extracted the t-maps of the difference between the seed-

based FC from VTA and SNc (i.e., 'VTA > SNc') (Fig. 3b), which exhibited high 

similarities, although in opposite directions, with the t-maps of both evaluation (r = 

0.22, padj < 10E-20) and readiness (r = -0.12, padj < 10E-12, Fig. 3c) models. Thus, the 

separate VTA and SNc dopamine projections could be the putative source of evaluation 

and readiness signals, respectively. 

Decomposed processes affect distinct cognition components 

We further implemented a weighted voxel co-activation network analysis 

(WVCNA, see Supplementary Methods for details) to capture the most informative 

brain-wide signal clusters [26] and identified 55 and 194 clusters for the evaluation and 

readiness processes, respectively (Fig. S2 & Table S2-3). Using the canonical 

correlation analysis (CCA, see Supplementary Methods for details), we then found 

significant associations between variations in the decomposed neural signal and distinct 

cognitive components across eight reward-processing-related behaviours for both 

evaluation and readiness (evaluation: adjusted η2 (adj-η2) = 0.033, pperm = 0.0241; 

readiness: adj-η2 = 0.113, pperm = 0.0001, Table S4). For the evaluation process, higher 

behavioral inhibition and crystallized intelligence were mainly associated with reduced 

sensitivity in the bilateral inferior temporo-occipital junction, middle cingulate cortex, 

nucleus accumbens (NAcc) and left dorsal anterior cingulate cortex (dACC), and 

hyperactivity of these regions may lead to internalizing disorders (such as anxiety and 

depression) (presented by the first component, Fig. 4a upper & Table S5). Further, 

higher activations in the vmPFC and subgenual ACC (sgACC) were also associated 

with fun-seeking and externalizing problems (such as rule-breaking and aggressive 

behavior) (presented by the second component, Fig. 4a lower & Table S5). The 

readiness process seemingly involved two competing processes regulating the 
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adaptation of external stimulus and incentive salience. Specifically, the first cognition 

component may represent the ability of positive reinforcement learning and flexibility 

of adaptation, given the positive loadings of reward responsiveness and fluid 

intelligence as well as the negative loading of internalizing scores, which were mainly 

negatively associated with dACC, rostral ACC (rACC), right thalamus, putamen, insula 

and inferior/middle frontal cortex (IFC/MFC) (Fig. 4b upper & Table S6). Nevertheless, 

the dACC and right insula, commonly considered the critical regions of the salience 

network, were also activated by incentive motivation (i.e., higher reward 

responsiveness and drive in the third component, Fig. 4b lower & Table S6). 

Differentiated activations between the left and right sensorimotor area combined with 

positive activations of right IFC/MFC and insula may contribute to the action control, 

hence leading the persistent pursuit of desired goals [27](presented by the second 

component, Fig. 4b middle & Table S6). 

Independence of evaluation and readiness 

We further demonstrated that the above spatially overlapping cognitive processes 

modulated by distinct neural pathways were indeed functionally independent, which 

could be directly inferred from uncorrelated signal components at the co-activated 

regions (see Supplementary Methods for the detailed proof). Based on our simulation 

results, if and only if the compound signals were indeed a combination of independent 

signals, and the correct orthogonal contrasts were applied, the decomposed signals 

could be uncorrelated (|rmean| < 0.001, the 'Independent' model). Otherwise, the 

decomposed signals were highly correlated and hence inseparable as modulations of 

latent signals (the 'One Signal' model: rmean = 0.54; the 'Push and Pull' model: rmean = -

0.45; Fig. 5a & Table S7).  

Using DeCoP we have thus demonstrated that evaluation and readiness are indeed 

functionally independent processes at each co-activated voxel across the whole brain 

(rmean = 0.006, 95%CIs = [-0.009, 0.021], pbootstrap = 0.4142, where 99.5% voxels with 

|r| < 0.1; Fig. 3b), while traditional 'non-orthogonal' decoding would find both 

decomposed signals to be significantly correlated (rmean = 0.071, 95%CIs = [0.044 to 

0.103], pbootstrap < 0.0001; Fig. 5b). We also observed brain-wide low inter-correlations 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2021.08.25.457728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457728
http://creativecommons.org/licenses/by-nc-nd/4.0/


between evaluation and readiness clusters (rmean = 0.01, range = -0.08~0.11, pbootstrap = 

0.8379; Fig. 3c), in contrast to the very high intra-correlations within each of evaluation 

and readiness clusters (rmean = 0.345, pbootstrap = 0.0042, Fig. 5c), hence further 

supporting their neural functional independence. Therefore, the observed unbalanced 

sensitivity towards reward and punishment in brain regions such as VS and vmPFC 

(Fig. 1b) could be parsed into two spatially overlapped though functionally independent 

balanced signal components. 

Fewer false inferences using DeCoP 

With simulated phenotypes (Fig. 5d, also see Methods for details), we first 

demonstrated that univariate 'non-orthogonal' decoding could lead to a seriously 

inflated false positive rate because the thus decomposed signals are a mixture of 

underlying latent components (Fig. 5d Left). An intuitive correction for this signal 

admixture was to mutually control for the other non-orthogonally decoded component. 

However, while this mutually control approach could largely alleviate the inflated false 

positive (Fig. 5d Left), it also significantly reduced the statistical power (Fig. 5d Right), 

again because of the signal admixture. In contrast, DeCoP could provide uniformly 

better performance with a properly controlled false positive rate and greater statistical 

power across all simulation settings (Fig. 5d). 

In the real data, the mean reaction time of the MID task could be found in 

association with both evaluation and readiness processing with either DeCoP or non-

orthogonal decoding after mutually controlling for both processes (Fig. 5e & Fig. S3). 

However, DeCoP demonstrated significantly increased statistical power, i.e. exhibited 

more explained variance than 'non-orthogonal' decoding at both the network level (> 

45% additionally explained variance exceeding the significant threshold at 0.05, pperm< 

0.01; Fig. 5e Left & Fig. 3) and the ROI level (for instance, the NAcc could only be 

identified with DeCoP with twice the variance explained; Steiger's test Z = 2.11, pone-

tailed = 0.02; Fig. 5e Right & Fig. S3). Hence, the functional independence advocated by 

our novel approach of DeCoP is essential for revealing independent neurobehavioral 

processes. 

Complementary components using DeCoP 
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Additionally, we found that the signals attributed to evaluation and N-shape 

models (dependent signals: rmean = -0.093, pbootstrap < 0.0001) together described the 

sensitivity of evaluation from punishment to reward. Further, signals of evaluation and 

N-shape models were independent (evaluation vs W-shape: rmean = -0.008, pbootstrap = 

0.3358; N-shape vs readiness: rmean = -0.001, pbootstrap = 0.8432) of those attributed to 

the readiness and W-shape models (dependent signals: rmean = -0.159, pbootstrap < 0.0001), 

which together described the differentiated engagement of readiness from the neutral 

condition to reward/punishment conditions (Fig. 6a). Hence, the complementary N-

shape and W-shape models account for the deviation from the latent evaluation and 

readiness signals of the proposed evaluation and readiness models respectively (Fig. 

4b). The N-shape model was only observed with significant signals in the primary 

visual cortex (BA 17; Peak MNI: [4, -81, 1], t1,927 = 7.65, Cohen's d = 0.17, Cluster: 

233 voxels, pFWE-corr = 2.91E-05, Fig. 2a lower left & 2b). For the W-shape model, the 

most prominent regions were bilateral anterior insula (aINS, BA 38, Peak MNI: [49, 25, 

-9], t1,927 = 14.83, Cohen's d = 0.34; Cluster: 1177 voxels, pFWE-corr = 4.41E-05) and 

anterior cingulate cortex (ACC, BA 32, Peak MNI: [7, 49, 22], t1,927 = 11.51, Cohen's d 

= 0.26; Cluster: 881 voxels, pFWE-corr = 2.87E-10, Fig. 2a lower right & 2b). We further 

demonstrated that the signal strength of the additional complementary orthogonal 

contrasts could provide a useful measurement of the distance between the latent 

independent signals and the proposed models (see Supplementary Methods for details). 

Converging evidence indicated that most brain regions distinguish reward from 

punishment signals with their relative rank, hence processing highly abstract 

information only (Fig. 5c-d & Table S8). However, the bilateral aINS and dorsal ACC 

were most likely tracking the parametric nature of the experimental design (i.e., [-5, -

0.2, 0, 0.2, 5]; Fig. S4; also see Supplementary Results for more details).  

Discussion 

In the present study, we introduced a novel orthogonal decomposition approach 

DeCoP that demonstrated superior performance superior to the traditional 'non-

orthogonal' method in terms of both lower false inference and greater robustness for 
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unbalanced study designs. Further, using DeCoP, we successfully disentangled two 

functionally independent processes (i.e., evaluation and readiness) from a complex 

neurobehavioral signal compound during motivational processing (i.e., 

reward/punishment anticipation during the monetary incentive delay task).  

Our findings provide insight into the common ambiguous observations in fMRI 

tasks that involve multiple interferential latent behavioral or cognitive processes. For 

example, vmPFC, as a key node in the neural circuitry underlying reward processing 

and value-based decision making [28-30], was paradoxically 'inactive' during the large-

win vs neutral contrast. This unexpected 'inactivation' could now be understood as a 

product of a trade-off between two independent processes: activation by reward stimuli 

(i.e., of the evaluation process) and deactivation as part of the default mode network 

(i.e., of the readiness process). Similarly, the unbalanced sensitivity toward reward and 

punishment in the ventral striatum could also be explained as a combination of two 

balanced independent processes for evaluation and readiness. Furthermore, our findings 

also demonstrated that the independence of evaluation and readiness processing in the 

brain putatively is modulated by differential neural circuits targeting VTA and SNc, 

respectively. This finding provides novel evidence that reward processing is linked to 

the midbrain dopaminergic system and that evaluation and readiness processes involve 

distinct underlying neural mechanisms [7, 23, 31]. 

Further, our novel approach also enables direct statistical inference concerning the 

functional independence among decomposed latent neurobehavioral processes based 

on predefined orthogonal latent contrasts. This demonstration may have revolutionary 

implications for analyzing experimental designs of theoretical neurobehavioral models. 

While existing research frameworks attempted to identify spatially separated brain 

regions that activate specifically under a particular neurobehavioral model [5, 18], such 

a 'specific' activation is highly subjective to the selected threshold for significance and 

hence may not be truly 'specific'. More problematically, even if the activation is indeed 

specific to a particular model and null in the other, their underlying signals might still 

be related. For instance, while the N-shape model was barely activated brain-wide, it 

nevertheless showed strong negative correlations with the evaluation model in voxels 
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that were 'specifically' activated for the evaluation models. Hence, both signals were 

not independent of each other. Therefore, the statistical framework provided by DeCoP 

is vital for any meaningful inference for the independence of decomposed signals. 

Moreover, such a statistical framework enables a computational decomposition for any 

potentially independent cognitive processes, so long as the experimental design allows 

a meaningful orthogonal decomposition (i.e. based on the theoretical neurobehavioral 

models). We therefore expect this new approach to promote new study designs for 

cognitive processes that were previously theoretically distinct but almost inseparable 

with common experimental designs. 

Finally, DeCoP could comprehensively describe any possible outcomes across all 

experimental conditions. Complementary to the proposed theoretical neurobehavioral 

models (for instance the evaluation and the readiness), the other orthogonal components 

from the same orthogonal basis could also provide valuable information. For instance, 

in the present study, the complementary orthogonal components, the N-shape and W-

shape models, were highly correlated with the evaluation and readiness components, 

respectively. Therefore, both complementary models modified the response to small 

monetary stimuli of the corresponding primary models during reward/punishment 

anticipation. It turns out that while the dACC encoded the exact monetary magnitude 

of the experimental design in both evaluation and readiness models, most other regions 

encode only highly abstracted information. These results were consistent with the role 

of dACC in updating and maintaining subjective value information [32, 33]. Besides 

dACC, the bilateral insula also favours the exact monetary magnitude scale for the 

readiness-related signals. However, an unexpected increase in the neutral condition was 

observed for bilateral insula, rendering the best model in fitness as the W-shape model, 

instead of the V-shape readiness model. In fact, the W-shape activation was also 

observed in several previous studies on reward-related decision making [3, 17], though 

without further discussion. The insula was seemingly involved in two competing 

processes in regulating incentive salience and the adaptation of external stimulus [34-

36], in that higher engagement of dorsal insula could lead to more incentive motivation, 

but the hyperactive ventral insula was associated with the status of anxiety and 
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maladaptive performance. This observation may help to understand the W-shape 

activation of aINS as a combination of two competing processes (for instance, positive 

and negative V-shape activations). Hence, DeCoP could further strengthen our 

understanding of latent neurobehavioral processes through additionally retrieving 

complementary components. 

Conclusions 

In summary, we have developed and evaluated a universally applicable, novel 

signal decomposition strategy, 'DeCoP', to dissociate behavioral processes that 

confound the observation of functional neuroimaging signals. This new approach 

demonstrated superior performance superior to the traditional 'non-orthogonal' method 

in terms of both fewer false inference and higher robustness. Through DeCoP, we 

demonstrated the independence of evaluation and readiness processing in the brain, 

putatively modulated differentially by neural circuits targeting VTA and SNc; we also 

demonstrated that most brain regions, including the ventral striatum, encode signals 

based on abstract information instead of the observed exact monetary magnitude scale, 

except for the salience network, i.e., pgACC/dACC and aINS. Most importantly, we 

demonstrated that DeCoP could help to resolve common paradoxical observations in 

fMRI tasks which involve complex latent behavioral or cognitive processes, for 

example, the unexpectedly 'inactive' vmPFC in the contrast of large reward vs no 

reward. We expect that DeCoP could be usefully applied to many other comparably 

ambiguous datasets and also improve experimental designs for complex cognitive 

processing. 

Materials and methods 

Participants 

The dataset used for this study was selected (see Supplementary Methods for 

details) from Annual Curated Data Release 2.01 (https://data-

archive.nimh.nih.gov/abcd/) of the Adolescent Brain Cognitive Development (ABCD) 

cohort, which recruited 11,875 children between 9–11 years of age from 21 sites across 

the United States [20]. The study conforms to each site's Institutional Review Board's 

rules and procedures, and all participants provide informed consent (parents) or 
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informed assent (children). More details of the subjects and the data collection are 

provided at the ABCD website (https://abcdstudy.org/scientists/protocols/). 

Orthogonally Decoding multi-Cognitive Processes (DeCoP) 

Here, we propose a novel approach to decompose each participant's brain 

activations at varied conditions (denoted as y  ) with a set of orthogonal basis 

, )( i kxxx , where 'orthogonal' means that any pairwise covariances of vectors all 

equal zero, i.e., , ) ( , ) ( ) ( ) 0( i j i j i jx E x x E x E xCov x    . In this way, the regression 

coefficients 1, )( k β   (i.e., the strength of signals) estimated from a multiple 

linear model with all vectors were the same as those estimated univariately (of simple 

linear models), i.e., ( | , , ) ( | , )i i i iT y T y x  x β  , where ( )T    stands for the best 

linear unbiased estimator. With the above orthogonal settings, the estimated signal 

strength does not depend on the rest coexisting latent processes and hence is free from 

signal admixtures. We also proposed that the above individual-level orthogonal 

decomposition eliminates spurious correlations of signal components (i.e., β) 

introduced by related contrasts (i.e., xi are correlated), thus allowing us to make 

meaningful inferences regarding signal independence at the group-level (also see 

Supplementary Methods).  

The simulation with the real data 

We first assumed that the neural response (i.e., the simulated BOLD signal) was 

indeed a combination of the above two independent signals of evaluation and readiness. 

Then we generated the simulated BOLD signals with the combinations of the real 

model-modulated series from 1000 participants randomly sampled from all or part of 

samples, i.e., 1 2evaluation readinessY X X Noise     , where evaluationX  and readinessX

represented the evaluation and readiness model-modulated signals, respectively,

1 2 ~ (0,1)N    and Noise   was the white noise with a variance of 1. Next, we 

decomposed the simulated signals by the univariate decoding approach (non-

orthogonal decoding) and DeCoP and then estimated the differences between the 
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decomposed signals and ground truth. Similarly, we could also generate the simulations 

under different task designs by randomly selecting the task trials. Each simulation was 

repeated 1000 times. 

We further investigated whether this kind of orthogonal decoding could improve 

the statistical power of the associations for function-specific phenotypes. We extracted 

each individual’s brain activation of both evaluation and readiness models decoded by 

different approaches in NAcc (which responded to both processes simultaneously). For 

the null hypothesis, we assumed that the simulated phenotype was only associated with 

evaluation signals. For the alternative hypothesis, we assumed that the simulated 

phenotype was associated with both evaluation and readiness signals. Then we 

computed the correlations between the simulated phenotypes and the decoded readiness 

signals with or without the regression of the corresponding evaluation signals. For each 

simulation, we simulated with 1000 independent individuals for 1000 times. 
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Supplementary data 

 Supplementary materials consist of a text with Supplementary Methods and 

Supplementary Results, Supplementary Figures 1-6 and Suppelementary Tables 1-8. 
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Figures 

Fig. 1. The experimental design and decoding approaches. a. Procedure of the monetary incentive 

delay (MID) task. b. Activation detection with setting simple contrasts of task conditions. c. The task 

performances (including reaction time and accuracy) among the participants. d. An illustration of 

univariate decoding at first-level. e. An illustration of our novel approach, orthogonal-Decoding of multi-

Cognitive Processes (DeCoP). f. The simulation results of decomposed signals with univariate decoding 

and DeCoP. Also, see Methods for details of the simulation. 
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Fig. 2. Neural representations of the orthogonal decomposition. a. Brain-wide T-maps of decomposed 

signals for orthogonal contrasts. b. Decomposed signals in highlighted brain regions. Brain-wide 

significance was set as |T| > 5, i.e., significant with voxel-wise Bonferroni correction. The MNI 

coordinates of brain slices were inserted at the lower left.  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2021.08.25.457728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3. The decomposed evaluation and readiness processing targets VTA and SNc neural circuits, 

respectively. a. Left: strength of functional connectivities (FCs) to VTA and SNc from the evaluation 

and readiness regions identified in Fig. 2. Right: Paired t-tests between FCs to VTA and SNc from 

evaluation and readiness. b. The brain-wide patterns of seed-based FC from regions of interest (ROIs). 

Top: VTA seed-based; Middle: SNc seed-based; Bottom: The T-map of the differences between seed-

based FCs patterns from VTA and SNc. c. Brain-wide pattern similarities between the strength of 

decomposition signals (left: evaluation; right: readiness) and the differences of seed-based FCs from 

VTA and SNc. 
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Fig. 4. Impacts of evaluation and readiness processing on cognitive function. The canonical 

correlation analysis (CCA) was implemented to further segregate signal components that demonstrated 

differential associations with distinct cognition components (a. for evaluation processing and b. for 

readiness processing). The loadings of behaviors are shown in the left of the subgraphs. The loadings of 

brain activations were represented by the correlations with the cognition components. Only the 

significant regions were reported in the subgraphs. Also see Table S4-6. 
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Fig. 5. Valid infernece for functional independence and higher statistical power provided by DeCoP. 

a. Correlations between decomposed signals based on different simulation models. Also see Table S7. b. 

The distributions of the correlations between the decomposed signals at each voxel. c. The correlation 

matrix of signals from the evaluation and readiness clusters identified by WVCNA. d. With simulated 

phenotypes, DeCoP provided less false positive rate and higher statistical power. e. In the real task, 

DeCoP also provided more variance explained at both the network level and the ROI level (Left NAcc 

as an instance). Also see Fig. S3. 
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Fig. 6. The modulation effects of the additional complementary orthogonal contrasts and the 

optimal models for latent neurobehavioral signals. a. The distributions of pair-wise correlations 

between signals of orthogonal contrasts at each voxel. Mean correlations deviated from 0 would indicate 

a pair of related signals. b. An illustration of how related signals could describe the evaluation-related 

and readiness-related processing. c. The bimodal distribution of voxels favoring the exact-scale or 

relative-scale settings in evaluation and readiness processing. The typical regions favoring the exact-

scale setting were illustrated in the corresponding lower subplots. d. The favored neural representations 

(i.e. relative-scale vs exact-scale) demonstrated better predictions for task performance. *significant at 

level 0.05, ** significant at level 0.01. 
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