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Introduction

Major transitions such as the evolution of chromosomes, eukaryotic cells, multicellularity and social groups
have played a decisive role in the history of life. Most of these transitions resulted from the formation of a
larger entity from smaller entities, smaller entities specializing within the larger ones, leading to transitions in
individuality (Szathmary and Smith, 1995). During transitions in individuality, smaller entities may either be
like and unlike, resulting to a dichotomy between fraternal transitions arising from a division of labour among
closely related units (such as multicellularity) and egalitarian transitions, where phylogenetically distant units
come together to complement their functions in a larger unit Queller, 1997; Szathmary, 2015. Egalitarian tran-
sitions are generally achieved through mutualistic symbiosis' between a relatively large host and its symbiont
(Bronstein, 2015; Drew et al., 2021) and constitute one of the main sources of new lineages, underlying the
origin of the eukaryotic cell and photosynthetic eukaryotes for instance (Margulis and Sagan, 2002). In many
cases symbionts are unicellular microbes which are hosted by large eukaryotes, the whole corresponding
to a holobiont (Bordenstein and Theis, 2015; Gilbert et al., 2012); in other cases symbionts are multicellular
organisms physically associated with their host at various degrees (e.g. plant-fungi, plant-ant, plant-seed eat-
ing pollinator). While symbionts depend on their host from the start, hosts often become dependent on the
symbionts during later stages (Roughgarden, 1975), e.g. for reproduction or resource acquisition, eventually
making the transition irreversible.

For a transition to occur and persist, evolutionary conflicts between the subentities must not overtake the
whole’s fate. In the case of fraternal transitions, this is prevented by the strong relatedness between suben-
tities (Fisher, Cornwallis, et al., 2013; Hamilton, 1964a,b; Queller, 2000). However, in the case of egalitarian
transitions, the subentities generally belong to different species. Thus, it can be advantageous for them to
remain autonomous and exploit the other subentities. This parasitic behaviour occurs at the expense of the
whole, as for the tragedy of the commons (Hardin, 1968, 1998). For instance, a symbiont may remain parasitic
rather than collaborate with its host (Drew et al., 2021). The resulting evolutionary conflict might be circum-
vented by vertical transmission of the symbionts, which ensures that all subentities share a common fate
(Wilson and Sober, 1994). As a result, vertical transmission of symbionts indeed promotes the transition to
mutualism (Akcay, 2015; Doebeli and Knowlton, 1998; Estrela et al., 2016; Ferdy and Godelle, 2005; Herre et al.,
1999; Kerr and Nahum, 2011; Queller and Strassmann, 2016; Smith, 1998; Wilkinson and Sherratt, 2001), al-
though symbionts vertically transmitted can persist without becoming mutualists (Saikkonen, lon, et al., 2002).

The importance of vertical transmission has been highlighted by experiments on microbial systems (King
etal., 2016; Sachs, Skophammer, et al., 2011; Shapiro and Turner, 2018; Shapiro, Williams, et al., 2016) as well
as in natura observations of a Wolbachia-insect system (Weeks et al., 2007). However, in many mutualistic
systems, the symbiont is transmitted horizontally (Wilkinson and Sherratt, 2001), such as legume-rhizobium
(Denison and Kiers, 2004), squid-vibrio (McFall-Ngai, 2014), mycorrhizae (Allen, 1991), endophytes (Saikkonen,
Wali, et al., 2004) or plant-ants (Bronstein et al., 2006; Rico-Gray and Oliveira, 2008). In such cases, several
mechanisms such as partner choice, sanction or fidelity can counteract the selection for selfishness (Akcay,
2017; Estrela et al., 2016; Foster and Wenseleers, 2006; Genkai-Kato and Yamamura, 1999; Sachs, Mueller,
et al., 2004; Sachs, Russell, et al., 2010; Wilkinson and Sherratt, 2001). For instance, in legume-rhizobium, myc-
orrhizal and plant-ant associations, the plants can sanction the less beneficial (or even detrimental) symbionts
by allocating them fewer resources (Akcay, 2015; Bever et al., 2009; Denison and Kiers, 2004; Edwards et al.,
2006; Kiers et al., 2003; West et al., 2002). However, it is unclear whether these mechanisms are present at
the beginning of the transition to mutualism. Since they require the evolution of complex and specific traits,
they may occur in later stages, providing additional stability to the system. In the absence of such traits, what
mechanism could promote the transition in the first place? Using a theoretical model, the present work aims
to show that the joint evolution between mutualistic effort and local dispersal of hosts and symbionts leads

TSymbiosis is used here in its etymological sense of "living together", encompassing parasitic and mutualistic symbiosis.
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to a positive association between mutualistic hosts and symbionts and subsequently triggers the formation
of mutualistic clusters .

A similar issue exists with respect to the evolution of altruism?, since partner choice and control mech-
anisms, such as voluntary reciprocal altruism (Axelrod, 1981), may be restricted to higher animals or may
appear during later evolutionary stages. In line with the intuition of Darwin, 1871, spatial structure has been
recognized as a general mechanism promoting the transition to altruism (Débarre et al., 2012; Lion and Van
Baalen, 2007, 2008; Mitteldorf and Wilson, 2000). Spatial structure generally stems from local dispersal, which
triggers the formation of clusters dominated by altruistic organisms, while organisms with similar phenotypes
are positively assorted in space (Pepper, 2007; Wilson and Dugatkin, 1997). The balance between organismic-
level selection favouring cheaters and cluster-level selection favouring altruists ultimately determines the evo-
lutionary outcome (Mitteldorf and Wilson, 2000; Van Baalen and Rand, 1998). Moreover, the joint evolution
of cooperation and dispersal can allow the emergence of altruism, with spatial clusters of altruistic organisms
promoting the persistence and spread of altruistic phenotypes (Hochberg et al., 2008; Koella, 2000; Le Gal-
liard, Ferriere, et al., 2005; Mullon et al., 2018; Purcell et al., 2012). Empirical evidence on the evolution of
reduced virulence (Boots and Mealor, 2007; Szilagyi et al., 2009), the evolution of altruism (Eldakar et al., 2010;
Harcombe, 2010), and the evolution of restraint predation (Kerr, Neuhauser, et al., 2006) also supports the
crucial role of the spatial structure.

Similarly, spatial structure can allow mutualists to overcome non-mutualists (Akcay, 2017; Doebeli and
Knowlton, 1998; Frank, 1994; Yamamura et al., 2004), and this can come along with the evolution of dispersal
(Mack, 2012). However, this may not be sufficient to account for the transition from parasitism to mutual-
ism, since parasitic symbionts should discourage hosts from initiating the transition, whereas non-mutualists
have a weaker impact (Mack, 2012; Yamamura et al., 2004). In the case of holobionts, starting from free living
bacteria, Sachs, Skophammer, et al., 2011 documented 27 transitions towards parasitism, 9 directly towards
mutualism and 3 towards commensalism, whereas the transition from parasitism to mutualism occurred only
3 times. This highlights that the transition from parasitism to mutualism, although feasible, is relatively infre-
quent, and calls for a theoretical understanding of the mechanisms involved. Moreover, in previous attempts
mutualistic efforts were initially polymorphic but were not subject to mutations (Mack, 2012). In that case, mu-
tualistic clusters cannot be invaded from inside through parasitic mutations, which favours mutualism. The
present work therefore constitutes, to our knowledge, the first spatially explicit eco-evolutionary model where
the mutualistic efforts and dispersal abilities of hosts and symbionts coevolve, beginning from a parasitic in-
teraction. If some hosts and symbionts simultaneously become mutualists and start dispersing locally, this
may lead to the formation of mutualistic host-symbiont clusters producing more offspring than in areas where
hosts are mainly associated with parasitic symbionts, thereby initiating the transition. Meanwhile, parasitic
symbionts should continue dispersing globally and invade the mutualistic clusters, which could homogenize
the spatial structure and compromise the transition. Also, densely populated mutualistic clusters might suffer
from intraspecific competition between hosts, unless competition acts on a large spatial scale. In sum, it is
unclear whether mutualists will invade, whether mutualists will replace parasites, or whether both strategies
will coexist, as is often the case in nature (e.g. Borges, 2015; Després and Jaeger, 1999; Saikkonen, Wali, et al.,
2004).

The concept of major transitions also implies that the host and the symbiont become dependent upon each
other (Nguyen and Baalen, 2020; Szathmary, 2015; Szathmary and Smith, 1995), with each partner needing
the other to perform essential functions like nutrient provisioning (Fisher, Henry, et al., 2017). Dependence is
often accompanied by gene loss and gene exchange, rendering the transition irreversible (Estrela et al., 2016).
Most symbionts cannot live freely and therefore completely depend on their host, but most hosts can com-

2An altruistic trait benefits conspecifics, at a cost to its bearer. In contrast, a mutualistic trait benefits heterospecifics.
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plete their life cycle without their symbiont (e.g., in plant-ant, plant-fungi or legume-rhizobium mutualisms)
and several reverse pathways are possible from mutualism to parasitism (Sachs and Simms, 2006; Week and
Nuismer, 2021; Werner, Cornelissen, et al., 2018). However in some cases hosts depend on their symbiont, for
instance the intracellular bacterial symbiont Buchnera aphidicola provides essential amino acids to its aphid
host (Akman Gundiz and Douglas, 2009; Bennett and Moran, 2015). Since the present work focuses on the
transition and not on later stages, we will not assume that hosts depend on their symbionts for their physiol-
ogy or development, which would render the transition irreversible by construction. Instead, hosts will always
be able to produce offspring when alone. Nevertheless, the number of offspring produced by the hosts will
depend on the mutualistic efforts of both species as well as on the population densities, which are expected
to change during the transition. Under these altered ecological conditions, isolated hosts may exhibit a neg-
ative population growth rate, although they are physiologically able to produce offspring. This mechanism is
hereafter called ecological dependence.

To sum up, we will tackle the following issues:

+ Main hypothesis: In the absence of vertical transmission and partner control, we expect that the tran-
sition from parasitism to mutualism can occur when the mutualistic efforts of both hosts and symbionts
jointly evolve with local dispersal.

H1: The formation of mutualistic clusters should be necessary for the initiation of the transition. The
emergence of spatial structure should come along with the transition.

H2: By maintaining global dispersal, non-mutualistic hosts and parasitic symbionts should be able to
coexist with mutualists.

H3: The transition to mutualism is due to the relatively higher fecundity of mutualistic clusters.

H4: If competition between hosts is mostly local, this should hamper the formation of mutualistic clus-
ters, thereby preventing the transition.

* H5: We expect that mutualistic hosts will become ecologically dependent on their symbiont.

To investigate these hypothesis, we built an agent-based model using a two-dimensional space lattice that
supports an autonomous host and a host-dependent symbiont. Hosts compete for space and other resources,
while symbionts compete for available hosts. This situation occurs in many biological systems, such as plant-
fungi, plant-seed eating pollinator, plant-ant, and multicellular eukaryotes hosting bacteria. Less intimate
associations like cleaning mutualisms or plant-pollinator interactions may also fit, provided that the animal
is specialized and dependent on its host. To model the transition from parasitism, the symbiont is initially
detrimental to the host, and the host provides it the minimal energy possible without any spontaneous mutu-
alistic effort, as would be the case after an antagonistic evolutionary arms race. Moreover, the host-parasite
system is ecologically viable even in the absence of any mutualistic agent in the landscape. At first, both
species disperse globally; this situation corresponds to the most disadvantageous conditions for the emer-
gence of mutualism. Through continuous mutations, mutualistic and locally dispersing symbionts and hosts
can appear. The mutualistic effort encompass the provision of resources, shelter, immunity, anti-predator be-
haviours, digestive enzymes or any other type of benefit provided that this occurs at some cost. If mutualistic
symbionts manage to persist for a while, they eventually change the population dynamics, triggering feedback
on their own evolutionary dynamics. In addition to these general hypotheses, no assumptions specific to a
particular biological system were required.

Methods

Main rules of the model Our model considers two types of agents, hosts and symbionts, living on the same
two-dimensional space lattice. The interaction between the two species occurs when they share the same cell.
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Each cell can assume three states: i) empty, ii) occupied by a solitary host, with only one host per cell), iii)
occupied by a host-symbiont couple, with only one symbiont per host (but see Appendix SI.7 for a relaxation
of this assumption). Each organism bears two traits, an interaction trait o and a dispersal trait €, which both
influence fecundity. At every time point, agents undergo the following steps (see appendix SI.1 and Figure SI.1
for more details):

+ The host and symbiont die with fixed probability m.

+ They produce offspring. The average offspring number of a parent depends on its traits and on its
interactions with their cell-sharing partner, if any.

+ The offspring are dispersed according to the parental trait . For instance, the dispersal abilities of
akenes depend on the parental genotype.

+ The host offspring may establish only in empty cells, while the symbiont offspring can only establish
in cells already occupied by a solitary host. If several organisms come to implant in the same cell, a
uniform lottery determines which one will implant, while the others die.

+ The offspring traits mutate with a given probability, which will affect their own interaction with hosts/symbionts
and the dispersal of their future offspring. In nature mutations occur as soon as offspring are produced,
instead in the model only the surviving offspring mutate, which saves computation time.

Fecundity and mutualism/parasitism Each agent produces offspring according to a Poisson distribution
with parameter f, which corresponds to its fecundity. The fecundity defines the average number of offspring
per agent. It results from an interaction fecundity positively dependent on the trait of its cell-sharing partner
and a mutualistic cost negatively dependent on its trait.

Specifically, the fecundity of a symbiont f* of trait a5 in interaction with a host of trait ay, is defined by:

fHas,an) =(1—cnm a8>( min T (fmaz — fvsnin)ah) (M

where ¢y, is the maximal mutualistic cost and f; ., and f,., are the minimal and maximal interaction fecun-
dity of symbionts. Similarly, the fecundity of a host f” of trait oy, in interaction with a symbiont of trait « is
defined by:

fh(ahzas) = (1 —Cm ah)( 7}rLzm + (fmaw - gzin)azf) @)

where f% . is the minimal interaction fecundity of hosts. The parameter ~; describes how fast the fecundity
of the host increases with the interaction trait of the symbiont a;. Since we are interested in the emergence
of mutualism, the parameter v describes the mutualistic strength of the symbiont on the host fecundity. In
our model, we set the mutualistic strength of the host on the symbiont fecundity to v, = 1.

Since hosts are autonomous, in absence of symbionts, their fecundity f only depends on their trait cvy,:
Fr(on) = (1= comon) f* 3)

where the fecundity alone f2 ranges between the minimal and maximal interaction fecundity: f2. < f* <
fmaz- As a result, the establishment of a symbiont with a low interaction trait (as < ) reduces the fecundity
of the host; the symbiont is parasitic. Instead, a symbiont with a large interaction trait (as > o) enhances
the host's fecundity; the symbiont is mutualistic. The threshold o is defined by f"(a, af) = f'(ay) (see
appendix SI.1 for mathematical derivation of the threshold). In the simulations, o} = 0.475 (Figure 1).

Mutation Offspring inherit traits from their parents with variability due to mutations. The effects of mu-
tations on each trait are independent . However, the distribution of mutation effects does depend on the
trait of the parents. We use a Beta distribution with shape parameters (1, 3) to describe the amplitude of
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Figure 1. Fecundity of hosts f” and symbionts ¢ according to the interaction trait of their partners (dashed
black lines). Plain black line corresponds to the fecundity of a solitary host f®. The dashed red line in panels
(a) and (b) corresponds to the threshold o} = 0.475 separates symbionts, which either reduce or enhance the
fecundity or their host (appendix SI.1).

these effects, which could be either beneficial or detrimental. This mutation kernel allows for rare mutations
with large effects. However, these effects can not exceed a maximal mutation size set to B0 = 0.5 (see
Figure SI.3 in appendix SI.1 for details).

Dispersal The parents do not disperse, while their descendants disperse either locally in one of the 8 cells
around the parent or globally, with a uniform distribution across the entire space (see Figure SI.5 for a sketch
of the process). The dispersal trait ¢ is defined as the proportion of offspring dispersed globally, as in Kéfi,
Rietkerk, et al., 2007; Kéfi, Van Baalen, et al., 2008. These two modes of dispersal correspond to a mixture of
short and long distance dispersal events. For instance, fleshy fruits may be dispersed either by small birds
having a short-distance behaviour, or by mammals and large birds which disperse the seeds at long distances
(Jordano et al., 2007). Fruits may also remain unconsumed and fall locally. Depending on the fruit's traits, its
propensity to be consumed by either type of frugivores may vary among organisms, which is captured by the
dispersal trait €. Since the investment in global dispersal may reduce fecundity (Bonte et al., 2012; Harada,
1999), we assumed a linear trade-off between fecundity and dispersal: fo = (1 — de¢) f, with f. the effective
fecundity and d the dispersal cost intensity, which is the same for both hosts and symbionts.

Competition Hosts compete for empty cells, especially if they disperse locally. Beside space, hosts may also
compete with each other for resources like water, light or food. In order to test hypothesis H3 we introduced
intraspecific density-dependent competition, acting either at the local or the global scale. For instance, compe-
tition for light only involves the closest neighbors while competition for the water table might act at the entire
space scale. The competition scale parameter wy, ranging in [0, 1], weights the effect of the local density plh"‘:“l
and the global density pil(’b“l of host on the competition. Competition reduces the establishment probability
Pr of the offspring:

obal\ 7€
Pr=1— (1= wn) gl 4 wypff ) @

The local host density pﬁfc’” corresponds to the host density in the 8 neighbouring cells surrounding the off-

spring, while the global density pil"bal corresponds to the host density over the entire landscape (see Fig-

ure SI.2 for a schematic representation). The parameter ¢ corresponds to the inverse of the competition
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strength. Indeed, the establishment probability is increasing with respect to v<. Thus, the competition is
strong when ¢ < 1 (sub-linear function), while it is weak when v > 1 (super-linear function).

Reference  Sensitivity

Parameters values analysis range
m probability of mortality 0.06 [0.005;0.15]
Cm, maximum mutualistic cost 0.3 [0;1]

fmaz maximal host and symbiont interaction fecundity 8 fixed
h minimal host interaction fecundity 0.1 fixed
i minimal symbiont interaction fecundity 2.5 fixed
fe maximal solitary host fecundity 0.5 fixed
o7 mutualistic strength on the host fecundity 4 fixed

Bmax maximum mutation size 0.5 [0.1;1]
wp, scale of host competition 1 Oorl
Ve inverse of host competition strength 0.2 [0.1;2]
d dispersal cost 0 [0;1]

Table 1. List of parameters and their reference values used for the simulations. The parameters of host and
symbiont fecundities are determined to ensure the viability of the antagonistic system, therefore they are
fixed because they are constitutive of the model.

Parasitic system and transition To tackle the issue of transition to mutualism, we assume that the system
is viable without mutualism (see appendix SI.2 for details). More precisely, in the absence of mutation, the
per capita growth rate at low densities of hosts is Fy = (1 — m)(1 + f%). In our study, we have chosen pa-
rameters (see Table 1) for which Fj is greater than 1 so that if we start with a large density of hosts initially,
the probability of extinction is 0. Moreover, under our parameter ranges, the system stabilizes around a
demographic equilibrium called the "parasitic system" where host density is around 0.15 and the symbiont
density is around 0.1 (see Figure 2b-c and appendix SI.2 for mathematical details on the stability of an ap-
proximation model). From our perspective, this situation is the worst-case scenario because interactions are
parasitic and dispersal cost is minimal. Then, mutualistic symbionts can appear by mutation, which generates
approximately 2% of mutualistic symbionts in the population (see dashed purple curve in Figure 2c). Natural
selection eventually leads to a significant increase of the percentage of mutualistic symbionts, far above the
2% generated by mutations (Figure 2). In the simulations, a high density of mutualistic symbionts indeed per-
sists in the long term when the percentage of mutualistic symbionts stands above 10% (Figure SI1.8), which
therefore characterizes the transition to mutualism. The transition time was defined as the time at which the
percentage of mutualistic symbionts rises above this threshold.

Assortment and aggregation indices To investigate the spatial structure, which comes along with the tran-
sition to mutualism, we compute assortment indices: intraspesific indices measuring the spatial autocorrela-
tion among hosts and symbionts and an interspecific index quantifying the correlation between phenotypes
of host and symbiont sharing the same location. More specifically, the intraspecific indices compute the sim-
ilarity between the trait of an organism and the traits of its neighbors located in the 8 cells around it, and
compare it with the similarity between the organismic trait and the mean trait over the landscape (details
in appendix SI.1). If the intraspecific index is positive (respectively negative), it means that on average the
neighbors of any organism share similar (respectively dissimilar) traits. Similarly, the interspecific index is pos-
itive if hosts and symbionts sharing the same cell have similar interaction traits. Spatial aggregation indices
for hosts, mutualistic symbionts and parasitic symbionts were also computed, measuring the formation of
clusters (appendix SI.1 for details).
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Results

In the following, the maximum cost of mutualism ¢, is 30%, and the other parameters are set to satisfy
the viability of the parasitic system (Table 1 in appendix SI.1 and appendix SI.2 for a discussion of the effect
of the cost of mutualism).

dispersal cost = 0 dispersal cost = 0.45 a
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Figure 2. a) Histograms of the number of transitions over 1000 simulations as a function of time, with a max-
imum projection time of 105. Without dispersal cost there are a total of 86 transitions when the competition
is weak and 951 when the competition is strong. With dispersal cost there are 1000 transitions whether the
competition is weak or strong. Panels b) and c) represent the host and symbiont densities over time averaged
over 100 simulations (coloured plain curves) under strong competition y¢ = 0.2 and no dispersal cost d = 0
and with a maximum projection time of 10* steps. The densities correspond to the proportion of occupied
cells. The time series are adjusted so that all simulations have a transition time ¢ = 2000. The colour gradi-
ent corresponds to the mean interaction trait «, and shaded regions correspond to the standard deviation
for densities. In panel ¢), the purple dotted line and the right y-axis show the relative density of mutualistic
symbionts, and the black line indicates the 10% transition threshold. For all panels, other parameters are
m =0.06,c,, =03, w, =1, f*. =01, f5. =25, frnae =8 f* = 0.5and Baz = 0.5

min min
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The transition from parasitism to mutualism Our main objective was to investigate whether the transi-
tion to mutualism is possible starting from a viable parasitic system, without dispersal cost, which constitutes
the most stringent condition for the transition. In that case, the transition is more likely to occur under strong
(ve = 0.2) intraspecific host competition (with frequency 0.95) than under weak (y¢c = 1) competition (0.086).
Moreover, when the transition succeeds, it occurs more rapidly under strong competition (median transition
time around 2.5.10%) than under weak competition (median transition time around 7.10%, Figure 2a). When
the cost of dispersal is large (d = 0.45) the transition occurs systematically (with frequency 1) and the median
transition time is much lower (around 7.102), regardless of the strength of competition (Figure 2a). Dispersal
cost was therefore used as an instrumental tool to speed up the transition when necessary.

The transition begins with weakly mutualistic symbionts, which rapidly increase their mutualistic effort
toward 1 (Figure 2c). In contrast, the increase of the average host interaction trait is delayed in response
to the symbionts’ transition (Figure 2b). Moreover, the transition does not occur at the expense of parasitic
symbionts; on the contrary their population density benefit from the increase in host density triggered by the
mutualistic symbionts (Figure 2c).
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Figure 3. Post transition traits distribution (¢, a) of symbionts (panel a) and hosts (panel b). The dashed red
line in panel a indicates the threshold a} = 0.475 above which a symbiont benefits its host. The plain red
line in panel b shows the linear regression between host traits (R?=0.102 ). Distributions corresponds to 100
simulations with strong competition v = 0.2, no dispersal cost d = 0 and with a maximum projection time
of 10* steps. Other parameters are m = 0.06, ¢,, = 0.3, wp, = 1, f2. = 0.1, f5.,, = 2.5, fmaz =8, f¢ =0.5
and Bq: = 0.5.

Since the symbiont population is monomorphic at the beginning of every simulation, the two distinct phe-
notypic clusters visible in Figure 3a indicate that both traits diverged, resulting in two classes of symbionts:
parasitic global dispersers (a; << 1and e ~ 1) and mutualistic local dispersers (as ~ 1 and e << 1). Further-
more, the mutualistic and dispersal traits of symbionts evolve at the same time, during the transition (details
not shown). Conversely the host traits do not diverge; their joint evolution leads to a negative correlation be-
tween global dispersal and mutualism intensity (Figure 3b, R?=0.102 ). After the transition, most hosts provide
a non-zero mutualistic effort to the symbiont (most o, > 0.2).

The assortment indices indicate that after the transition to mutualism the organisms of both species are
locally similar. Moreover, hosts and symbionts sharing the same location also tend to have the same interac-
tion behaviour (Figure 4a). The intraspecific assortment is stronger than the interspecific assortment, which
is not surprising since the formation of the intraspecific spatial structure simply requires a sufficient propor-
tion of local dispersal. The aggregation indices (appendix SI.1) behave similarly, after the transition the spatial
aggregation of hosts, parasitic symbionts and mutualistic symbionts all increase, and the parasitic and the
mutualistic symbionts reach the same level of aggregation (Figure SI.7). These results together indicate that
the transition to mutualism comes along with the emergence of a spatial structure, with clusters of mutualistic
hosts and symbionts (Figure 4c).
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Figure 4. a) Spatial structures are described by the assortment index measuring the intraspecific assortment
between hosts (plain line), the intraspecific assortment between symbionts (dashed line) and the interspecific
assortment between hosts and symbionts (dash-dot line). Results are averaged over 100 simulations with
strong competition vy = 0.2 and no dispersal cost d = 0. The time series are adjusted so that all simulations
have a transition time ¢t = 2000 (red dotted line). Grey areas show the standard deviation. The threshold
separating mutualistic and antagonistic symbionts is as in Figures 1 and 3. b)-c) Snapshots of a region of
40x40 cells before (panel b) and after (panel c) the transition to mutualism. For the sake of the figure, a host
is considered weakly mutualistic if its interaction trait is less than 0.5 and strongly mutualistic if it is greater
than 0.5.0ther parameters are m = 0.06, ¢,, = 0.3, wy, = 1, f*, = 0.1, 5. = 2.5, frae = 8, f* = 0.5 and
ﬁmam =0.5

The effect of competition between hosts Figure 2a shows that the host competition promotes the transi-
tion to mutualism; we next investigate its quantitative effect on the percentage of mutualistic symbionts. The
following results were obtained using a large dispersal cost (d = 0.45) to reduce the mean time of transition
and thus save computational time.

The competition strength ¢ increases the percentage of mutualistic symbionts after the transition when
competition is global, i.e. when hosts compete with all the hosts present in the landscape (Figure 5a). How-
ever, the transition can occur even in the absence of host competition, if the cost of mutualism is sufficiently
low (e.g., a maximum cost of only 10% instead of 30% as in previous simulations, details not shown). When
competition is more local the percentage of mutualistic symbionts decreases drastically, until it drops below
the transition threshold (Figure 5b). In the absence of dispersal cost, when competition is reduced after the
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Figure 5. The role of host competition in the transition to mutualism. Effects of competition strength ~. (panel

a) and spatial scale wy, (panel b) on the percentage of mutualistic symbionts with dispersal cost d = 0.45
and after 10* time steps and over 50 replicates. Black curves is the median and shaded regions are 95%
confidence intervals. Dashed red line is the transition threshold of 10%. In panel a) competition is global
(wp, = 1) and in panel b) competition is strong v¢ = 0.2. Panel c) represents the effect of competition on the
transition and on the maintenance of mutualism (simulation without dispersal cost d = 0). Panel d) presents
the effect of a reduction in competition caused by a perturbation eradicating all organisms in a large square.
The perturbation occurs around ¢ = 10%, which is 5000 time steps after the transition. Other parameters are
m = 0.06,c,, = 0.3, f2. =01, 2, = 2.5 frae =8, f* = 0.5and Bae = 0.5.

min min

transition to mutualism, the system switches back to the parasitic state (Figure 5¢, see Figure SI.9 for details).

Another way to investigate the effect of competition is to reduce host density, through the eradication of
hosts in a region after a transition to mutualism. At first, the perturbed region is mainly recolonized by hosts
and parasitic symbionts (Figure SI.10b), but mutualistic symbionts persist in the landscape. Due to the relax-
ation of global competition, the probability of host establishment is better, and the mutualistic clusters out-
side the perturbation zone gain in size, which explains why the proportion of mutualistic symbionts increases
slightly despite the recolonization of the centre by parasites (Figure SI.10a). In the end, once recolonization is
complete, the system returns to an equilibrium state whose trait distributions are close to distributions before
the perturbation (details not shown). A similar experiment with a perturbation causing the death of 50% of
uniformly occupied cells leads to the same results.

Host dependency Under favourable conditions leading to the transition to mutualism, the population of
mutualistic hosts always persists in the absence of mutualistic symbionts, which excludes any absolute de-
pendency of hosts for symbionts. However, ecological dependency may occur, where isolated hosts may have
a negative growth rate because of intraspecific competition, although they would be able to form stable pop-
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Figure 6. Percentage of mutualistic symbionts as a function of intrinsic mortality m and dispersal cost d. We
run 50 simulations per parameter combination, with strong global competition 7o = 0.2 and wy, = 1 with a
maximum projection time of 10* steps. The percentages are averaged over the simulations leading to tran-
sition, if any occur. Above the black dotted line, the parasitic system is not viable, although the evolution of
mutualism can occur above this line (evolutionary rescue). White cells correspond to the nonviability domain
for the whole system, even with evolution. In the dark grey area, none of the simulations gave birth to transi-
tions. The evolution of host ecological dependency occurs in the hatched area, where an average isolated host
has a negative growth rate because of intraspecific competition. The grey star corresponds to the restrictive
conditions of Figure 2. Other parameters are ¢,, = 0.3, f*. = 0.1, f5. = 2.5, fraz = 8, f* = 0.5 and

min min
Bmaz = 0.5.

ulations at lower densities. The transition to mutualism co-occurs with an increase in host density and thus
an increase in intraspecific competition. If this increase in competition is sustainable only in the presence of
mutualistic symbionts, the hosts are ecologically dependent on the symbionts. In order to determine the occur-
rence of ecological dependency, the intensity of intraspecific competition between hosts was measured in a
system at equilibrium after the transition to mutualism (e.g., at the end of Figure 2c), and subsequently used
as a fixed parameter to test if the host population can now survive in the absence of mutualistic symbionts
and mutation. We found that ecological dependency occurs in the hatched area of Figure 6, when the system
evolves toward a mutualistic system in which the percentage of mutualistic symbionts is sufficiently large.

Figure 6 further shows that both dispersal cost and mortality promote mutualism. For the parameter pair
in the area indicated by the grey star, where dispersal cost is zero, Figure 2a showed that the probability of
transition during the 10° time steps is only 0.086, with a mean transition time of 7.10%. This explains why no
transition occurred in Figure 6, where 50 simulations per parameter combination were performed, with only
10* time steps. Finally, Figure 6 also shows that for some parameter combination, mutualism evolves even
though the parasitic system is initially unviable. The viability of the parasitic system was assessed by simula-
tions of 5000 time steps, without evolution. This implies that in a relatively short period of time in comparison
to the transition times shown in Figure 2 for other parameter values, transitions can occur quickly enough and
prevent the extinction of a parasitic system otherwise unviable. However this occurs rarely; Figure SI.13 shows
that for some parameter combinations up to 90% of the simulations go extinct, the remaining being able to
persist thanks to the evolution of mutualism. In those cases the mean percentage of mutualistic symbionts is
much higher, ranging from 35 to 60%.
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Discussion

The mechanisms underlying the transition to mutualism.

In line with our main hypothesis, our results indicate that the transition from parasitism to mutualism
occurs when mutualistic efforts evolve together with dispersal, despite the absence of vertical transmission
or partner control. The following paragraphs review the mechanisms which contribute to the transition, and
related them with the hypothesis formulated earlier.

The formation of clusters Before the transition, a host performs better when alone; therefore, it has no
interestin increasing its mutualistic effort and natural selection keeps it as low as possible. In contrast the sym-
biont population is limited by the number of available hosts, which increases when the symbiont becomes
mutualistic. If mutualistic symbionts would help globally dispersing hosts, they would be counter-selected.
However, in spatially structured populations rare mutants can interact with each other (Lion and Van Baalen,
2008), so if by chance mutations produce a mutualistic symbiont dispersing locally and interacting with a host
dispersing locally as well, its offspring will benefit from the increased density of hosts in their neighbourhood
and will form a mutualistic cluster (in line with hypothesis H1, Figures 4c) and SI.7). The cluster can then be
invaded by parasitic symbionts dispersing globally, resulting in a dynamic equilibrium between mutualism
and parasitism (in line with hypothesis H2, Figure 2c). Parasitic symbionts become themselves aggregated
(Figure SI1.7) since they develop around the mutualistic clusters, at their expense (Figure 4c). Joint evolution
between mutualistic effort and dispersal results in a negative correlation between mutualism intensity and
global dispersal (80% of mutualists disperses locally, Figure 3), which mirrors the link between altruistic be-
haviour and local dispersal (Eldakar et al., 2010; Hochberg et al., 2008; Koella, 2000; Le Galliard, Ferriere, et al.,
2005; Mullon et al., 2018; Purcell et al., 2012) as well as the relationship between local interactions and aviru-
lence evolution (Boots and Mealor, 2007).

The key role of intraspecific competition The invasion of a mutualistic cluster by parasites may cause
its extinction and hinder the transition. We postulated that the higher fecundity of mutualistic clusters could
compensate for their susceptibility to parasites (hypothesis H3). We instead found that, in the absence of
dispersal cost, an eco-evolutionary feedback involving intraspecific competition between hosts was necessary
for the transition. Indeed when competition between hosts is weak, the transition to mutualism rarely occurs
(Figure 2a), and when it does, the percentage of mutualistic symbionts remains low (Figure 5a). Conversely,
when hosts strongly compete for resources, the ecological conditions change dramatically. The formation of
mutualistic clusters (Figure 4a) increases population densities (Figures 2b and 2¢), which enhances competition
between hosts. Areas dominated by hosts associated with parasitic symbionts were initially viable, but their
population growth rate becomes negative following the increase in competition. This creates empty space that
can be colonized by mutualists, which still disperse globally from time to time. By lowering the abundance
of parasitic symbionts, this also reduces the frequency at which mutualistic clusters are invaded by parasites.
However, the key role of intraspecific competition only occurs when it is partly global (Figure 5b); if purely local
mutualistic clusters cannot influence the viability of parasitic regions and will suffer from kin competition. In
line with hypothesis H4, local competition between hosts for resources thereby prevents the transition to
mutualism. Local competition between hosts for available space also occurs when hosts disperse locally, but
this does not jeopardize the transition. Several obstacles must be overcome (simultaneity of the mutations,
demographic stochasticity, possible invasions by parasites) before the mutualists are numerous enough to
induce the shift in host competition, which explains why the transition needs some time to occur (Figure 2a).
In sum, contrary to hypothesis H3 the transition is not directly caused by the higher fecundity of mutualistic
pairs (which would fit soft selection, Wallace, 1975) but only indirectly by the increase in host competition,
which renders areas dominated by parasites unviable (hard selection).
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Empirical work has shown that the outcome of interactions between hosts and symbionts depends not
only on the traits of the protagonists, but also on the surrounding ecological conditions (Bronstein, 1994).
For instance, plants take advantage of seed-eating pollinators in the absence of alternative pollinators but
not in their presence (Thompson and Cunningham, 2002). Mycorrhizae are beneficial for plants when soil
resources are scarce while they are detrimental when resources are abundant (Johnson et al., 1997). In the
above cases, the outcome of the interaction depends on both biotic and abiotic factors that are external to
the host-symbiont system. Our model showed that the association with symbionts remains parasitic when
host competition is low, while it evolves towards mutualism when host competition increases. In that case,
the outcome of the interaction depends on intrinsic features of the interactions that are constructed by the
eco-evolutionary dynamics of the system, as the emergence of mutualists increases host density.

The impact of dispersal cost and mortality As expected, dispersal cost speeds up the transition (Fig-
ure 2a and 6) because it induces a selection pressure at the organismic level in favour with local dispersal,
which increases the likelihood of the formation of mutualistic clusters. Mortality also enhances the probability
of transition (Figure 6), but with another mechanism. We have stressed that competition between hosts cre-
ates an eco-evolutionary feedback loop, where the evolution of mutualism increases global densities, which
strengthens competition and therefore turns the growth rate of the parasitic system negative. Given that
mortality pushes the parasitic system towards its viability boundary, high mortality enhances the ability of
competition to launch the transition. Although the transition occurs in a wide range of parameters where the
parasitic system is viable, it is more likely when the parasitic system is close to extinction (Figure 6). However,
mortality cannot itself trigger the transition since the parasitic system is unviable from the start when mor-
tality is too high. Finally, mortality may also facilitate the transition through the reduction of global densities,
which decreases the threat of parasites invading mutualistic clusters. The facilitation of mutualistic symbio-
sis in harsh environmental conditions has also been observed in previous empirical (Callaway et al., 2002;
Maestre et al., 2003; Werner, Cornwell, et al., 2015) and theoretical (Travis et al., 2006) works. However in the
context of altruism the opposite relationship was found (PD Taylor and Irwin, 2000).

Evolutionary rescue As evidenced by Figure 6, the evolution of mutualism can prevent the extinction of
the parasitic system for parameter combinations that are just above the upper limit of its viability domain.
This echoes the concept of evolutionary rescue (Ferriere and Legendre, 2013; Gomulkiewicz and Holt, 1995),
according to which the persistence time of a population is longer with than without evolution. In the present
case, instead of a single population, the populations of two distinct species are rescued by evolution. More
generally, the parasitic system benefits from the evolution of mutualism even whenitis initially viable, through
an increase in population densities (Figure 2).

The evolution of mutualistic hosts So far, only the mechanisms responsible for the evolution of mutual-
istic symbionts have been elucidated, but not those involved in the evolution of mutualistic hosts. Surprisingly,
mutualistic hosts evolve after the transition (Figure 2¢). Following the transition, the density of mutualistic sym-
bionts is much higher, so that mutualistic hosts tend to be associated with mutualistic symbionts (Figure 4c),
which disperse locally (Figure 3a). In that case, mutualistic hosts will increase the local density of mutualistic
symbionts in the following generations, which will benefit their offspring provided that they disperse locally as
well (Figure 3b). Symbionts may become less abundant for instance because of additional intraspecific com-
petition between them, as in Appendix SI.5. As a result, more hosts remain non-mutualistic because they are
less often associated with a symbiont (Figure SI.12), which further highlights that the evolution of mutualistic
hosts relies on high symbiont densities.
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The role of quasi-vertical transmission Although mutualistic symbionts are environmentally acquired,
when both hosts and symbionts disperse locally this produces a similar effect as vertical transmission (as for
mycorrhizae, Wilkinson, 1997), which we term "quasi-vertical" transmission. However, local dispersal (even
100%) is not equivalent to vertical transmission because host and symbiont offspring can disperse to any of
the 8 neighbouring cells, so vertical transmission due to specific reproductive and physiological adaptations
would have produced transitions to mutualism more easily. Moreover, the colonization of empty space by
a mutualistic pair requires that both species disperse to the same remote place by chance, whereas in the
case of vertical transmission this always occurs. Nevertheless, since hosts need to colonize empty space a
significant fraction of hosts with mutualistic phenotypes also dispersed globally (~ 40%, Figure 3), which
partly counteracts the necessity of quasi-vertical transmission. As well as hosts, mutualistic symbionts may
also suffer from limited dispersal when they need to percolate in a landscape of non-adjacent hosts, which
explains why they maintain ~ 20% of global dispersal (Figure 3). On the other hand, parasitic symbionts also
evolve towards an intermediate dispersal strategy, although they tend to disperse globally much more often
(~ 80%, Figure 3). In purely parasitic systems it has been shown that some degree of vertical transmission,
which is close to local dispersal in our case, is necessary for persistence in fragmented landscapes (Schinazi,
2000; Su et al., 2019). In those cases as well as here, the parasitic population needs some degree of local
dispersal in order to exploit a patch of hosts, once it has been "found" by global dispersers. Intermediate
dispersal strategies were shown to favor persistence of a variety of systems. For instance, frequent short-
distance and rare long-distance dispersal together favor metacommunity persistence in fragmented habitats
(Huth et al., 2015) and intermediate migration rate is required for the spread of cooperative strategies in
spatial prisoner’s dilemma games (Vainstein et al., 2007).

The retention of some degree of global dispersal in both hosts and symbionts in order to colonize remote
suitable places has another advantage; itindeed tempers local overpopulation generated by mutualism. Since
overpopulation due to local dispersal increases kin competition, this reminds the evolution of altruism, which
can be limited by kin competition (Alizon and P Taylor, 2008; Wilson, Pollock, et al., 1992), as well as the evo-
lution of dispersal which is in part due to the reduction of kin competition (Hamilton and May, 1977; Harada,
1999; Poethke et al., 2007). A mixed strategy combining both dispersal modes takes advantage of kin selec-
tion and simultaneously maintains the opportunity to escape kin competition. Figure 5b shows that purely
local competition between hosts prevents the transition to mutualism because kin competition overcomes kin
selection. Similarly, the evolution of cooperation by group selection can be hindered if competition between
groups is local (Akdeniz and Van Veelen, 2020). In nature, global competition between hosts may arise when
plants compete for water present in the same groundwater (Lejeune et al., 1999; Rietkerk et al., 2002), while
competition for light is more local. Thus, the evolution of mutualism may depend on the dominant form of
competition for resources between hosts.

Assumptions, limitations and generality of the model

Our results rely on several hypothesis which have, if violated, either positive (vertical transmission, plastic
costs) or negative (antagonistic coevolution, sexual reproduction, superinfections) effects on the likelihood of
the transition to mutualism.

No vertical transmission We excluded the possibility of vertical transmission because it is a complex
feature involving many traits, which more likely evolve some time after the transition once the mutualistic
relationship is well established. For this reason an alternative mechanism is needed, and our results demon-
strate that the coevolution of mutualistic effort and limited dispersal in both species can mimic vertical trans-
mission, as argued above. However, in some parasitic systems (e.g. birds displacing parasitic flatwormes, ticks
carried on large vertebrates) vertical transmission may be a passive feature, present from the start. In such
cases the evolution of mutualism is theoretically possible even if hosts keep dispersing globally, provided that
mutations turning the parasites into mutualists exist.
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Benefits and costs of mutualism Benefits only depend on the interaction trait of the partner. In turn,
costs depend on the interaction trait of the focal organism as well as on the benefits provided by the partner
(Appendix SI.1). This would correspond for instance to the development of organs like plant domatia (Szilagyi
etal., 2009): if the symbiotic ants are mutualistic, the plant can grow bigger, thereby producing more domatia,
which is more costly in absolute terms. An alternative would be to assume that the costs do not increase with
the mutualistic benefit; this would in any case be favourable to the evolution of mutualism. Moreover, in the
model some cost is paid even if the partner is parasitic or if the host is free of symbiont. For instance, doma-
tia or extrafloral nectaries are unconditionally produced (Bronstein, 1998), even though domatia size can be
plastic (Kokolo et al., 2020). Also, plants produce costly floral displays even in the absence of pollinators. Fi-
nally, another alternative arises when partners interact repeatedly, for instance during their growth. Using an
iterated prisoners’ dilemma model, Doebeli and Knowlton, 1998 assumed that large received benefits trigger
higher investment in the relationship. The interaction traits therefore become subject to phenotypic plasticity,
in function of the partner’s trait. This assumption favors the transition to mutualism since mutualists benefit
more from being associated with mutualists. In contrast, our set of assumptions is more conservative.

Antagonistic coevolution of the parasitic system The evolutionary dynamics of the parasitic system
have been ignored here, although they might affect the probability of transition. In the model the hosts
cannot become resistant against the parasitic symbiont, which fits with the "superpathogen" of the gene-for-
gene model (Salathé et al., 2008). This can be interpreted as a monomorphic long-term result of Red Queen
dynamics, some constrain preventing the appearance of new resistant and virulent alleles. However, if the
host-parasite interaction is instead ruled by a matching allele model (Salathé et al., 2008), dispersal and the
associated spatial structure is likely to maintain polymorphism (Sasaki et al., 2002). During the early stages of
the transition, formerly parasitic symbionts turned mutualistic will inherit this matching genetic system and
will need to find compatible hosts. This adds another requirement, rendering the transition less likely.

Asexual reproduction Many models of (co)evolutionary dynamics assume asexual reproduction (e.g.
Kéfi, Van Baalen, et al., 2008; Loeuille and Loreau, 2005), especially within the framework of Adaptive Dy-
namics (e.g. Dieckmann, Marrow, et al., 1995; Loeuille and Loreau, 2005). In the case of sexual reproduction,
recombination may soften the correlation between dispersal and interaction traits, which is nevertheless es-
sential to the transition. However, the work of Dieckmann and Doebeli, 1999 on the coevolution between a
niche and a mating trait showed that linkage disequilibrium can itself evolve, thereby preserving the corre-
lation between traits. In the present case a linkage disequilibrium between dispersal and interaction traits
may also evolve; we therefore speculate that sexual reproduction would not prevent the transition in the long
term, but only delay it.

Superinfections We previously assumed that only a single symbiont could infect a host, however several
strains may compete within the same host (Alizon, Roode, et al., 2013; Bongrand and Ruby, 2019; Zytynska
and Weisser, 2016). The host may be able to prevent the proliferation of parasitic strains (Sachs, Russell, et al.,
2010), but parasitic strain may also overcome the others, which could prevent the evolution of mutualism
(Jones, Bronstein, et al., 2012). An extension of the model, presented in Appendix SI.7, includes superinfec-
tions where mutualistic symbionts can be dislodged by parasites reaching the same host. When superfin-
fection probability rises above 50%, the transition is prevented, otherwise mutualistic symbionts can persist,
although at lower densities than without superinfections (Figure SI.14). Thus, although superinfections are
clearly detrimental to the transition, mechanisms favouring the evolution of mutualism in our present model
can resist some degree of competitive exclusion by parasites.

The evolution of cheating Our main interest was to understand how mutualism can evolve from a par-
asitic relationship (Drew et al., 2021; Roughgarden, 1975) but mutualism may also have evolved in the first
place, the classic evolutionary problem in this case being how can it resist to the invasion of "cheaters" (e.g.


https://doi.org/10.1101/2021.08.18.456759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456759; this version posted July 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Ferriere, Bronstein, et al., 2002; Jones, Afkhami, et al., 2015; Sachs, Ehinger, et al., 2010). According to Jones,
Afkhami, et al., 2015, cheating "(1) increases the fitness of the actor above average fitness in the population
and (2) decreases the fitness of the partner below average fitness in the partner population". The latter condi-
tion is always satisfied by parasitic symbionts, but the former remains to be checked. Simulations starting with
mutualistic symbionts only are rapidly invaded by parasites, leading to an evolutionary equilibrium identical
to the one reached by Figure 2c (details not shown). The population-level fitness (sensu Metz et al., 1992) of
parasites is therefore positive when they are rare, thereby satisfying condition (1), and it gradually decreases
to zero until the evolutionary equilibrium is reached. Hence, our model also accounts for the invasion by
cheaters of an initially mutualistic system, leading to a coexistence of both strategies. Mutualism may also
evolve from a competitive interaction, if two competitors start exchanging resources, each being a better ex-
ploiter of the resource it provides, and limited by the resource it receives (De Mazancourt and Schwartz, 2010).
However it is unknown to what extent this kind of mutualism is sensitive to cheating; spatial effects similar to
those studied here might stabilize it.

The interplay between several levels of selection

Although the first models of group selection relied on well-defined groups (e.g. Smith, 1964; Wilson, 1975),
multilevel selection theory has since been extended to fuzzy group boundaries and more complex landscapes
(e.g. Lion and Van Baalen, 2008; Nunney, 1985; Tekwa et al., 2015) like in the present case. Earlier in the dis-
cussion, intermediate dispersal has been interpreted as the result of a balance between two components of
inclusive fitness, kin selection and kin competition, which have been recognized as particular cases of multi-
level selection (Goodnight, 2005; Lion and Van Baalen, 2008; Queller, 1992; Sober and Wilson, 1999). Although
our model is too complex for an analytical derivation of inclusive fitness, this should be possible in principle,
as it has been done for simpler models of the evolution of altruism (Hamilton and Fox, 1975; Lehmann et al.,
2007; Lion, Jansen, et al., 2011; Marshall, 2011; Wade, 1980). However, the levels-of-selection problem is more
a question about the level at which there is a causal link between character and fitness (Okasha, 2006; Okasha,
2016; Sober, 1984; Sober and Lewontin, 1982), rather than the level at which a mathematical formulation of
fitness can be derived ("bookkeeping" in the words of S. J. Gould 2002, p. 619). Following Sober, 1984, we will
consider that selection at a given level of organization occurs if the different entities belonging to this level
are variable with respect to some property causally involved in the survival or reproduction of the organisms
forming the entities. Since Sober’s formulation has been originally framed in the context of group selection,
we first discuss how the levels-of-selection problem for mutualism can be related to the group selection de-
bate in the context of altruism. The mechanism by which parasitic symbionts and hosts can invade mutualistic
clusters is a two-species version of the tragedy of the commons (Feeny et al., 1990; Hardin, 1968, 1998). In the
case of altruism, the tragedy of the commons can be bypassed by local dispersal which triggers the formation
of cooperative clusters (Eldakar et al., 2010; Le Galliard, Ferriére, et al., 2003; Mitteldorf and Wilson, 2000),
as in the present case. The evolution of altruism results from the conflict between two levels of selection,
the organismic-level favouring cheaters and the group-level favoring altruism (Simon et al., 2013; Van Baalen
and Rand, 1998; Wilson and Sober, 1989). At a given time step, neighbouring altruistic organisms help each
other, which favors their fecundity. Shortly after the local density of altruists increases, which is beneficial
for their offspring’'s fecundity as well. Since the transition to mutualism is egalitarian whereas the transition
to altruism is fraternal, it is unclear if the evolution of mutualism involves the same levels of selection as for
altruism. Sure enough, mutualism is also counter-selected at the organismic level, since mutualism is costly
to both hosts and symbionts. However, differences between altruism and mutualism may arise at higher
organization levels because at a given time step mutualists help their heterospecific partners but not their
neighbouring conspecifics. In the present model the evolution of mutualism involves selection at the level of
the host-symbiont pair, since at a given time step the reproduction of each of its organisms depends on the
properties of the pair (the interaction traits o, and ay). This resembles the tit-for-tat strategy where coop-
erators are selected at the pair level (Sober and Wilson, 1999; Wilson, 2004). The mutualistic host-symbiont
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holobiont therefore emerges as a new unit of selection (Drew et al., 2021; Roughgarden et al., 2018).

Considering several times steps in a row, another level of selection appears. Since mutualists also disperse
locally (Figure 3), after some time a mutualistic pair may trigger the formation of a mutualistic cluster (Fig-
ure 4c). Neighbouring mutualistic pairs do not help each other directly at a given time step, but indirectly
by increasing the likelihood that their offspring will encounter mutualistic partners in the subsequent time
steps. Although only hosts and symbionts reproduce in the traditional sense of organismic reproduction, the
association between mutualistic hosts and symbionts is also re-produced (Doolittle and Inkpen, 2018; Griese-
mer, 2001) via local dispersal and cluster formation. Selection at the cluster level therefore occurs, since
clusters dominated by mutualistic pairs will favour the reproduction of organisms and the re-production of
mutualistic pairs. The re-production of pairs constitutes a another mechanism of inheritance, different from
the one occurring during organismic reproduction, and fits with the idea that major evolutionary transition
involve the evolution of informational systems (Szathmary, 2015; Szathmary and Smith, 1995). It is therefore
hard to match Hull's (1980) categorization of replicators (here, hosts and symbionts) and interactors (here,
pairs), since during the transition mutualistic pairs also acquire a replicative power via the evolution of local
dispersal. This also emphasizes that Sober’s (1984) formulation of group selection needs to be generalized
for the present context, since the properties of clusters favor not only the reproduction of organisms but also
the transmission of higher-level properties. Mutualistic clusters are self-perpetuating systems (Lenton et al.,
2021), some of their properties being homeostatic (Ibanez, 2020). However, we believe this is not enough to
qualify to evolutionary individuality (sensu Godfrey-Smith et al., 2013) since conflicts are still vivid (Queller and
Strassmann, 2016); mutualistic clusters being prone to the invasion by parasites (Figure 4c). The transition to
mutualism may lead to genuine evolutionary individuals during later phases which would suppress conflicts.

Lastly, in the absence of dispersal cost mutualism rarely invades when host competition is weak (Figure 2a),
despite the occasional formation of mutualistic pairs. Without dispersal cost, competition between hosts at
the global scale is necessary for the transition to mutualism (Figure 5b). The global scale therefore constitutes
another level of organization involved in the transition to mutualism. Global competition between hosts acts
as an environmental factor mitigating selection at the different organization levels discussed above. This en-
vironmental factor is not fixed by a parameter but instead determined by the evolutionary dynamics of the
whole system, it is at the same time subject and object of evolution (Lewontin, 1982, 1983).

Host dependency and irreversibility of the transition

Major transitions in evolution are characterized by their irreversibility and by the interdependence between
the agents (Estrela et al., 2016; Szathmary and Smith, 1995). The model does not include any physiological
or developmental dependence of the host on its symbiont, or any loss of functions in the host due to gene
transfers, because we assumed that this generally occurs during later stages of the evolution of mutualism
(Nguyen and Baalen, 2020). Instead, dependence has been defined from a population dynamics perspective:
the host is ecologically dependent when its population growth rate is negative in the absence of the symbiont.
In that case the host can produce offspring, although not enough to compensate for mortality. In line with hy-
pothesis H5, we found that mutualistic hosts deprived of their symbiont exhibit a negative growth rate when
the host density after the transition to mutualism becomes sufficiently large (Figure 6). This ecological depen-
dency resulted from the density-dependent competition between hosts and the assumption that mutualism
is costly for the host, even when its symbiont is absent (as discussed above). However, ecological dependency
is not absolute: once the density of hosts becomes sufficiently low, the mutualistic hosts alone are viable. De-
pendency may become absolute for a sufficiently high cost of mutualism, butin these conditions the transition
to mutualism will not occur.

If host competition strength decreases permanently, for instance following the continuous supply of extra
resources, the reverse transition back to parasitism occurs (Figure 5c). This has been documented in nature
as well (Kawakita et al., 2015; Pellmyr and Leebens-Mack, 2000; Sachs, Skophammer, et al., 2011), although
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the mechanisms involved may well be different. Reversal towards parasitism occurs because ecological de-
pendency relies on host competition, which change with host densities, highlighting that mutualistic symbiosis
may be sensitive to environmental change (Drew et al., 2021). However, if host competition decreases punctu-
ally, e.g., following a perturbation of a fraction of the landscape, then mutualism persists (Figure SI.10) because
mutualistic clusters take advantage of the reduction of global host competition to colonize free cells around
them. This leads to an increase in host competition; in that case mutualism can restore the ecological con-
ditions allowing its own persistence, as in a niche construction process (Laland et al., 2016; Lewontin, 1982,
1983; Odling-Smee et al., 2013). Niche construction is generally understood as the improvement of abiotic con-
ditions (e.g. Arnoldi et al., 2020). In the context of mutualism, it is due to the improvement of host densities,
which induces an increase in host competition. This also occurs at the beginning of the transition, when the
first mutualistic clusters trigger an increase in global host density. Although this has not been tested formally,
the reversion is also very likely to occur if host competition for resources shifts from global to local, since it
is apparent from Figure 5b that local competition completely prevents mutualism, even in the presence of
dispersal cost.

Conclusion

In the present paper, we aim to understand the mechanisms promoting the transition from parasitism to
mutualism. To tackle this issue, we develop an agent based model on a lattice. In our general model, we
only assume that the mutualistic interactions influence the fecundity of both partners and that hosts face
density-dependent competition; and ensure that the antagonistic system is stable in absence of mutations.
We found that in the absence of vertical transmission or partner control mechanisms, the joint evolution be-
tween mutualistic effort and local dispersal can trigger the transition from parasitism to mutualism, provided
that intraspecific competition between host is sufficiently global and that either dispersal cost or competition
strength is large enough. Unexpectedly, we found that mutualistic clusters invade the antagonistic system
thanks to their ability to increase the population densities of both partners, thereby triggering global com-
petition between hosts and rendering regions where hosts are mainly associated with parasitic symbionts
unsuitable. In contrast, the higher fecundity of mutualists is not advantageous enough to compensate for the
ability of parasites to invade mutualistic clusters, contrary to our initial expectation. Our results suggest that
the eco-evolutionary feedback involving competition between hosts might promote the transition from para-
sitism to mutualism in a wide range of biological systems, such as plant-fungi, plant-ant and plant-seed-eating
pollinator interactions.
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Data, script and code availability

All the codes used to compute the outcomes of our model and the figures of the paper are available online:
https://doi.org/10.5281/zen0d0.6463210.

Supplementary Information

SI.1 Mathematical and numerical details of the model

We present here the mathematical underpinnings of the model as well as some details of the numerical
computation.

Rules of the individual based model description Our model follows the cycle presented in Figure SI.1:

* Host and symbiont die with fixed probability m € (0, 1).

+ They produce offspring, possibly with different traits from them due to mutation. The fecundity of the
parents depends on their two traits (a,e) € [0,1]? and on their interactions with their possibly cell-
sharing partner.

* The offspring are dispersed according to the parents’ dispersal traits ¢.

+ The offspring of the hosts may establish only in empty cells, while the offspring of the symbionts can
only establish in cells already occupied by a solitary host. If several organisms arrive in the same cell, a
lottery determines which one will establish, while the others die.

In our numerical computations, mutations occurred only after the descendant was successfully established in
a cell. This procedure saves computational time and did not influence our results because offspring dispersal
and establishment do not depend on their traits but only on their parent traits. Furthermore, the mortality
process was applied to both types of agents simultaneously, while the reproduction and dispersal processes
were applied consecutively to the hosts and then to the symbionts. We confirmed that the order of the algo-
rithm did not qualitatively affect our results.

Fecundity and the average offspring number The fecundity f of an agent depends on its mutualistic
interaction trait o as well as the interaction trait of its cell-sharing partner. This continuous trait ranging
between 0 and 1 determines the intensity of the agent investment in the mutualistic relationship.

We assumed a positive interaction trait dependence between agents. A mutualistic agent tends to increase
the fecundity of its cell-sharing partner. The interaction fecundity f%(c;) of an organism of type i € {h, s}, (h
= host, s = symbiont) interacting with an organism of type j € {s, h} with trait o; was defined by

f}l(O‘S) = fjwlnn + (fmaw - jfu‘n)azf

f;(ah) = fovin T (fmaa: - :ﬁm)ah

The coefficient ¢ corresponds to the mutualistic strength on the host fecundity . Using a coefficient vy > 1,
we create a convex function allowing a transition from parasitism to mutualism for a central value of the
symbiont interaction trait. However, note that modifying the shape of this fecundity curve (from concave to
convex via linear) does not qualitatively change our results.

On the other hand, a mutualistic agent has an intrinsic cost reducing its fecundity. The mutualism cost
Cm(a;) of an organism of type i € {h, s} (h = host, s = symbiont) ranges between 0 and 1, and it increases
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Figure SI.1. Sketch representation of the individual based model. The host population (H) and the symbiont
population (S) undergo intrinsic mortality, then reproduction, dispersal, establishment, and finally mutation.
The mortality step is simultaneous for the host and the symbiont, while the other steps occur first for the host
and then for the symbiont.

with interaction trait a; of the agent. It is defined by
Cin(ai) =1-cnhoy (6)

where ¢, is the maximal cost of mutualism.
Thus, for the host as for the symbiont, the fecundity f; of an organism i interacting with an organism j
is the product of the interaction fecundity f;(c;) defined by (5) and the cost of mutualism C,,(«;) defined

by (6).
= Cp(am) f1 ()
f°=Ch(as) fi(an)

)

When a host agent is alone in a cell, its fecundity is defined by its intrinsic host fecundity f* weighted by its
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mutualism cost C,,, (ay,): Fecundity of the solitary host:
1 =Cpan) S ®

We assume that the cost of mutualism is paid regardless of whether the interaction is realized.

In general, the average offspring number is not integer, yet the number of offspring in our model can only
be represented by an integer. Thus, in the numerical algorithm, the fecundity was used as the A parameter
of a Poisson distribution. If the value drawn from the distribution was greater than the maximum fecundity
fmaz, then it was set back to the maximum fecundity.

Mutualism/parasitism threshold In our model, the presence of a host always produces a net benefit for
the symbiont. However, the presence of the symbiont might be detrimental for the host. Indeed, the fecundity
of ahost hinteracting with a symbiont sis f*(ay, as) = f#(as)Cin (), while the fecundity of the same host b
without a symbiont is f"?(ay,) = f*C,y,(ap). Thus, the host has net benefit only if its fecundity in association
with a symbiont is larger than its fecundity alone. Therefore, mutualism only occurs when f7(ay) > f.
Otherwise, the interaction is parasitic. This criterion does not depend on the host mutualism trait oy, because
hosts always pay the same mutualism cost. Thus, we can define the mutualism/parasitism threshold o such
that f(a) = f9; thus, we obtain

a _ fh /vy
o = (mm) ~ 0.475 9)

° fmagc - #Lm

with the parameters set in Table 1.

Competition To test the effect of the spatial scale of the competition, we introduced a scale parameter
wy, € [0,1] that weighs the effect of local pi“® and global leOb“l host density on the competition. The
establishment probability thus satisfies

obal\ ¢
Pr=1= (1= wn)of=" + wy pff ) (10)

The local host density pﬁfc‘“ corresponds to the host density in the 8 neighbouring cells surrounding the im-
plantation cell of the host, while the global density piloml corresponds to the host density all over the land-
scape (see Figure SI.2 for a schematic representation).

These competition scales may have various ecological explanations. For instance, plants sharing the same
water table face global competition for this resource. Conversely, the competition for light between plants is
an example of local competition. Thus, our competition scale model allows us to describe the competition for
several different resources that may appear at different scales. Following our previous examples, if the water
supply represents 90% of the competition and light supply represents only 10%, then the competition scale

wp, is wp, = 0.9 (90% global competition and 10% local competition).

Distribution of mutation effects During reproduction, organisms generate offspring with traits that can
deviate from their traits due to mutation. The effects of mutation on each trait are independent. However,
the mutation effect does depends on the trait of the parent. For instance, an organism with trait a will give
birth to an organism of trait a +  where 3 is drawn from a distribution with probability distribution function
given by K (8 |«), which depends on the trait of the parent « (Figure SI.3). In our model, we use a modified
Beta distribution with shape parameters (1, 3) to describe the effects of the mutation. More precisely, for a
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Figure SI.2. Local and global host densities influence the probability of establishment in the focus cell (pink
filled square). The global density corresponds to the host density in the whole 36-cell landscape. The local
density corresponds to the density in the eight cells vicinity around the focus cell.

parent of trait o, the effect of mutation is a random variable 5 defined by

B = (Bmaz & B)Lo<a+Bas ¢ B<1

where B is a random variable, which follows a Beta distribution, £ is a random variable independednt of B,
which follows a Bernouilli distribution (P(§ = 1) = P(§ = —1) = 1/2). In other word, the random variable 3
follows the probability distribution function K (5 |«), with « € [0, 1]:

3

2
= 55 (Bmaz = 11) Lys1<,.., Lo<arp<t + Ko(@)ds=o (11)

K(Ba)

where 1 is the indicators function, § is the Dirac mass and the function Ky («) is defined by

1 .
Wm(ﬁmax - a)g if @ < Brae
Ko(Oé) = 0 if ﬁmax <a< 1-— Bmax (’I 2)
1
_— —1-a)? i >1-
2B73mm (ﬁmam a) ifa > Bmaa

Moreover, we investigate the effect of the maximal effects of mutation 3,4, on the proportion of mutualis-
tic symbionts. From our formula, we know that the mean effect of mutation depends on the trait of the parent
a but it is proportional to S,,4., and it ranges between 35,4, /8 for parents with intermediate trait (o ~ 0.5)
and 30,4 /4 for parents with trait either close to 1 or 0. We show in Figure Sl.4 that increasing the mean
effect of mutation increases the proportion of mutualistic symbionts in the population. Thus large effects of
mutation favour the emergence of mutualism. In our simulations we fix the maximal effect of mutation to

Bmaaz = 0.5.

Dispersal At each time step, hosts and symbionts produce offspring which can disperse over the landscape
either locally or globally. For each agent, the proportion of its offspring dispersing globally is given by the dis-
persal trait €. The location of offspring dispersed locally is chosen randomly uniformly over the 8 neighbors
of its parents, while the location of those dispersed globally is chosen uniformly over the entire landscape
expected the location of the parent (Figure SI.5 for the description of the local and global scale). In particular,
a globally dispersed organism can arrive in the local neighbor of parents as the locally dispersed one. More-
over, the offspring are dispersed independently from each other and their location is chosen independently
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Figure SI.3. Distribution of mutational effects K (3|«). Each parent of trait, e.g. o or aw, produce offspring
with trait «; + /3 where j3 has the density K (3|«;) depending on its parent traits (red and blue curves for ay
and ao, respectively).
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Figure S1.4. Effect of the average mutation effect (parameter (,,,, of distribution kernel of mutation effect)
on the proportion of mutualistic symbionts.

of the current landscape. In particular, offspring can arrive at an already occupied location and symbionts’
offspring are not only dispersed in location where there is already an host. For instance if a host disperse
2/3 of its offspring at large distance from it, its dispersal trait satisfies ¢ = 2/3. Then the 2/3 of its offspring
are dispersed randomly uniformly in the entire landscape (red stars in Figure SI.5) while the remaining 1/3 is
dispersed locally around it (red circles in Figure SI.5).

Assortment index To compute the assortment index, we measured the similarity between spatially neigh-
bouring phenotypes for the spacial repartition resulting from the transition to mutualism and for the same
spacial repartition but with phenotypes randomly redistributed among organisms. The assortment index cor-
responds to the difference between the measurement made on the space resulting from the transition to
mutualism and the measurement on the randomly rearranged space. If the index shifts positively (resp. neg-
atively) from zero, it means that similar phenotypes are closer (resp. more distant) than different phenotypes
compared to random spatial distribution. This methodology is similar to that used in Pepper and Smuts, 2002
and Pepper, 2007.
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Figure SI.5. Local and global dispersal of offspring from the host in the red cell over the landscape. Local dis-
persal (red circles) occurs only within the neighborhood of the host (red dashed square) while global dispersal
(red stars) occurs over the entire landscape (red plain square). The host has a dispersal trait e = 2/3 and it
disperses 6 offspring: 4 globally (red stars) and 2 locally (red circles).

Intraspecific assortment index. ~ More precisely, for the intraspecific assortment index we use the following
similarity index for host and symbiont. For each simulation and time ¢, we compute the similarity indices S},
and S respectively among hosts and symbionts, as follows

Su(t) =1— - |on — @l (13)

where ¢, is the trait of the host h and NV}, is the total number of host in the landscape at time ¢. The quantity
@y, is the average trait in the neighborhood V}, of the host h. The neighborhood V}, of a host h is the 8 closest
cells surrounding it (figure SI.2). It is defined by

_ 1
ah—WZa,.

1€V

The similarity index among symbionts .S, is computed similarly.

Then for each time, we reshuffle the traits among the location occupied by hosts and symbionts and we
compute the associated similarity indices using equation (13). We average those indices over 1000 replicates
to compute the similarity indice S, and S,.s corresponding to a random spatial distribution.

Finally, We build the assortment index A;, as the difference between the similarity index of host S}, ob-
served and the similarity index .S,.;, of host when we randomly assigned trait of the host over the landscape,

Ap(t) = Sn(t) = Srn(t). (14)

We also compare our assortment index with the spatial autocorrelation Moran index for the host and sym-
biont. The two indices show the same pattern. A positive spatial autocorrelation is observed after the transi-
tion occurred (Figure SI.6).

Interspecific assortment index. ~ For the assortment index between host and symbiont, we also use a measure
of similarity between the host and symbiont trait at each location of the couple. More precisely, we define
for each simulation and each time ¢ the similarity index Ss;, between host and symbiont sharing the same
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location as follows

N,
| N
Ssh(t)zl—ﬁsgms—am (15)

where N; is the number of symbiont, which is also the number of host-symbiont couple. As before, we
compare this observed index with the random index S,.5;, defined by randomly rearranging pairs of symbiont
and host and taking average over 1000 replicates. The assortment index Ay, is thus given by

Asn(t) = Ssn(t) — Srsn(t). (16)

We also compare our index with the correlation coefficient between the interaction traits of hosts and sym-
bionts. We find a positive correlation between trait in a same location (Figure SI1.6).

- - =Symbiont Moran index
08t =——Host Moran index
----- Correlation coefficient host/symbiont

Assortment index

2 1 L 1 ! 1
0 2000 4000 6000 8000 10000

time
Figure SI.6. Spatial autocorrelation among hosts (plain curve) and symbionts (dashed curve) are described
by the Moran index. The spatial correlation between the host and symbionts are described by the correlation
coefficient (dash-dotted curve). The shadow regions corresponds to the 95% confidence interval and curves
corresponds to the median over 100 replicates. The parameters are similar as Figure 4.

Aggregationindex From the assortmentindex analysis, we show that the symbionts and hosts are spatially
assorted according to their trait. Now we aim to investigate how they are aggregated in space. We use a
relative aggregation index A based on a measure of the number of pair of neighbors. More precisely, we
define for any spatial configuration the number of pairs of neighbors P where a neighbor of an organism is
its 8 closest cells. For instance, Figure SI.2 provides a schematic representation of a host spatial configuration
and the dashed square represents the neighborhood of the red organism. The number of pair of the red
organism is 3 in this example. Then for any spatial configuration with n organisms, we can define the maximal
number of possible pair of organism which is given by P, = 4n—[6+/n | (Harary and Harborth, 1976). Thus,
we define the aggregation index A as the ratio between P and P4,

P
Pmaz-

A:

We compute the aggregation index over time for the hosts, the parasitic symbionts (s < ) and the mutu-
alistic symbionts (a5 > o) (Figure SL1.7).

Hosts are always more aggregated than symbionts. Moreover, after the transition occurred, mutualistic
and parasitic symbionts have the same spatial signature in terms of aggregation. This pattern was already

observed in Figure 4 where we see mutualistic clusters surrounded by parasitic clusters.

SI.2 Mathematical approximation

In order to provide some heuristics about our stochastic model, we develop a simple deterministic model,
with a monomorphic population of host and symbiont. The mathematical analysis also provides quantitative
insights on our choice of parameters.
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Figure SI.7. Aggregation index of the spatial distribution of hosts (plain curve), parasitic symbionts (dash-
dotted curve) and mutualistic symbionts (dashed curve) over time. The shadow regions corresponds to the
95% confidence interval and curves corresponds to the median over 100 replicates. The parameters are
similar as Figure 4.

More precisely, we aim to describe the expected proportion of sites occupied by a monomorphic population
of hosts and symbionts at equilibrium with interaction traits a;;, and o respectively. We assume no mutations
of interaction or dispersal traits and hosts and symbionts disperse globally randomly over the landscape
composed of N sites. According to our stochastic model (see Fig. SI.1), the dynamics of the proportion of sites
occupied by the host alone py,, or host with symbionts py,, is given by

Pra(t+1) = {(1 —m)(pra(t) +mpns(t)) + (1 = (1 —m)pn(t)) (1 - (- m)Ph(’f))Wc)
(1= exp (= (1= m) (£ (an) (pra(®) + mpns(t) + (1 = m) f(an a)ons (1) )] }
exp (= (1= m)f*(an,a)ons(1))

prs(t+1) = (1—m)2pps(t) (17)
{0 =) (ona(t) + mpns (1)) + (1= (1= mpn(0) (1= ((1 = m)p(®)™)

1 exp (= (1= m) (/" (@) (pra(t) + mpns (1) + (1 = m) f*(an, a)pns() )| }
1—exp(— (1—m)2f(an, as)phs(t)))

where py, = pra + prs IS the total proportion of hosts. Since hosts and symbionts first face mortality with rate
m, the proportion of host alone becomes (1 — m) (ppa(t) + mpps(t)), where mpy corresponds to hosts that
have lost their symbiont, and the proportion of hosts with symbionts is (1 — m)2pp,s(t). Then hosts produce
offspring at a rate that depends on their partner: fh“(ah) (host alone) or fh(a;“ o) (host with symbiont).
The total number of offspring is thus given by

(1= m) (" (an) (pra(t) + mpns(8)) + (1 = m) f* (o, as)pns(t))

Since offspring are dispersed randomly uniformly over the landscape, the probability that at least one off-
spring enters a cell is given by

(1= exp (= (1= m) (£ (@n) (pna (6) + mpns (1)) + (1= 1) £, ) (1))

However, they can only colonise empty cells, whose proportion is (1 — (1 — m)py). Moreover, once they
enter an empty cell, their probability to establish in this cell depends on the host density p; and it is given
by (1 - (1 - m)ph(t))wc). Finally, the symbionts produce offspring at a rate f*(ap, s). Their offspring
can only colonise alone host whose proportion is now given by the term between brackets. Since symbiont
offspring are also randomly dispersed, the probability to invade a host alone is given by (1 — exp ( —(1-
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m)2 £ (an, as)pns (1) )-

In this model, the traits are fixed - if oy < a} symbionts are parasitic while there are mutualistic if o >
a. Since the symbionts need host to survive, the proportion of sites occupied by symbionts is pps. Even if
hosts and symbiont does not share the same mortality rate m, the model holds true by replacing mp;,s and
(1 — m)pns by mspns and (1 — my)pps, and the term (1 — m)2pp, by (1 — m)(1 — my)pns. We can check
that the following qualitative properties holds true with a different mortality rate. However, it will modify the
quantitative outcome of the model.

For any given pair of interaction traits, we can compute the equilibrium of this dynamical system.

Extinction.  The extinction equilibrium, which corresponds to pp, = pns = 0, always exists but it is unstable
if
1 m 1 m
ha = a <1
/ (O‘h) (1 - m) (1 - Cmah)f (1 - m)
We have picked parameters, which fulfill this criterion (Table 1). In particular, we can see from this formula
that increasing the mutualism cost ¢, can lead to non viability of more mutualistic host. In our simulations,

we fix this value to ¢,,, = 0.3.

Absence of symbionts. We first look at the case where the symbionts are absent, p,s = 0. Then the
equilibrium pr, = pn should satisfies the following equation

pn = (L=m)pr,+ [L—exp (= (L= m) " (an)pn ) | (L= (1 =m)pn) (1= (A =m)pn)®)  118)

For our fixed parameters stated in Table 1, this equation admits a unique solution in [0, 1] and the proportion
of host py alone without symbionts ranges between 0.25 and 0.34.

Without symbiont, the proportion of host converges to p, = pre = 34, 14% (y¢ = 0.2 and «a;, = 0). Thus
in absence of any symbionts, the host always survives.

However, this equilibrium is unstable in our parameters range - the jacobian around this equilibrium has
an eigenvalue A with modulus greater than 1, A = (1 — m)?(1 + pj, f*(an, o). This suggests that a third
equilibrium exists and may be stable.

Coexistence of symbionts and host. = We also have a unique coexistence equilibrium which is a stationary state
of the model (17). In our parameters range, this equilibrium always exists and it is always stable and attractive
for any values of the interactions traits (o, o).

So, in the presence of a parasitic symbiont (s = 0), the proportion of hosts converges to p, = 0.15 and
the proportion of symbionts to p,s = 0.106% which is in accordance with our simulation at initial time ¢ = 0
(see Figure 2 b and ¢). In addition, when hosts (o, = 0) are associated with mutualistic symbionts (as = 1),
the proportion of hosts rises to p, = 0.638 and the proportion of symbionts to p,s = 0.596. Thus the gain of
cohabiting with mutualistic symbionts is indeed huge.

SI.3 Competition strength, perturbation and mutualism persistence

Competition strength determines mutualism persistence In the main text, we show that competition
is essential for the transition to mutualism, but it is also important for its persistence, as shown here. In
this section, we explored the effect of a sudden variation in competition strength ~< on the persistence of
mutualism. We started with a strong competition yc = 0.2. As expected from our previous results, a transition
to mutualism occurred (Figure SI.9a), c) and d)). Then, around t = 104, we suddenly switched the competition
strength to v¢ = 2, corresponding to negligible competition. We observed reversal of mutualism due to the
proportion of mutualistic symbionts decreasing from 20% to less than 5% (Figure SI.9a) and e)). We observed
that the reversal of mutualism due to a weakening of the competition corresponded with an increase in host
and symbiont densities. This increase is due to the reduction of competition, which determines densities more
than the presence or absence of mutualism does.
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Figure S1.8. Evolution of the percentage of mutualistic symbionts in the population over 129 simulations. Red
curves corresponds to replicates such that the percentage of mutualistic symbionts remains greater than the
threshold of 10% - transition to mutualism. Black curves corresponds to replicates where the percentage
remains below the 10% threshold - no transition.
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Figure S1.9. The transition to mutualism and collapse of mutualism depending on competition. a) Host and
symbiont average interaction traits and the percentage of mutualistic symbionts over time. b) Host and sym-
biont abundance. There is strong competition from time t = 0 to t = 10* and negligible competition from
t = 10* to the end. ¢) Dispersal and interaction traits distribution before the transition to mutualism. d)
Dispersal and interaction traits distribution during mutualism persistence. e) Dispersal and interaction traits
distribution after mutualism collapse. Parameters are m = 0.06, ¢,, = 0.3, wy, = 1, f2. = 0.1, f5,., = 2.5,
fmaz =8 f*=0.5, Bae = 0.5and d = 0.

Density perturbation does not affect mutualism persistence Next, we tested how mutualism responds
to a decrease in competition due to eradication of hosts and symbionts in a large homogeneous region of
space (Figure SI.10). While previously we demonstrated that mutualism regresses when competition is set to
be weak, we show here that mutualism persists in the face of decreased competition due to decreased host
density.
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Figure S1.10. Maintenance of mutualism in the face of a reduction in competition caused by a perturbation
creating a large square of free cells. Snapshot at several times: ¢t — 1 is the eco-evolutionary equilibrium with
mutualism just before the perturbation, then at ¢y the perturbation, and then ¢ + 5, ¢t + 10, ¢t 4+ 100 and
t + 10000 after the perturbation. In black, the free cells; in green, the hosts alone; in blue, the couples with
parasitic symbionts; and in red, the couples with mutualistic symbionts. Parameters are m = 0.06, ¢,,, = 0.3,
wp=1,7%¢ =02 fr. =01, f5. =25, fraz =8 f* = 0.5, Braz = 0.5and d = 0.
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SI.4 Mortality and dispersal cost can induce host dependency in emerging mutualis-
tic systems.

In the main text, we focused on the effect of mortality m and dispersal cost d on the transition to mutualism
and host dependency. Here, we present in more detail the effect of dispersal cost on the distribution of hosts
and symbionts in trait space for three values of dispersal cost and fixed mortality rate (Figure SI.11). In addition,
the table SI.1 shows the features of the clusters in the trait distribution.

We demonstrated that the dispersal cost favours the transition to mutualism. Moreover, even when the
cost was high, the features of the clusters revealed that parasitic symbionts maintained a more global disper-
sal than mutualistic symbionts.

mean mean
dispersal cost species interaction trait dispersal trait
d=20 hosts 0.074 0.81
parasitic symbionts 0.06 0.82
mutualistic symbionts * (density < 2%)  * (density < 2%)
d=0.3 hosts 0.45 0.35
parasitic symbionts 0.07 0.39
mutualistic symbionts 0.88 0.17
d=0.75 hosts 0.36 0.19
parasitic symbionts 0.08 0.18
mutualistic symbionts 0.84 0.10

Table SI.1. Features of the clusters in the traits domain
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Figure SI.11. Joint distribution of the host (green), the parasitic symbiont (blue) and the mutualistic symbiont
(red) populations in the traits domain for mortality m = 0.03 and anincreasing dispersal costd € {0,0.3,0.75}.
The ellipses correspond to the standard deviation. The 48 runs averaged in Figure 6 are plotted together.
Other parameters are ¢,, = 0.3, wy, = 1, 7¢ = 0.2, f*. = 0.1, f5. = 2.5, frae = 8 f* = 0.5 and
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ﬁmam = 0.5.
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SI.5 Density-dependent competition between symbionts

In the main text, symbionts compete for free hosts, which is a form of density-dependent competition.
Other ecological factors may also lead to density-dependent competition between symbionts, for instance
if symbionts compete for resources that are not provided by the hosts. Figure SI.12b shows that density-
dependent competition between symbionts reduces symbiont density, as expected. Hosts are therefore free
of symbionts more often, which selects for non-mutualistic hosts (Figure SI.12¢c, to be compared with Fig-
ure 3b).

SI.6 Evolutionary rescue

Figure 6 provides evidence for evolutionary rescue, as discussed in the main text. Figure SI.13 shows that
this occurs only in a fraction of the simulations, when mutualists arise soon enough to rescue the whole
system.

SI.7 Symbionts competition within hosts

In our current model, a host can be colonised only by one symbiont and once the symbiont is established
on a host, it cannot be replaced by another symbiont. Furthermore, when several symbionts arrive at the
same time on an available host, the symbiont, which establishes, is chosen randomly uniformly among the
contenders. Here, we relax these assumptions in order to model symbionts’ competition within a host, or
"superinfection". We assume that within a host, the most parasitic symbiont, with the lowest interaction trait,
is the most competitive symbiont. Thus, it will be more efficient to establish in a host or dislodge a symbionts
from the host.
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Figure SI.13. Frequency at which evolutionary rescue occurs. This figure is identical to Figure 6, except that
it maps the probability of extinction before the transition, instead of the mean percentage of mutualistic
symbionts. The dotted black line indicates the upper boundary of viability for the parasitic system, without
evolution. Above the dotted black line, in some cases the evolution of mutualism rescued the whole system,
although the parasitic system is unviable alone. In the white region, the systems goes extinct, even with
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Establishment of symbionts on a host.  Specifically, when N symbionts, with trait {a, ..., ax} arrive on
a host, the establishment probability P? of the symbiont i is given by :

N
i Di . . 1 _ _ 1
P = ~ with p; = min <max (N — (g — @) Smaz,O) ,1) , and a = N;aj (19)
i=

sz'
i=1

where S, measures the superinfections’ intensity, which corresponds to the maximal competitive advan-
tage of a symbiont. For instance, when a truly parasitic symbiont a; = 0 tries to establish with a truly mu-


https://doi.org/10.1101/2021.08.18.456759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456759; this version posted July 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

tualsistic symbiont aip = 1, its establishment probability is P} = (1 + Syu42)/2 > 1/2. The establishment
probability of the mutualsitic symbiont is P? = (1 — S42)/2 < 1/2.1f Spae = 0, they have the same
probability of establishment, while if S;,,, = 1, the parasitic symbiont always over-competes the mutualistic
symbiont.

Replacement of a resident symbiont When N symbionts with trait {«, ..., ay} arrive in a host already
occupied by a resident symbiont with trait o, they may dislodge the resident. Specifically, the probability of
the resident symbiont to persist P, is given by

N
. _ |
P, = min (1 — (s — @) Spaz, 1) with & = N ;ai. (20)

In particular, if the resident has a trait s lower than the mean trait of the invaders &, then the resident always
persists. Otherwise, the resident may be dislodged with a probability smaller than S,,,4... Then if the resident
is dislodged, the establishment probability of the N invader symbionts is given by the previous formula (19).

Figure SI.14 shows the effect of the superinfection intensity S,.q. on the percentage of mutualistic sym-
bionts. We show that despite the competitive advantage of parasitic symbionts when competing for a host,
the transition to mutualism is possible when the superinfection intensity is not too large (if Sy < 1/2, tran-
sition occurs, that is the percentage of mutualistic symbionts stays above 10%). Moreover, when S, < 1/2,
the trait distribution of symbionts is bimodal.
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Figure SI.14. a) Percentage of mutualistic symbionts in function of the maximum superinfection advantage
Smaz averaged over 20 simulations per parameter values. b) Distributions of symbionts population in traits
domain according to five intensity of superinfection advantage S,,q.. Distributions corresponds to 20 sim-
ulations for each parameter values. These results are obtained with a maximum time projection of 5000
time steps, a strong and global competition (y¢ = 0.2) and a dispersal cost (d = 0). Others parameters are
m = 0.06,c,, = 0.3, fh. =0.1, 3, = 2.5 frae =8, f¢ = 0.5and Bas = 0.5.
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