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Abstract

Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating
disease progression in vitro. MPS could be better predictors of human outcome than current animal
models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain
significant challenges. Here, we address these challenges using an integrated experimental-
computational approach. This approach allows for in silico representation and predictions of glucose
metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected
in a closed loop with circulating medium. We developed a computational model describing glucose
metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific
basis using data from seven experiments, where single-liver or liver-islet cultures were exposed to both
normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated
models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS
experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin
secretion. We also investigated the behavior of the system under hypoglycemia by simulating this
condition in silico, and the model could correctly predict the glucose and insulin responses measured in
new MPS experiments. Last, we used the computational model to translate the experimental results to
humans, showing good agreement with published data of the glucose response to a meal in healthy
subjects. The integrated experimental-computational framework opens new avenues for future
investigations toward disease mechanisms and the development of new therapies for metabolic

disorders.

Keywords: In silico modelling, In vitro to in vivo extrapolation, Type 2 diabetes mellitus, quantitative
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease characterized by impaired glucose
homeostasis. In healthy individuals, plasma glucose levels are maintained within a narrow range (3-9
mM) (Balducci, 2014) via a negative feedback between glucose and insulin. Insulin is secreted in
response to elevated glucose levels, increasing glucose uptake in target tissues (adipose, muscle and
liver) to restore normoglycemia (Bergman, 1989). In early stages of the development into T2DM, target
tissues become insulin resistant and require higher insulin concentrations to maintain normal glucose
levels (Petersen and Shulman, 2018). Initially, B cells compensate for insulin resistance through
upregulation of insulin secretion (B-cell adaptation), but over time they are unable to meet the increased
insulin demand and overt T2DM manifests (Stumvoll et al., 2005). While these general steps in the
disease etiology are well established, more detailed knowledge of the interplay between insulin

resistance, pancreatic -cell adaptation, and the progression of T2DM is still missing.

Currently, research on the pathogenesis and potential therapeutic agents in T2DM is primarily based on
in vivo animal models (Calcutt et al., 2009). However, the translatability of these animal-based studies
to human outcome is often limited. One fundamental obstacle for this translation is the naturally existing
phylogenetic difference between the animals typically used in preclinical testing and humans. While
these models can still be valuable for mechanistic and mode of action studies, the majority of drug
candidates that show promise in preclinical animal studies ultimately fail to result in functional and safe

drugs in humans (Olson et al., 2000; Chandrasekera and Pippin, 2014).

Because of aforementioned limitations in using animal studies, there is a critical need for novel
preclinical models that can better represent human physiology and predict in vivo outcomes. This need
has fueled the development of microphysiological systems (MPS), which are microscale devices capable
of replicating human physiology in vitro. By integrating 3D cultures of human organ-specific cells in a
microfluidic platform, these in vitro systems aim to recreate key microenvironmental aspects of in vivo
tissues (flow, multicellular architectures, and tissue-tissue interfaces), thereby being more
physiologically relevant than standard cell cultures (Esch et al., 2015; Marx et al., 2016; Zhang et al.,
2018).

We have previously presented a two-organ MPS integrating liver and pancreas, which offers an
advantage over single-organ MPS for studying glucose homeostasis (Bauer et al., 2017). Recent
advances in MPS technology have led to the development of single organ-MPS for both liver (Lee et
al., 2007; Materne et al., 2013; Banaeiyan et al., 2017; Du et al., 2017; Ortega-Prieto et al., 2018) and
pancreas (Wu Jin et al., 2021), which are two major organs involved in the maintenance of glucose
homeostasis. However, single organ-MPS have limited relevance for studying metabolic diseases like

T2DM, as the underlying pathophysiology involves disruption in the homeostatic cross-talk between
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several organs. Therefore, multi-organ platforms capable of capturing interactions between two or more
organs are best suited for investigating these diseases in vitro. Our previously developed liver-pancreas
MPS supports a homeostatic feedback loop between co-cultured human liver spheroids and pancreatic
islets (Bauer et al., 2017). This MPS allows detailed investigations of mechanisms underlying T2DM
through enabling changes in both the operating and co-culture conditions in a controlled and systematic
manner. For instance, one could perform changes in the glycemic levels or the composition of the co-
culture medium, as well as in the number and metabolic functions of the co-cultured cells. Moreover,
unlike other in vivo and in vitro models, this experimental setup offers great flexibility to study
interactions between specific subsets of organs. Therefore, assays based on this system could become

superior to animal experiments for studying disease progression and drug metabolism.

However, to improve the applicability of our liver-pancreas MPS, two major challenges should be
addressed. First, there is still limited mechanistic understanding of the physiological processes in the
MPS. Elucidating these mechanisms using a purely experimental approach would be challenging, as the
biological processes underlying glucose-insulin regulation in the MPS are complex, non-linear, and
involve numerous feedback loops. Because of these complexities, relying on qualitative analysis and
statistics of the experimental data may often lead to incorrect conclusions (Jullesson et al., 2015; Nyman
et al., 2015). Second, the experimental findings from the system cannot be directly extrapolated to in
vivo, human outcome. Although existing strategies for on-platform scaling could be applied to achieve
in vitro responses that better mimic those observed in vivo, these have proven insufficient to ultimately
establish the translation to humans (Cirit and Stokes, 2018). These two challenges could be confronted
using computational modelling. More specifically, computational modelling provides a framework to
quantitatively represent the system including its nonlinearities and feedback loops, integrate and
interpret the experimental measurements, infer physiological variables that cannot be directly measured

in vitro, and enable in vitro to in vivo translation.

While several studies have shown the added value of combining computational models with multiorgan
MPS for data interpretation, these have mainly focused on pharmacokinetic (PK) (Prot et al., 2014;
Kimura et al., 2015; Edington et al., 2017; Lee, Ha, et al., 2017) and in some -cases
pharmacokinetic/pharmacodynamic (PKPD) strategies (Sung et al., 2010; McAleer et al., 2019; Novak
et al., 2020), rather than providing mechanistic understanding of the underlying physiology. Some
efforts have been done to integrate MPS with more descriptive models, often referred to as quantitative
systems pharmacology (QSP) models (van der Graaf and Benson, 2011;Cirit and Stokes, 2018). These
models generally incorporate physiological parameters describing the MPS operating conditions, such
as organoid sizes and flow rates, and more mechanistic knowledge about the physiology of the system.
However, to date, the number of studies exploring this approach is still limited (Stokes et al., 2018;

Maass et al., 2019; Yu et al., 2015), especially for studying glucose metabolism. A few studies have also
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focused on computational strategies to extrapolate the in vitro responses to human proportions.
Typically, these strategies account for constraints in the in vitro setting that limit the capability of the
MPS to reproduce human-like responses. These constraints generally include sizes of the organoids and
the co-culture media, mismatches in media-to-tissue ratio and the fact that some organs and functions
are missing in the MPS (Stokes et al., 2015; Sung et al., 2019). In a recent study, Lee et al. (Lee et al.,
2019) presented a computational model for a pancreas-muscle MPS to study glucose metabolism, and
added a liver compartment in silico to improve the physiological relevance of glucose and insulin
dynamics in the system. However, the model was constructed using experimental data from individual
cultures of myoblasts and pancreatic cells from rodents, and did not incorporate measurements from
interconnected co-cultures that could reflect organ cross-talk. Despite the crucial role of the liver-
pancreas cross-talk in maintaining glucose homeostasis, the combination of a mechanistic computational

model and an MPS emulating the interaction between these organs has not been investigated yet.

In this study, we propose combining our liver-pancreas MPS with a computational model to augment in
vitro investigations of human glucose homeostasis in healthy and hyperglycemic conditions mimicking
high blood glucose levels in T2DM. Our aim is to use the model to integrate and quantitatively analyze
the experimental data to improve their mechanistic interpretation, generate model predictions and,
ultimately, extrapolate the results from in vitro to in vivo. The possibility to generate human-relevant
predictions from in vitro experiments at a relatively low cost could reduce the need for animal models

of T2DM 1in the future.

2 Materials and Methods
2.1 In vitro experiments

To construct, calibrate and evaluate the computational model we used data from seven independent in
vitro MPS experiments (Supplementary Table S1). Two of the experiments (experiments 1 and 2) have
already been published in (Bauer et al., 2017). In the following section, we describe the materials and

methods for the five experiments performed for this study.

2.1.1 Multi-organ chip platform

To co-culture liver spheroids and pancreatic islet microtissues (from now on referred to as pancreatic
islets), we used the Chip2 from TissUse which allows for simultaneous culture of two organ models in
spatially separated, but interconnected culture compartments (Fig. 1A,B). Details on the design and
fabrication process of the Chip2 are described in prior publications (Schimek et al., 2013; Wagner et al.,
2013). The culture compartments are connected by a microfluidic channel, with an on-chip micropump
driving a continuous pulsatile flow that supports long-term perfusion of the chip-cultured 3D cell

constructs. Both culture compartments contain 300 uL of culture medium and the microfluidic channels
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hold additional 5 uL. of medium. The average volumetric flow rate between the compartments was set

to 4.94 uL/min, resulting in an approximate medium turnover time of 2 h.

2.1.2 Pre-culture of liver spheroids and pancreatic islets

Human liver spheroids were formed in 384-well spheroid microplates (3830, Corning) by combining
differentiated pre-cultured HepaRG cells (Lot HPRI116189, HPR116239, HPR116246,
HPR116NS080003 or HPR116222; Biopredic International; France) and passaged primary human
hepatic stellate cells (Lot PFP; BioreclamationIVT; USA) at a ratio of 24:1 as previously described
(Bauer et al 2017). HepaRG pre-cultures and liver spheroids were maintained in Williams medium E
supplemented with 10% FBS, 2 mM L-glutamine, 50 uM hydrocortisone hemisuccinate, 50 pg/ml
gentamycin sulfate and 0.25 pg/ml amphotericin B. Glucose and insulin concentrations in the HepaRG
maintenance medium were set according to the glycemic level used in the MPS culture. For cultures in
hyperglycemia, normoglycemia or hypoglycemia, the pre-culture medium contained 1 1mM glucose and
860 nM insulin, 5.5 mM glucose and 1 nM insulin, or 2.8 mM glucose and 0.1 nM insulin, respectively.
The medium used for the pre-cultured HepaRG cells was additionally supplemented with 2% DMSO,
while this was omitted in the medium for spheroid formation in order to avoid harmful effects on the
human hepatic stellate cells. Human pancreatic islet microtissues were purchased from InSphero (MT-
04-002-0; Switzerland) and maintained in 3D InSight™ Human Islet Maintenance Medium (CS-07-
005-02; InSphero) until the MPS culture. The pancreatic islet donors included five men, with an age of
54 + 5 years (range 45-57 years), body mass index (BMI) 28 + 2 kg/m?* (range 27-30 kg/m?), hemoglobin
Alc (HbAlc) 5.6 = 0.3% (range 5.1-5.8%) with no known history of diabetes. All cell cultures were
maintained at 37 °C and 5% COa.

2.1.3 MPS cultures

Before tranferring liver spheroids and pancreatic islets into the Chip2, both were washed twice with
0.1% BSA in 1xPBS and pre-incubated in insulin-free HepaRG maintenance medium for 2 hours. To
setup the co-culture, 40 liver spheroids and 10 pancreatic islets were placed into the liver and pancreas
compartments, respectively. In comparison to their respective human counterparts, this corresponds to
a downscaling factor of 100,000 in both organs (Wilson et al., 2003; Narang and Mahato, 2006). In
single-liver cultures, 40 liver spheroids were added into the liver compartment while keeping the
pancreas compartment empty. Both the co-cultures and single-organ cultures were maintained in insulin-
free HepaRG medium (referred as chip medium from here on) with glucose concentration of 11 mM,
5.5 mM or 2.8 mM depending on the glycemic regime (Figure 1C). The chip culture medium with
respective glucose level was changed first after 24 hours and then after every 48 hours over the culture

period of 15 days. In each individual experiment, all glycemic levels were studied in 4-10 replicates.
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2.1.4 In vitro glucose tolerance test

Regulation of glucose homeostasis as a result of organ cross-talk was assessed by in vitro glucose
tolerance tests (GTT) (Bauer et al. 2017). On day 13, 315 ul of co-culture medium with 11 mM glucose
was added into each of the two culture compartments and samples of 15 pul were collected after 0, 8, 24
and 48 hours. The samples collected from both compartments were pooled together for glucose and
insulin analysis, resulting in a maximal volume decrease of 10% over the entire GTT. Additionally, a
similar sampling scheme was performed on day 1 but keeping the respective glycemic level as indicated

for each regime.

2.1.5 Glucose and insulin analysis

Glucose concentrations were determined either using the GLU 142 kit (Diaglobal, Berlin, Germany) as
described previously (Bauer et al. 2017) or using Glucose Liquid Reagent (1070-400, Stanbio) with
minor modifications to the manufacturer’s instructions. Briefly, 5 pl of culture supernatant was mixed
with 95 pl of pre-heated assay reagent and after 5 min incubation at 37 °C degrees the absorbance was
measured at 520 nm. Insulin concentrations were measure using Insulin ELISA (10-1113-01, Mercodia)

following the manufacturer’s instructions.

2.1.6 Glucose-stimulated insulin secretion

After the MPS culture, pancreatic islets were transferred from the chips into a GravityTRAP™

plate
(InSphero) to analyse their glucose-stimulated insulin secretion (GSIS) as earlier described (Bauer et al
2017). In brief, pancreatic islets were equilibrated in low glucose buffer (2.8 mM) for 2 h followed by

sequential 2 h incubations first in low glucose buffer and then in high glucose buffer (16.8 mM).

2.2 Computational model of the liver-islet MPS

We developed a computational model describing glucose metabolism in the liver-islet MPS. The model
is based on data from seven independent experiments corresponding to seven different donors of
pancreatic islets (N=7). The model, outlined in Figure 2, describes key physiological processes
underlying glucose regulation on a short-term (meal response) basis and the long-term changes in insulin
resistance and [-cell adaptation associated with impaired glucose homeostasis. We included two model
compartments, each of them representing a specific organoid (liver or pancreas) and its corresponding
co-culture medium. The compartments are connected in a closed loop, and the medium circulates as

specified by a flow rate parameter.

The model is based on the long-term glucose, insulin and f-cell mass dynamics proposed by Topp et al.
(Topp et al., 2000). Here, we have modified this model to: 1) encompass two model components with
different time scales: a fast (hours) component for glucose and insulin dynamics between media

exchanges, and a slow (weeks) component describing the development of hepatic insulin resistance and
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p-cell adaptation, 2) explicitly establish an interaction between the fast and slow model components,
allowing short-term dynamics of physiological variables to impact long-term progression of the disease
(e.g. effects of daily glucose levels on insulin resistance and -cell volume dynamics), 3) support scaling
to humans by specifying organ sizes and operating conditions in the MPS (i.e. flow rate between culture
compartments and co-culture media volumes) and 4) allow inhibition in S-cell insulin secretion over

time.

The model was formulated using a system of mass-balanced, non-linear ordinary differential equations
(ODEs), and well-mixed conditions were assumed in each compartment. A complete description of the
model equations including definitions of the metabolic fluxes in the system is provided in the

Supplementary material.

2.2.1 Modelling short-term glucose homeostasis in the co-culture

The short-term glucose homeostasis was modelled in the following way. First, we based our description
of glucose on the glucose equation in the model of Topp et al. (Topp et al., 2000). This equation derives
from a simplification of the minimal glucose model (Bergman et al., 1979) to represent daily average
glucose (Ha et al., 2015). Glucose content in the liver compartment culture medium is controlled by
glucose dosing to the system, endogenous glucose production and glucose uptake by the liver spheroids,

as well as glucose inflow from and outflow to the pancreas compartment:

ANG, jiver (t)
+ﬂer = Gd (t) + VHepaRG.Spheroids ' EGP(t)
1)
Nl )\ NG i t NG t (
- VHepaRG,spherOids EGO + SI (t) : m,lwer( )> m,lwer( ) + Q . m,pancreas( )
Vm,liver Vm,liver Vm.pancreas
NG, ;; t
— Q .M (mmol/h)
Vm,liver

where the symbols in the equation are defined as follows. NGy, jiver (t) and NGy, pancreas(t) are the
number of glucose molecules (mmol) in the culture media corresponding to the liver and pancreas
compartments, respectively, and NI jjyer(t) is the number of insulin molecules in the liver
compartment’s co-culture medium (mIU). The glucose input rate G, (t) (mmol/h) represents glucose
variations due to media exchanges, and EGP(t) describes endogenous glucose production in the liver
spheroids (mmol/L/h). After analysing the experimental data, EGP(t) was concluded to be negligible
based on the observed decline in glucose levels below normoglycemia (5.5 mM) in the system.
Therefore, in practice, EGP(t) was set to zero. Glucose uptake by the liver spheroids is largely
dependent on the insulin-independent glucose disposal rate (denoted Eq (1/h)), but is also enhanced by
the action of insulin. This enhancement accounts for an increased glucose influx through the GLUT2
hepatic transporter as a result of the reduction in intracellular glucose via insulin-induced metabolic
pathways (e.g. glycogen synthesis and de novo lipogenesis) (Konig et al., 2012; Petersen and Shulman,
2018). The variable S;(t) (L/mIU/h) denotes the insulin sensitivity of the liver spheroids. The
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parameters representing operating conditions include the flow rate between culture compartments
(denoted Q (L/h)), the total volume of HepaRG cells in the liver spheroids (Vyepare,spheroias (1)) and
the volume of co-culture medium in the liver and pancreas compartments (Vo iiver and Vi, pancreas (L),

respectively), as previously described by Lee et al. (Lee et al., 2019).

Second, the release of insulin from S-cells in the pancreatic islets was modelled as a sigmoidal function

of glucose concentration (Malaisse et al., 1967; Topp et al., 2007; Ha et al., 2015):

NGm,pancreas (t) ?
dNIm,pancreas (t) =V.. (t) . O'(t) . ( Vm,pancreas ) NIm,liver (t)
dt pristets ECSOZ NGm,pancreas (t) 2 Vm,liver
it ( Vm,pancreas ) 2
) NIm,pancreas (t) (mIU/h)

Vm,p ancreas

where NIy pancreas(t) and Ny, jiper (t) are the number of insulin molecules (mIU) in the pancreas and
the liver compartment, respectively. Insulin secretion depends on the volume of § cells in the pancreatic
islets (denoted Vg jsie¢s(t) (L)), the insulin secretion capacity per unit volume of 8 cells (denoted o (t)
(mIU/L/h)), and the glucose concentration resulting in half-of-maximum response to insulin (denoted
EC50; (mmol/L)). We account for a decrease in the insulin secretion capacity of the § cells over time,

as given by:

2

3)

o(t) = Omax - (1 - ) (mIU/L/h)

a + t?

Here, we assume that this decrease follows a sigmoidal dependence on time, determined by the
parameter « (h?). The parameter 0,,,4, (mIU/L/h) represents the maximal insulin secretion rate of the 8
cells (i.e. at the beginning of the co-culture). The parameter « is estimated based on the experimental
measurements. For large values of this parameter, the decrease in insulin secretion capacity over time

would be negligible.

2.2.2 Modelling hepatic insulin resistance and -cell dynamics

The dynamics of hepatic insulin sensitivity S;(t) were modelled under the assumption that insulin
responsiveness of the co-cultured liver spheroids decreases because of sustained exposure to

hyperglycemia:
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Imax,si ) Gint (t)

S,(t) =S, (1 —=Dax=t mh
1(6) =51 ( EC50g; + Gine (1)

) (L/mIU/h) @

NG 1: ) NG tiver(t)
mliver\t) Gnormo —mver . _ Gnormo = 0
dGine(t) _ Vmliver Vm,liver mmOl)

dt 0 NGmliver(t) _ Gnormo < 0 L )

Vm,liver

where S;, (L/mIU/h) is the insulin sensitivity at the start of the co-culture. S;(t) decreases progressively
as the liver spheroids are exposed to glucose levels above the normoglycemic range in the co-culture

mliver(t)

. : NG
medium, which we refer to as excess glucose ( — Gnormo = 0). G (t) represents the

m,liver
integral of excess glucose over time. The proposed model captures the hypothesis postulated by Bauer
et al. (Bauer et al., 2017) that even short hyperglycemic periods (<24 h) could induce insulin resistance
in the co-cultured liver spheroids, resulting in an increase in glucose levels over time as observed in our
system. This is also consistent with the results from Davidson et al. (Davidson et al., 2016), which
reported the development of insulin resistance in primary human hepatocytes after six days of exposure
to a hyperglycemic culture medium containing 25 mM glucose. In our model, the decrease in S;(t) was
represented by a sigmoidal function with maximal fractional reduction I,y s;, and with half of the

maximal fractional reduction occurring at EC50; (mmol-h/L).

In the computational model, insulin secretion depends on both the total volume of B cells in the
pancreatic islets and their individual secretion capacity. The B cells adapt to the long-term (slow)
changes in glucose concentration by regulating their rates of replication and apoptosis, as previously
described by Topp et al. (Topp et al., 2000). This adaptation changes the number of B cells, with an

associated change in total B-cell volume (Vp ;565 (t)) given by:

aVs t 6
m%“() = (Replication — Apoptosis) - Vg isiers(t) (L/h) ©
Replication = kv ) (rl,erlow,pancreas (t) - rZ,erlow,pancreas(t)z) (7)
ApOptOSiS = kv ) (dO - Tl,aGslow,pancreas (t) + rZ,aGslow,pancreas(t)z) (8)

where the rates of replication and apoptosis are modelled as nonlinear functions of glucose concentration
in the medium, on the basis of previous in vitro studies (Chick, 1973; Swenne, 1982; Hoorens et al.,
1996; Efanova et al., 1998). The parameter d, is the death rate at zero glucose (h™') and 7y, 71 4
(L/mmol/h), 15, 72 4 (L?*/mmol*/h) are parameters that determine the dependence of the replication and
apoptosis rates on glucose. The parameter k, was introduced to account for potential differences in

behaviour between human pancreatic islets in our in vitro system and rodent islets in the model of Topp

et al. (Topp et al., 2000).

10
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We have modified the original insulin secretion model (Topp et al., 2000) by introducing the variable
Gsiow,pancreas(t), which represents the long-term average glucose concentration in the co-culture

medium, as given by:

dGslow,p;rtlcreas(t) — Gpancreas(t) ; f;slow,pancreas(t) (mmol/L/h) (9)
slow

where Gpancreqs (t) is calculated from the number of glucose molecules in the co-culture medium

corresponding to the islets compartment NGy, pancreqs(t) (mmol) and Vi, pancreas (Gpancreas(t) =

NG t . . . .
mpancreas( )/V ) and 74, (h) is a time constant that determines the averaging of
m,pancreas

Gpancreas(t) over time. Previous in vivo and in vitro studies on rodent pancreatic islets have
demonstrated changes in B-cell mass and proliferation via glucose stimulation on a time scale of days
(Chick, 1973; Swenne, 1982; Bonner-Weir et al., 1989; Bernard et al., 1998; Paris et al., 2003).
Therefore, the value of 7g,,, was chosen so that Ggo pancreas (t) represents daily average glucose in

the co-culture medium.

The equation describing the dynamics of B-cell volume (Eq. 6) can then be rewritten as follows:

dVB,islets (t)
dt

(10)
= kv(_do + rlelow,pancreas (t) -1 Gslow,pancreas(t)z) ' Vﬁ,islets(t) (L/h)

where 1y =17, + 114 (L/mmol/h) and r, =15, + 134 (L?*/mmol*/h). The formulation for the rate of
change of p-cell number (k,(—dy + 71Gsiowpancreas(t) — 12 Gslow,pancreas(t)z) captures the
hypothesis that a small increase in glucose from normoglycemia (i.e. mild hyperglycemia) leads to an
increase in total P-cell volume in order to restore glucose homeostasis, while a higher glucose
concentration drives total B-cell volume down instead (Topp et al., 2000; Ha et al., 2015). Based on the
study from Topp et al. (Topp et al., 2000), the values of r; and 7, were chosen to achieve two steady
state solutions at glucose concentrations corresponding to 5.55 and 13.87 mM, resulting in a net

increase in B-cell volume when glucose levels are in the range 5.55-13.87 mM.

2.3 Model calibration

The model has a total of 24 parameters. All the model parameters and the method used to set their values
are listed in Table 1. The parameters describing the flow rate between compartments (Q) and the medium
volumes in the liver and pancreas compartments (V,, jiver aNd Vi pancreas. respectively) were set to the
actual MPS operating conditions during the experiment. The volume of HepaRG cells in the liver
compartment (Viyepare spheroias) Was estimated based on the number of liver spheroids in the co-culture

(40) and the number of HepaRG cells per spheroid (24,000), assuming an average hepatocyte volume
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of 3.4:10"° cm’ as reported in (Lodish, 2016). Similarly, the volume of pancreatic p cells at the start of
the co-culture (Vg ;5..5(0)) Was approximated from the number of pancreatic islets (10), assuming that

the proportion of B cells per islet is approximately 50%, and that each islet was spherical with a diameter

of 150 pm (Insphero, 2016).

A subset of parameters characterizing insulin secretion and changes in volume of pancreatic 3 cells
(ag, do, rq and 1) were defined according to values reported in previous studies (Topp et al., 2000). The
parameters that define normoglycemic concentrations in the co-culture (G,prmo) and Tgpon Were
approximated based on physiological considerations about the MPS system in the study, as previously
described (Section 2.5). The remaining 12 parameters were estimated on a experiment-specific basis.
This estimation was performed using nonlinear optimization, by finding parameter values that provided

an acceptable agreement with the experimental data according to the following cost function:
Z Z () = 9:t,)°
SEM;(t)?

where i is summed over the number of experimental time-series for the given experiment y;(t) and
¥,(t, p) represents the model simulations and p the model parameters. SEM denotes the standard error of
the mean and t the measured time points in each time-series. Therefore, the value of the cost function
Vv (p) was calculated over all measured time points for all time-series considered in the optimization. We
used a simulated annealing approach (Kirkpatrick et al., 1983) to find the set of acceptable parameters
that provided good agreement with the data according to a statistical yz test (Cedersund and Roll, 2009;
Cedersund, 2012). We chose a significance level of 0.05, and the number of degrees of freedom was set

to the number of data points in the experimental data.

2.4 Software

All computations were carried out in MATLAB R2018b (The Mathworks Inc., Natick, Massachusetts,
USA) using IQM tools (IntiQuan GmbH, Basel, Switzerland) and the MATLAB Global Optimization
toolbox. The freely available software WebPlotDigitizer 4.3 (https://automeris.io/WebPlotDigitizer)
was used to extract the experimental data from the study by Dalla Man et al. (Man et al., 2007). Figures
were prepared using BioRender (https://biorender.io/) and [llustrator CC 2019 (Adobe).

2.5 Data correction

The number of replicate platforms considered in the study was on average 5, varying between 4 and 10
across the different experiments. Due to this small sample size, we assume that the measured SEM is an
underestimation of the uncertainty in the data and SEM values below 5% of the corresponding mean are
considered unrealistic. To correct for such possible underestimations in data uncertainty, we set the SEM

of data points with a measured SEM below 5% of their mean to the largest measured SEM value across
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all points in the dataset. In experiments where all datapoints had a SEM value below 5% of their mean,
the SEM was changed to 10% of their mean instead. The resulting SEM values in each experiment are

given as errors bars in the figures included in the main article and the Supplementary Information.

3 Results
3.1 The integrated experimental-computational approach

A flow chart of the steps involved in the experimental-computational approach is presented in Figure 3.
First, we developed a computational model for the interplay between glucose and insulin in the liver-
pancreas MPS, describing fast (hours) glucose homeostasis and slow (2 weeks) changes in insulin
sensitivity and S-cell dynamics (Figure 2). We limited the complexity of the model to represent only
mechanisms needed to describe the experimental data in the study, thereby keeping the model’s size
small (12 free model parameters). A complete description of the model equations, as well as the code

used for simulations, are provided in the Supplementary Material.

The next step was to calibrate the model on an experiment-specific basis. To perform this calibration,
the parameters were estimated using the available data from the corresponding experiment. These data
varied among the seven experiments (Supplementary Table 1), and comprised combinations of the
following time-series measurements: 1) glucose and insulin concentrations during GTTs in co-cultures
under two different glycemic regimes (hyper-, and/or normoglycemia) and 2) glucose concentrations
during GTTs in single-liver cultures under hyperglycemia. The model development and calibration steps
were executed in an iterative manner, allowing us to modify the model with each iteration until it was
able to accurately describe the calibration data. The final model resulting from this iterative process is
the one proposed in this paper. Last, we evaluated this model by testing its ability to predict data not

considered during calibration in two of the seven experiments.

3.2 Quantitative analysis of the mechanisms behind impaired glucose homeostasis
over 15 days of co-culture

We applied the computational model to quantitatively describe the physiological processes behind
impaired glucose homeostasis in the liver-islet co-cultures. We calibrated the model using data from an
experiment where both liver-islet and single-liver cultures were exposed to hyperglycemic conditions
mimicking high plasma glucose in T2DM (experiment 2, Bauer et al., 2017). Figure 4 A-C shows a
comparison between the model simulations and the experimental measurements used for calibration,
which included time-series data of both glucose and insulin concentrations during GTTs in the co-
cultures (Fig. 4A and 4C respectively, red markers), and glucose concentration in the single-liver
cultures (Fig.4B, blue markers). The estimated parameter values provided an acceptable agreement
between the model simulations (Fig. 4 A-C, lines) and the data (Fig.4 A-C, markers), as determined by
x? statistics (Supplementary Table S3).

13


https://doi.org/10.1101/2021.08.18.456693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456693; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

As shown in Fig. 4A, glucose levels in the liver-islet co-culture during the GTT initiated at day 1 (GTT
d1-3) reached the normoglycemic range (3.9-7.8 mM (Bauer et al., 2017)) within eight hours, as opposed
to the slower glucose consumption observed after 13 days of co-culture. In contrast, in single-liver
cultures, glucose levels remained within hyperglycemia for the entire co-culture period (Fig.4B). These
changes in glucose dynamics were accompanied by a decrease in insulin concentration levels over time,
as seen in Fig. 4C. We used the modelling approach to infer variables that could mechanistically describe
the physiological changes underlying these alterations in glucose regulation and PB-cell function.
According to the model, insulin sensitivity in the liver spheroids decreases progressively as they are
exposed to hyperglycemic periods during the co-culture (Fig. 4E). This decline in insulin sensitivity
leads to reduced glucose utilization by the liver spheroids, resulting in higher daily glucose levels over
time (Fig. 4F). In turn, the model suggests an increase in the number of B-cells to compensate for the
rise in glucose levels, and therefore B-cell volume increases (Fig. 4G). However, besides this adaptation
in B-cell volume, the secretion capacity of the individual B-cells decays (Fig. 4H). These combined
effects result in a decline in circulating insulin levels over the 15-day co-culture period, in agreement

with the experimental measurements (Fig. 4C).

We estimated parameters for each MPS experiment individually to fit the corresponding measurements
of glucose and insulin, and achieved an acceptable agreement between the model simulations and the
experimental data (Supplementary Table S2). A comparison between the model simulations and the
experimental measurements for the seven experiments included in the study is shown in Supplementary
Fig. S2. The estimated parameter values for each MPS experiment are listed in Supplementary Table

S3.

3.3 Investigating the effect of glycemic regimes on glucose metabolism

To further investigate the effect of glycemic levels on liver spheroid-pancreatic islet cross-talk, we
applied the computational model to leverage data from experiments under varying glycemic conditions.
We performed in vitro experiments where co-cultures were exposed to both normo- and hyperglycemic
glucose levels emulating healthy and T2DM conditions, respectively. By using the computational
model, we sought to interpret the experimental results in relation to the changes in pancreatic B-cell

function and impaired glucose tolerance.

We assessed how repeated exposure of the co-cultures to two different glycemic conditions (hyper- and
normo-glycemia) impacted their response to a glucose load. To do so, the co-cultures were exposed to
either hyper- or normoglycemic glucose levels (11 mM or 5.5 mM glucose, respectively) at each
medium exchange during the first 13 culture days. In the hyperglycemic co-cultures, we performed a
GTT at day 1 (GTT d1-3, Fig. 5A,B) to evaluate glucose tolerance at the beginning of the co-culture.
We then performed GTTs on day 13 (GTT d13-15, Fig. 5A,B) on both hyper- and normoglycemic co-

cultures, to establish a comparison with the response from the initial GTT for both glycemic regimes.
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The GTT initiated at day 1 was only performed in the co-cultures maintained under hyperglycemia, to
avoid exposure of liver spheroids in normoglycemia to high glucose levels in the beginning of the co-

culture.

Analysis of the model simulations indicate that liver spheroids exposed to normoglycemic conditions
over the co-culture period exhibited higher insulin sensitivities than those maintained under
hyperglycemia (Fig. 5C). Thus, although insulin levels in hyperglycemic conditions during the GTT
performed at day 13 were higher than those under normoglycemia (by 4-fold 24 h after the start of the
GTT, Fig. 5B), glucose levels were comparable for both glycemic regimes (Fig. 5A). These results are
in line with our previous observations on the possible development of insulin resistance due to exposure
to high glucose levels (Fig. 4). The observed differences in insulin secretion between hyper- and
normoglycemia (Fig. 5B) could also be reproduced by the model. These differences could be explained
by the bell-shaped relationship between average glucose levels in the co-culture and the net change of
B-cell volume (Eq. 10). In the experiments under hyperglycemia, daily average glucose levels varied
between 5.5 and 7.2 mM over the the 15-day co-culture period (Fig. 5D). Thus, the model predicted a
net increase in B-cell volume (Fig. SE), as these values lie within the established range of glucose levels
for increased rate of change of B-cell number (i.e. replication minus apoptosis), which is set to 5.55-
13.87 mM based on the study from Topp et al. (Topp et al., 2000). On the contrary, daily average glucose
levels in co-cultures maintained under normoglycemia were within the range of 5.0-5.5 mM (Fig. 5D)
postulated to lead to a decrease in B-cell volume (Fig. SE) and the resulting decay in insulin secretion

compared to hyperglycemia (Fig. 5B).

3.4 Assessing the predictive capabilities of the computational model

3.4.1 Prediction of glucose and insulin responses under hypoglycemia

To evaluate our computational model, we assessed whether it was able to predict data not employed
during calibration (last step in Fig 3). To do so, we applied an experiment-specific model calibrated to
both normo- and hyperglycemic conditions simultaneously (experiment 3, Fig. 5) to simulate
hypoglycemia in silico. We then performed the corresponding in vitro MPS experiment, where the co-
cultures were exposed to hypoglycemic glucose levels (2.8 mM) at each medium exchange during the
first 13 culture days, followed by a GTT at day 13. To account for experimental uncertainties in the
glucose dose administered to the system at the start of the GTT, we allowed the value of the glucose

dose to vary within the measured range of SEM (£ 0.85 mM) when computing the model predictions.

The predictions of glucose and insulin responses during the GTT initiated at day 13 (GTT d13-15, Fig

6 B,D, shaded areas) were in good agreement with the experimental data (Fig 6 B,D, markers).
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3.4.2 Prediction of long-term changes in glucose and insulin responses

Next, we assessed the ability of the computational model to predict long-term changes in glucose and
insulin responses in the liver-islet co-culture over time, and how these were influenced by the operating
conditions in the MPS (i.e. the flow rate distribution on-chip and the medium volume in each culture
compartment). To that end, in one experiment (experiment 3), we measured glucose and insulin
concentrations periodically 48 hours after each media exchange between days 3 and 13 of the co-culture.
In addition, to characterize the effect of the MPS operating conditions on the observed dynamics, we
collected glucose and insulin samples from each culture compartment (liver and pancreas). The model
was calibrated using glucose and insulin data acquired during GTTs initiated at day 1 and 13 (GTT d1-
3 and GTT d13-15, Fig. 7 C,F and Fig. 4). In the experimental data used for calibration, the
concentrations were measured by pooling samples of 15 pL from each compartment (i.e. measuring the
average concentration of the two compartments), as opposed to the compartment-wise measurements
acquired for the evaluation dataset. The model predictions (Fig. 7 A,B,D,E, shaded areas) showed good
agreement with the experimental measurements in terms of both temporal evolution of glucose and
insulin dynamics along the co-culture, and the concentration levels in each culture compartment (Fig. 7
A,B,D,E, markers). More specifically, the computational model captured the greater insulin

concentration in the pancreas compartment compared to that in the liver compartment.

3.5 Translation to in vivo responses in humans

Following evaluation, we investigated whether a model-based scaling strategy could translate the MPS
results from in vitro to in vivo. We established an upscaling approach that involves extrapolation of the
following model parameters: volumes of the organoids, flow rate and volume of co-culture medium in
the compartments. To upscale the volume of the organoids to human proportions, we multiplied the total
volume of both HepaRG cells (Vyepare,spheroias) @nd pancreatic B cells (Vg is1¢¢5(0)) by the 100,000 factor
applied in the miniaturization to MPS. The total volume of co-culture medium was scaled to 3 L, under
the assumption that the blood volume in humans is approximately 5.1 L (Wagner et al., 2013) with a
plasma proportion of 58% (Feher, 2012). This volume was distributed equally between both tissue
compartments, resulting in a medium volume of 1.5 L in each compartment. The flow rate (Q) was then

set to achieve a media turnover time of 5 min, as observed in humans (Davies and Morris, 1993).

As a proof-of-concept demonstration, we tested the scaling strategy in one of the experiments
(experiment 1). We first calibrated the original model using data of glucose and insulin during GTTs
initiated at day 1 (GTT d1-3) in both liver-islet co-cultures and single-liver cultures (Supplementary Fig.
S2 A-C, markers). The parameters describing the operating conditions in the system were then modified
according to the proposed upscaling approach. Additionally, to account for glucose consuming organs
other than the liver (i.e. muscle, adipose tissue, brain and kidneys), we increased the glucose uptake rate

of the liver. More specifically, we multiplied both the insulin-independent glucose disposal rate (E;q)

16


https://doi.org/10.1101/2021.08.18.456693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456693; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

and insulin sensitivity (S;) by a factor of 2.22, assuming that the liver is responsible for approximately
45% of the total postprandial glucose uptake in humans (Gerich, 2000; Herrgardh et al., 2021).
Similarly, the insulin clearance of the liver (CL; pep) was doubled under the assumption that the liver

stands for approximately 50% of the total insulin clearance (Becker, 2001).

After these parameter changes, the temporal dynamics of the glucose and insulin responses predicted in
the model were significantly faster than in the MPS and in agreement with those found in humans (Man
et al.,, 2007) (Supplementary Fig. S3 C,F). However, the glucose uptake predicted by the model
(Supplementary Fig. S3 C, shaded area) was larger than the in vivo measurement (Supplementary Fig.
S3 C, markers). Furthermore, the predicted insulin concentrations (Supplementary Fig. S3 F, shaded
area) were one order of magnitude higher than the ones measured in vivo (Supplementary Fig. S3 F,
markers). The peak insulin concentration in the model predictions ranged between 1.8 and 2.0 nM, while
the corresponding in vivo value was 0.34 nM. Because insulin concentrations measured in the MPS were
also one order of magnitude higher than those reported in human studies (Bergman et al., 1981; Man et
al., 2007; Alskér et al., 2017), we hypothesize that the pancreatic islets in the co-culture may have
enhanced insulin secretion compared to the human in situ case. This can possibly be due to the long-
term exposure of the pancreatic islets to a hyperglycemic medium over the co-culture time, leading to
overstimulation of insulin release. To account for this potential effect, we reduced the maximal insulin
secretion rate of the B cells (0,4 ), adjusting its value to achieve good visual agreement with the insulin
concentration measured in vivo. The changes in model parameters for translation from the liver-islet
MPS to human for a parameter set providing acceptable agreement with the experimental data are listed
in Table 2. The resulting glucose and insulin responses predicted by the computational model (Fig. 8
C,F, shaded areas) agree well with the measured ones in humans (Fig. 8 C,F, markers), even though the
predicted glucose concentration decreases to values below normoglycemia as endogenous glucose

production from the liver spheroids cells is neglected in our model.

4 Discussion

This study demonstrated the potential of applying computational modelling in combination with MPS
to augment in vitro investigations of glucose metabolism and allow translation to humans. We
constructed a computational model of glucose homeostasis in a previously developed liver-pancreas
MPS (Bauer et al., 2017). After calibration, the model was able to replicate glucose and insulin responses
under both healthy glucose levels and high plasma glucose mimicking T2DM (Fig. 5). To demonstrate
the predictive power of the model, we evaluated it on measurements not considered for calibration. The
model could correctly predict the response of the MPS to a hypoglycemic regime (Fig. 6), and the long-
term dynamics of glucose and insulin over 15 days of co-culture (Fig. 7). Last, we have shown that the
model is able to translate in vitro glucose and insulin responses in the MPS to humans, showing good

agreement with reported data on meal responses from healthy subjects (Man et al., 2007) (Fig. 8).
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The mechanistic, computational model presented in this study aims at describing the physiology in the
MPS, encapsulating mechanisms underlying glucose regulation and disease progression in T2DM
(insulin resistance and f-cell adaptation). This is an advancement from the models that have typically
been combined with MPS, which mainly apply PK (Prot et al., 2014; Kimura et al., 2015; Edington et
al., 2017; Lee, Ha, et al., 2017) and PKPD (Sung et al., 2010; Lee, Kim, et al., 2017; McAleer et al.,
2019; Novak et al., 2020) approaches to describe the pharmacological effect of drugs in the system.
Only a few studies have combined MPS with QSP models that include more mechanistic details (Stokes
et al., 2018; Maass et al., 2019; Yu et al., 2015). Lee et al. (Lee et al., 2019) developed a computational
model of glucose homeostasis in a pancreas-muscle MPS using in vifro measurements from individual
cell cultures, and added a liver compartment in silico as a step towards translation to in vivo responses.
This study, however, did not include experimental measurements characterizing the cross-talk between
these organs. Since glucose homeostasis relies on a feedback loop involving storage and release of
glucose by the liver in response to glucose-regulated insulin secretion from the pancreas, it is crucial to
examine data from interconnected co-cultures that reflect this organ interplay. Moreover, the
computational model in Lee et al. (Lee et al., 2019) was designed to simulate a 3-hour response to a

meal, and, in contrast to our model, did not include a description of disease progression.

Several computational approaches have also been developed to describe glucose homeostasis and
different aspects of T2DM in animal models. These could potentially be used in combination with
preclinical animal studies, to help in data interpretation and extrapolating the results to humans. Alskér
et al. (Alskédr et al,, 2017) demonstrated that an allometrically scaled model of human glucose
homeostasis (Silber et al., 2007) could reproduce glucose and insulin responses in several preclinical
animal species. However, this model only describes short-term regulation of glucose homeostasis during
GTT and cannot simulate the long-term pathophysiology of T2DM. In contrast, other animal-based
computational models have focused on long-term changes in weight (Guo and Hall, 2011; Gennemark
et al., 2013), but they do not establish a link with pathophysiological defects implicated in T2DM such

as insulin resistance.

The computational model presented in our study could simultaneously describe glucose and insulin
responses in the MPS under both normo- and hyperglycemic conditions representative of T2DM (Fig.
5 A,B). The fact that the model can reproduce a range of behaviors consistent with experimental
observations only through estimation of the model parameters suggests the generality of the model
structure, that is, the robustness of the mathematical equations. However, to further build confidence in
the computational model, it is crucial to evaluate its predictive capability against experimental data not
considered during calibration (Carusi et al., 2012; Pathmanathan and Gray, 2018). Considering this, we
first calibrated the model using MPS measurements from normo- and hyper-glycemic conditions, and

subsequently evaluated the model predictions under a different glycemic regime (hypoglycemia) using
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data from an independent MPS experiment. We showed that the model was able to predict glucose and
insulin responses under this new glycemic regime, although it was not calibrated for this purpose (Fig.
6 C,D). In addition, we demonstrated the ability of the model to predict glucose and insulin
concentrations at times not included in our experimental sampling protocol, and in both culture

compartments (Fig. 6 A,B,D,E).

Our approach also offers mechanistic insight through simulation of key physiological variables that are
not measured in the experiments, such as insulin resistance and the total volume of B cells in the co-
culture (Figs. 4,5). Our model predicted an increase in total B-cell volume after exposure to
hyperglycemic glucose levels over 15 days of co-culture, while this volume was predicted to decrease
when the pancreatic islets were exposed to normoglycemic levels (Fig. SE). These predictions agree
with the previously established hypothesis that small deviations from normoglycemia cause B-cell
volume increase as a feedback mechanism to reestablish glucose homeostasis (Topp et al., 2000), which
stems from previous studies reporting a nonlinear variation of both B-cell proliferation and apoptosis
rates in vitro (Swenne, 1982; Hiigl et al., 1998). GSIS analysis from our co-culture experiments revealed
increased insulin secretion in pancreatic islets co-cultured under hyperglycemic conditions (11 mM) as
compared to those in either normo- or hypoglycemic co-cultures (5.5 and 2.8 mM, respectively)
(Supplementary Fig. S1). This might indicate that the total volume of B cells in the end of the co-culture
is larger when they have been exposed to hyperglycemic concentrations. However, GSIS measurements
do not only reflect the volume of B-cells but also their individual secretion capacity. To increase
confidence in this model prediction, future studies should be carried out to evaluate beta cell volumes
in the liver-islet co-culture under different glycemic levels, for instance focusing on beta cell

proliferation.

The complexity of the computational model was chosen based on the intended level of detail and the
available experimental measurements. With this in mind, we only modelled the physiological
mechanisms needed to simulate the data in the study. Here, the only measurements available to
characterize the contribution of the liver spheroids to glucose metabolism were glucose concentrations
in the co-culture medium over time. Therefore, we established a relatively simple model of hepatic
glucose metabolism that only captured net glucose fluxes between the liver spheroids and the co-culture
medium, but did not describe any intracellular fluxes. Additional experiments using isotope labeling
tracing methods (Landau et al., 1995; Neese et al., 1995; Grankvist et al., 2018) could be done to
characterize metabolic pathways in the liver spheroids, including both glucose producing (e.g.
glycolysis and glyconeogenesis) and glucose utilizing (e.g. gluconeogenesis, glycogenolysis) pathways.
We may then expand our current computational framework by incorporating more detailed models of
hepatic glucose metabolism (Konig et al., 2012; Ashworth et al., 2016) for further elucidation of

mechanisms behind T2DM and refined in silico predictions.
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Because of the relatively small number of MPS experiments included in our study, we calibrated the
computational model using data exclusively from a given individual experiment. By acquiring data from
a larger set of MPS experiments, we could expand our framework with a non-linear mixed-effects
(NLME) modelling approach (Karlsson et al., 2015). Using this approach, we could estimate the model
parameters using data from all the MPS experiments simultaneously, thereby sharing information
among them. This would in turn allow us to obtain additional insight on interindividual variability within
the experiments, and more robust parameter estimation when the available data from one experiment

alone may be insufficient.

The most widespread models to study glucose metabolism under both healthy and T2DM conditions are
in vivo animal models in rodents. These are comparators for the novel, integrated experimental (MPS)-
computational approach presented here. Translation between these animal models and humans is often
unsuccessful, partly due to species-specific glucose regulation mechanisms ranging from cell to organ
level (Chandrasekera and Pippin, 2014). To overcome these limitations, the liver-pancreas MPS in this
study incorporates human cells at organ emulation levels (e.g. 3D tissue environment), mimicking their
human counterpart architecture and function. While our system could potentially be more predictive of
in vivo, human outcome, its ability to replicate human physiology is still limited. For instance, with our
current experimental setting, kinetics of the in vitro glucose response was considerably slower than in
vivo. In our liver-pancreas MPS, glucose levels reached normoglycemia approximately 48 hours after
the start of a GTT, as opposed to 1 to 2 hours in vivo (Bergman et al., 1981; Man et al., 2007; Fujii et
al., 2019). This could be due to several factors including design aspects, properties of the co-culture
medium and the organoids, operating conditions (e.g. flow rate) and other glucose consuming organs
and signaling mechanisms (e.g. incretins). For example, the media-to-tissue ratio in our system was in
the order of 100:1, whereas the physiological extracellular fluid to tissue ratio is 1:4 (Wagner et al.,
2013). This could potentially cause the slower GTT response in our system, since the proportion between
total mass of glucose and glucose-consuming liver cells is larger than in the in vivo case. The synergistic
experimental-computational approach allowed us to gain insight into the impact of these experimental
in vitro factors in the system and ultimately bridge the in vitro-in vivo gap by compensating for them in
silico. We argue that to maximize the ability of this approach to exploit the in vitro MPS investigations,
it should be applied in an iterative fashion that involves two steps: data interpretation/translation and

model-guided design.

In the data interpretation/translation step, we calibrated the computational model using glucose and
insulin responses measured during GTTs in the liver-pancreas MPS and performed model-based
extrapolation (i.e. scaling) of in vitro experimental aspects (co-culture and organoid volumes, flow rates
and incorporation of missing organs) to translate to humans. After this extrapolation, both insulin levels

(Supplementary Fig. S3 C, shaded areas) and glucose uptake (Supplementary Fig. S3 F, shaded areas)
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were higher than those observed during meal responses in humans (black markers, from Man et al.,
2007). These discrepancies indicate that our current MPS set-up may have design limitations that cannot
be compensated for using a purely scaling approach, thereby pinpointing possible biological
imperfections related to both the organoids and co-culture conditions. One potential explanation
concerning biological imperfections is that the increased insulin levels in the MPS (Fig. S3F) are due to
enhanced insulin secretion of the pancreatic islets compared to in vivo. Other possible explanations
would be the lack of sinusoidal structures in the liver model (Meier, 2005), and the lack of renal insulin
clearance mechanisms (Meier, 2005). As a proof-of-concept investigation, we tested the first potential
explanation using the computational model by decreasing the insulin secretion of the pancreatic islets
in silico. The simulated glucose and insulin responses agreed well with the experimental data from
humans (Fig. 8 C,F), suggesting that a decreased insulin secretion capacity of the pancreatic islets in the
MPS in combination with the model-based scaling approach would yield human-like responses.
However, this result does not imply that the remaining explanations should be rejected, and they can be
tested in a similar manner using the computational model. These mechanistic insights could be used in
a future model-guided design step, to enhance the physiological relevance of our in vitro MPS through,
for instance, increased insulin clearance by the liver organoid or decreased insulin secretion by the
pancreatic islets. This updated MPS set-up would then generate experimental data that supports the
development of a respective, extended computational model for prediction in the subsequent data

interpretation/translation step.

A recent MPS report to advance patient’s benefit and animal welfare has identified four elements to
make preclinical drug evaluation predictive to human exposure (Marx et al., 2020). These elements are:
i) academic invention and MPS-model development, ii) tool creation and MPS-model qualification by
supplier industries, iii) qualification of a fit-for-purpose assay and its adoption for candidate testing by
pharmaceutical industries, and iv) regulatory acceptance of the predictive results of validated assays for
a drug candidate for a specific context of use. Here, we propose to support these MPS-based
developments with computational modelling. Our results demonstrate the synergies between MPS and
computational models, which we believe would accelerate the drug development cycle. Both in
academic science and pharmaceutical decision making, fit-for-purpose experimental-computational
models hold the potential to reduce the use of animal models currently used for the same purpose. A
purely experimental in vitro approach to this goal is further away, since recreating human-like responses
in vitro poses major challenges related to constraints in design and experimental conditions. For
example, the differences in media-to-tissue ratio that lead to the slow time dynamics in GTT responses
in our MPS system are difficult to address experimentally, because a reduction in the volume of co-
culture medium would result in sampling volumes that are insufficient for analysis. With our integrated
experimental-computational approach these limitations can be overcome. Our vision is that once the

effect of drugs are well-characterized in vitro in MPS recapitulating the physiology of different organs,
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computational modelling can be used to create in silico representations of individual organs that can

then be combined in a multi-organ computational model as a step towards extrapolation to humans.

In recent years, evidence generated by computational models has drawn increasing attention from
regulatory agencies. The United States Food and Drug Administration (FDA) has published guidance
on assessing the credibility of computational models for regulatory submissions (summarized in
(Viceconti et al., 2021)). The assessment should be performed within a specific context of use in which
the model is intended to be applied, and requires validation of the model output against comparator data
(e.g experimental measurements) not considered during calibration. Two metrics should be considered
in this validation: the agreement between the model predictions and the comparator data, and the
uncertainty of these predictions. In this paper, we have created a computational model that can describe
experimental data not used for calibration purposes with well-defined uncertainty boundaries (Figs. 6,7).
Once the corresponding human-based predictions (as exemplified in Fig. 8) have been validated within
a context of use relevant to a clinical trial, the integrated experimental-modelling approach might
eventually be submitted for regulatory qualification. We envision that, when fully incorporated into the
early stages of drug development, this approach could reduce animal experiments and significantly
decrease phase 1 and phase 2 clinical trial failures due to its relatively low cost and ability to generate

human-relevant predictions.
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Figure 1: In vitro experiments. (A) A 3D view of the Chip2 (reprinted from (Bauer et al., 2017) with permission
under Creative Commons license). (B) Illustration of the Chip2 from underneath, including liver (blue) and
pancreas (orange) compartments, the microfluidic channel, and the on-chip micropump. The arrow indicates the
direction of flow between culture compartments. (C) Generic study design used in the experiments performed in
the study. In five independent MPS experiments (N=5), co-cultures or single organ-cultures were exposed to either
hyperglycemia (11 mM glucose, N=5, red), normoglycemia (5.5 mM glucose, N=3, green) or hypoglycemia (2.8
mM glucose, N=1, yellow). Medium exchanges occurred every 48 h (vertical black arrows) and glucose tolerance
tests (GTTs) were performed on indicated days (horizontal gray arrows). GTT d13-15 was initiated by adding co-
culture medium with 11 mM glucose into each of the culture compartments. In GTT dl1-3, the glucose
concentration in the co-culture medium was set to the glycemic level corresponding to each regime (11 mM, 5.5
mM and 2.8 mM for co-cultures exposed to hyperglycemia, normoglycemia and hypoglycemia, respectively).
Samples of the medium were taken 0, 8, 24 and 48 h after the start of the GTT.
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Figure 2: Graphical illustration of the computational model of the liver-islet MPS. The physiological
variables described by the model are displayed in blue and red text boxes. The solid arrows represent changes in
these variables, mainly because of metabolic fluxes within each organoid compartment (black arrows) or between

compartments (blue and orange arrows). Interactions between the variables are represented as dashed arrows.
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Figure 3: Flow chart illustrating the steps in the modelling approach. (A) Model development: The
computational model includes a fast component governing daily interactions between glucose and insulin, and a
slow component describing the development of insulin resistance and pancreatic f-cell compensation. (B) Model
calibration: The parameters in the model were estimated individually for each of the seven experiments (N=7).
Experimental data used for calibration (C) includes time-series measurements of glucose and insulin from both
co-cultures and single-liver cultures, as well as from co-cultures exposed to different glycemic regimes (hyper-
and normoglycemia). These measurements were acquired during 48-hour GTTs initiated at day 1 or day 13. (D)
Model evaluation: The model was evaluated against independent data not used in the calibration step. This
evaluation was performed in two of the seven experiments (N=2) in which we acquired additional in vitro

measurements to compare against the model predictions.
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Figure 4: Model-based analysis of the physiological processes behind impaired glucose homeostasis in the
co-culture. The results correspond to experiment 2 (Bauer et al., 2017). A-C: Comparison between experimental
measurements (markers) and model simulations (lines) of glucose concentration in the co-cultures (A), in single-
liver cultures (B), and insulin concentration in the liver-islet co-cultures (C). Co-cultures were exposed to
hyperglycemic medium (11 mM glucose) at each media exchange (grey arrows). Experimental time-series were
acquired during GTTs initiated at day 1 (GTT d1-3) and day 13 (GTT d13-15). The mechanistic variables inferred
by the model, which can explain the experimental data in (A-C) are shown in (D-H). (D) Integral of excess glucose
(i.e. difference between glucose levels in the co-culture media and 5.5 mM) over time. This accounts for the effect
of exposing the liver spheroids to periods of hyperglycemia during the co-culture time, with the associated decrease
in hepatic insulin sensitivity (E) and rise in daily average glucose levels (F). Changes in -cell insulin-producing
capacity predicted by the model are caused by an increase in pancreatic -cell volume (G) and a decay in the
individual secretion capacity of § cells over time (H). Model uncertainty is depicted as shaded areas in panels A-

H. Data in panels A-C are presented as mean = SEM, n=5.
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Figure 5: The computational model can explain impaired glucose homeostasis and -cell dysfunction under
varying glycemic conditions in liver-islet MPS. The results correspond to a single experiment (experiment 3).
A-B: Comparison between experimental measurements (markers) and model simulations (lines) of glucose
concentration (A), and insulin concentration (B) over the 15 days of liver-islet co-culture. Co-cultures were
exposed to either a hyperglycemic (11 mM glucose, red) or normoglycemic medium (5.5 mM glucose, green) in
each media exchange (grey arrows) between days 1 and 13. Experimental time-series were acquired during GTTs
initiated at day 1 (GTT d1-3) in hyperglycemic co-cultures and day 13 (GTT d13-15) in both hyper- and
normoglycemic co-cultures. The model predicts decreased insulin sensitivity (i.e. increased insulin resistance) in

liver spheroids from hyperglycemic co-cultures, compared to those under normoglycemia (C). The predicted
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differences in daily glucose levels over the co-culture time between both glycemic regimes (D) lead to different
trends in S-cell volume changes (E) due to the bell-shaped relationship between average daily glucose and net -
cell growth rate in the model. Model uncertainty is depicted as shaded areas in panels A-E. Data in panels A-B are

presented as mean + SEM, n=5.
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Figure 6: The model can predict GTT responses in the end of the liver-islet co-culture following repeated
exposure to hypoglycemic media concentrations. The results correspond to a single experiment (experiment 3).
In A,C, experimental measurements of glucose and insulin concentrations (markers) are compared to model
simulations for hyper- and normo-glycemia (red and green, lines) and model predictions for hypoglycemia (yellow
lines) over the 15 days of co-culture. Co-cultures were exposed to either a hyperglycemic (11 mM glucose, red),
normoglycemic (5.5 mM glucose, green) and hypoglycemic (2.8 mM glucose, yellow) media in each media
exchange (grey arrows) between days 1 and 13. Experimental time-series were acquired during GTTs initiated at
day 1 (GTT d1-3) in hyperglycemic co-cultures and day 13 (GTT d13-15) in all co-cultures (hyper-, normo- and

hypoglycemic). For a clearer comparison between the model predictions and the corresponding experimental data
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for the evaluation part, panels B and D zoom in on the GTT performed at day 13 for the hypoglycemic arm -
glucose (B) and insulin (D). Model uncertainty is depicted as shaded areas in A-D. Data in panels A,C are

presented as mean + SEM, n=5.

35


https://doi.org/10.1101/2021.08.18.456693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456693; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A Glucose concentration in the liver B Glucose concentration in the C Measured glucose concentration in the
compartment (evaluation) pancreas compartment (evaluation) liver-islet co-culture (calibration)
GTT GTT GTT GTT GTT GTT
d1-3 d13-15 d1-3 d13-15 d1-3 d13-15
1277--7 - T N 120---> FRN 12 -+ EEEEES
s s s
E10 ] E10 £
5 . ! § . §
g ° ; y g° ; e\ E
£ £ £
86 . 8 6 . 8
c c [
o Q o
g 4 @ 4 @ 4
1% 173 13
[ Qo o
S5 So2 S
(O] 0] (O]

o
o
o

0 48 96 240 288 336

o

48 96

144 192 144 192 336 0 144 192

Time (h) Time (h) Time (h)

LI R R A | rrtr LI R O R I |

Media exchanges Media exchanges

240 288 48 96 240 288 336

Media exchanges

D Insulin concentration in the liver E Insulin concentration in the pancreas F Measured insulin concentration in the
compartment (evaluation) compartment (evaluation) liver-islet co-culture (calibration)

GTT GTT GTT GTT GTT GTT
d1-3 d13-15 s d1-3 d13-15 . d1-3 d13-15

S6 s . Se

= g g

55 5° : 55

;2?4' s E { ? §4,

g g Sa 8

Sg | . . 2 4 23

8 1 8 8

£21 £ £2

3 3’ 3

£14 £ £1

o
o
o

0 48 96 144 192

Time (h)

240 288 336

o
'S
3

96 144 192 240 288 336 0 48 96 144 192 240 288 336

LI R O N B |

Media exchanges

Time (h)

ot

Media exchanges

—
—

—_
—_

Time (h)

rr ot

Media exchanges

° Liver-islet co-culture,

liver compartment (prediction)

° Liver-islet co-culture,

pancreas compartment (prediction)

@ Liver-islet co-culture,

Experimental data

Model simulation

Model uncertainty

measured (calibration)

Figure 7: Model predictions of glucose and insulin concentrations in each organ compartment. The results
correspond to a single experiment (experiment 2). A,B Comparison between model predictions of glucose in the
liver and islets compartments, respectively, and the corresponding experimental data (markers). D,E Comparison
between model predictions of insulin in the liver and islets compartments, respectively, and the corresponding
experimental data (markers). Co-cultures were exposed to hyperglycemic medium (11 mM glucose) in each media
exchange (grey arrows). The calibration data (C,F) consisted of glucose and insulin measurements acquired during
GTTs initiated at day 1 (GTT d1-3) and day 13 (GTT d13-15). In the calibration data (C,F), glucose and insulin
concentrations were measured by pooling samples of 15 uL. from each compartment (i.e. measuring the average
concentration of the two compartments), while concentrations in the evaluation dataset (A,B,D,E) were measured
independently in each culture compartment (liver or pancreas). Data points for evaluation were acquired 48 hours
following each media exchange between days 3 and 13. Model uncertainty is depicted as shaded areas in (A-F).

Data are presented as mean + SEM, n=10.
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Figure 8: Model-based extrapolation of glucose and insulin concentrations in the liver-islet MPS to human
meal responses. The results correspond to a single experiment (experiment 1). A,B,D,E Model predictions of
glucose (A,B) and insulin (D,E) in the liver and islets compartments after scaling to human. C shows the
comparison between the model prediction of plasma glucose concentration in a corresponding human and
experimental data of glucose response to a meal in healthy subjects (Man et al., 2007). The model-based prediction
of the insulin response and the experimental measurements of insulin are compared in F. The predictions are
computed for the GTT initiated at day 1 (GTT d1-3). The experimental data, reported in a previous study by Dalla
Man et al. (Man et al., 2007), were acquired in a group of 204 normal subjects. We consider the time point of peak
glucose concentration in the experimental data as time = 0 h for this study, since the liver-pancreas MPS lacks an
intestinal compartment and glucose is administered directly to the liver and pancreas compartments. Data are

presented as mean = SEM, n=204. Model uncertainty is depicted as shaded areas in (A-F).
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Table 1: Parameters in the computational model. Parameters specified as constant were not included in the

parameter estimation routine. The estimated parameter values for each MPS experiment are listed in

Supplementary Table S3.

Parameter Description Unit Estimation/reference

Operating conditions

Vintiver Volume of co-culture medium in the L Set based on MPS operating
liver compartment conditions (3-10, constant)

Vinpancreas Volume of co-culture medium in the L Set based on MPS operating
pancreas compartment conditions (3-10, constant)

VieparG spheroidas 10tal volume of HepaRG cells in the L Set based on MPS operating
MPS conditions (3.4:10°, constant)

Vsample iiver Volume of co-culture medium collected L Set based on MPS operating
from the liver compartment in each conditions (1.5:10, constant)
sample

Vsamplepancreas  Volume of co-culture medium collected L Set based on MPS operating
from the pancreas compartment in each conditions (1.5:10, constant)
sample

Q Flow rate between culture compartments L/h Set based on MPS operating

conditions (2.96:10™, constant)

Liver spheroids

Ezo Insulin-independent glucose disposal 1/h Estimated from data
rate

CL; spheroids Insulin clearance 1/h Estimated from data

Insulin resistance (slow model)

Gnormo Glucose concentration for mmol/L Set based on physiological
normoglycemia considerations (5.5, constant)

Sio Insulin sensitivity at the start of the co- L/mIU/h  Estimated from data
culture

Imaxsi Maximal fractional reduction of insulin Estimated from data
sensitivity

EC50g; Value of time integral of excess glucose mmol-h/L  Estimated from data
providing half of the maximal fractional
reduction.

Pancreatic islets

Omax Insulin secretion rate of the beta cellsat mIU/L/h  Estimated from data
the start of the co-culture

a Parameter defining the sigmoidal h? Estimated from data
dependence of the insulin secretion
capacity on time

EC50; Glucose concentration resulting in half-  mmol/L From literature (Topp et al.,
of-maximum response to insulin of the 3 2000) (7.86, constant)
cells

B cell dynamics (slow model)

dy Rate of B-cell death at zero glucose 1/h From literature (Topp et al.,

2000) (2.5-10°, constant)
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2] Rate constant that determines the L/mmol/h  From literature (Topp et al.,
dependence of the replication and 2000) (6.3-10"*, constant)
apoptosis rates on glucose

Ty Rate constant that determines the L?mmol* From literature (Topp et al.,
dependence of the replication and /h 2000) (3.24:107, constant)
apoptosis rates on glucose

ky, Scaling parameter for the rate of change Estimated from data
of B-cell number

Tslow Constant for time averaging of glucose h Estimated from literature
concentration (Chick, 1973; Swenne, 1982;

Bonner-Weir et al., 1989;
Bernard et al., 1998; Paris et al.,
2003) (500, constant)

Experimental errors

AG4q Offset in glucose concentration related mmol/L Estimated from data
to co-culture media exchange in the
GTT initiated at day 1 (GTT d1-3)

AG4q3 Offset in glucose concentration related mmol/L Estimated from data
to co-culture media exchange in the
GTT initiated at day 13 (GTT d13-15)

Algq Offset in insulin concentration related to  mIU/L Estimated from data
co-culture media exchange in in the
GTT initiated at day 1 (GTT d1-3)

Algq3 Offset in insulin concentration related to  mIU/L Estimated from data

co-culture media exchange in in the
GTT initiated at day 13 (GTT d13-15)
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Table 2: Extrapolation of parameter values in the computational model to perform in vitro to in vivo
translation. The results correspond to experiment 1.

Value
Parameter Description (units) In vitro Translation to in
(MPS) vivo (human)
Viepara,spheroias  Total volume of HepaRG cells (L) 3.410° 0.34
Vg istets(0) Total volume of pancreatic B cells at the 8.8:10” 8.8-10
beginning of the co-culture (L)
Vintiver Volume of co-culture medium in the liver 3-10* 1.5
compartment (L)
Vinistets Volume of co-culture medium in the islets 3-10* 1.5
compartment (L)
Q Flow rate between culture compartments 2.96:10™ 35.5
(L/h)
Ezo Hepatic insulin-independent glucose disposal 1.47 3.25
rate (mmol/L/h)
Sio Hepatic insulin sensitivity at the start of the 5107 1.1:102
co-culture (L/mIU/h)
Omax Maximal insulin secretion rate per unit 6:10° 10°
volume of B cells (mIU/L/h)
CLj pep Hepatic insulin clearance (1/h) 17.81 35.62
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