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Abstract

Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable
economic importance. Rubber tree breeding programs currently aim to improve growth and
production, and the use of early genotype selection technologies can accelerate such processes,
mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However,
few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics.
Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL
regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq)
methodologies, coexpression networks and enzyme networks can provide a better understanding of
the molecular relationships involved in the definition of the phenotypes of interest, supplying
research support for the development of appropriate genomic based strategies for breeding. In this
context, this work presents the potential of using combined multiomics to decipher the mechanisms
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of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a
genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in
QTL regions with a main effect on rubber tree plant growth under constant water stress. The
underlying genes were evaluated and incorporated into a gene coexpression network modelled with
an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were
estimated and evaluated through in silico methodologies, including an estimated enzymatic network.
From all these analyses, we were able to estimate not only the main genes involved in defining the
phenotype but also the interactions between a core of genes related to rubber tree growth at the
transcriptional and translational levels. This work was the first to integrate multiomics analysis into
the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies
in the species and enhancing the efficiency of the species improvement programs.

1 Introduction

Hevea brasiliensis (rubber tree) is an outbreeding forest species belonging to the Euphorbiaceae
family with an inestimable importance in the world economy because it is the only crop capable of
producing natural rubber with quantity and quality levels able to meet global demand (De Faÿ and
Jacob, 1989). Possessing unique characteristics such as resistance, elasticity and heat dissipation,
Hevea rubber is used as a feedstock for more than 40,000 products (Pootakham et al., 2017; Mantello
et al., 2019). Although it is very important, H. brasiliensis is still in an early domestication stage due
to its long breeding cycle (25 to 30 years), the large areas required for planting and its recent
cultivation (Priyadarshan and Clément-Demange, 2004; Gonçalves et al., 2006). In this context,
Hevea breeding programs aim to improve important agronomic traits for rubber fabrication, mainly
those related to latex growth and production (Priyadarshan, 2003). The use of early genotype
selection technologies has been proposed as a breeding alternative for accelerating this process, e.g.,
incorporating genomic tools for marker-assisted selection (MAS) (Pootakham et al., 2017;
Priyadarshan, 2017). Although the discovery of quantitative trait loci (QTLs) can benefit Hevea
breeding programs (Souza et al., 2019), this characterization is hindered by the large number of genes
and molecular interactions controlling such characteristics (Pootakham et al., 2020). To date, few
QTLs have been successfully used for rubber tree MAS for complex quantitative traits due to the
insufficient quantity of linked markers in the QTLs, small QTL effects on the phenotype, or strong
environmental influences (Nguyen et al., 2019).

Several studies have been carried out in the last decade to identify QTLs in H. brasiliensis through
genetic linkage maps (Souza et al., 2013; Pootakham et al., 2015; Conson et al., 2018; Rosa et al.,
2018; Xia et al., 2018) and association mapping (Chanroj et al., 2017). Genome-wide association
studies (GWAS) are important tools for the identification of candidate genetic variants underlying
QTLs, with great potential to be incorporated into MAS. Compared to linkage maps, the use of
GWAS methodologies has advantages such as using genetically diverse populations with different
rates of recombination and linkage disequilibrium (LD) (Myles et al., 2009). Despite the observed
GWAS efficiency in several crops (Warraich et al., 2020; Zhang et al., 2020; Verzegnazzi et al.,
2021), this methodology still presents limitations related to the low proportion of phenotypic variance
explained by the identified genomic regions (Manolio et al., 2009). As an alternative, the
combination of GWAS results with other molecular methodologies, such as transcriptomics and
proteomics analyses, can contribute to better knowledge of the genetic mechanisms involved in the
definition of a trait (Tam et al., 2019), overcoming the statistical limitations on the characterization of
a broad set of causal genomic regions.
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Although the identification of genes with a great phenotypic effect is consolidated with GWAS
methodologies (Nebel et al., 2011), there are no established methods for investigating the complete
set of genes controlling complex traits through multiomics approaches, and such characterization is
an open scientific challenge, especially in crops with complex genomes such as rubber trees
(Schaefer et al., 2018). Different initiatives have associated GWAS results with RNA-Seq data (Yan
et al., 2020), linking causal genes relevant to the observed phenotypic variation with cell
transcription activity profiles (Schaefer et al., 2018; Nguyen et al., 2019). In Hevea, however,
RNA-Seq-based studies have been mainly performed to investigate differentially expressed genes
(DEGs) under different environmental or stress conditions and profiling rubber tree samples (Hurtado
Páez et al., 2015; Sathik et al., 2018; Mantello et al., 2019; Ding et al., 2020; Ding et al., 2020).
Although the integration of GWAS with RNA-Seq methodologies has proven to provide a deeper
comprehension of the genetic relationships involved in trait definition, there is no study, to date,
aggregating such data in Hevea.

We are currently undergoing a major revolution in omics sciences (genomics, transcriptomics,
proteomics and phenomics) with different methods for data integration enabling important advances
in all phases of genetic improvement, ranging from the discovery of new variants to the
understanding of important metabolic pathways (Scossa et al., 2021). The integration of data derived
from multiomics can be combined to reveal, in a profound way, the relationships that represent the
true biological meaning of the studied elements (Jamil et al., 2020; Wu et al., 2020). This approach
has become increasingly common in humans (Wu et al., 2018), animals (Fonseca et al., 2018),
microorganisms (Wang et al., 2019), and combinations of species (Pinu et al., 2019). However, for
plants, such integrated methodologies are still a great challenge, especially for nonmodel species with
elevated genetic diversity and complex genomes (Jamil et al., 2020), which is the case for H.
brasiliensis (Tang et al., 2016; Liu et al., 2020, Wu et al., 2020). Despite its economic importance, no
study incorporating multiomics has been carried out on H. brasiliensis. With the wide availability of
omics data, coexpression networks have become a tool with great potential for inferring gene
interactions, mainly based on regulatory and structural relationships, allowing for a broader
understanding of unknown molecular mechanisms (Rao and Dixon, 2019). The identification of these
genes also allows us to indirectly assess, through their enzymes, the global metabolic relationships
involved in defining the evaluated characteristic (Pérez-Bercoff et al., 2011). In this way, we can
make use of GWAS to select genes of great importance for the phenotype of interest. Such genes can
be used as a guide to select modules of coexpressed genes and their enzymes, which may have minor
effects on the phenotype but may be important to maintaining heritability.

In this context, this work presents a combination of omics data to determine the mechanisms of
genotype and phenotype associations involved in rubber tree growth. Using real populations from
Hevea breeding programs, association mapping was carried out, and the results were incorporated
into RNA-Seq-based coexpression networks and metabolic networks, which were assessed indirectly
through the enzymes involved in vegetative growth. By using this established multiomics framework,
our study supplies important clues to how the metabolic mechanisms of rubber tree growth are
interconnected and suggests novel growth-associated genes for future research on increasing Hevea
production.

2 Materials and Methods

According to the analysis workflow performed, different molecular layers were investigated in this
work (Figure 1). The study started with the identification of the SNPs with the greatest effect on stem
diameter (SD) through a GWAS. After selecting these markers, the markers that presented a
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significant correlation were selected. This entire set of markers was annotated using a transcriptome
assembled on the basis of two commercial genotypes that have been widely used in the genetic
improvement of the species. Additionally, a weighted gene coexpression network was constructed,
from which it is possible to select  the functional modules containing the genes identified by the
GWAS. An enzymatic network was also built based on the annotation of genes present in the
functional modules selected, which supplied insights into the interaction of these enzymes with the
studied phenotype.

2.1 Plant Material

For this work, we employed a population composed of 4 test clones (GT1, PB235, RRIM701 and
RRIM600) and individuals from crosses between PR255 x PB217 (251 samples), GT1 x RRIM701
(143 samples) and GT1 x PB235 (40 samples) (Souza et al., 2013, 2019; Conson et al., 2018; Rosa et
al., 2018). The PR255 genotype was selected because of its early growth and high yield, as well as
for being vigorous with stable latex production throughout life (Souza et al., 2013). In contrast, the
PB217 genotype presents slow growth but has a rapid increase in latex production in its early years
and great potential for long-term performance and yield (Souza et al., 2013; Rosa et al., 2018). These
genotypes were planted in random blocks, with four replications of the same genotype grafted on the
same plot. This plantation is located in Itiquira, Mato Grosso (MT), Brazil (17° 24′03″ S and 54°
44′53″ W). The GT1 genotype was selected because it is a sterile male and is classified as a primary
clone that is tolerant to wind and cold (Shearman et al., 2014). The RRIM701 clone shows vigorous
growth and a stem diameter increase after the initial cut (Romain and Thierry, 2011). PB235 has been
shown to be a high-yield genotype but is susceptible to panel dryness (Sivakumaran et al., 1988).
These two populations (GT1 x RRIM 701 and GT1 x PB 235) were planted in modified blocks that
were repeated in four blocks containing two plants of the same genotype per plot with 4 meters of
spacing between them. These populations were planted at the Center for Rubber and Agroforestry
Systems/Instituto Agronômico (IAC) (20° 25′00″ S and 49° 59′00″ W) in the northwest region of the
state of São Paulo (SP), Brazil. All of these genotypes are widely employed in commercial
production and used in Brazilian breeding programs, representing the main rubber tree genetic
sources in Latin America. Crossing was carried out via open pollination, and paternity was confirmed
using microsatellite markers (SSRs).

2.2 Phenotypic Analyses

As the main characteristic evaluated in rubber tree genetic breeding (Rao and Kole, 2016), stem
diameter (SD) was measured in the selected population during the first 4 years of genotype
development. Each plant was individually phenotyped (in centimeters) at a height of 50 cm from the
soil in two seasons with contrasting average rainfall (low precipitation and high precipitation), which
are considered in Hevea studies as contrasting environments (Chanroj et al., 2017; Souza et al.,
2019). The variance caused by the genotypic effects was estimated using the best linear unbiased
predictor (BLUP) with the breedR package in R (Munõz and Sanchez, 2017). The linear mixed
model was as follows:
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effects (g) and genotype x environment interactions (gw), respectively, and is the residualσ
ɛ
2

variance. The significance of random effects was estimated by a likelihood ratio test (LRT) with a
significance level of 0.05. We estimated the broad heritability ( ) for genotypic means using the𝐻2

following equation:
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where is the genotypic variance, is the variance caused by the environment x genotypeσ
𝑔
2 σ

𝑔𝑤
2

interaction, s is the number of environments analyzed, is the residual variance and a is number ofσ
ɛ
2

blocks.

2.3 Genotypic Analyses

The extraction of genomic DNA was performed according to Souza et al. (2013) and Conson et al.
(2018). Genotyping-by-sequencing (GBS) libraries were prepared from genomic DNA using the
method proposed by Elshire et al. (2011). Initially, the genomic DNA of each sample was digested
using the methylation-sensitive enzyme EcoT22I to reduce the genomic complexity. The resulting
fragments of each sample were linked to specific barcodes and combined in pools. These fragments
were amplified by PCR and sequenced. Sequencing of the PR255 x RRIM217 population was
performed using the Illumina HiSeq platform, and sequencing of the GT1 x RRIM701 and GT1 x
PB235 populations was performed with the GAIIx platform (Illumina Inc., San Diego, CA, United
States). Processing of the GBS data from both experiments was carried out at the same time. SNPs
were identified with TASSEL GBS 5 software (Glaubitz et al., 2014) using the following parameters:
(i) k-mer size of 64 bp; (ii) minimum read quality (Q) score of 20; and (iii) minimum locus depth of 6
reads. Reads were aligned with the rubber tree reference genome proposed by Liu et al. (2020a) using
Bowtie2 version 2.1 software (Langmead and Salzberg, 2012) with the very sensitive option. We
only kept the biallelic markers selected with the VCFtools program (Danecek et al., 2011). Using
snpReady software (Granato and Fritsche-Neto, 2018), SNPs with more than 20% missing data and
minimum allele frequency (MAF) <0.05 were filtered out. Imputation was performed using the
k-nearest neighbor imputation (kNNI) algorithm (Hastie et al., 2017). LD estimations were calculated
with the ldsep R package (Gerard, 2020) based on the squared Pearson correlation (R2). For linkage
decay investigation, we created a scatter plot of R2 against the chromosomal distances, considering an
exponential decay ( ) (Ranc et al., 2012) created with a nonlinear least squares𝑦 = 𝑎 + 𝑏𝑒(𝑐𝑥)

regression model using R software.

2.4 GWAS

GWAS were performed using the Fixed and random model Circulating Probability Unification
(FarmCPU) method implemented in the FarmCPU R package (Liu et al., 2016). The kinship matrix
and the first two principal components (PC1 and PC2) from a principal component analysis (PCA)
were used as covariables in the mixed linear model to control the effects caused by the population
structure (Challa and Neelapu, 2018). The significance threshold used for the association mapping
was calculated based on 30 SD permutations and a 95% quantile value. Additionally, we expanded
the set of putatively associated markers through LD. Considering a minimum R2 of 0.7, we created a
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set of GWAS LD-associated markers (snpsLD), which was used for modeling an LD network with
the igraph R package (Csardi and Nepusz, 2006).

2.5 Transcriptome

To estimate rubber tree gene expression, RNA-Seq data from RRIM600 and GT1 clones (Mantello et
al., 2019) were used. From 6 months of age, these plants were transferred to a growth chamber at a
temperature of 28 °C with a 12-hour photoperiod and were irrigated every 2 days for a period of 10
days. After this period, the plants were subjected to cold stress by changing the chamber temperature
to 10 °C for 24 hours, with the leaf tissues being sampled at 0 hours (control), 90 min, 12 hours and
24 hours after exposure to the stress. RNA was extracted from the leaves of three biological
replicates using the lithium chloride protocol (Dusotoit-Coucaud et al., 2009). From the total RNA, a
cDNA library was built using the TruSeq RNA Sample Preparation Kit (Illumina Inc., San Diego,
CA, USA). The 24 samples (three replicates per sample at each time) were randomly pooled (4
samples per pool) and grouped using the TruSeq Paired-End Reads Cluster Kit on the cBot platform
(Illumina Inc., San Diego, CA, USA). The cDNA libraries were posteriorly sequenced on the
Illumina Genome platform Analyzer IIx with a TruSeq kit with 36 cycles (Illumina, San Diego, CA,
USA) for 72 bp paired-end reads.

RNA-Seq barcodes were removed from FastQ files using Fastx-Tookit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html), and raw reads were filtered using the program
NGS QC Toolkit 2.3 (Trivedi et al., 2014), keeping only sequences with a minimum Q-score of 20
across at least 70% of the sequence length. The filtered sequences were combined with bark reads
(Mantello et al., 2014) and mapped to the reference genome of H. brasiliensis (Tang et al., 2016)
using the HISAT2 aligner (Kim et al., 2015). The alignment was ordered and assembled using
SAMtools (Li et al., 2009) and Trinity (Grabherr et al., 2011) software, respectively. H. brasiliensis
scaffolds (Tang et al., 2016) were submitted for ab initio annotation using the Maker-P (Campbell et
al., 2014) tool. The Trinity assembled transcripts and the Maker-P annotations were combined with
nonredundant H. brasiliensis ESTs in the NCBI database (August 2016) and used as a database for
aligning assemblies against the H. brasiliensis genome (Tang et al., 2016) with the PASA v2.0
pipeline (Haas et al., 2003) after removing redundant alternate splicing data. The obtained transcripts
were filtered with a minimum size of 500 bp and evidence of transcription; we excluded sequences
that were only predicted by ab initio genome annotation and with high identity for nonplant
transcripts. To estimate the physical position of these sequences across Hevea chromosomes, we
performed comparative alignments of these transcripts against the H. brasiliensis genome proposed
by Liu et al. (2020a) using BLASTn (Johnson et al., 2008). The annotation of these transcripts was
performed using the Trinotate v3.2.1 program (Haas, 2015) and SwissProt database (downloaded in
February 2021) (Boeckmann et al., 2003).

2.6 Gene-Associated Markers

The analysis of candidate genes in QTL regions was performed based on transcript annotations.
Candidate genes for the phenotypic variation of GWAS-discovered SNPs were considered by using
the first transcripts positioned in the upstream and downstream regions of these markers. In addition
to the SNPs significantly associated with the phenotype discovered by the GWAS, which we will call
snpsGWAS here, we also searched for candidate genes in the neighboring snpsLD. The GO terms
associated with these annotations (snpsGWAS and snpsLD) were investigated using REVIGO (Supek
et al., 2011). The genomic regions of the phenotypically associated SNPs discovered in this work
were compared with the QTLs discovered by Conson et al. (2018) from the mapping population GT1
x RRIM701. For this analysis, the sequences underlying the QTLs (Conson et al., 2018) were aligned
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to the reference genome of Liu et al. (2020a) using BLATn. Alignments with identity above 90% and
with the largest coverage area were selected (minimum e-value of e-10). Based on the position of this
alignment in relation to the reference genome of Liu et al. (2020a), a representation of the 18
chromosomes of H. brasiliensis was made using snpsGWAS, snpsLD and QTLs (Conson et al.,
2018) using the MapChart program v.2.2 (Voorrips, 2002).

2.7 Coexpression Networks

For modeling coexpression networks, we used RNA-Seq count data grouped into transcript clusters
through PASA v2.0 software (Haas et al., 2003). Only transcripts with at least 10 counts per million
(CPM) were retained and normalized with a quantile-based approach implemented in the edgeR
package in R (Robinson et al., 2010). Weighted gene correlation analysis (WGCNA) was performed
using the WGCNA R package (Langfelder and Horvath, 2008) together with Pearson correlation
coefficients. A soft thresholding power β-value was estimated for fitting the network into a scale-free
topology, and a topological overlap measure (TOM) for each gene pair was used for building a
dissimilarity matrix and for performing unweighted pair group method with arithmetic mean
(UPGMA) hierarchical clustering. The best clustering scheme was defined using a variable height
pruning technique implemented in the Dynamic Tree Cut R package (Langfelder, et al., 2008). The
groups containing genes associated with snpsGWAS were used to model a specific coexpression
network using the igraph R package (Csardi and Nepusz, 2006) with Pearson correlation coefficients
(minimum R value of 0.5), where we calculated the hub scores for each gene considering Kleinberg’s
hub centrality scores (Kleinberg, 1999).

2.8 Metabolic Network Modeling

From the annotations performed for genes surrounding the snpsGWAS and the snpsLD, we retrieved
the enzyme commission (EC) numbers and investigated the related metabolic pathways using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000). All the H.
brasiliensis metabolic pathways with enzymes related to snpsGWAS and snpsLD were retrieved and
used to model a metabolic network using BioPython v.1.78 (Cock et al., 2009). From the created
network, we evaluate the following topological properties: (i) degree (Barabási and Oltvai, 2004), (ii)
betweenness centrality (Brandes, 2001), (iii) stress (Brandes, 2001), (iv) short path length value
(Watts and Strogatz, 1998), and (v) neighborhood connectivity (Maslov and Sneppen, 2002), using
Cytoscape v3.8.2 (Shannon et al., 2003). The network was also categorized regarding its community
structure, with the enzymes organized into modules using the HiDeF algorithm (Zheng et al., 2021).

3 Results

3.1 Phenotypic and Genotypic Analyses

The SD values were adjusted according to the mixed model from which the BLUPs were extracted
for further analysis (Supplementary Table 1). All fixed and random effects showed significant effects
under the LRT test (p <0.01). The estimated variances were 4.56, 0.0001 and 26.69 for the genotype (

), genotype x environment interaction ( ) and residual ( ) effects, respectively. Theσ
𝑔

2 σ
𝑔𝑤

2 σ
Ɛ

2

experimental design was confirmed to show normality of the residual variance based on the
quantile-quantile graph (Q-Q plot) (Supplementary Figure 1). The estimated heritability ( ) in the𝐻2

entire population was 0.55, which is close to those values found in previous studies on the species
(Gonçalves et al., 1999; Chanroj et al., 2017).
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The identification of SNPs was carried out using all 437 individuals. By employing the TASSEL
pipeline, we produced 363,641 tags, which were aligned with the Hevea reference genome,
producing an alignment rate of ~84.78%. We identified a total of 107,466 SNPs, which were filtered,
resulting in a total of 30,266 high-quality markers (~28.16%), with an imputation rate of ~6.74%.
This filtered SNP dataset was used for PCA, with 18.33% and 2.61% of the variance explained by the
first two main components, respectively (Supplementary Figure 2). Although high LD decay was
observed (Supplementary Figure 3A), we also assessed the LD decay rate only in the regions
containing transposable elements (TEs) (Supplementary Figure 3B), which was higher.

3.2 RNA-Seq Analyses

A total of ~530 million and ~633 million paired-end (PE) reads were obtained for the RRIM600 and
GT1 genotypes, respectively. After quality filtering, we obtained ~933 million PE reads for
assembling the transcripts through Trinity software. We identified 104,738 transcripts ranging from
500 bp to 22,333 bp (average transcript size of 1,874 bp and N50 of 2,369 bp) that were related to
49,304 genes . In total, 82,629 transcripts (78.89%) could be annotated using the Swiss-Prot
database. We were able to associate Gene Ontology (GO) categories with 81,095 transcripts
(77.42%) and metabolic pathways from the KEGG database with 74,668 transcripts (71.29%). A
total of 11,150 different proteins could be associated with the estimated set of genes for rubber trees,
with a high incidence of TEs; the retrovirus-related Pol polyprotein from transposon RE1 (RE1)
(4.45%) and the retrovirus-related Pol polyprotein from transposon TNT 1- 94 (TNT 1-94) (2.80%)
were the most pronounced categories.

3.3 Genome Wide Association Study

With the FarmCPU method and the selected covariates, we were able to observe satisfactory
adherence to the association mapping results (Figure 2A). Four snpsGWAS were identified on
chromosomes 2, 5, 8 and 15 (Figure 2B). The MAFs of the snpsGWAS ranged from 10 to 45%, with
additive heritabilities ranging from 2 to 9% and additive effects ranging from -1 to 0.84 cm (Table 1).
To assess all markers associated with SD, we expanded the set of significantly associated markers by
means of LD tests on the total set of SNPs. A total of 181 snpsLD were found and showed a
correlation greater than 0.7 with the snpsGWAS (Supplementary Figure 4). snpsLD are distributed on
the 18 chromosomes of the rubber tree (Figure 3), flanking previously described QTLs (Conson et
al., 2018). We were able to identify SNPs with distances of approximately 40 bp in the QTL regions
(Figure 3).

To infer the associations between the set of SNPs (snpsGWAS and snpsLD) and expressed genomic
regions, we performed comparative alignments of the transcripts assembled to the rubber tree
chromosomes. SNPs were assigned to the first genes that were downstream and upstream of their
location with an average distance of 7 kbp (Supplementary Table 2). Among the snpsLD, genes
related to the transcription of important proteins involved in different stresses were found, such as
TNT 1-94, receptor-like protein EIX2, integrin-linked protein kinase 1, U1 small nuclear
ribonucleoprotein 70 kDa, histidine-containing phosphotransfer protein 2, rhomboid-like protein 14,
and mitochondrial and threonine-protein kinase STN7. The annotation of the set of SNPs putatively
associated with SD showed major biological processes related to DNA integration, response to water
deprivation, regulation of intracellular pH, proton transmembrane transport, stomatal opening,
flavonoid biosynthetic process, pollen sperm cell differentiation, oxidation-reduction process,
circadian rhythm, carbohydrate metabolic process, multidimensional cell growth and chromatin
organization (Figure 3).
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3.4 Gene Coexpression Network

Of the 104,738 transcripts, 30,407 were selected for modeling a gene coexpression network using the
WGCNA methodology (Zhang and Horvath, 2005). In such a network, pairwise gene interactions are
modeled through a similarity measure, such as the Pearson correlation coefficient employed here. For
fitting the network into a scale-free topology, we selected a power of 9 (scale-free topology modelβ
fit with and mean connectivity of ~183.47) and calculated the corresponding𝑅² > 0. 85 
dissimilarity matrix through the WGCNA R package. With the network modeled, we combined
UPGMA clustering with a variable height pruning technique, enabling the identification of 174
groups, with sizes ranging from 52 to 3,823 genes. The 5 groups containing the genes potentially
related to the snpsGWAS were selected (Supplementary Table 3), and a new coexpression network
was built including the genes associated with the snpsLD (Figure 5). All these genes formed a unique
interaction network with weaker interactions connecting the found groups, which putatively
represents the direct and indirect molecular associations with the SD phenotype. For the analysis of
all reactions triggered by the genomic regions associated with GWAS, we evaluated this set of 1,528
genes for related GO terms (Figure 6). From the biological process category, we found new GO terms
not associated with the genes related to snpsGWAS and snpsLD. These GO terms included defense
response, positive regulation of transcription, cell wall organization, photosynthesis, cell division,
mitotic cell cycle phase transition, carbon fixation, cell population proliferation, asymmetric cell
division, and stomatal closure.

Regarding the genes found in these modules, as also observed in the general transcriptome profile,
we observed a predominance of genes related to the protein retrovirus-related Pol polyprotein from
transposon 17.6 (TE 17.6) (2.36%) and TNT 1-94 (1.23%). We also found several genes related to
proteins involved in (Supplementary Table 3): (i) plant growth (e.g., MEI2-like 4 and
threonine-protein kinase GSO1); (ii) the response to biotic and abiotic stress (e.g., abscisic
acid-insensitive 5-like protein 6, transcription factor ICE1, abscisic acid receptor PYL4, transcription
factor jungbrunnen 1, transcription factor MYB44, and galactinol synthase 2); (iii) root growth (e.g.,
alkaline/neutral invertase CINV2, threonine protein kinase IREH1, phospholipase D zeta 1, protein
arabidillo 1, regulatory-associated protein of TOR 1, agamous-like MADS-box protein AGL12, and
omega-hydroxypalmitate O-feruloyl transferase); (iv) the hormone abscisic acid (ABA) pathway; and
(v) the light acclimatization process (e.g., GATA transcription factor 7 and malate dehydrogenase
[NADP]). However, the great majority of these identified genes were not overexpressed, with a few
exceptions (Supplementary Figure 5). To assess the most influential nodes within the network
structure, we evaluated the hub scores of each gene within the network. The first hub gene in this
network (PASSA_cluster_140395) was among the snpsLD genes, and the 10 first hubs had many
known annotations. The first three hubs that had a known annotation were PASA_cluster_160224,
PASA_cluster_87395, and PASA_cluster_140392, showing associations with TEs (Supplementary
Table 3).

3.5 Metabolic Networks

Due to the clear absence of functional annotations, all the genes identified in the coexpressed
modules with a known enzymatic activity relatedness were used for modeling a metabolic network
using the KEGG database. In this structure, each enzyme corresponds to a node, and their
connections are based on metabolic interactions. Nineteen genes were related to 19 different enzymes
present in 28 metabolic pathways (Supplementary Table 4). All these reactions were joined into a
unique network structure containing 405 nodes (enzymes) and 1,311 edges (average number of 5.338
neighbors and diameter of 22 nodes) (Figure 7A; Supplementary Figure 6), representing a diverse
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cascade of mechanisms with putative associations with plant growth. Network topology
measurements were performed to identify the most important enzymes in the modeled mechanisms.

From the degree measures for each node (considering in and out connections), we identified 17
outliers (Figure 7A;  Supplementary Figure 6), which were considered network hubs. We found
enzymes with diverse roles (Supplementary Table 5), such as UDP-sugar pyrophosphorylase (ec:
2.7.7.64) (34 connections), ureidoglycolate amidohydrolase (ec:3.5.1.116) (26 connections) and
alanine-glyoxylate transaminase (ec:2.6.1.44) (25 connections). Interestingly, these enzymes were
also the ones with the highest values of outdegree, stress and betweenness. Considering only the
indegree connections, the top 4 enzymes (also identified among the network hubs) were UDP-sugar
pyrophosphorylase (ec: 2.7.7.64) (34 connections), glutamate dehydrogenase (NAD (P) +) (ec:
1.4.1.3) (19 connections), glutamate dehydrogenase (NADP+) (ec: 1.4.1.4) (18 connections) and
malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (ec: 1.1.1.40) (15 connections).
Among the 17 hubs, pyruvate kinase (ec: 2.7.1.40) also presented high values for other centrality
measures (betweenness and stress). Additionally, the enzyme threonine synthase (ec: 4.2.3.1) showed
the highest short path length value (14.30) and the highest eccentricity value (22), and the
glucuronokinase enzyme (ec: 2.7.1.43) showed the highest value for neighborhood connectivity (24).

In addition to these evaluations, the modeled network was also categorized into condensed modules
regarding the community structure and enzyme organization (Figure 7B; Supplementary Figure 7;
Supplementary Table 6). Using the HiDeF (Zheng et al., 2021) algorithm, 149 communities were
identified, containing 4 to 389 enzymes. The community with the highest eccentricity (7) was c1337,
which also contained the highest number of enzymes. The community with the highest stress value
(255) and betweenness (0.37) was c13340 (with 68 enzymes), and it was among the top 3
communities with the highest eccentricity value (5) (Supplementary Table 7).

4 Discussion

The genetic improvement of rubber trees requires a long period of time, with more than 30 years
estimated for developing an improved genotype (Gonçalves and Fontes, 2012). Despite the
specialized labor required for Hevea phenotyping, its plantation is only possible in vast areas, making
the selection process laborious and financially expensive. In this context, the use of MAS can
drastically reduce the time and the cost of genetic improvement, especially if implemented in the first
years after obtaining the seeds by selecting the target characteristics indirectly through
phenotypically associated markers (Xu and Crouch, 2008). As a way of assisting such initiatives, in
this work, we identified SNPs associated with SD, and this set of markers can be used as
high-priority candidates for MAS, with a high potential of providing greater precision and requiring
less time in the selection of superior genotypes.

The main abiotic limitations for the productivity of cultivated plants are excessive salinity, adverse
temperatures, and water deficit (Zhu, 2016), and for rubber tree production, water stress and cold are
widely described as the most impactful limitations (Ding et al., 2020). Although several studies have
investigated the molecular mechanisms of Hevea in cold resistance for its improvement (Cheng et al.,
2018; Deng et al., 2018; Mantello et al., 2018), one of the main characteristics evaluated in Hevea
breeding programs is SD (Priyadarshan, 2003) due to its versatility in assessing rubber tree
productive efficiency (Dijkman, 1951; Goncalves et al., 1984; Chanroj et al., 2017; Conson et al.,
2018; Khan et al., 2018; Chen et al., 2020). The use of SD measures can provide insights into
phenotypes that can only be measured in specific climate conditions, such as drought resistance
(Ohashi et al., 2006; Zhang et al., 2019a), which impacts rubber tree growth (Chandrashekar et al.,
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1998). Additionally, traits that can only be measured after a certain age of the plant, such as the
production of latex and vigor (Dijkman, 1951; Goncalves et al., 1984), can be estimated by SD.

As SD is a quantitative characteristic, the study of the genetic architecture related to this trait is quite
complex, considering the high amount of genes and metabolic pathways involved in its definition
(Pootakham et al., 2020). Furthermore, the genome of rubber trees encompasses a large number of
repetitive regions, reaching approximately 71% of rubber tree genomic content (Tang et al., 2016).
The first Hevea reference genome at the chromosome level was only recently published in 2020 (Liu
et al., 2020a), and most genomic approaches in the species have been based on highly fragmented
sequences and biocomputational estimations (Pootakham et al., 2015; Chanroj et al., 2017; Conson et
al., 2018; de Souza et al., 2018; Souza et al., 2019). Only with the advent of molecular biology
techniques for reducing genomic complexities during sequencing procedures, such as GBS (Elshire
et al., 2011; Poland and Rife, 2012), has it been feasible to generate thousands of SNP markers with
high frequency in complex plant genomes (Pootakham et al., 2015). By using a GBS approach
combined with a rubber tree chromosome-level reference genome, we characterized a large number
of high-quality markers regarding their genomic distribution and LD relatedness, which enabled us to
compare our findings with the locations of several QTLs for this characteristic, embracing novel
possible causal genes explaining this phenotypic variation.

The large number of SNP markers discovered in this work allowed us to assess the LD throughout
the genome of the entire population in a very representative way. As in other studies using arboreal
and allogamous species (Peláez et al., 2020), our results showed high LD, which is consistent with
previous H. brasiliensis results (Chanroj et al., 2017; De Souza et al., 2018). Interestingly, such
elevated decay is not constant, and regions with a high density of TEs present a lower level of LD
compared to the overall genomic LD. TEs are known as mobile elements due to their ability to
change positions along the genome and produce copies of themselves (Singh et al., 2019), mainly in
genomic regions with low LD (Stuart et al., 2016; Choudhury et al., 2019), as was observed in this
work (Supplementary Figure 3). As stated by Choudhury et al. (2019), we also believe that there are
two main reasons for this observation: (i) TEs alter the genetic architecture of the chromosome by
decreasing the recombination rate in its vicinity; and (ii) TEs accumulate in these regions due to the
low recombination rate that occurs in these locations.

Several studies have been developed to characterize SD QTLs (Souza et al., 2013; Conson et al.,
2018; Rosa et al., 2018); however, these studies are limited to the biparental populations employed
(Myles et al., 2009). With the use of genetically diverse populations, GWAS approaches use the
historical links between different genotypes, capturing more genetic diversity through a broader set
of markers that would be neglected in association maps (Kulwal, 2018). When we are unable to
identify the expected segregation ratios in markers from biparental progenies, these regions, even
those close to important QTLs, are often discarded along with their associated QTLs (Kulwal, 2018).
In this context, GWAS approaches have been suggested as a powerful tool for overcoming such
limitations, which are intensified in species such as H. brasiliensis, in which there are great
difficulties in obtaining mapping populations.

4.1 GWAS

To date, only one study employing GWAS has been described in the literature for H. brasiliensis.
Using a population of 170 individuals genotyped with 14,155 SNP markers by capture probes
(Shearman et al., 2014), Chanroj et al. (2017) tested four association models. The authors could
associate two SNP markers with latex production (one for the rainy season and the other one for the
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drought season) and two others with SD (also separated by rainy and drought seasons). According to
Conson et al. (2018), the rubber tree populations planted in the escape areas are under water stress at
all times, despite the differences in water regime across seasons. Due to such observations and the
Brazilian climate, we performed our analyses without making this distinction. In this way, we
identified 4 SNPs associated with SD, which were annotated following an RNA-Seq-based approach.

Different from establishing a genomic window surrounding these markers and performing
comparative alignments against plant databases (Chanroj et al., 2017; García-Fernández et al., 2021),
we used an assembled transcriptome for the association of the snpsGWAS. This step was performed
mainly because of the absence of available data for several neglected species in public databases
(Schaefer et al., 2018), such as H. brasiliensis. Moreover, transcriptome assemblies are a way of
categorizing a broader range of important genes found under stress conditions (Valdés et al., 2013;
Wei et al., 2021), as already reported by other Hevea studies (Ahn et al., 2017; Mantello et al., 2019).
Additionally, because of the recent availability of the Hevea genome (Liu et al., 2020a), more studies
are required for complete and accurate gene categorization. By coupling the transcriptome assembly
with GWAS, we could associate the 3 candidate genes identified by the snpsGWAS, which were
annotated and had their expression profile estimated in two different genotypes, including in the
population used here, and in specific stages of the plant development and physiology. As pointed out
by Schaefer et al. (2018), this type of strategy provides associations not only with growth but also
with resistance to abiotic stress. The genes identified flanking the snpsGWAS were interpreted
according to their biological function and their metabolic context (Watanabe et al., 2017), suggesting
their potential relationships in defining the phenotype.

The SBT4.6 gene (Table 1), identified based on the snpsGWAS, belongs to the subtilisin-like
protease family, whose members are involved in general protein turnover and regulatory processes
and in mechanisms of resistance to biotic and abiotic stresses (Tian et al., 2005; Budič et al., 2013;
Figueiredo et al., 2018). Under normal conditions, mutants for this gene do not show obvious
changes in the normal growth of the plant, so there is still a need for further investigations regarding
this gene in the development of the plant (Rautengarten et al., 2005). Although this gene is not
clearly involved in plant growth under normal conditions, we suggest that it may be indirectly related
to this characteristic. Two other genes associated with snpsGWAS show evidence of a relationship
with abiotic stresses. In addition to showing an increasing additive effect of 0.54 cm in the SD for a
specific genotypic class (Table 1), SNP30209 was in the vicinity of a genomic region containing a
candidate gene for GK1. In experiments carried out with Arabidopsis thaliana, GK1 showed a
behavior of D-aminoacyl-tRNA deacylase, which is important for protecting the plant against the
toxicity of D-amino acids (Wydau et al., 2007), which, when present in the soil, can have effects on
plant growth in different ecosystems, whether managed or not. These compounds can act in different
ways on root and stem growth, with D-serine, D-alanine and D-tyrosine being the strongest growth
inhibitors, while others, such as D-lysine, D-isoleucine, D-valine, D-asparagine and D-glutamine, act
as milder inhibitors (Vranova et al., 2012). Another associated gene was IQM2, which contains a
domain for the IQM2 protein. Such a protein belongs to a calmodulin-binding family protein and has
strict involvement in the response to biotic and abiotic stress (Wan et al., 2012).

Despite the unquestionable importance of GWAS methods, the practical application of these findings
in MAS for the selection of several complex characteristics is limited due to the low heritability
associated with these markers (Bogardos, 2009). Considering this fact, we also investigated
associated genomic regions, which may be jointly involved in phenotype definition (Yuan et al.,
2012). Several statistical methods are used to identify genomic associations, such as multifactor
dimensionality reduction (Ritchie et al., 2001), LD (Wu et al., 2008) and entropy-based statistics
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(Dong et al., 2008). In this work, we employed SNP correlations, which led us to already establish
QTL positions (Conson et al., 2018), showing the robustness of this method. These newly identified
markers may reveal genes that would be overlooked by conventional GWAS approaches.

In addition to MAS, other important tools for the genetic improvement of various plant species have
been developed, such as iRNA (Zang et al., 2017) and CRISPR (Jaganathan et al., 2018), which have
shown enormous potential for breeding strategies in recent years (Kalunke et al., 2020; Liu et al.,
2020b). However, these approaches require the definition of target genes and their interactions, which
might be estimated through coexpression and metabolic networks. In this way, to provide a deeper
investigation into the metabolic activities of the genes associated with the snpsGWAS and snpsLD,
we modeled complex networks to investigate their interactions and provide insights into the
definition of the SD quantitative trait (Kosová et al., 2015; Tam et al., 2019), decreasing the
variability of the indirectly selected phenotype and accessing other omics layers. The multiomics
approaches employed here can contribute to a better understanding of the molecular mechanisms that
are important to the vegetative growth of rubber trees, opening new perspectives for deeper genomic
studies.

4.2 Multiomics

Quantitative traits are strongly affected by environment x genotype interactions (Nguyen et al.,
2019). Genotypes with a greater capacity to resist these abiotic factors have a greater capacity to
grow and develop under these stresses (Mantello et al., 2019). Understanding all the molecular
biological levels that confer such a resistance to these specific genotypes requires the integration of
multiple omics approaches, such as genomics, transcriptomics, proteomics and metabolomics.
Multiomics approaches have as their main objective the integration of data analysis of different
biological levels for a better understanding of their relationships and the functioning of a biological
system as a whole (Joyce and Palsson, 2006). The use of joint approaches benefits from including all
relevant parts that integrate the analyzed biological system (Zhang et al., 2010). Studies that integrate
the discovery of QTLs with other omics have used genetically well-studied agricultural crops such as
corn (Jiang et al., 2019) and, more recently, tree species such as citrus (Mou et al., 2021).

To provide deeper insights into the molecular basis of the evaluated phenotype, we extended the
selected set of SD-associated SNPs with data from transcriptomics using complex network
methodologies. These methodologies have revolutionized research in molecular biology because of
their capability to simulate complex biological systems (D’haeseleer et al., 2000; Liu et al., 2020c)
and infer novel biological associations, such as regulatory relationships, metabolic pathway
inferences and annotation transference (Rao and Dixon, 2019). In H. brasiliensis, coexpression
network methods have already revealed genes involved in different environmental or stress
conditions and are a powerful tool for profiling rubber tree samples (Hurtado Páez et al., 2015; Sathik
et al., 2018; Mantello et al., 2019; Deng et al., 2020; Ding et al., 2020). Such studies in rubber trees
are still incipient and have not yet been coupled with breeding strategies for the genetic improvement
of the species. Starting from RNA-Seq-based data, we could associate our GWAS results with
expression profiles from important Hevea genotypes, incorporating our results into a complete set of
molecular interactions estimated through the WGCNA approach. Using this strategy, we can infer
biological functions for genes present in the same network module, as these genes probably exert
correlated functions (Child et al., 2011). This is the first initiative that proposes the integration of
GWAS and coexpression networks in rubber trees to identify genes with great potential to be used in
MAS.
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The transcriptome used for annotation and construction of the coexpression network showed a large
number of TEs, which are indeed present in large amounts in plant genomes (Matsunaga et al., 2015).
In addition, these TEs were also found to be abundant in the selected functional modules, with TE
17.6 and TNT 1-94 being the most prominent. These TEs have already been described as being
involved in gene expression, responses to external stimuli and plant development (Kashkush et al.,
2003; Matsunaga et al., 2015; Traylor-Knowles et al., 2017; Tran and Choi, 2020). In rubber trees,
TEs may be related to the differential expression observed in some commercial clones, affecting
important processes such as rubber production (Wu et al., 2020). As pointed out by Wang et al.
(2020), the identification of TEs associated with functional genes related to important characteristics
suggest that they can be used as molecular markers in MAS, contributing significantly to the genetic
improvement of woody trees. In this sense, our findings supply a wide range of genomic resources
for breeding. In the selected coexpression network, the most abundant elements were also TE 17.6
and TNT 1-94.

In the coexpression module with the largest number of genes, we were able to identify many genes
related to plant growth, such as the protein MEI2-like 4 (ML4), which is a substrate for putative
TOR, the main regulator of cell growth in eukaryotes (Anderson and Hanson, 2005), representing an
extremely important molecule in meiotic signaling (Watanabe et al., 1988). In this module, we also
identified the proteins alkaline/neutral invertase CINV2 (CINV2) and LRR receptor-like
serine/threonine-protein kinase GSO1 (GSO1), which are related to root growth and endoderm. The
invertase enzyme (INV) is one of only two enzymes capable of catabolizing physiological carbon,
together with the sucrose synthase enzyme (SUS); thus, most of the plant biomass is indispensable
for normal growth, and the loss of these genes slows plant growth (Barratt et al., 2009). According to
Racolta et al. (2014), the GSO1 protein works together with GSO2 for the intracellular signaling of
the plant, positively regulating cell proliferation, the differentiation of root cells and the identity of
stem cells.

In the other functional modules, we identified several proteins involved in abiotic stress, such as
transcription factor ICE1 (SCRM), an upstream transcription factor that regulates cold CBF gene
transcription, improving plant tolerance to freezing (Chinnusamy et al., 2003). The
regulatory-associated protein of TOR 1 (RAPTOR1) presents itself as a TOR regulator in response to
osmotic stress (Mahfouz et al., 2006). The transcription factor jumgbrunnen 1 (JUB1), which delays
senescence, also confers resistance to abiotic stress, such as heat shock, and resistance to high levels
of intracellular H2O2 (Wu et al., 2012). Protein galactinol synthase 2 (GOLS2) plays an important
role in the response against drought and cold stresses (Taji et al., 2002). The protein E3
ubiquitin-protein ligase PUB23 (PUB23), which responds quickly to water stress (Cho et al., 2008)
and biotic stress, and the protein glucan endo-1,3-beta-glucosidase (HGN1) have been reported in H.
brasiliensis and participate in a defense response against fungi (Galicia et al., 2015). In addition to
these proteins produced in response to a given stress, genes involved in the maintenance and
development of vegetative parts important for the development of the plant under a given stressful
condition, such as constant drought, were identified, including arabidillo 1 protein (FBX5), which is
related to the development of the roots (Coates et al., 2006), and Agamous-like MADS-box protein
AGL12 (AGL12) (Tapia-López et al., 2008). These results confirm the involvement of genes
identified by GWAS and other genes identified in functional modules in the investigated
characteristic definition. We can also relate the region of the SNP43760 marker, which has no known
annotation, to QTLs involved in resistance to environmental factors, since the functional module
containing these genes is related to this process.
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Finally, a metabolic network for the enzymes found in this data set was constructed to identify the
main metabolic pathways involved in the growth process of the rubber tree. The metabolites
produced in cells can be understood as a bridge between the genotype and the phenotype. A clearer
understanding of the relationship between these enzymes, such as by identifying the main enzymes
present in the network, is essential for maintaining the properties of this network and thus preserving
these relationships. The network built in this work shows some disconnected enzymes because the
reactions that connect them with the other enzymes in the network have not yet been elucidated.

We identified UDP-sugar pyrophosphorylase (USP) as the hub of this enzyme network; this enzyme
indicated to be an enzyme of great importance in the network, as it presented the highest degree value
(Barabási and Oltvai, 2004). It also showed the highest out-degree value, which represents the
number of connections directed from this node to the other nodes in the network. This enzyme is very
conserved in plants (Geserick and Tenhaken, 2013). Evidence indicates a high affinity of USP for
acid-1-phosphate (UDP-GlcA-1-P), a substrate of the myo-inositol oxygenase (MIOX) pathway for
UDP-GlcA (Geserick and Tenhaken, 2013). USP can also convert different types of
sugar-1-phosphatates into the UDP sugars that make up polymers and glycerols in plant cell walls
(Geserick and Tenhaken, 2013). USP is found in a single copy in Arabidopsis, and mutants for this
gene are lethal (Geserick and Tenhaken, 2013), as the pollen that carries this mutation does not
develop normally (Schnurr et al., 2006; Geserick and Tenhaken, 2013). Knock-down mutants also
show impaired vegetative growth due to deficiency in sugar recycling (Geserick and Tenhaken,
2013). The enzyme glutamate dehydrogenase (NAD (P) +) (GDH) appeared in the enzymatic
network containing a high degree of indegree. GDH catalyzes the deamination of glutamate using
NAD as a coenzyme and releases 2-oxoglutarate and ammonia when there is little carbon (Fontaine
et al., 2006). Participating in the response to various stresses, including drought and the presence of
pathogens, their expression levels are regulated according to the intensity of the stress (Restivo,
2004), increasing the capacity of resistance to stress and the acquisition of biomass by the plant (Qiu
et al., 2009; Tercé-Laforgue et al., 2015). The pyruvate kinase enzyme was shown to be central in the
integration of its components, presenting a higher value of betweenness centrality (Brandes, 2001),
indicating an important control function of this enzyme in the network, since this measure indicates
elements in the network that join communities. In addition to this enzyme being important for the
integration of the components in the metabolic network, this enzyme also presents itself as important
in the dissemination of information among the elements present in the metabolic network, since it
presented a higher stress value (Brandes, 2001), which indicates the shortest path between two
random nodes in the network. This enzyme is a key element in the regulation and adjustment of the
glucose metabolic pathway (Ambasht and Kayastha, 2002; Cai et al., 2018). Pyruvate kinase
catalyzes the irreversible transfer of the high-energy phosphate group from phosphoenopyruvate to
ADP, synthesizing ATP (Ambasht and Kayastha, 2002). Another important enzyme for the
dissemination of information within the network was threonine synthase (thrC), which showed a
higher value for the short path length (Watts and Strogatz, 1998) and eccentricity, which indicates the
maximum number of nodes necessary for the information to reach all nodes present in the network
(Hage and Harary, 1995). Theonine (Thr) enzymes play important roles in the stress response to
abiotic factors such as salinity, cold and drought (Rudrabhatla and Rajasekharan, 2002; Diédhiou et
al., 2008), in addition to the different processes related to plant growth, such as cell division and the
regulation of several phytohormones (Rudrabhatla and Rajasekharan, 2002) and carbon flux (Zeh et
al., 2001).

In this work, we identified many genes involved in the response to drought, showing the importance
of this element for the development of rubber trees, as already reported by Conforto (2008). Conson
et al. (2018) and Souza et al. (2019) showed that the environments in which the populations used in
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this work are grown are environments with constant water deficit, which was expected because they
are escape areas, which presents different climate of their natural habitat but where the rubber tree
has adapted well . In the context of climate change, the discovery of genes involved in responding to
water stress is of great value since forecasts show that in the near future areas suitable for planting
today may become unsuitable (Ray et al., 2016). Most likely, these changes will occur mainly in the
water regime, which can lead to the death of many woody plants (Adams et al., 2009).

Despite the limitations of the GWAS in identifying genes related to quantitative traits, the multiomics
strategy employed in this study allowed us to explore the main genes that putatively define this
phenotype from a holistic perspective, expanding this investigation and supplying a large reservoir of
data. Using the integration of GWAS with coexpression networks and enzyme networks, we were
able to elucidate the main relationships of these major genes and their products in a more complete
way, mainly considering the limitations of GWAS in the identification of regions of QTLs with small
effects. With the functional modules defined, we can gain insight into the genes that work together. In
addition to the understanding that the definition of SD is based on the interaction of several
processes, we have identified 6 functional modules. Even with more than one process, all these
interactions work together, as we can see in the network shown in Figure 6. In addition, we can see
the robustness of these results, which show correlations with previously published QTL maps
(Conson et al., 2018). Posttranslational inferences were made regarding the relationships identified in
the enzymatic network, which allowed us to identify new and important gene products that were
previously unidentified. All these results show the importance of these integrative studies that correct
the limitations of each individual technique.

This work is the first initiative that integrates multiomics in the study of QTLs in H. brasiliensis.
Using this approach, we were able to access all important molecular levels for the definition of SD.
Despite the great economic importance of the species, as it is the only one capable of producing
natural rubber in sufficient quantity and quality to supply the world market for this product (Ding et
al., 2020), its genetic studies are still quite limited due to the complexity of its genome (Tang et al.,
2016), its great genetic variability (De Souza et al., 2018) and the large areas needed for its
plantation. Despite all these limitations, this work overcomes these difficulties, producing data,
results and new methodological perspectives for future genomic studies in this species and
identifying markers and genes useful for genetic improvement.
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Tables

Table 1. SNPs identified through the GWAS model.

SNP Chrom Position P-value MAF Effect Va Ha(%) Gene

SNP6421 chrom02 14,565,718 1.06E+08 0.10 -1.00 0.18 0.05 SBT4.6

SNP30209 chrom05 75,998,329 8.38E+08 0.17 0.54 0.08 0.02 GEK1

SNP43760 chrom08 26,946,649 9.61E+06 0.45 0.84 0.35 0.09 -

SNP92152 chrom15 50,878,458 2.71E+08 0.29 0.43 0.08 0.02 IQM2

*Chromosome (Chrom), Position on chromosome (Position), P-value for the association (P-value),
Frequency of the smallest allele (MAF), Additive effect (Effect), Additive variance (Va), and
Proportion of explained variation (Ha).
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Figure Legends

Figure 1. Workflow summarizing the main analyses performed.

Figure 2. (A) Quantile-quantile plot for the broad genomic association model (GWAS), with the
inclusion of the first main component (PC1) as a covariate. (B) Manhattan plot for the GWAS. The X
axis shows the chromosomes containing the discovered markers in their respective positions. The Y
axis shows the log (p-value) of the association. The red line represents the threshold obtained based
on the data, and the green line represents the Bonferroni-corrected threshold of 0.05.

Figure 3. Treemap representing the biological processes for the GO terms of the annotated SNPs.

Figure 4. Physical position of snpsGWAS in red, snpsLD in black and QTLs discovered by Conson
et al. (2018). The QTLs for plant height (PH) are in blue and those for stem diameter (SD) are in
green.

Figure 5. Coexpression network containing the SNP gene modules discovered by GWAS. Yellow
shows the genes annotated for the snpsGWAS, blue shows the genes annotated for the snpsLD and
gray shows the genes identified in the modules. The highlighted genes with a red border represent the
10 hubs with the most connectivity, while the size of the nodes shows the number of connected
genes.

Figure 6. Treemap representing the biological processes for the GO terms of the annotated functional
modules.

Figure 7. (A) Enzyme network. The yellow nodes represent the enzymes discovered in the
coexpression modules, and the rectangular nodes indicate the enzymes with the highest centrality
values. (B) Communities. The blue nodes are represented by communities containing enzymes
discovered in the coexpression modules.
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Figures

Figure 1
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Figure 2

36

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.16.456528doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456528
http://creativecommons.org/licenses/by-nd/4.0/


Rubber Tree Multi Omics Integration

Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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