

1 Defective *Slc7a7* transport reduces systemic arginine 2 availability compromising erythropoiesis and iron 3 homeostasis

4
5
6 Fernando Sotillo^{1*}, Judith Giroud-Gerbetant^{1,2*}, Jorge Couso³, Rafael Artuch^{2,4,5},
7 Antonio Zorzano^{1,6,7}, Aida Ormazabal^{2,6,7}, Mayka Sanchez⁸, Günter Weiss⁹, Susanna
8 Bodoy^{1,2,10#}, Manuel Palacín^{1,2,4#}

9
10 ¹Institute for Research in Biomedicine Barcelona (IRB Barcelona), Barcelona, Spain;
11 ²Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER),
12 Barcelona, Spain; ³Institute of Predictive and Personalized Medicine of Cancer,
13 Badalona, Spain; ⁴Department of Clinical Biochemistry, Hospital Sant Joan de Déu
14 (HSJD), Esplugues de Llobregat, Spain; ⁵Institut de Recerca Sant Joan de Déu,
15 Esplugues de Llobregat, Spain; ⁶Department of Biochemistry and Molecular
16 Biomedicine, University of Barcelona, Barcelona, Spain; ⁷Centro de Investigación
17 Biomédica en Red Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain;
18 ⁸Faculty of Medicine and Health Sciences. Universitat Internacional de Catalunya
19 (UIC), Sant Cugat, Spain; ⁹Department of Internal Medicine II (Infectious Diseases,
20 Immunology, Rheumatology and Pneumology), Medical University of Innsbruck,
21 Innsbruck, Austria; ¹⁰Department of Biosciences, University of Vic - Central University
22 of Catalonia, Vic, Spain.

23 *These authors contributed equally

24 Key words: y⁺LAT1, arginine, iron metabolism, macrophage, red blood cell (RBC)

25 # Correspondence: mpalacin@irbbarcelona.org (M.P.),
26 susanna.bodoy@irbbarcelona.org (S.B.)

27 **ABSTRACT**

28 *Slc7a7* encodes for γ^+ LAT1, a transporter of cationic amino acid across the basolateral
29 membrane of epithelial cells. Mutations in *SLC7A7* gene give rise to Lysinuric Protein
30 Intolerance (LPI), a rare autosomal recessive disease with wide variability of
31 complications. Intriguingly, γ^+ LAT1 is also involved in arginine transport in non-
32 polarized cells such as macrophages. Here we report that complete inducible *Slc7a7*
33 ablation in mouse compromises systemic arginine availability that alters proper
34 erythropoiesis and that dysfunctional RBC generation leads to increased
35 erythrophagocytosis, iron overload and an altered iron metabolism by macrophages.
36 Herein, uncovering a novel mechanism that links amino acid metabolism to
37 erythropoiesis and iron metabolism. Mechanistically, the iron exporter ferroportin-1
38 expression was compromised by increased plasma hepcidin causing macrophage iron
39 accumulation. Strikingly, lysozyme M-cell-specific knockout mice failed to reproduce
40 the total knockout alterations, while bone marrow transplantation experiments resulted
41 in the resolution of macrophage iron overload but could not overcome erythropoietic
42 defect. This study establishes a new crucial link between systemic arginine availability
43 in erythropoiesis and iron homeostasis.

44
45
46
47
48
49
50
51
52
53
54
55
56
57

58 **Introduction**

59 Red blood cell (RBC) generation is a tightly regulated process where RBC
60 homeostasis is key for proper iron recycling (de Back et al., 2014). Although extensive
61 work has been done in the field of erythropoiesis, little is known about the impact of
62 amino acid metabolism in this complex process. The mechanisms of RBC generation
63 spans from bone marrow (BM) erythroid differentiation mediated by CD169⁺
64 macrophages (Chow et al., 2013), which supports erythroblastic island formation, to
65 the end-final stage where RBC phagocytosis by red pulp macrophages (RPMs) leads
66 to hemoglobin breakdown and ultimately iron recycling and release (Klei et al., 2017).
67 RBC maturation requires specific components to properly coordinate this process.
68 Disruption in hemoglobin synthesis, which comprises one-third of the RBC protein
69 content, leads to altered erythropoiesis (Kuhn et al., 2017; Liu et al., 2013) . Yet,
70 hemoglobin is not the only key component as iron, erythropoietin (EPO), or ferritin are
71 also well known to play essential roles in RBC generation (Beguin, 1998; Goldfarb et
72 al., 2021; Moritz et al., 1997). In terms of metabolic requirements, Shima et al.
73 published the impact of arginine import on erythrocyte differentiation and proliferation
74 throughout the cationic amino acid transporter 1 (CAT1), thereby indicating a crucial
75 role not only of the iron-related components (hemoglobin, EPO, iron and ferritin) but
76 also of metabolites such as arginine in the generation of mature RBCs (Shima et al.,
77 2006). Macrophages also play an important role in RBC enucleation, being thus key
78 for the last step of RBC generation (Lee et al., 2004; Popova et al., 2009; Swartz et
79 al., 2017).
80 Macrophages are a cell type that participates in diverse biological processes, including
81 host defence and wound repair (Koh and DiPietro, 2011). Nevertheless, further roles
82 for these cells began to emerge with the identification of specific functions of tissue-

83 resident macrophages, such as Kupffer cells and splenic RPMs, which are mainly
84 involved in erythrocyte phagocytosis and iron recycling (Beaumont and Delaby, 2009;
85 Ganz, 2012; Theurl et al., 2016), alveolar macrophages (AMs), which participate in
86 both lung development and surfactant recycling, and osteoclasts, which contribute to
87 bone development (Hussell and Bell, 2014; Murray and Wynn, 2011). Interest in
88 macrophages in the context of metabolic disease has gained momentum due to a
89 number of recent findings. Macrophage polarization is well known to be tightly linked
90 to altered cellular metabolism including iron homeostasis and glycolysis/citric acid
91 cycle activity (Recalcati et al., 2012; Stienstra et al., 2017). In addition, changes in L-
92 arginine metabolism have been coupled to different immune effector phenotypes of
93 macrophages involved in autoimmunity, infection control and activation (Bronte and
94 Zanovello, 2005; Jha et al., 2015; Weiss and Schaible, 2015).

95 Lysinuric Protein Intolerance (LPI, MIM 222700) is a rare autosomal recessive disease
96 caused by mutations in *SLC7A7* gene (solute carrier family 7) which encodes for
97 γ^+ LAT1 (Palacín et al., 2001; Torrents et al., 1999), a light subunit of the heterodimeric
98 amino acid transporter family. γ^+ LAT1 mediates the exchange of cationic amino acids
99 (CAAs) with neutral amino acids plus sodium (Palacín et al., 2005) across the
100 basolateral membrane of epithelial cells. Mutations in γ^+ LAT1 results in defective
101 transport of CAAs, leading to reduced arginine, ornithine and lysine plasma
102 concentration while increased in urine (Ogier de Baulny et al., 2012). Consistent with
103 the clinical manifestations of human LPI, we have previously reported that the
104 inducible complete loss of γ^+ LAT1 in mice leads to hypoargininemia, which results in
105 urea cycle disruption and hyperammonemia. Consequently leading to reduced body
106 weight, brain edema and pulmonary alveolar proteinosis between other complications
107 (Bodoy et al., 2019). In addition, several studies found that patients with one or several

108 mutations in *S/c7a7* gene have abnormal blood count, as well as microcytic anemia
109 (Alqarajeh et al., 2020; Rajantie et al., 1980). To date, the standard treatment for LPI
110 mainly consists on a low-protein based diet supplemented with oral citrulline
111 (Lukkarinen et al., 2003), where citrulline is intracellularly converted to arginine in renal
112 epithelial cells. Hence, improving the defects in urea cycle and correcting both plasma
113 arginine and ammonia levels (Dhanakoti et al., 1990).
114 Notably, γ^+ LAT1 also mediates arginine transport in non-polarized cells, such as
115 macrophages. Intriguingly, γ^+ LAT1 was shown to drive major arginine transport in
116 human monocytes after interferon stimulation (Rotoli et al., 2020). Thus, being one of
117 the major arginine transporters in human monocytes, AMs and monocyte-derived
118 macrophages (Barilli et al., 2012).
119 Motivated by the fact that human SLC7A7 mutations give rise to immune and
120 hematological complications, here we questioned whether amino acid transport via
121 *S/c7a7* has important roles for erythropoiesis and/or iron homeostasis. Using total
122 loss-of-function of γ^+ LAT1, recovery with citrulline, Lysozyme M-cell-specific (i.e.
123 myeloid-specific) knockout mice and BM transplantations, we demonstrated that the
124 systemic metabolic condition of LPI (mainly hypoargininemia and/or
125 hyperammonemia) leads to defective erythropoiesis and altered RBCs, prompting
126 thus increased erythrophagocytosis ultimately leading to highly iron loaded RPMs and
127 BMMs and hyperferritinemia. Mechanistically, depletion of extracellular arginine and
128 increased plasma ammonia levels, as a result of *S/c7a7* ablation in kidney and intestine,
129 leads to impaired development of RBCs that are more phagocytized by RPMs. Iron
130 overload is a well known hepcidin driver through the bone morphogenic protein – 6
131 (BMP6) (Andriopoulos et al., 2009), hence, high levels of iron triggered hepcidin
132 expression which in turn downregulated FPN1 in *S/c7a7* macrophages, by this way

133 altering iron recycling. Further analyses revealed that defective erythropoiesis was
134 absent in the myeloid-specific knockout mouse. These findings connect two previously
135 unrelated biological processes, namely defective RBC generation and macrophage
136 iron accumulation, and implicate the LPI metabolic derangement as a key player in the
137 hematologic complications of the disease.

138 **Results**

139 **Global y⁺LAT1 ablation in adult mice results in a drastic reduction of bone**
140 **marrow macrophages and red pulp macrophages.**

141 Y⁺LAT1 is highly expressed in epithelial cells and in some non-polarized cells such as
142 macrophages (Pollard, 2009; Rotoli et al., 2020). To dissect the role of y⁺LAT1 in the
143 immune and hematological complications of LPI, we created a y⁺LAT1 conditional
144 allele (*Slc7a7*^{loxp/+}) and generated a *Slc7a7*<sup>loxp/loxp/UBC-Cre⁺ inducible knockout model
145 that expresses Cre in all the body cells in response to tamoxifen treatment. Twelve-
146 week-old *Slc7a7*<sup>loxp/loxp/UBC-Cre⁺ (*Slc7a7*^{-/-}, after tamoxifen induction) mice and their
147 control *Slc7a7*<sup>loxp/loxp/UBC-Cre⁻ (*Slc7a7*^{+/+}) littermates were first treated with tamoxifen for
148 7 days to induce Cre expression and were further kept on low-protein diet. As a result,
149 y⁺LAT1 depletion led to significant reduction of spleen weight (Figure 1A). However,
150 consistent with previous reports that citrulline administration ameliorates
151 hypoargininemia and hyperammonemia as well as the vast majority of the defects
152 caused by y⁺LAT1 ablation (Bodoy et al., 2019), 10 days of citrulline supplementation
153 also improved spleen weight (Supplementary Figure 1A). Of note, *Slc7a7* ablation led
154 to lower levels of F4/80-positive cells in spleen and BM sections, together with a
155 reduced number of F4/80^{hi} cd11b^{lo} cells *in vivo* (Figure 1B-C), which were also
156 recovered by citrulline administration (Supplementary Figure 1B-C). Besides,</sup></sup></sup>

157 circulating monocytes levels were also decreased in γ^+ LAT1-deficient mice, thereby
158 indicating a loss of macrophage precursors (Figure 1D).

159 We then asked whether the decreased number of RPMs was associated with a
160 reduced proliferation or increased apoptosis. To this end, we assessed Ki67 and
161 caspase-3 expression in spleen sections. Indeed, Ki67 was reduced in the red pulp
162 area of $Slc7a7^{-/-}$ mice, where RPMs reside (Figure 1E). Moreover, $Slc7a7^{-/-}$ RPMs
163 expressed higher levels of active caspase-3 compared with those of control mice
164 (Figure 1F). Taken together, our data suggests that γ^+ LAT1 participates in the
165 homeostasis of BMMs and RPMs, which might be caused by both increased apoptosis
166 and decreased levels of proliferation.

167

168 **γ^+ LAT1 deficiency in myeloid cell line does not reproduce conditional knockout
169 mice deficiencies.**

170 We then asked whether the lack of $Slc7a7$ expression in macrophages was key for the
171 defects previously observed (Figure 1 A,C). For that purpose, we generated a myeloid
172 cell-specific knockout mouse ($Slc7a7^{llox/llox}$ $LysM-Cre^+$; $Slc7a7^{LysM^{-/-}}$) in which Cre
173 expression is specifically restricted to the myeloid cell lineage. Likewise, the inducible
174 knockout mice, $Slc7a7^{LysM}$, showed a reduced expression of $Slc7a7$ in RPMs, AMs
175 and BMDMs (Supp Figure 2A-B). Nevertheless, contrary to the inducible model
176 $Slc7a7^{-/-}$ (Bodoy et al., 2019), $Slc7a7^{LysM}$ mice did not present reduction of γ^+ LAT1
177 expression in kidney, hypoargininemia or urea cycle dysfunction (e.g., increased orotic
178 acid in urine), nor did they show a reduction in spleen size or body weight or a
179 decrease in RPMs and BMMs numbers *in vivo* (Supp Figure 2B-G). These findings
180 rule out the possibility that the defect comes from the lack of γ^+ LAT1 expression in the
181 myeloid cell line and embraces the possibility that systemic reduction of arginine along

182 with other unbalanced amino acids and metabolites (LPI systemic metabolic condition)
183 might underlie the observed decrease in macrophage generation and survival in total
184 knockout mice.

185

186 ***Slc7a7*^{-/-} but not *Slc7a7*^{LysM} red pulp macrophages, have a dysfunctional iron**
187 **metabolism.**

188 Since one of the main functions of RPMs is to regulate erythrocyte degradation and
189 iron delivery for erythropoiesis (Kohyama et al., 2009), we next focused on whether
190 iron metabolism was compromised in both mouse models. *Slc7a7*^{-/-} mice showed a
191 dramatic iron accumulation in the BM and spleen. In contrast, abnormal iron
192 accumulation was not visible in *Slc7a7*^{LysM} animals (Figure 2A), thus, further
193 confirming the premise that y⁺LAT1 deficiency in the myeloid cell line does not cause
194 macrophage dysfunction. Citrulline treatment improved iron accumulation in the
195 spleen and BM in *Slc7a7*^{-/-} mouse (Figure 2A). In line with this finding, iron content in
196 the liver and spleen tissue were higher in the *Slc7a7*^{-/-} mice compared to its control
197 littermates and were rescued by citrulline supplementation (Figure 2B).

198 We next addressed whether iron accumulation in tissues would also be reflected into
199 higher serum ferritin levels (Cohen et al., 2010), a trait usually reported in LPI patients
200 (Ogier de Baulny et al., 2012). Hyperferritinemia was found in the *Slc7a7* knockout
201 mice (Figure 2C), and, as expected, the impairment was reversed by citrulline
202 administration and no differences were observed in the *Slc7a7*^{LysM} mouse model
203 (Figure 2C). To study whether hyperferritinemia was associated with increased
204 inflammation (Kawasumi et al., 2014; Rosário et al., 2013), we examined IL6 plasma
205 levels. Strikingly, control and *Slc7a7*^{-/-} mice showed similar levels of IL6 (Supp Figure
206 3A), excluding thereby systemic inflammation as a plausible cause of increased

207 ferritinemia or macrophage iron retention (Theurl et al., 2016). Given that γ LAT1
208 deletion resulted in a significant reduction in the number of RPMs and BMMs, we
209 tested whether the observed iron accumulation was directly linked to macrophages.
210 Of note, within the spleen, iron accumulation was specifically located in the resident
211 RPMs (Figure 2D).

212 As a whole, these results indicate that the systemic metabolic conditions of LPI cause
213 detrimental effects on RPM homeostasis but *Slc7a7* expression in macrophages is not
214 required for the iron accumulation in tissue.

215

216 ***Slc7a7*^{-/-} mouse model show reduced expression of FPN1 in macrophages**

217 To gain insight into how iron is accumulated in macrophages, we analyzed the
218 expression of FPN1, the only known iron exporter, and its relationship to circulating
219 concentrations of hepcidin, the major iron-regulatory hormone that interacts directly
220 with FPN1 triggering its degradation (Nemeth et al., 2004). Of note, hepcidin plasma
221 levels were increased in *Slc7a7*^{-/-} mice (Figure 3A) which were paralleled by increased
222 expression levels of liver hepcidin (*Hamp1*) in *Slc7a7*^{-/-} mice as compared to control
223 littermates (Figure 3B). Hepcidin levels can be regulated at the transcriptional levels
224 by several factors such as inflammation and hepatocyte iron deposits (Sebastiani et
225 al., 2016). In this regard, microarray data on sorted RPMs from *Slc7a7*^{+/+} and *Slc7a7*
226 ^{-/-} mouse showed decreased expression of inflammatory-related pathways. Moreover,
227 as indicated above, plasma interleukin 6 levels showed similar levels between both
228 genotypes, thus ruling out the possibility of inflammation as a plausible cause for
229 increased hepcidin levels (Supplementary Figure 3A-B). Nevertheless, enhanced
230 Pearl's Prussian blue staining revealed that *Slc7a7*^{-/-} liver sections showed specific
231 localization of iron deposits in hepatocytes (Figure 3C), suggesting thus iron

232 accumulation as the main cause for increased hepcidin levels. The increased number
233 of iron deposits was accompanied by a significant increase of the BMP6 (Figure 3D),
234 a protein known to interact with hemojuvelin to further (Core et al., 2014), trigger
235 *Hamp1* transcription and expression (Andriopoulos et al., 2009; JL et al., 2006). Thus,
236 further supporting the premise that hepatocyte liver accumulation triggers increased
237 hepcidin plasma levels.

238 Flow cytometry analysis revealed a decreased number of FPN1-positive RPMs in
239 *Slc7a7*^{-/-} compared to wildtype mice (Figure 3E). Moreover, decreased FPN1
240 expression in RPMs was also confirmed by western blot, where *Slc7a7*^{-/-} mice show
241 reduced levels of FPN1 in total spleen (Figure 3F).

242 Together, our results indicate that *Slc7a7* expression is necessary to maintain proper
243 FPN1 expression and that its imbalance leads to an aberrant iron retention in resident
244 macrophages.

245

246 ***Slc7a7*^{-/-} mice show exacerbated erythrophagocytosis**

247 Our findings that *Slc7a7*^{-/-} RPM were loaded with iron together with the imbalance on
248 iron metabolism suggests that RPM function is impaired in *Slc7a7*^{-/-} knockout mouse.
249 In that sense, gene expression analysis of sorted RPMs from *Slc7a7*^{+/+} and *Slc7a7*^{-/-}
250 animals revealed altered expression of key RPM-associated genes (Figure 4A)
251 (Haldar et al., 2014; Kohyama et al., 2009) further supporting an impaired RPM
252 functioning and disrupted iron handling. Moreover, RPMs are a highly specialized
253 erythrophagocytic cell type in which several genes have been proposed as master
254 regulators of iron homeostasis and RBC clearance (Kohyama et al., 2009). In this
255 regard, these animals showed increased expression of *SpiC*, the master regulator of
256 RPM differentiation, *Msr1*, the macrophage scavenger receptor 1, and the hemoglobin

257 scavenger receptor *CD163* in *Slc7a7^{-/-}* mice, while *Il1b* gene expression, a
258 proinflammatory cytokine linked to erythrophagocytosis (A-Gonzalez et al., 2017; Guo
259 et al., 2019; Kohyama et al., 2009; Oexle et al., 2003), was significantly reduced
260 (Figure 4B) (Moestrup and Møller, 2004). This expression pattern suggested an
261 increased erythrophagocytosis activity in *Slc7a7^{-/-}* mice. To examine this effect in
262 further detail, we measured the erythrophagocytosis ratio of BMDMs from wildtype and
263 knockout mouse. Strikingly, when *Slc7a7^{-/-}* and control RBCs were co-incubated with
264 BMDMs from *Slc7a7^{-/-}* or control mice, *Slc7a7^{-/-}* erythrocytes were preferentially
265 engulfed by both macrophages (Figure 4C). Hence, *ex vivo* experiments confirmed a
266 significantly higher phagocytosis rate of RBCs derived from *Slc7a7^{-/-}* deficient mice
267 compared to RBCs from control animals. In addition, RBCs from *Slc7a7^{-/-}* and control
268 animals treated with citrulline were equally engulfed by both macrophages,
269 demonstrating again the rescuing effect of citrulline (data not shown). These results
270 indicate that the observed iron accumulation in macrophages is due to a defect on the
271 RBCs rather than an alteration on the RPMs functioning.

272

273 **y⁺LAT1 depletion results in defective erythropoiesis**

274 To understand the mechanisms underlying the defect in erythrocytes that results in
275 increased erythrophagocytosis (Figure 4B), we performed a hematological analysis of
276 *Slc7a7^{-/-}* animals and its control littermates. *Slc7a7^{-/-}* erythrocytes had a reduced mean
277 corpuscular volume (MCV) and hemoglobin (MCH) as well as a decreased mean
278 platelet volume (MPV), while no differences were found in *Slc7a7^{LysM}* mice (Figure 5A-
279 F). Interestingly, erythropoietic progenitors analyzed by flow cytometry showed that
280 *Slc7a7^{-/-}* mice have a severe reduction in erythrocyte precursors (Figure 5G). The
281 dramatic decrease in erythroid precursors implies that LPI systemic metabolic

282 condition caused by global *Slc7a7* ablation compromises RBC generation. In fact,
283 erythroid precursors of *Slc7a7*^{LysM} mice were not affected (Figure 5G).
284 EPO is a secreted hormone responsible for stimulating RBC production and survival.
285 Specifically, EPO has been described to stimulate RBC generation at the
286 proerythroblast stage (Hattangadi et al., 2011). We therefore measured EPO plasma
287 levels and found that, indeed, EPO levels were significantly decreased in *Slc7a7*^{-/-}
288 mice (Figure 5H). As a whole, these results indicate that γ^+ LAT1 plays a specific role
289 in erythroid development at multiple proerythroblast stages, possibly orchestrated by
290 the metabolic defects caused by *Slc7a7* ablation.

291

292 **Bone marrow transplant improves iron accumulation but not the metabolic
293 complications and erythropoietic defects**

294 Since immature erythroid precursors were dramatically reduced in *Slc7a7*^{-/-} mice
295 (Figure 5G), RBCs had an altered MCV and MCH (Figure 5D-E), and *Slc7a7*^{LysM}
296 animals did not show any erythropoietic defects (Figure 5A-G), we speculated that the
297 observed alterations in the *Slc7a7*^{-/-} background could be due to the modified systemic
298 microenvironment rather than a cell-autonomous defect in the BM. For this purpose,
299 BM cells isolated from *Slc7a7*^{+/+} mice (CD45.1) were harvested and transplanted into
300 lethally irradiated *Slc7a7*^{-/-} mice (CD45.2); conversely, BM cells isolated from *Slc7a7*^{-/-}
301 mice (CD45.2) were harvested and transplanted into lethally irradiated *Slc7a7*^{+/+}
302 mice (CD45.1). Five weeks after transplantation, mice were placed on a tamoxifen diet
303 for 7 days and then further fed a low-protein diet for 10 days prior to the sacrifice day
304 (Figure 6A). In this setting, BM transplantation did not improve the body and spleen
305 weight of the *Slc7a7*^{-/-} animals (CD45.2) transplanted with *Slc7a7*^{+/+} BM (CD45.1)
306 (Figure 6B-C). Analysis of peripheral blood revealed that arginine plasma levels were

307 diminished and orotic acid levels in urine were high as a consequence of the urea
308 cycle dysfunction (Figure 6D-E). Thus, as expected, BM transplant did not affect the
309 main metabolic complications of LPI. Interestingly, *Slc7a7*^{-/-} mice receiving *Slc7a7*^{+/+}
310 BM, did not present iron accumulation in the spleen nor differences in the MCH (Figure
311 6F, J) and exhibited a tendency towards lower plasma ferritin levels (Figure 6G). This
312 finding thus indicates that BM transplant can specifically rescue iron metabolism
313 defects. Conversely, *Slc7a7*^{-/-} transplanted mice exhibited a vast decrease in erythroid
314 progenitors I-IV compartments together with reduced MCV (Figure 6H), reaffirming the
315 profound systemic effect of y⁺LAT1 deficiency on RBC generation and homeostasis.

316

317

318 **Discussion**

319 The y⁺LAT1 transporter is a cationic/neutral amino acid exchanger that provides
320 arginine for different processes in the organism. Proper arginine availability is essential
321 for a normal urea cycle (Morris, 2002). The deficiency of y⁺LAT1 transporter in LPI
322 condition, causes systemic hypoargininemia, which due to the shortage of urea cycle
323 intermediates, results in hyperammonemia (Bodoy et al., 2019). In our mouse model
324 of LPI, as shown here, this metabolic derangement causes erythropoiesis failure,
325 whereas y⁺LAT1 expression in macrophages is not enough to cause impaired
326 development of RBCs in the *Slc7a7*^{LysM} mouse model. In this regard, little is known
327 about the role of amino acid availability in erythropoiesis. The impact of L-arginine in
328 erythrocytes is highlighted by the fact that ablation of the arginine transporter CAT1 in
329 mouse results in perinatal death and anemia (Perkins et al., 1997) and that L-arginine-
330 mediated CAT1 transport participates in erythrocyte differentiation and proliferation *in*
331 *vitro* (Shima et al., 2006). Moreover, the L-arginine catalytic enzyme endothelial nitric

332 oxide synthase (eNOS) can be found in erythrocytes, where parasite-arginine
333 deprivation decreases deformability of these cells as a result of reduced NO
334 production (Cobbold et al., 2016). Here we show that upon ablation of *Slc7a7* in all
335 cells, erythrocytes present reduced mean corpuscular volume and mean corpuscular
336 hemoglobin, which has also been also described in LPI patients (Al-Qattan et al.,
337 2021). Since arginine is the metabolite recovered by citrulline administration, we
338 hypothesized that hypoargininemia plays a key role in erythropoiesis and RBC size.
339 Altered RBCs in *Slc7a7*^{-/-} leads to increased erythrophagocytosis. Furthermore, bone
340 marrow-derived macrophages from γ^+ LAT1 knock out mice did not show an increased
341 rate of erythrophagocytosis when exposed to control erythrocytes, further supporting
342 that the observed abnormalities in *Slc7a7*^{-/-} RPMs (i.e. increased markers of
343 erythrophagocytosis) are primed by altered erythrocytes rather than by a cell-
344 autonomous defect of RPMs.
345 RPMs prime erythrocyte degradation and iron recycling, and defects in numerous
346 pathways can lead to iron overload in macrophages (Knutson et al., 2005). Such
347 pathological conditions can thus lead to compromised iron metabolism and have an
348 impact on macrophages (Ganz, 2012; Soares and Hamza, 2016). For instance, aged
349 or damaged erythrocytes can express “eat me” signals and acutely trigger the
350 erythrophagocytosis machinery (Luo et al., 2016; Oldenborg, 2000; Park and Kim,
351 2017) subsequently causing iron accumulation in RPMs (Dichtl et al., 2018) as we
352 clearly observed in the *Slc7a7*^{-/-} model. We postulate therefore that defective arginine
353 availability is also at the basis of iron accumulation because citrulline administration
354 recovers normal iron levels in liver, spleen and BM, and they are also not present in
355 *Slc7a7*^{LysM} tissues.

356 FPN1 is the only known iron exporter involved in iron efflux in macrophages.
357 Mechanistically, FPN1 is regulated at the protein level by hepcidin, which mediates its
358 degradation (Drakesmith et al., 2015). In this regard, the increased hepatic iron
359 content and ferritin levels (Nemeth and Ganz, 2009) would be at the root of induced
360 hepcidin expression as depicted by increased *BMP6* liver mRNA expression. As a
361 consequence of increased plasma hepcidin, *Slc7a7^{-/-}* show decreased FPN1
362 expression in RPMs, which was further confirmed by both flow cytometry and western
363 blot analysis. Presumably, in this LPI mouse model the dysfunctional RBC generation
364 increases erythrophagocytosis by a mechanism that, at the same time, leads to
365 overwork of the fewer RPMs and disrupted iron handling by altered FPN1
366 homeostasis.

367 Erythroblast differentiation is orchestrated mainly by EPO expression (Jelkmann,
368 2011; Moritz et al., 1997). Our findings that *Slc7a7^{-/-}* mice show reduced EPO in
369 circulation, highlights the importance of *Slc7a7*-mediated systemic arginine
370 availability. However, while BM transplant failed to rescue the hematological
371 alterations, it did recover macrophage iron accumulation, suggesting thus two additive
372 mechanisms. On one hand defects in RBC maturation are caused by an unbalanced
373 systemic metabolic environment rather than by a cell-autonomous defect. On the
374 other hand, macrophage iron accumulation also requires *Slc7a7* ablation in
375 macrophages. Future work is needed to elucidate the link between *Slc7a7*-mediated
376 systemic arginine availability and EPO production, and between macrophage y⁺LAT1
377 and FPN1 expression.

378 Substantial advances in the research field of LPI have been scarce during the last
379 decade, which can be probably explained by the huge phenotypic variability found
380 among LPI patients (Al-Qattan et al., 2021; Ogier de Baulny et al., 2012; Posey et al.,

381 2014). In a previous work we showed that the inducible total *Slc7a7*^{-/-} mouse model
382 recapitulates the main hallmarks of the human LPI complications, such as
383 hypoargininemia, hyperammonemia and PAP (Bodoy et al., 2019; Ogier de Baulny et
384 al., 2012; Parto et al., 1994). In the current work we show that *Slc7a7*^{-/-} mouse model
385 has increased erytrophagocytosis, elevated serum ferritin, altered hemogram and
386 abnormal iron retention in macrophages (Ogier de Baulny et al., 2012). Moreover, the
387 systemic metabolic condition of LPI is an essential driver for the hematologic
388 complications. In addition, *Slc7a7*^{-/-} mice showed deficient erythropoiesis, a trait that
389 parallels the reduced number of reticulocytes in some LPI patients, an alteration that
390 has not been fully explored (Al-Qattan et al., 2021). Our results shifted the spotlight of
391 increased erytrophagocytosis by abnormally functioning macrophages to altered
392 erythrocytes.

393 Historically, systemic metabolic condition and immune-hematologic complications of
394 LPI have been considered as independent entities, such is the case that some authors
395 concerned about a potential detrimental effect of citrulline treatment in the
396 development of immune complications (Ogier de Baulny et al., 2012). Nevertheless,
397 more recently low argininemia was revealed as a poor prognosis factor in LPI (Mauhin
398 et al., 2017). Now, our work upholds the premise that the handling of the metabolic
399 derangements could prove beneficial not only for the metabolic hallmarks of the
400 diseases but also for the reported hematologic complications of the patients.

401

402 **Author Contributions**

403 F.S., J.G., and S.B. designed and performed experiments, interpreted and analyzed
404 data. J.G., S.B., and M.P. designed research and wrote the manuscript with input from

405 all of the authors. J.C. performed research. G.W and M.S. provided reagents and
406 provided intellectual input. A.O., R.A. and A.Z. provided reagents.

407 The authors declare no competing financial interests.

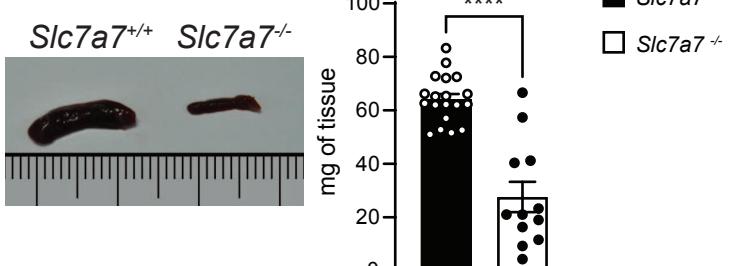
408 Correspondence: Susanna Bodoy, Institute for Research in Biomedicine Barcelona,
409 Baldiri Reixac, 12, Barcelona 08028, Spain; e-mail:
410 susanna.bodoy@irbbarcelona.org; Manuel Palacín, Institute for Research in
411 Biomedicine Barcelona, Baldiri Reixac, 12, Barcelona 08028, Spain; e-mail:
412 manuel.palacin@irbbarcelona.org.

413 **Acknowledgements**

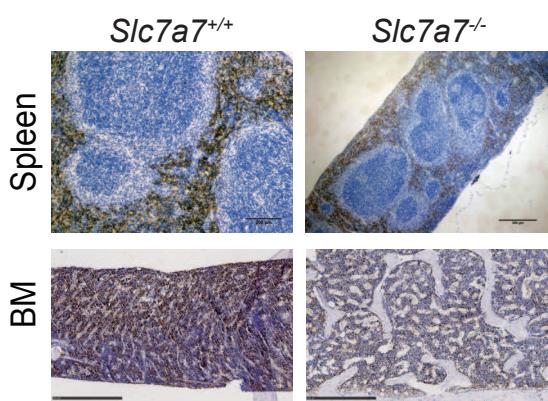
414 This work was supported by grants from the Spanish Ministry of Science and
415 Innovation (grant SAF2015-64869-R-FEDER and RTI2018-094211-B-100), Ramon
416 Areces Fundation (I.O.F.R.ARECES) and the Generalitat de Catalunya (grant 2017
417 SGR 961). Grant RTI2018-101735-B-I00 from the Spanish Ministry of Science and
418 Innovation to MS. The EMBO Short Term Fellowship Program facilitated the
419 collaboration between international groups. We are also grateful to Dr. Angel Nebreda
420 at the IRB Barcelona, Spain, for *LysM-Cre* transgenic mice; Dra Anna Bigas from
421 IMIM, Spain, for CD45.1 mice. We thank Jorge Seco and Vanessa Hernández for
422 technical assistance and help with the experimental animals, and the Daniel Bravo
423 Foundation for support with amino acid determination.

424

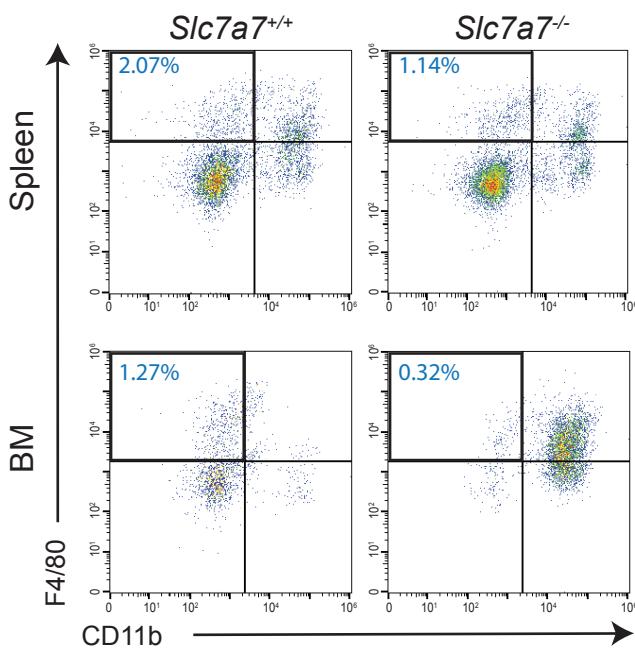
425


426

427


428

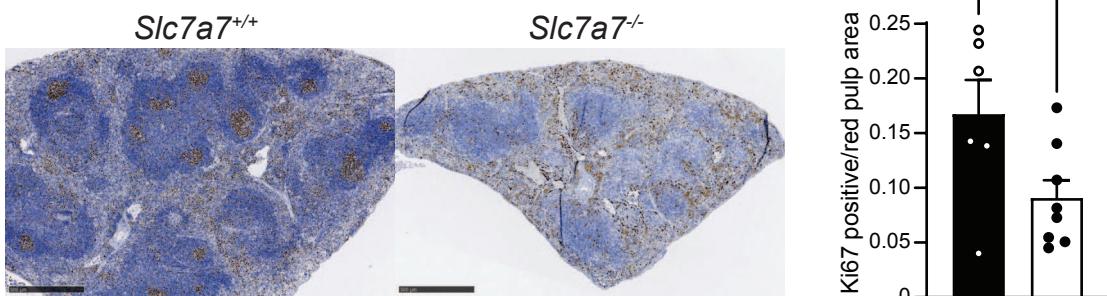
429


A

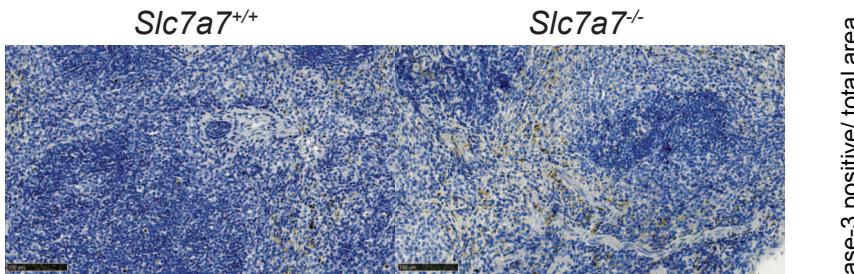
B



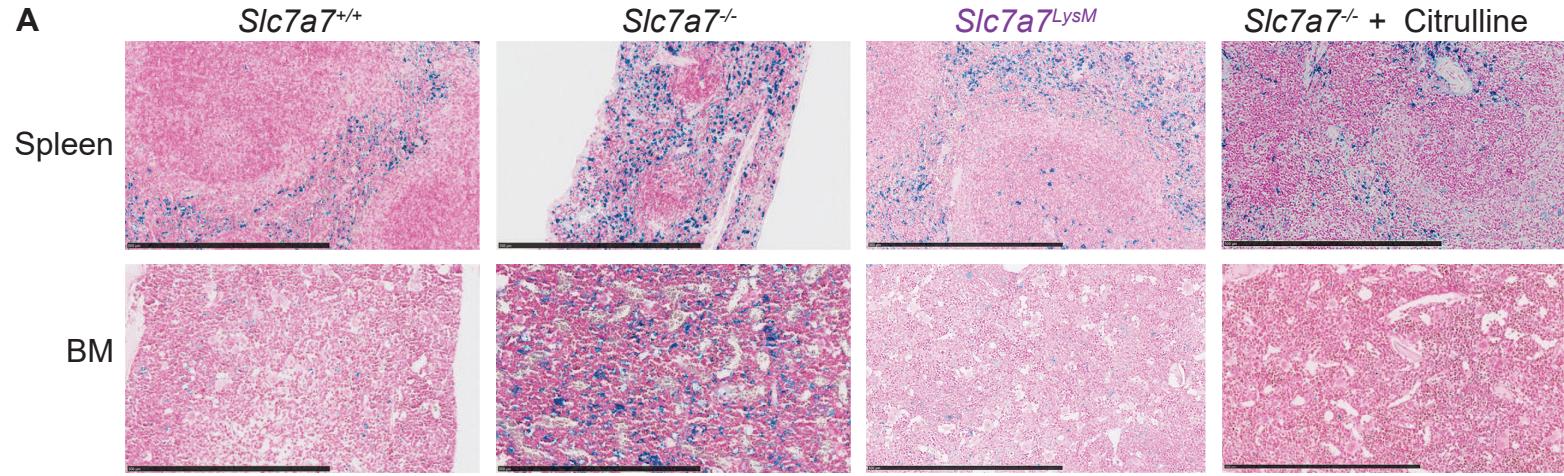
C

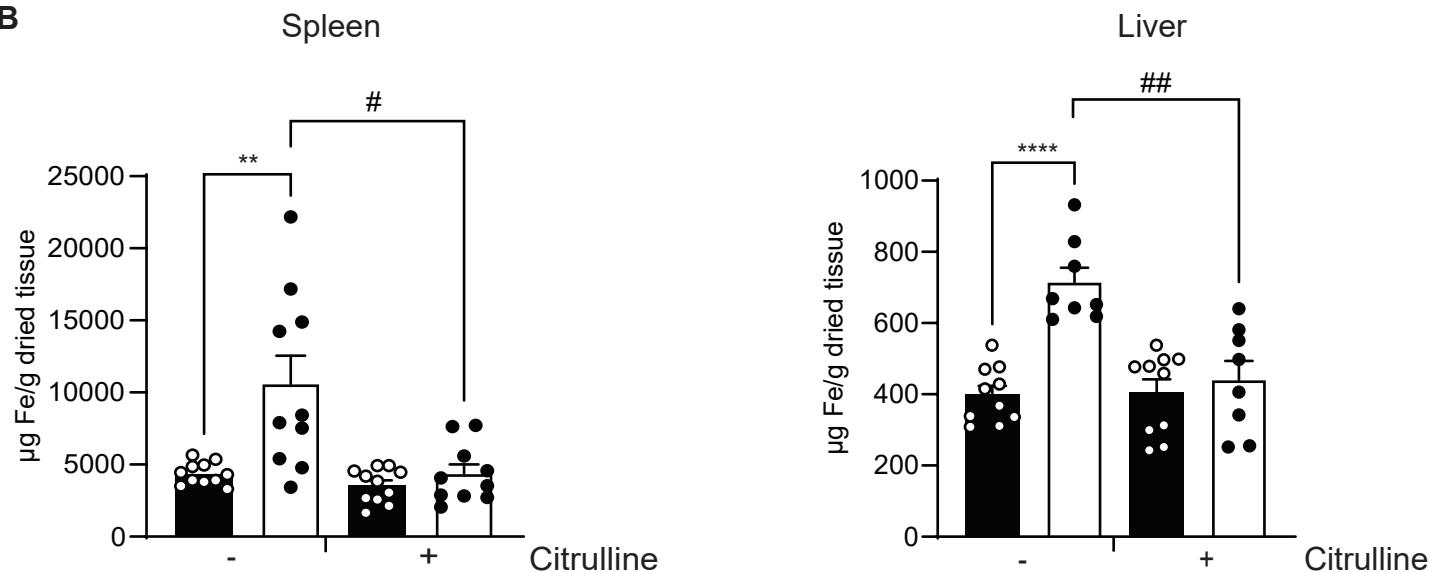


Spleen

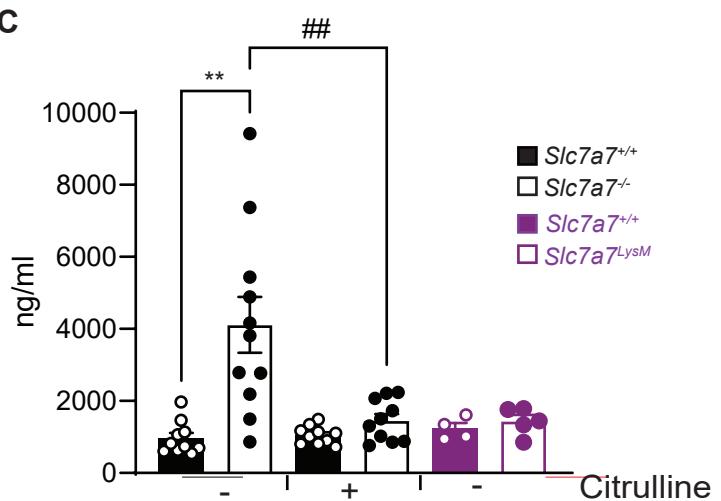

Monocytes

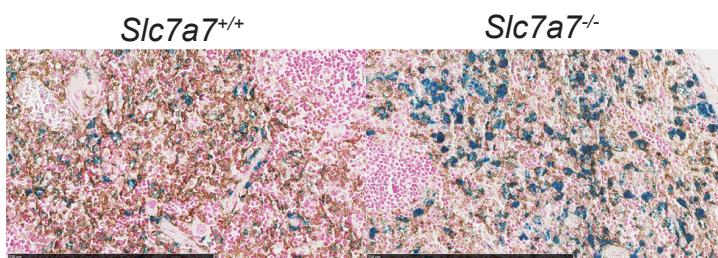
E


F


Caspase-3

430 **Figure 1. y^t LAT1 conditional knockout mice present a drastic reduction of BMMs**
431 **and RPMs.** (A) *Slc7a7^{-/-}* mice and its control littermates were dissected, and spleens
432 were photographed (left panel). Spleen weights are indicated on the right panel. (B)
433 Representative immunohistochemistry staining of F4/80⁺ cells in the spleen and bone
434 marrow (BM) from *Slc7a7^{+/+}* and *Slc7a7^{-/-}* animals. Spleen scale bar, 200 μ m, bone
435 marrow scale bar, 500 μ m. (C) Flow cytometry quantification of total number of red
436 pulp macrophages per spleen and bone marrow macrophages per femur and tibia
437 (CD11b^{lo}, F4/80^{hi}). (D) Comparison of peripheral blood concentration of circulating
438 monocytes levels. (E) Representative Ki67 staining of spleen of *Slc7a7^{+/+}* and *Slc7a7^{-/-}*
439 mice (left) and its quantification (right). Scale bar, 500 μ m. (F) Representative Active
440 Caspase-3 staining of spleen of *Slc7a7^{+/+}* and *Slc7a7^{-/-}* mice (left) and its quantification
441 (right). Scale bar, 100 μ m. Data are mean \pm SEM. * $P \leq 0.05$, *** $P \leq 0.001$, **** $P \leq$
442 0.0001 between genotypes. P values were calculated using two-tailed *t*-test.
443
444
445
446
447
448
449
450
451
452
453


A


B

C

D

454 **Figure 2. *Slc7a7* $^{/-}$ RPMs show increased iron accumulation and exacerbated**
455 **iron metabolism.** (A) Representative iron Perl's Prussian Blue staining of spleens and
456 bone marrow (BM) from indicated genotype supplemented or not with citrulline (1 g/L
457 of drinking water). Scale bars, 500 μ m. (B) Total non-heme iron content from spleen
458 (left panel) and liver (right panel) from *Slc7a7*^{+/+} and *Slc7a7*^{/-} mice. (C) Plasma ferritin
459 quantification of indicated genotype supplemented or not with citrulline. (D) F4/80
460 (brown) and iron (blue) staining of spleen sections of indicated genotype. Scale bar,
461 250 μ m. Data are mean \pm SEM. ** $P \leq 0.01$, *** $P \leq 0.001$ between genotypes. # $P \leq$
462 0.05, ## $P \leq 0.01$ vs. *Slc7a7*^{/-} mice without citrulline. P and # values were calculated
463 using two-tailed *t*-test.

464

465

466

467

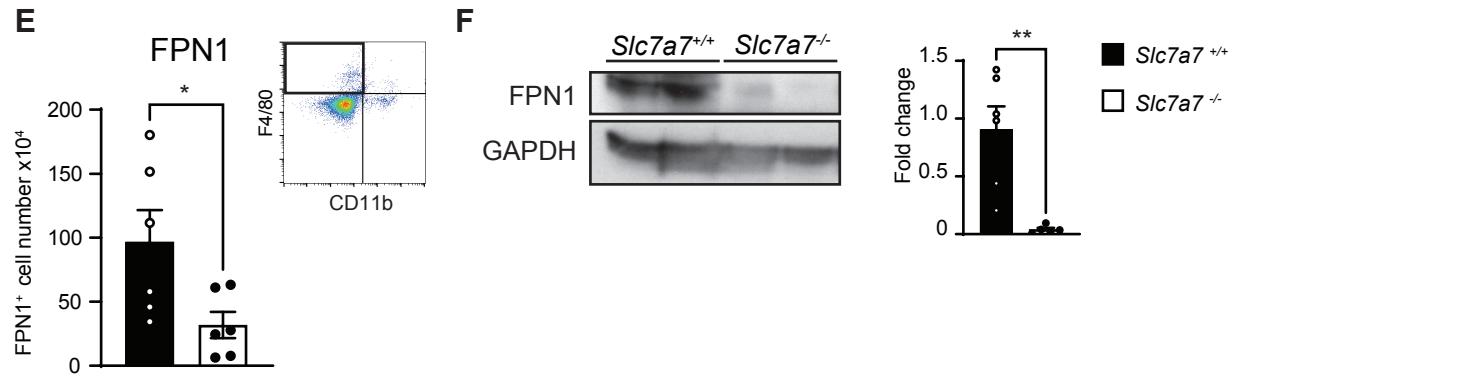
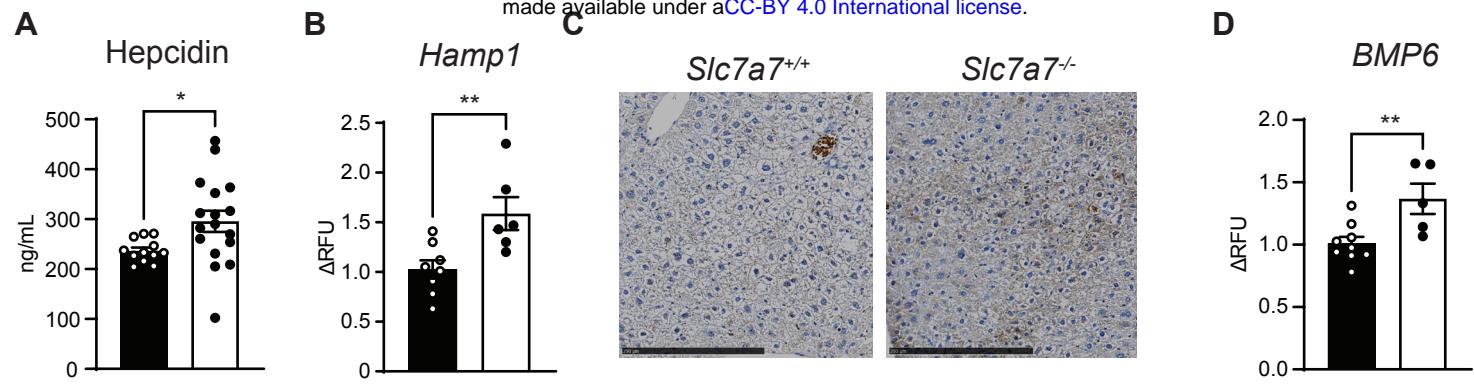
468

469

470

471

472



473

474

475

476

477

478 **Figure 3. Total loss of *Slc7a7* results in decreased FPN1 expression.** (A) Plasma
479 hepcidin levels in *Slc7a7^{+/+}* and *Slc7a7^{-/-}* mice. (B) *Hamp1* mRNA levels (i.e., gene
480 encoding for hepcidin) of *Slc7a7^{+/+}* and *Slc7a7^{-/-}* mice livers. (C) Iron histology by
481 enhanced Pearl's Prussian blue (brown) staining of liver sections of indicated
482 genotype. Scale bar, 250 μ m. (D) *BMP6* mRNA expression of *Slc7a7^{+/+}* and *Slc7a7^{-/-}*
483 mice livers. (E) Absolute cell number of CD11b^{lo}, F4/80^{hi}, FPN1^{hi} per spleen and
484 representative FACS plot showing selected gate. (F) FPN1 protein expression in
485 spleen membranes of the indicated genotypes. Quantification is expressed as
486 FPN1/GAPDH fold change. Data are represented as mean \pm SEM. * $P \leq 0.05$, ** $P \leq$
487 0.01 between genotypes. P values were calculated using two-tailed *t*-test.

488

489

490

491

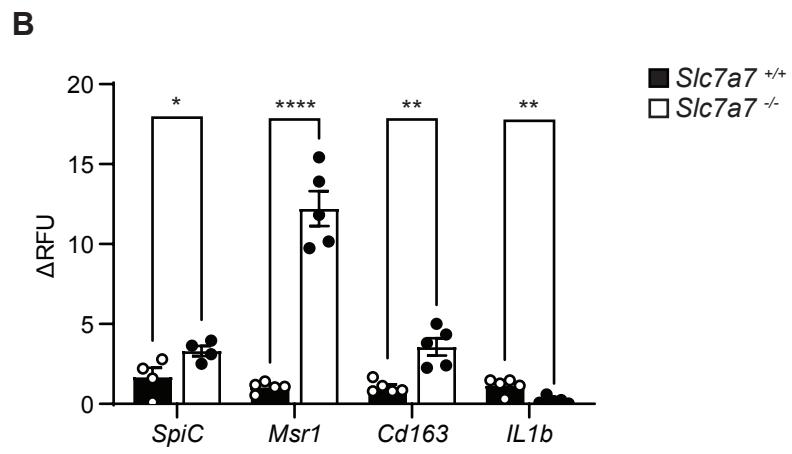
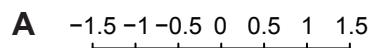
492

493

494

495

496



497

498

499

500

501

C Bone Marrow Derived Macrophages

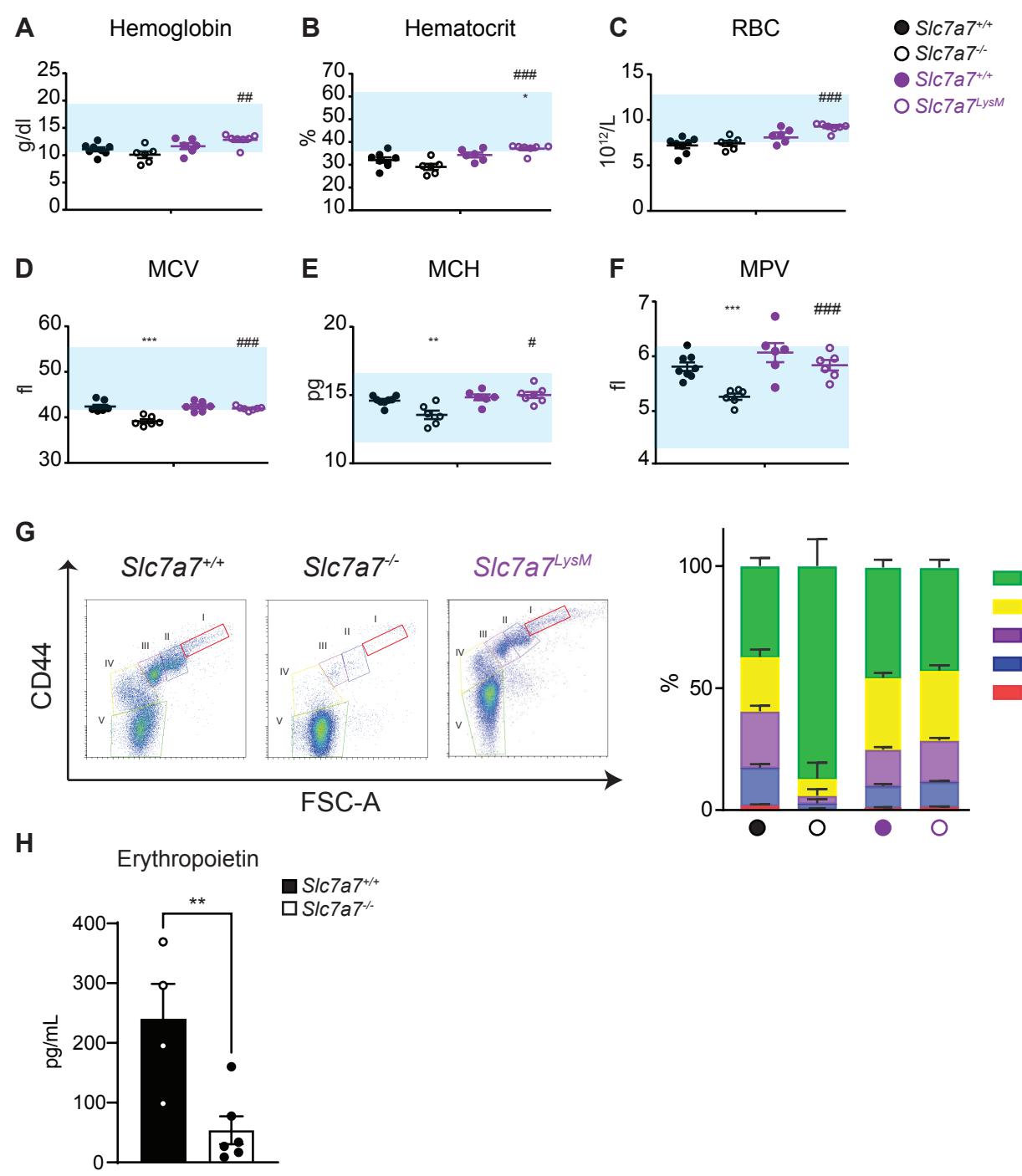
502 **Figure 4. y^+ LAT1 ablation leads to increased erythrophagocytosis.** (A) RPMs
503 ($F4/80^{hi}CD11b^{lo}$) were sorted and gene expression analysis was carried out using the
504 Affymetrix platform and a selection of RPM-associated genes(Haldar et al., 2014;
505 Kohyama et al., 2009) was plotted as a heat map. Black boxes indicate the *Slc7a7^{+/+}*
506 genotype and empty boxes the *Slc7a7^{-/-}* genotype. (B) Quantitative RT-PCR analysis
507 of mRNA expression levels of indicated genes related to erythrophagocytosis and
508 differentiation in RPM of *Slc7a7^{+/+}* and *Slc7a7^{-/-}* mice. (C) Erythrophagocytosis assay.
509 Briefly, BMDMs were co-incubated with previously labelled erythrocytes. *Slc7a7^{+/+}*
510 erythrocytes (blue circles) were labelled with CellVue Claret, while *Slc7a7^{-/-}*
511 erythrocytes (orange circles) were labelled with PKH26. Left: Representative dot plots
512 show the gating strategy for the erythrophagocytosis assay. Right: Percentage of the
513 cell populations analyzed. Filled bars and empty bars represent *Slc7a7^{+/+}* and *Slc7a7^{-/-}*
514 macrophages, respectively. Data are mean \pm SEM. * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq$
515 0.001, **** $P \leq 0.0001$ between genotypes. P values were calculated using two-tailed
516 *t*-test.

517

518

519

520

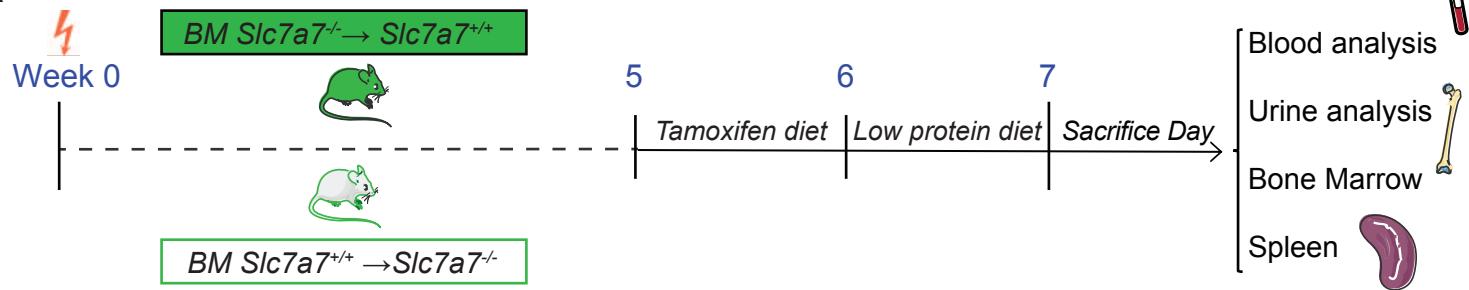

521

522

523

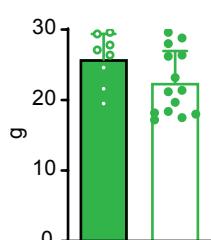
524

525

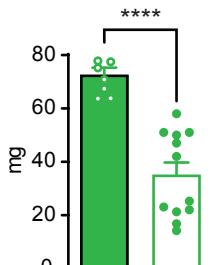


526 **Figure 5. y^+ LAT1 depletion results in defective erythropoiesis. (A-F)**
527 Quantification of blood hemoglobin (A), hematocrit (B), RBC concentration (C), mean
528 corpuscular volume (D), mean corpuscular hemoglobin (E) and mean platelet volume
529 (F) of indicated genotype. (G) Left: Representative dot plots show the gating strategy
530 for erythroid progenitors (V, IV, III, II and I) (Chen et al., 2009) from indicated genotype.
531 Briefly, cells were first gated in TER119⁺ and further separated by CD44 versus
532 Forward Scatter (FSC-A). Right: Percentage of the cell populations analyzed. (H)
533 Plasma erythropoietin levels in *S/c7a7^{+/+}* and *S/c7a7^{-/-}* mice fed with a low protein diet.
534 Data are mean \pm SEM. All experiments were performed independently at least twice.
535 * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$ between genotypes. P values were calculated
536 using two-tailed *t*-test.

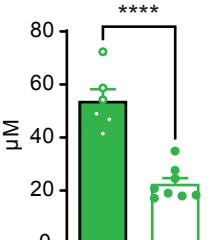
537
538
539
540
541
542
543
544
545
546
547
548
549



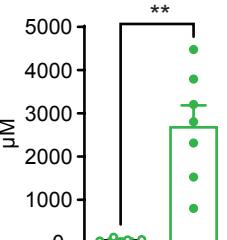
A


B

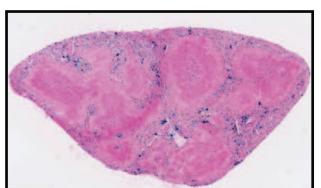
Body weight


C

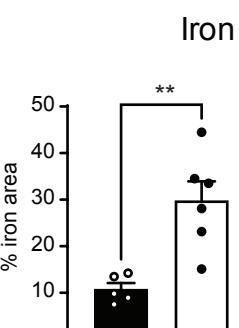
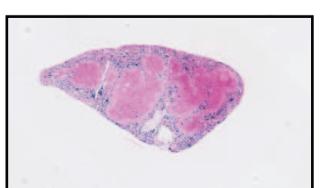
Spleen


D

Arginine


E

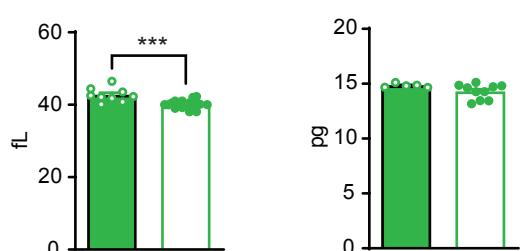
Orotic Acid

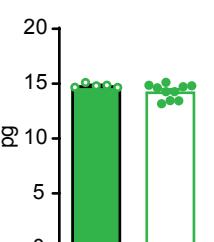
F

BM *Slc7a7*^{-/-} → *Slc7a7*^{+/+}

BM *Slc7a7*^{+/+} → *Slc7a7*^{-/-}

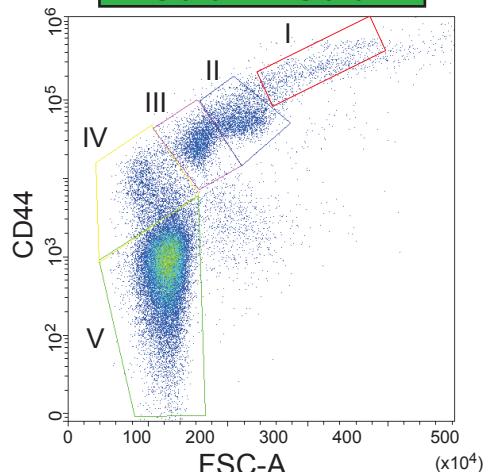

G

Ferritin

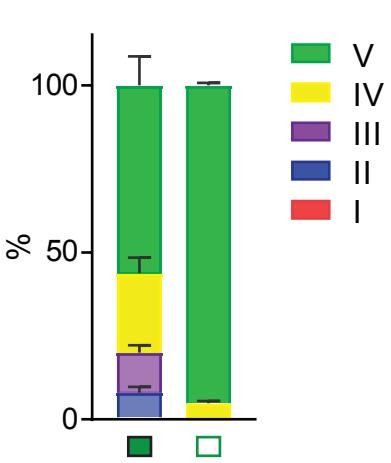
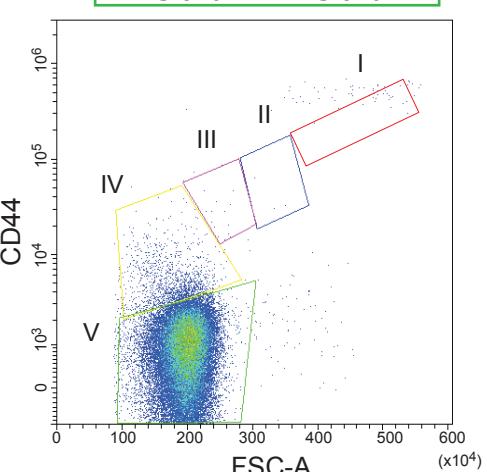


H

MCV



MCH

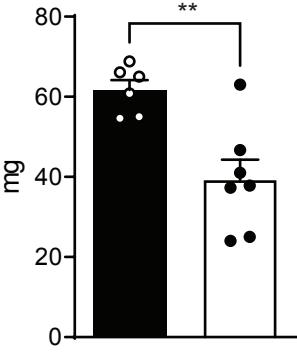
J

BM *Slc7a7*^{-/-} → *Slc7a7*^{+/+}

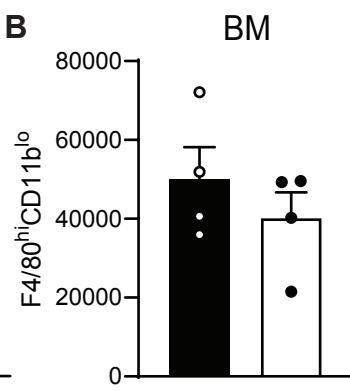
BM *Slc7a7*^{+/+} → *Slc7a7*^{-/-}

550 **Figure 6. Iron accumulation but not defective hematopoiesis and metabolic**
551 **derangement improves after bone-marrow transplant.** (A) 5 weeks after transplant,
552 mice were first fed a tamoxifen diet for 1 week and then a low-protein diet for 10 days
553 prior to sacrifice day. (B-E) Body weight (B), spleen weight (C), plasma arginine (D),
554 and urine orotic acid (E) of *Slc7a7^{-/-}* mice transplanted with wild-type CD45.2 bone
555 marrow (BM *Slc7a7^{+/+}* → *Slc7a7^{-/-}*) and *Slc7a7^{+/+}* mice transplanted with *Slc7a7^{-/-}*
556 CD45.1 bone marrow (BM *Slc7a7^{-/-}* → *Slc7a7^{+/+}*). (F) Left: Isolated spleens of the
557 indicated genotypes were embedded in paraffin for histopathological examination
558 (Perl's Prussian Blue). Scale bar, 500 μm. Right: Percentage of iron area in the
559 indicated genotypes and transplanted mice. (G) Plasma ferritin levels in *Slc7a7^{+/+}* and
560 *Slc7a7^{-/-}* mice, and *Slc7a7^{-/-}* and *Slc7a7^{+/+}* mice transplanted with wild-type BM and
561 *Slc7a7^{-/-}* BM, respectively. (H-I) Hematological analysis (MCV, mean corpuscular
562 volume; MCH, mean corpuscular hemoglobin) of *Slc7a7^{-/-}* mice transplanted with wild-
563 type CD45.2 bone marrow and *Slc7a7^{+/+}* mice transplanted with *Slc7a7^{-/-}* CD45.1 bone
564 marrow. (J) Left: Representative dot plots show the gating strategy for erythroid
565 progenitors (V, IV, III, II and I) (Chen et al., 2009) of *Slc7a7^{-/-}* mice transplanted with
566 wild-type BM and *Slc7a7^{+/+}* mice transplanted with *Slc7a7^{-/-}* bone marrow. Left: Boxes
567 in the flow cytometry plots represents I-IV erythroblasts populations. Right: Percentage
568 of the cell populations analyzed. Data are mean ± SEM. All experiments were
569 performed independently at least twice. * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$, **** $P \leq$
570 0.0001 between genotypes. P values were calculated using two-tailed *t*-test.

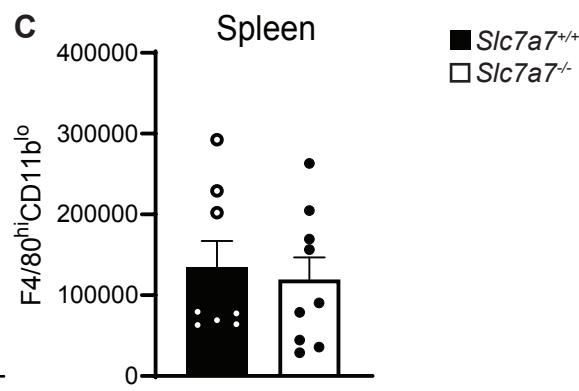
571


572

573


574

Supplementary Figure 1


A

B

C

575 **Supplementary Figure 1. *Slc7a7*^{-/-} mouse model treated with citrulline improve**
576 **spleen weight and recover BMMs and RPMs number. (A)** *Slc7a7*^{-/-} mice and its
577 control littermates treated with citrulline in the drinking water (1g/L) were dissected,
578 and spleens were photographed (left panel). Spleen weights are indicated on the right
579 panel. (B) Flow cytometry quantification of total number of bone marrow (BM)
580 macrophages and red pulp macrophages (C) per femur and tibia (CD11b^{lo}, F4/80^{hi}).
581 Data are mean \pm SEM. ** $P \leq 0.01$ between genotypes. P values were calculated using
582 two-tailed *t*-test.

583

584

585

586

587

588

589

590

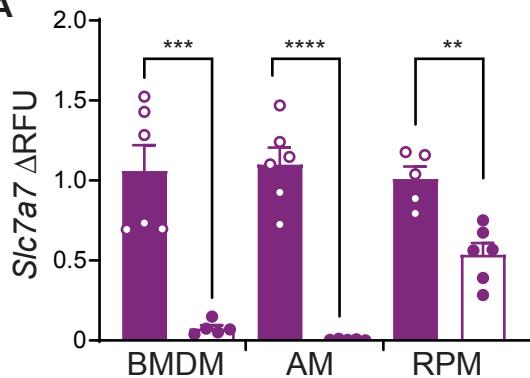
591

592

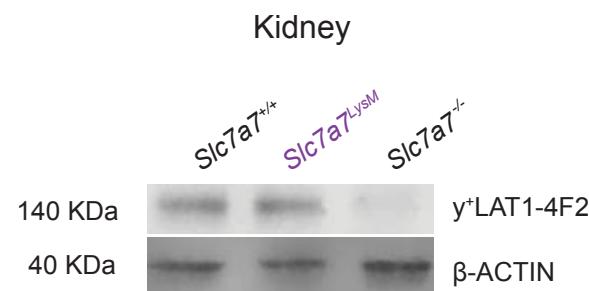
593

594

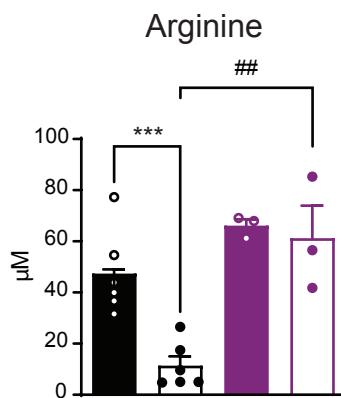
595

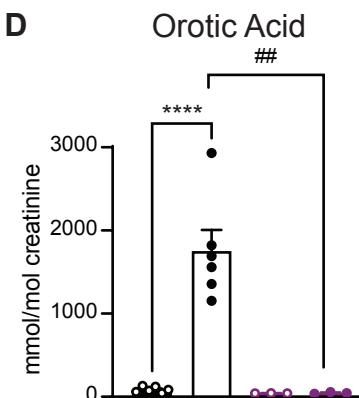

596

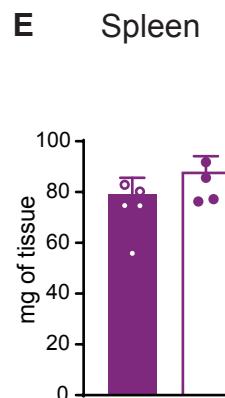
597

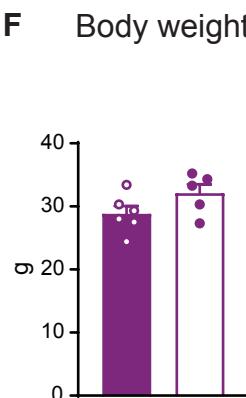

598

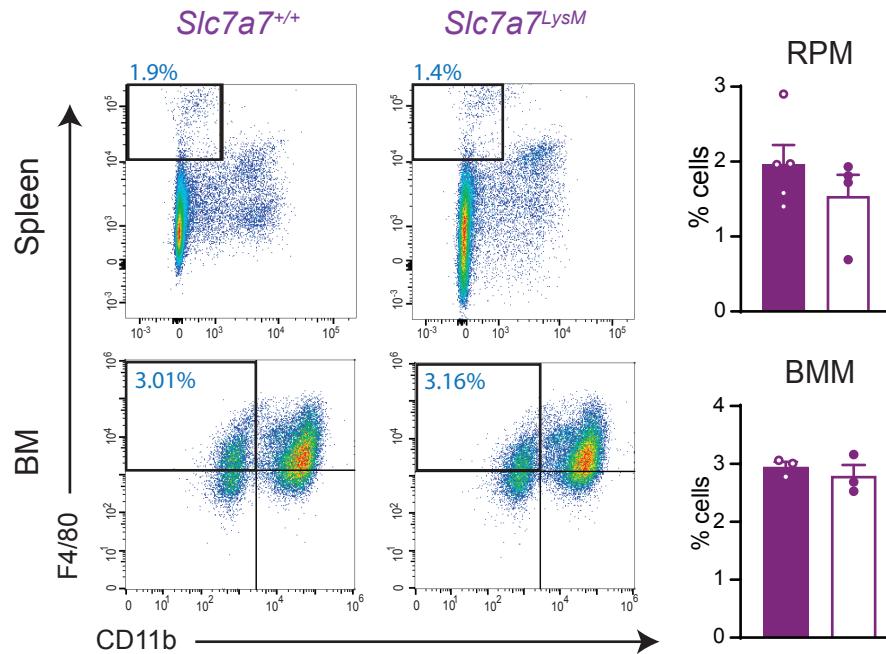
Supplementary Figure 2


A


B


C


D


E

F

G

599 **Supplementary Figure 2. y^+ LAT1 deficiency in myeloid cell line does not**
600 **reproduce the deficiencies of the conditional knockout mouse.** (A) mRNA
601 expression of *Slc7a7* gene in BMDMs, AMs and RPMs from *Slc7a7*^{LysM-/-} and their
602 control. (B) y^+ LAT1 protein expression of kidney membranes in the indicated
603 genotypes. (C) Plasma arginine, (D) urine orotic acid, (E) spleen and (F) body weight
604 of *Slc7a7*^{+/+}, *Slc7a7*^{-/-}, *Slc7a7*^{LysM-/-} mice and their control counterparts. (G) Flow
605 cytometry analysis with the indicated markers on BMs and splenocytes of the
606 designated genotypes. The percentage of CD11b^{lo}F4/80^{hi} is shown (right panel). Data
607 are mean \pm SEM. ** $P \leq 0.01$, *** $P \leq 0.001$ between genotypes. # $P \leq 0.05$, ## $P \leq 0.01$
608 vs. *Slc7a7*^{-/-} mice. P values were calculated using two-tailed *t*-test.

609

610

611

612

613

614

615

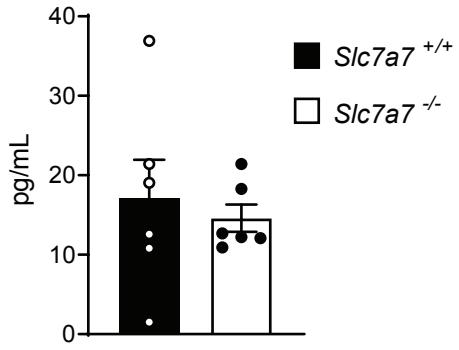
616

617

618

619

620


621

622

623

Supplementary Figure 3

A

B

	Hallmark Term	PValue	NES
	UV response DN	0.001	2.584
	Xenobiotic metabolism	0.044	2.025
	Complement	0.026	1.883
	Wnt-β catenin signaling	0.012	1.855
	Protein secretion	0.043	1.624
	G2M checkpoint	0	-3.917
	IL2 STAT5 signaling	0	-3.311
	Mitotic spindle	0	-3.07
	Inflammatory response	0	-3.049
	IL6 JAK STAT3 signaling	0	-2.797
	TNF-α signaling via NFKB	0.001	-2.599
	Interferon γ response	0.001	-2.584
	Allograft rejection	0	-2.569
	Estrogen response late	0.007	-2.518
	KRAS signaling up	0.007	-2.509
	E2F Targets	0	-2.469
	Angiogenesis	0.005	-2.263
	Apoptosis	0	-2.132
	Apical Junction	0.009	-2.13
	Unfolded protein response	0.009	-2.099
	Estrogen response early	0.017	-1.981
	Glycolysis	0.054	-1.975
	mTORC1 SIGNALING	0.033	-1.913
	P53 Pathway	0.094	-1.637
	Fatty acid metabolism	0.131	-1.557
	Heme metabolism	0.187	-1.412

624 **Supplementary Figure 3. IL6 plasma levels and broad hallmarks pathways**

625 (A) Plasma IL6 levels of *Slc7a7^{+/+}* and *Slc7a7^{-/-}* mice. Data are mean \pm SEM. *P* values
626 were calculated using two-tailed *t*-test. (B) The most significative pathways in *Slc7a7^{-/-}*
627 red pulp macrophages, Pvalue and Normalized Enrichment Score (NES) values are
628 shown.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649 **MATERIALS AND METHODS**

650 ***Data and code availability***

651 Microarray data has been deposited in a public repository and the accession
652 numbers is GSE164827.

653 ***Animals***

654 All animal work was approved and conducted according to guidelines established. This
655 project (DARP n°9177) has been assessed favourably by the Institutional Animal Care
656 and Use Committee from Parc Científic de Barcelona (IACUC-PCB) and the IACUC
657 considers that the above-mentioned project complies with standard ethical regulations
658 and meets the requirements of current applicable legislation (RD 53/2013 Council
659 Directive; 2010/63/UE; Order 214/1997/GC). C57BL/6 mice were purchased from
660 Harlan Europe. *Slc7a7*^{loxP/loxP} mice were generated by Eurogentec. To generate
661 *Slc7a7*^{-/-} and *Slc7a7*^{LysM} mice, *Slc7a7*^{loxP/loxP} were crossed with UBC-Cre-ERT2 mice
662 from The Jackson Laboratory and LysM-Cre provided by Dr. Ángel R. Nebreda,
663 respectively. Male or female mice of 12 weeks old were used. Mice were housed in
664 groups of 2-5 animals per cage and were kept under a 12 h dark-light period. Food
665 and water were supplied *ad libitum*. Animals were fed a standard diet (Teklad global
666 14% protein rodent maintenance diet) until tamoxifen induction, which consisted of a
667 tamoxifen diet for one week. After the induction period, animals were kept on a low-
668 protein diet for 7-10 days, supplemented or not with 1g/l L-citrulline in drinking water.
669 Control and *Slc7a7*^{-/-} littermates on a C57Bl6/J genetic background were sacrificed at
670 10-12 weeks of age by cervical dislocation. Tissues were dissected and flash-frozen
671 in liquid nitrogen for RNA, protein, and iron quantification studies. For histological
672 analysis, mice were anesthetized with ketamine and xylazin (respectively 1 mg and
673 0.1 mg per 10 g of body weight, i.p., respectively) and subjected to transcranial

674 perfusion. For hematological and biochemical studies, EDTA or heparin blood was
675 collected from cardiac puncture. Bone marrow was flushed out from femur and tibia
676 bones.

677 Mice carrying the myeloid-specific knockout of the *Slc7a7* gene (*LysM*^{Cre/+}
678 *Slc7a7*^{fl/fl}) were sacrificed at 12 weeks of age, and only those with more than 80%
679 deletion of endogenous protein were used for the experiments.

680 **Bone marrow transplantation (BMT)**

681 Recipient mice were lethally irradiated (9.5Gy) and transplanted with 2x10⁶ bone
682 marrow (BM) cells by retro-orbital injection (Bennett et al., 2018). For the re-population
683 experiments, total BM cells from either *Slc7a7*^{-/-} (CD45.2) or *Slc7a7*^{+/+} (CD45.1) mice
684 were transplanted into lethally irradiated B6 recipient mice (CD45.1 or CD45.2). As a
685 follow-up step, five weeks after transplantation to allow whole body hematopoiesis
686 regeneration, mice were subjected to tamoxifen diet for 7 days, and then treated with
687 a low-protein diet for 10 days prior to the sacrifice. BM reconstitution was monitored
688 by flow cytometry.

689 γ -Irradiation of mice was performed in a 137Cs- γ IBL 437C H irradiator (Shering CIS
690 bio international) at 2.56Gy/min rate for the indicated dosage. The irradiated mice were
691 inspected daily. Mice were given *Baytril* water containing antibiotics (Bayer, Shawnee
692 Mission, JS) for at least 30 days to reduce the probability of infection from opportunistic
693 pathogens.

694 **Flow cytometry and cell sorting**

695 For the analysis of splenocytes and bone marrow cells, crushed spleens and flushed
696 BM were isolated and incubated with Fc block (anti-mouse CD16/32; Thermofisher)
697 for 30 min on ice. Cell suspensions were stained for the expression of CD71; CD11b;
698 CD45.1; CD45.2 (BD Biosciences); CD34 (eBiosciences); F4/80; TER119; CD106

699 (BioLegend) for 30 min on ice. Flow cytometry analysis was performed on Gallios (BD
700 Boisces). For spleen staining, crushed tissues were filtered through a 40 μ M cell
701 strainer and erythroid cells were removed by incubation with ammonium-chloride-
702 potassium lysis buffer prior to Fc blocking. Cell sorting (purity > 90%) was carried out
703 using a FACS Aria II (BD Biosciences). For microarray analysis, spleens were
704 prepared as described above and stained with anti-CD106, anti-CD11b and anti-F4/80
705 (ThermoFisher) for purified RPMs.
706 Cell doublets were excluded from all analyses and, when possible, dead cells were
707 excluded by the use of DAPI. Data analysis was carried out using FlowJoTM Software.

708 ***In vitro erythrophagocytosis assay***

709 To prepare primary BMDMs, cells obtained from mouse femurs and tibia were cultured
710 for 7 days in the presence of L-Cell (L929 SN) in DMEM supplemented with 10% FBS,
711 penicillin (50 U/mL) and streptomycin (50 μ g/mL). BMDMs were plated 24 hours prior
712 to the day of the experiment. On the day of the experiment, previously seeded BMDMs
713 were activated with lipopolysaccharide (100 ng/mL) for 2h and fresh RBCs were
714 extracted, washed and labelled with CellVue[®] or PKH26 following the manufacturer's
715 instructions. RBCs were then incubated with previously activated BMDMs for 2
716 minutes ($10 \cdot 10^6$ RBC/ $1 \cdot 10^6$ BMDM) at 37°C in a 5% CO₂ incubator. Macrophages
717 were washed twice with PBS and finally incubated with an erytholysis buffer (R&D
718 Systems) to lyse non-ingested RBCs. Cells were then collected and analyzed by flow
719 cytometry.

720 ***Histological sample preparation and analysis***

721 Samples were fixed overnight at 4°C with neutral buffered formalin. After fixation,
722 bone tissue (femur) was washed with PBS 1x and decalcified with Osteosoft[®] reagent

723 for a minimum 15 days at RT. All samples were embedded in paraffin-
724 embedded tissue sections (2-3 μ m in thickness) were air-dried and further dried at 60
725 °C overnight. Bone sections were maintained at 60°C for 48 h.
726 For special staining, paraffin-embedded tissue sections were dewaxed and stained
727 with Iron Stain Kit to identify iron pigment using the Dako Autostainer Plus and
728 following the manufacturer instructions. When combining Iron staining with F4/80 IHC,
729 iron staining was done before following the described protocols.
730 Prior to immunohistochemistry, sections were dewaxed and therefore epitope retrieval
731 was performed using citrate buffer pH6 for 20 min at 121°C with an autoclave or
732 proteinase K for 5 min at RT for anti-caspase 3 (Cell Signalling) and rat monoclonal
733 Anti-F4/80 (eBioscience), respectively. For rabbit polyclonal anti-Ki67 (Abcam)
734 sections were dewaxed as part of the antigen retrieval process using the low pH
735 EnVision™ FLEX Target Retrieval Solutions (Dako, Burlington) for 20min at 97°C
736 using a PT Link (Dako, Agilent). Quenching of endogenous peroxidase was performed
737 by 10 min of incubation with Peroxidase-Blocking Solution at RT. Non-specific
738 bindings were blocked using 5 % of goat normal serum or normal donkey serum mixed
739 with 2.5 % BSA diluted in the wash buffer for 60 min at RT. The primary antibody
740 dilutions used were 1:300, 1:100 and 1:2000, for 120 min, overnight or 60 min,
741 respectively. The secondary antibody used was a BrightVision Poly-HRP-Anti Rabbit
742 IgG Biotin-free, ready to use or the secondary antibody used was a Biotin-SP (long
743 spacer) AffiniPure Donkey Anti-Rat IgG (H+L) at 1:500 (in wash buffer) for 60 min
744 followed by amplification with Streptavidin-Peroxidase polymer at 1:1000. Antigen-
745 antibody complexes were revealed with 3-3'-diaminobenzidine, with the same time
746 exposure (1 min). Sections were counterstained with hematoxylin and mounted with

747 Mounting Medium, Toluene-Free using a Dako CoverStainer. Specificity of staining
748 was confirmed with rabbit IgG, polyclonal - Isotype control or Normal Rat IgG Control.
749 Image acquisition. Brightfield images were acquired with a NanoZoomer-2.0 HT
750 C9600 digital scanner (Hamamatsu) equipped with a 20X objective. All images were
751 visualized with the NDP.view 2 U123888-01 software. All images were visualized with
752 a gamma correction set at 1.8 in the image control panel of the NDP.view 2 U12388-
753 01 software.

754 Prior to immunohistochemistry, for Ki67 sections were dewaxed as part of the antigen
755 retrieval process using the low pH EnVision™ FLEX Target Retrieval Solutions (Dako,
756 Burlington) for 20 min at 97°C using a PT Link (Dako – Agilent). For caspase 3 samples
757 were dewaxed and antigen retrieval treatment was performed with citrate buffer pH6
758 for 20 min at 121°C with an autoclave. Quenching of endogenous peroxidase was
759 performed by 10 min of incubation with Peroxidase-Blocking Solution (Dako REAL
760 S2023). Rabbit polyclonal primary anti-Ki67 antibody (A. Menarini diagnostics – NCL-
761 ki67p) was diluted 1:1000 with EnVision FLEX Antibody Diluent (K800621, Dako,
762 Agilent) and incubated for 60 min at RT. The secondary antibody used was a
763 BrightVision Poly-HRP-Anti Rabbit IgG Biotin-free, ready to use (Immunologic, DPVR-
764 110HRP). Antigen–antibody complexes were revealed with 3-3'-diaminobenzidine,
765 with the same time exposure per antibody (3 and 5 min respectively). Sections were
766 counterstained with hematoxylin and mounted with Mounting Medium, Toluene-Free
767 using a Dako CoverStainer.

768 ***Amino acid content***

769 Briefly, amino acids were determined by ion exchange chromatography with ninhydrin
770 derivatization and spectrometric detection (Biochrom 30, Chromsystems, Cambridge,
771 UK). Plasma (300 µL) were deproteinized with sulphosalicylic acid containing L-

772 norleucine as internal standard (final concentration 100 μ mol/L). After centrifugation,
773 200 μ L of supernatant were adjusted to pH = 2.1 with lithium hydroxide, and then,
774 injected onto the liquid chromatograph. Urinary orotic acid was analyzed following a
775 spectrometric procedure (458 nm), by reacting with para-
776 dimethylaminobenzaldehyde.

777 ***Tissue iron content***

778 Liver and spleen non-heme iron content was measured using the bathophenanthroline
779 colorimetric method. Mouse tissues were dried at 45°C for 3 days, weighted, and
780 digested for 48 h at 65°C in 10% TCA/10% HCl to allow deproteinization of non-heme
781 iron. Diluted extracts were added to a 0.01% bathophenanthroline disulfonic acid,
782 0.1% thioglycolic, 7M sodium acetate solution and the absorbance at 535 nm was
783 measured using a spectrophotometer Ultrospec 3100pro (Amersham Biosciences).
784 The iron content of samples was obtained by interpolation from a standard curve and
785 calibrated to the weight of dried material (Jd and Th, 1968; Patel et al., 2002).

786 ***Plasma measurements***

787 ELISA kit was used to determine the IL6 (Abnova), hepcidin (Intrinsic Life Science),
788 ferritin (Abcam) and erythropoietin (R&D Systems) proteins in fresh plasma. The
789 procedures were done following the manufacturer's instructions.

790 ***Microarray analysis***

791 For gene expression analysis of RPMs, total RNA was isolated from previously purified
792 cells using magnetic beads and the Agencourt RNA Clean XP kit (Beckman Coulter).
793 Quality and quantity were assessed using a Bioanalyzer 2100 (Agilent Technologies,
794 Palo Alto, CA). Library preparation and amplification were performed as described
795 previously by (Gonzalez-Roca et al., 2010). RNA was amplified for 22 cycles and

796 purified using PureLink Quick PCR Purification kit (Invitrogen) in the Genomic Facility
797 of IRB Barcelona.

798 ***Pre-processing of microarray data***

799 Microarray datasets were processed separately using R (R Core, 2019) packages affy
800 (Gautier et al., 2004) and affyPLM (Bolstad et al., 2005) from Bioconductor
801 (Gentleman et al., 2004). Raw cell files data were processed using RMA (Irizarry,
802 2003) and annotated using the information available on the Affymetrix – ThermoFisher
803 web page. Standard quality controls were performed in order to identify abnormal
804 samples regarding: a) spatial artefacts in the hybridization process (scan images and
805 pseudo-images from probe level models); b) intensity dependences of differences
806 between chips (MVA plots); c) RNA quality (RNA digest plot); d) global intensity levels
807 (boxplot of perfect match log-intensity distributions before and after normalization and
808 RLE plots); and e) anomalous intensity profile compared to the rest of the samples
809 (NUSE plots, Principal Component Analysis).

810 ***Differential expression***

811 A differential expression analysis was performed for *Slc7a7^{+/+}* and *Slc7a7^{-/-}*
812 comparisons using a linear model with empirical shrinkage (Smyth, 2004) as
813 implemented in Limma R package (Ritchie et al., 2015). This model included the batch
814 of scanning for statistical control. Adjustment by multiple comparisons was performed
815 using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

816 ***Biological enrichment analysis***

817 Genes quantified in the microarray experiment were annotated according to the Broad
818 Hallmark (Liberzon et al., 2015) gene sets collection. Broad Hallmark sets were

819 translated to mouse homologous genes using the R package biomaRt (Durinck et al.,
820 2009).

821 Functional enrichment analyses were performed using a modification of ROAST (Wu
822 et al., 2010), a rotation-based approach implemented in the R package limma (Ritchie
823 et al., 2015) that is especially suitable for small size experiments. Such modifications
824 were implemented to accommodate in the ROAST algorithm the statistical re-
825 standardization proposed in (Efron and Tibshirani, 2007), which enables its use for
826 competitive testing (Goeman and Bühlmann, 2007). The MaxMean (Efron and
827 Tibshirani, 2007) statistic was used for testing geneset enrichment of Broad Hallmark.
828 For each gene, the most variable probeset within each gene was used in these
829 analyses (median absolute deviation).

830 The results of these analyses were adjusted by multiple comparisons using the
831 Benjamini-Hochberg False Discovery Rate method (Benjamini and Hochberg, 1995).

832 ***Clustering and visualization***

833 Gene expression of selected genes was graphically represented in a heatmap with the
834 heatmap R package, using a blue to red gradation, where red indicated the highest
835 expression and blue corresponded to the lowest expression values. Previously, the
836 expression data were summarized to the gene level using the most variable probeset
837 mapping to the same gene (median absolute deviation), and expression values were
838 centered and scaled gene-wise. Genes and samples were clustered using the Ward
839 agglomeration method and the correlation and Euclidean distances, respectively. To
840 gain clarity in the graphic, the most extreme values were truncated to -1.5 and 1.5.
841 All analyses were carried out using R and Bioconductor.

842 ***RNA extraction and quantitative real-time PCR***

843 Mice were killed by cervical dislocation, and tissues were immediately frozen for RNA
844 isolation. Total mRNA was extracted from BMDMs or AMs using the Rneasy Total
845 RNA Isolation kit (Qiagen, Alameda, CA, USA), following the manufacturer's
846 instructions. RNA concentrations were measured with Nanodrop ND-1000
847 (ThermoFisher Scientific). Reverse transcription was performed with total RNA (2 ng)
848 using the qScript cDNA SuperMix (Quantabio) following the manufacturer's
849 instructions. PCRs were performed using the ABI Prism 7900 HT real-time PCR
850 machine (Applied Biosystems, USA) and the SYBR® Green PCR Master Mix. Gene
851 expression levels were normalized with β -actin as housekeeping genes. Primers used
852 are listed in Supplementary table 1.

853 ***Protein isolation and western blot***

854 Membrane proteins from cell cultures or tissues were extracted with Lysis buffer (25
855 mM Hepes, 4 mM EDTA, 250 mM Sucrose) containing protease inhibitor (1:000;
856 Protease Inhibitor Cocktail Set III, EDTA-Free, Calbiochem). Briefly, tissues were
857 lysed using the Tissue Lyser (Mini-beadbeater-16, Biospecproducts) and further
858 centrifuged at 10000 g for 10 minutes at 4°C. After centrifuging, the supernatant was
859 centrifuged again on an ultracentrifuge at 55000 rpm for 1 hour at 4°C. Finally, protein
860 concentration was determined using Pierce BCA Protein Assay Kit (ThermoFisher
861 Scientific). Membrane proteins were resolved in 10% acrylamide gels for SDS-PAGE
862 and transferred to Immobilon membranes (Millipore). The following antibodies were
863 used: polyclonal rabbit anti- γ LAT1 was used at 1:750 dilution with 5% non-fat dried
864 milk in PBS Tween-20 (0.1%) (Bodoy et al., 2019); rabbit anti-FPN1 was used at 1:250
865 dilution with 5% non-fat dried milk in TBS Tween-20 (0.1%) (Nairz et al., 2013).
866 Antibody binding was then detected using appropriate horseradish peroxidase (HRP)-

867 conjugated secondary antibodies (1:1000 dilution). Proteins were detected by the
868 enhanced chemiluminescence method (GE Healthcare Life Sciences) and quantified
869 by scanning densitometry.

870 ***Primary bone marrow macrophages (BMDMs) cell culture***

871 BM cells from 12-week-old mice (either female or male) were flushed from mice femurs
872 and tibias. The cell suspension was lysed for 5 min in ACK lysis buffer at RT and then
873 washed, resuspended, and cultured for 7 days in Dulbecco's Modified Eagle Medium
874 (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 50 U/mL
875 penicillin, 50 µg/mL streptomycin and 50 ng/mL of recombinant M-CSF (Peprotech) or
876 30% of L-Cell (L929 supernatant (SN)) media. Six days after the seeding, cells were
877 harvested and re-seeded with the specific conditioned media for 24 hours. To deplete
878 arginine, arginine-free media was used (DMEM for SILAC, ThermoFisher).

879 **QUANTIFICATION AND STATISTICAL ANALYSIS**

880 Data were analyzed using GraphPad Prism Version 8 software. Statistical analysis
881 was performed using the Student's *t* test and one- and two-way ANOVA as specified
882 in each figure legend.

883

884 **References**

885 A-Gonzalez N, Quintana JA, García-Silva S, Mazariegos M, de la Aleja AG, Nicolás-ávila JA,
886 Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, Rothlin C V., Peinado H, Castrillo A,
887 Ricote M, Hidalgo A. 2017. Phagocytosis imprints heterogeneity in tissue-resident
888 macrophages. *J Exp Med* **214**:1281–1296. doi:10.1084/jem.20161375
889 Al-Qattan S, Malcolmson C, Mercimek-Andrews S. 2021. Lysinuric protein intolerance
890 mimicking N-acetylglutamate synthase deficiency in a nine-year-old boy. *Mol Genet*
891 *Metab Reports* **27**:100741. doi:10.1016/j.ymgmr.2021.100741
892 Alqarajeh F, Omorodion J, Bosfield K, Shur N, Ferreira CR. 2020. Lysinuric protein
893 intolerance: Pearls to detect this otherwise easily missed diagnosis. *Transl Sci Rare Dis*
894 **5**:81–86. doi:10.3233/TRD-190035
895 Andriopoulos B, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD,
896 Pietrangelo A, Vukicevic S, Lin HY, Babitt JL. 2009. BMP6 is a key endogenous
897 regulator of hepcidin expression and iron metabolism. *Nat Genet* **41**:482–487.
898 doi:10.1038/ng.335

899 Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Gatti R, Dionisi-Vici C, Martinelli D,
900 Goffredo BM, Font-Llitjós M, Mariani F, Luisetti M, Dall'Asta V. 2012. Impaired
901 phagocytosis in macrophages from patients affected by lysinuric protein intolerance.
902 *Mol Genet Metab* **105**:585–589. doi:10.1016/j.ymgme.2012.01.008

903 Beaumont C, Delaby C. 2009. Recycling Iron in Normal and Pathological States. *Semin
904 Hematol* **46**:328–338. doi:10.1053/j.seminhematol.2009.06.004

905 Beguin Y. 1998. Prediction of response to optimize outcome of treatment with erythropoietin.
906 *Semin Oncol* **25**:27–34.

907 Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
908 Powerful Approach to Multiple Testing. *J R Stat Soc Ser B* **57**:289–300.
909 doi:10.1111/j.2517-6161.1995.tb02031.x

910 Bennett LF, Liao C, Paulson RF. 2018. Stress erythropoiesis model systemsMethods in
911 Molecular Biology. Humana Press Inc. pp. 91–102. doi:10.1007/978-1-4939-7428-3_5

912 Bodoy, Sotillo, Espino-Guarch, Sperandeo, Ormazabal, Zorzano, Sebastio, Artuch, Palacín,
913 Bodoy S, Sotillo F, Espino-Guarch M, Sperandeo MP, Ormazabal A, Zorzano A,
914 Sebastio G, Artuch R, Palacín M. 2019. Inducible Slc7a7 Knockout Mouse Model
915 Recapitulates Lysinuric Protein Intolerance Disease. *Int J Mol Sci* **20**:5294.
916 doi:10.3390/ijms20215294

917 Bolstad B, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry R, Speed T. 2005. Quality
918 Assessment of Affymetrix GeneChip Data In: Gentleman R, Carey V, Huber W, Irizarry
919 R, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and
920 Bioconductor. New York, NY: Springer-Verlag. pp. 33–47. doi:10.1007/0-387-29362-
921 0_3

922 Bronte V, Zanovello P. 2005. Regulation of immune responses by L-arginine metabolism.
923 *Nat Rev Immunol*. doi:10.1038/nri1668

924 Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. 2009. Resolving the distinct stages in
925 erythroid differentiation based on dynamic changes in membrane protein expression
926 during erythropoiesis. *Proc Natl Acad Sci* **106**:17413–17418.
927 doi:10.1073/pnas.0909296106

928 Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M,
929 Noizat C, Van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS.
930 2013. CD169 + macrophages provide a niche promoting erythropoiesis under
931 homeostasis and stress. *Nat Med* **19**:429–436. doi:10.1038/nm.3057

932 Cobbold SA, Llinás M, Kirk K. 2016. Sequestration and metabolism of host cell arginine by
933 the intraerythrocytic malaria parasite *Plasmodium falciparum*. *Cell Microbiol* **18**:820–
934 830. doi:10.1111/cmi.12552

935 Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat
936 R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG.
937 2010. Serum ferritin is derived primarily from macrophages through a nonclassical
938 secretory pathway. *Blood* **116**:1574–1584. doi:10.1182/blood-2009-11-253815

939 Core AB, Canali S, Babitt JL. 2014. Hemojuvelin and bone morphogenetic protein (BMP)
940 signaling in iron homeostasis. *Front Pharmacol*. doi:10.3389/fphar.2014.00104

941 de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. 2014. Of
942 macrophages and red blood cells: a complex love story. *Front Physiol* **5**.
943 doi:10.3389/fphys.2014.00009

944 Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. 1990. Renal arginine synthesis:
945 Studies in vitro and in vivo. *Am J Physiol - Endocrinol Metab* **259**.
946 doi:10.1152/ajpendo.1990.259.3.e437

947 Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, Weiss G. 2018. Dopamine
948 promotes cellular iron accumulation and oxidative stress responses in macrophages.
949 *Biochem Pharmacol* **148**:193–201. doi:10.1016/j.bcp.2017.12.001

950 Drakesmith H, Nemeth E, Ganz T. 2015. Ironing out Ferroportin. *Cell Metab* **22**:777–787.
951 doi:10.1016/j.cmet.2015.09.006

952 Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of
953 genomic datasets with the R/ Bioconductor package biomaRt. *Nat Protoc* **4**:1184–1191.

954 doi:10.1038/nprot.2009.97

955 Efron B, Tibshirani R. 2007. On testing the significance of sets of genes. *Ann Appl Stat*
956 1:107–129. doi:10.1214/07-AOAS101

957 Ganz T. 2012. Macrophages and Systemic Iron Homeostasis. *J Innate Immun* 4:446–453.
958 doi:10.1159/000336423

959 Gautier L, Cope L, Bolstad BM, Irizarry RA. 2004. Affy - Analysis of Affymetrix GeneChip
960 data at the probe level. *Bioinformatics* 20:307–315. doi:10.1093/bioinformatics/btg405

961 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge
962 Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler
963 M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. 2004.
964 Bioconductor: open software development for computational biology and bioinformatics.
965 *Genome Biol* 5:R80. doi:10.1186/gb-2004-5-10-r80

966 Goeman JJ, Bühlmann P. 2007. Analyzing gene expression data in terms of gene sets:
967 Methodological issues. *Bioinformatics* 23:980–987. doi:10.1093/bioinformatics/btm051

968 Goldfarb AN, Freeman KC, Sahu RK, Elagib KE, Holy M, Arneja A, Polanowska-Grabowska
969 R, Gru AA, White Z, Khalil S, Kerins MJ, Ooi A, Leitinger N, Luckey CJ, Delehanty LL.
970 2021. Iron control of erythroid microtubule cytoskeleton as a potential target in
971 treatment of iron-restricted anemia. *Nat Commun* 12. doi:10.1038/s41467-021-21938-2

972 Gonzalez-Roca E, Garcia-Albéniz X, Rodriguez-Mulero S, Gomis RR, Kornacker K, Auer H.
973 2010. Accurate Expression Profiling of Very Small Cell Populations. *PLoS One*
974 5:e14418. doi:10.1371/journal.pone.0014418

975 Guo M, Härtlova A, Gierliński M, Prescott A, Castellvi J, Losa JH, Petersen SK, Wenzel UA,
976 Dill BD, Emmerich CH, Ramon Y Cajal S, Russell DG, Trost M. 2019. Triggering MSR1
977 promotes JNK-mediated inflammation in IL-4-activated macrophages. *EMBO J* 38:1–
978 15. doi:10.15252/embj.2018100299

979 Haldar M, Kohyama M, So AY-L, KC W, Wu X, Briseño CG, Satpathy AT, Kretzer NM, Arase
980 H, Rajasekaran NS, Wang L, Egawa T, Igarashi K, Baltimore D, Murphy TL, Murphy
981 KM. 2014. Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into
982 Iron-Recycling Macrophages. *Cell* 156:1223–1234. doi:10.1016/j.cell.2014.01.069

983 Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. 2011. From stem cell to red cell:
984 regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin
985 modifications. *Blood* 118:6258–6268. doi:10.1182/blood-2011-07-356006

986 Hussell T, Bell TJ. 2014. Alveolar macrophages: plasticity in a tissue-specific context. *Nat
987 Rev Immunol* 14:81–93. doi:10.1038/nri3600

988 Irizarry RA. 2003. Exploration, normalization, and summaries of high density oligonucleotide
989 array probe level data. *Biostatistics* 4:249–264. doi:10.1093/biostatistics/4.2.249

990 Jd T, Th B. 1968. A simple technique for measuring storage iron concentrations in
991 formalinised liver samples. *S Afr J Med Sci* 33:9–11.

992 Jelkmann W. 2011. Regulation of erythropoietin production. *J Physiol* 589:1251–1258.
993 doi:10.1113/jphysiol.2010.195057

994 Jha AK, Huang SC-CC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E,
995 Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN.
996 2015. Network integration of parallel metabolic and transcriptional data reveals
997 metabolic modules that regulate macrophage polarization. *Immunity* 42:419–430.
998 doi:10.1016/j.jimmuni.2015.02.005

999 JL B, FW H, DM W, Y X, Y S, TA S, JA C, RT C, AL S, CJ W, NC A, HY L. 2006. Bone
1000 morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. *Nat
1001 Genet* 38:531–539. doi:10.1038/NG1777

1002 Kawasumi H, Gono T, Kawaguchi Y, Kaneko H, Katsumata Y, Hanaoka M, Kataoka S,
1003 Yamanaka H. 2014. IL-6, IL-8, and IL-10 are associated with hyperferritinemia in rapidly
1004 progressive interstitial lung disease with polymyositis/dermatomyositis. *Biomed Res Int*
1005 2014. doi:10.1155/2014/815245

1006 Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. 2017. From the Cradle to the
1007 Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. *Front
1008 Immunol* 8:73. doi:10.3389/fimmu.2017.00073

1009 Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. 2005. Iron release from
1010 macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression
1011 and down-regulated by hepcidin. *Proc Natl Acad Sci* **102**:1324–1328.
1012 doi:10.1073/pnas.0409409102

1013 Koh TJ, DiPietro LA. 2011. Inflammation and wound healing: the role of the macrophage.
1014 *Expert Rev Mol Med*. doi:10.1017/S1462399411001943

1015 Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, Frazier WA, Murphy TL,
1016 Murphy KM. 2009. Role for Spi-C in the development of red pulp macrophages and
1017 splenic iron homeostasis. *Nature* **457**:318–321. doi:10.1038/nature07472

1018 Kuhn V, Diederich L, Keller TCS, Kramer CM, Lückstädt W, Panknin C, Suvorava T, Isakson
1019 BE, Kelm M, Cortese-Krott MM. 2017. Red Blood Cell Function and Dysfunction: Redox
1020 Regulation, Nitric Oxide Metabolism, Anemia. *Antioxid Redox Signal* **26**:718–742.
1021 doi:10.1089/ars.2016.6954

1022 Lee JCM, Gimm JA, Lo AJ, Koury MJ, Krauss SW, Mohandas N, Chasis JA. 2004.
1023 Mechanism of protein sorting during erythroblast enucleation: Role of cytoskeletal
1024 connectivity. *Blood* **103**:1912–1919. doi:10.1182/blood-2003-03-0928

1025 Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. 2015. The
1026 Molecular Signatures Database Hallmark Gene Set Collection. *Cell Syst* **1**:417–425.
1027 doi:10.1016/j.cels.2015.12.004

1028 Liu S, McConnell SC, Ryan TM. 2013. Erythropoiesis in the Absence of Adult Hemoglobin.
1029 *Mol Cell Biol* **33**:2241–2251. doi:10.1128/mcb.01734-12

1030 Lukkarinen M, Näntö-Salonen K, Pulkki K, Aalto M, Simell O. 2003. Oral supplementation
1031 corrects plasma lysine concentrations in lysinuric protein intolerance. *Metabolism*
1032 **52**:935–938. doi:10.1016/S0026-0495(03)00089-1

1033 Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R, Liu Yuqi, Liu Yu, Jiang M, Zhang Z, Wu Y.
1034 2016. Erythropoietin Signaling in Macrophages Promotes Dying Cell Clearance and
1035 Immune Tolerance. *Immunity* **44**:287–302. doi:10.1016/j.immuni.2016.01.002

1036 Mauhin W, Habarou F, Gobin S, Servais A, Brassier A, Grisel C, Roda C, Pinto G, Moshous
1037 D, Ghalim F, Krug P, Deltour N, Pontoizeau C, Dubois S, Assoun M, Galmiche L,
1038 Bonnefont J, Ottolenghi C, de Blic J, Arnoux J, de Lonlay P. 2017. Update on Lysinuric
1039 Protein Intolerance, a Multi-faceted Disease Retrospective cohort analysis from birth to
1040 adulthood. *Orphanet J Rare Dis* **12**:3. doi:10.1186/s13023-016-0550-8

1041 Moestrup S, Møller H. 2004. CD163: a regulated hemoglobin scavenger receptor with a role
1042 in the anti-inflammatory response. *Ann Med* **36**:347–354.
1043 doi:10.1080/07853890410033171

1044 Moritz KM, Lim GB, Wintour EM. 1997. Developmental regulation of erythropoietin and
1045 erythropoiesis. *Am J Physiol Integr Comp Physiol* **273**:R1829–R1844.
1046 doi:10.1152/ajpregu.1997.273.6.R1829

1047 Morris SM. 2002. REGULATION OF ENZYMES OF THE UREA CYCLE AND ARGININE
1048 METABOLISM. doi:10.1146/annurev.nutr.22.110801.140547

1049 Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets.
1050 *Nat Rev Immunol* **11**:723–737. doi:10.1038/nri3073

1051 Nairz M, Schleicher U, Schroll A, Sonnweber T, Theurl I, Ludwiczek S, Talasz H,
1052 Brandacher G, Moser PL, Muckenthaler MU, Fang FC, Bogdan C, Weiss G. 2013.
1053 Nitric oxide–mediated regulation of ferroportin-1 controls macrophage iron homeostasis
1054 and immune function in *Salmonella* infection. *J Exp Med* **210**:855–873.
1055 doi:10.1084/jem.20121946

1056 Nemeth E, Ganz T. 2009. The Role of Hepcidin in Iron Metabolism. *Acta Haematol* **122**:78–
1057 86. doi:10.1159/000243791

1058 Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J.
1059 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its
1060 internalization. *Science* **306**:2090–3. doi:10.1126/science.1104742

1061 Oexle H, Kaser A, Möst J, Bellmann-Weiler R, Werner ER, Werner-Felmayer G, Weiss G.
1062 2003. Pathways for the regulation of interferon- γ -inducible genes by iron in human
1063 monocytic cells. *J Leukoc Biol* **74**:287–294. doi:10.1189/jlb.0802420

1064 Ogier de Baulny H, Schiff M, Dionisi-Vici C. 2012. Lysinuric protein intolerance (LPI): a multi
1065 organ disease by far more complex than a classic urea cycle disorder. *Mol Genet
1066 Metab* **106**:12–7. doi:10.1016/j.ymgme.2012.02.010

1067 Oldenborg P-A. 2000. Role of CD47 as a Marker of Self on Red Blood Cells. *Science (80-)*
1068 **288**:2051–2054. doi:10.1126/science.288.5473.2051

1069 Palacín M, Borsani G, Sebastio G. 2001. The molecular bases of cystinuria and lysinuric
1070 protein intolerance. *Curr Opin Genet Dev* **11**:328–335. doi:10.1016/S0959-
1071 437X(00)00198-2

1072 Palacín M, Nunes V, Font-Llitjós M, Jiménez-Vidal M, Fort J, Gasol E, Pineda M,
1073 Feliubadaló L, Chillarón J, Zorzano A. 2005. The Genetics of Heteromeric Amino Acid
1074 Transporters. *Physiology* **20**:112–124. doi:10.1152/physiol.00051.2004

1075 Park SY, Kim IS. 2017. Engulfment signals and the phagocytic machinery for apoptotic cell
1076 clearance. *Exp Mol Med*. doi:10.1038/emm.2017.52

1077 Parto K, Maki J, Pelliniemi LJ, Simell O. 1994. Abnormal pulmonary macrophages in
1078 lysinuric protein intolerance: Ultrastructural, morphometric, and x-ray microanalytic
1079 study. *Arch Pathol Lab Med* **118**:536–541.

1080 Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. 2002. Ceruloplasmin regulates
1081 iron levels in the CNS and prevents free radical injury. *J Neurosci* **22**:6578–6586.
1082 doi:10.1523/jneurosci.22-15-06578.2002

1083 Perkins CP, Mar V, Shutter JR, Castillo J Del, Danilenko DM, Medlock ES, Ponting IL,
1084 Graham M, Stark KL, Zuo Y, Cunningham JM, Bosselman RA. 1997. Anemia and
1085 perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1.
1086 *Genes Dev* **11**:914–925. doi:10.1101/gad.11.7.914

1087 Pollard JW. 2009. Trophic macrophages in development and disease. *Nat Rev Immunol*
1088 **9**:259–270. doi:10.1038/nri2528

1089 Popova EY, Krauss SW, Short SA, Lee G, Villalobos J, Etzell J, Koury MJ, Ney PA, Chasis
1090 JA, Grigoryev SA. 2009. Chromatin condensation in terminally differentiating mouse
1091 erythroblasts does not involve special architectural proteins but depends on histone
1092 deacetylation. *Chromosom Res* **17**:47–64. doi:10.1007/s10577-008-9005-y

1093 Posey JE, Burrage LC, Miller MJ, Liu P, Hardison MT, Elsea SH, Sun Q, Yang Y, Willis AS,
1094 Schlesinger AE, Bacino CA, Lee BH. 2014. Lysinuric protein intolerance presenting with
1095 multiple fractures. *Mol Genet Metab Reports* **1**:176–183.
1096 doi:10.1016/j.ymgmr.2014.03.004

1097 R Core T. 2019. R: A language and environment for statistical computing. R Foundation for
1098 Statistical Computing. Vienna, Austria. <https://www.r-project.org/>.

1099 Rajantie J, Simell O, Rapola J, Perheentupa J. 1980. Lysinuric protein intolerance: A two-
1100 year trial of dietary supplementation therapy with citrulline and lysine. *J Pediatr* **97**:927–
1101 932. doi:10.1016/S0022-3476(80)80422-7

1102 Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G. 2012. Iron levels in polarized
1103 macrophages: Regulation of immunity and autoimmunity. *Autoimmun Rev*.
1104 doi:10.1016/j.autrev.2012.03.003

1105 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. Limma powers
1106 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic
1107 Acids Res* **43**:e47. doi:10.1093/nar/gkv007

1108 Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D'Cruz DP, Shoenfeld Y. 2013. The
1109 Hyperferritinemic Syndrome: macrophage activation syndrome, Still's disease, septic
1110 shock and catastrophic antiphospholipid syndrome. *BMC Med* **11**:185.
1111 doi:10.1186/1741-7015-11-185

1112 Rotoli BM, Barilli A, Visigalli R, Ferrari F, Dall'Asta V. 2020. y+LAT1 and y+LAT2 contribution
1113 to arginine uptake in different human cell models: Implications in the pathophysiology of
1114 Lysinuric Protein Intolerance. *J Cell Mol Med* **24**:921–929. doi:10.1111/jcmm.14801

1115 Sebastiani G, Wilkinson N, Pantopoulos K. 2016. Pharmacological targeting of the
1116 hepcidin/ferroportin axis. *Front Pharmacol* **7**:1–11. doi:10.3389/fphar.2016.00160

1117 Shima Y, Maeda T, Aizawa S, Tsuboi I, Kobayashi D, Kato R, Tamai I. 2006.
1118 HEMATOPOIESIS L -arginine import via cationic amino acid transporter CAT1 is

1119 essential for both differentiation and proliferation of erythrocytes. *Blood* **107**:1352–1356.
1120 doi:10.1182/blood-2005-08-3166.Reprints

1121 Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential
1122 expression in microarray experiments. *Stat Appl Genet Mol Biol* **3**. doi:10.2202/1544-
1123 6115.1027

1124 Soares MP, Hamza I. 2016. Macrophages and Iron Metabolism. *Immunity*.
1125 doi:10.1016/j.jimmuni.2016.02.016

1126 Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. 2017. Specific and
1127 Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate
1128 Immune Responses. *Cell Metab*. doi:10.1016/j.cmet.2017.06.001

1129 Swartz KL, Wood SN, Murthy T, Ramirez O, Qin G, Pillai MM, Rao S, Minella AC. 2017.
1130 E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated
1131 Erythroblasts. *Mol Cell Biol* **37**. doi:10.1128/mcb.00274-16

1132 Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, He S, Gerhardt LMS,
1133 Holderried TAW, Seifert M, Sopper S, Fenn AM, Anzai A, Rattik S, McAlpine C, Theurl
1134 M, Wieghofer P, Iwamoto Y, Weber GF, Harder NK, Chousterman BG, Arvedson TL,
1135 McKee M, Wang F, Lutz OMD, Rezoagli E, Babitt JL, Berra L, Prinz M, Nahrendorf M,
1136 Weiss G, Weissleder R, Lin HY, Swirski FK. 2016. On-demand erythrocyte disposal
1137 and iron recycling requires transient macrophages in the liver. *Nat Med* **22**:945–951.
1138 doi:10.1038/nm.4146

1139 Torrents D, Mykkänen J, Pineda M, Feliubadaló L, Estévez R, de Cid R, Sanjurjo P, Zorzano
1140 A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus M-LL, Aula P, Palacín
1141 M, Cid Rafael de, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell
1142 O, Savontaus M-LL, Aula P, Palacín M, de Cid R, Sanjurjo P, Zorzano A, Nunes V,
1143 Huoponen K, Reinikainen A, Simell O, Savontaus M-LL, Aula P, Palacín M. 1999.
1144 Identification of SLC7A7, encoding y⁺LAT-1, as the lysinuric protein intolerance gene.
1145 *Nat Genet* **21**:293–296. doi:10.1038/6809

1146 Weiss G, Schaible UE. 2015. Macrophage defense mechanisms against intracellular
1147 bacteria. *Immunol Rev* **264**:182–203. doi:10.1111/imr.12266

1148 Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. 2010. ROAST: Rotation
1149 gene set tests for complex microarray experiments. *Bioinformatics* **26**:2176–2182.
1150 doi:10.1093/bioinformatics/btq401

1151