

1 VPS29 exerts opposing effects on endocytic viral entry

2

3

4 Daniel Poston^{1,2*}, Yiska Weisblum^{1*}, Alvaro Hobbs¹, Paul D. Bieniasz^{1,3}

5

6

7 1. Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY
8 10065

9 2. Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, 1300 York
10 Avenue, New York NY 10021

11 3. Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New
12 York NY 10065

13

14

15 *These authors contributed equally

16

17

18 Correspondence to: Paul D. Bieniasz, Laboratory of Retrovirology, The Rockefeller University,
19 31 1230 York Avenue, New York NY 10065 E.Mail pbieniasz@rockefeller.edu

20

21

22

23 SUMMARY

24 Emerging zoonotic viral pathogens threaten global health and there is an urgent need to discover
25 host and viral determinants influencing infection. We performed a loss-of-function genome-wide
26 CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One
27 candidate gene, VPS29, was required for infection by HCoV-OC43, SARS-CoV-2, other
28 endemic and pandemic threat coronaviruses as well as ebolavirus. However, VPS29 deficiency
29 had no effect on certain other viruses that enter cells via endosomes and had an opposing,
30 enhancing effect on influenza A virus infection. VPS29 deficiency caused changes endosome
31 morphology, and acidity and attenuated the activity of endosomal proteases. These changes in
32 endosome properties caused incoming coronavirus, but not influenza virus particles, to become
33 entrapped therein. Overall, these data show how host regulation of endosome characteristics can
34 influence viral susceptibility and identify a host pathway that could serve as a pharmaceutical
35 target for intervention in zoonotic viral diseases.

36

37 KEYWORDS:

38 SARS-CoV-2, COVID-19, coronavirus, influenza virus, ebolavirus, genome-wide CRISPR
39 screen, respiratory viruses, VPS29, viral entry, trafficking, zoonosis

40

41

42 INTRODUCTION

43
44 Because viruses rely on host cellular proteins to replicate, an attractive strategy for the next-
45 generation of antiviral therapies is targeted inhibition of human proteins—termed “dependency
46 factors”—that are required for viral replication. Of particular interest are human proteins
47 required by diverse viral lineages, encompassing not only known human pathogens but animal
48 viruses that are of concern for future spillover into human populations. One universal aspect of
49 the viral lifecycle that could be targeted pharmacologically is viral entry. All enveloped viruses
50 require fusion between viral and host cellular membranes for infection (White and Whittaker,
51 2016). Some enveloped viruses preferentially fuse at the plasma membrane, while others enter
52 cells via endocytosis and fuse in compartments of the endolysosomal system (Grove and Marsh,
53 2011). Viruses that fuse at the plasma membrane sometimes depend on the expression of cell
54 surface proteases to activate viral fusion proteins, while viruses that enter through endosomes
55 can be highly dependent on endosomal characteristics such as the presence of certain endosomal
56 proteases and/or endosomal pH (Laporte and Naeiens, 2017; Marsh and Helenius, 2006).

57
58 The specific route of entry can dictate which dependency factors are required for productive
59 infection. For example, the hemagglutinin (HA) of most influenza A virus (IAV) strains must be
60 cleaved by trypsin-like proteases, which primes it for receptor binding and subsequent fusion
61 (Böttcher-Friebertshäuser et al., 2014). Like IAV, the spike protein of coronaviruses must also be
62 processed by proteases in order to enter target cells. However, unlike HA, the spike protein often
63 has two distinct cleavage sites, termed S1/S2 and S2', that are cleaved during different stages of
64 the virus replication cycle, including biosynthesis (by the Golgi resident furin-like proteases) and
65 during entry (by cell surface TMPRSS2 protease or endosomal cathepsins) (Millet and
66 Whittaker, 2015). Cleavage regulates the liberation of the fusion peptide to enable fusion of the
67 viral envelope with the cellular membranes, allowing infection to proceed. Similarly, the
68 envelope protein of filoviruses, GP, requires two distinct cleavage steps. First, Furin mediated
69 cleavage during exocytosis yields two subunits, GP1 and GP2, which remain linked by disulfide
70 bonds to form the heterodimers that compose the trimeric envelope complex. Following
71 endocytosis, GP1 is further cleaved by endosomal proteases, mainly cathepsins, in a process that
72 removes the cap and the mucin-like domain to enable binding of GP1 to its endosomal receptor,
73 Niemann-Pick C1 (NPC1) (Volchkov and Klenk, 2018).

74
75 In this century alone, four emerging zoonotic respiratory pathogens—SARS-CoV (CoV),
76 MERS-CoV, H1N1 influenza A virus (IAV), and SARS-CoV-2—have caused significant
77 morbidity and mortality. Of these, SARS-CoV, MERS-CoV, and SARS-CoV-2 are all
78 enveloped, positive-stranded RNA viruses in the genus betacoronavirus (Coronaviridae Study
79 Group of the International Committee on Taxonomy of Viruses, 2020). Four other coronaviruses
80 are known to infect humans; Human CoV (HCoV)-OC43 and HCoV-HKU1 are members of the
81 betacoronavirus genus (Killerby et al., 2018), while HCoV-229E and HCoV-NL63 are members
82 of the alphacoronavirus genus. Each generally causes only mild illness. To identify coronavirus
83 dependency factors, we performed a genome-wide loss-of-function CRISPR screen using HCoV-
84 OC43 in a human lung cell line, and focused on candidate hits that are required by diverse
85 Coronaviridae. We identified one such factor, VPS29, that is broadly required by both human
86 and animal CoVs. VPS29 is a component of both retromer (VPS26/VPS29/VPS35) and retriever
87 (DSCR3/VPS29/C16orf62), two distinct but related complexes that, together with the

88 CCDC22/CCDC93/COMMD (CCC) complex, mediate endosome-to-plasma-membrane and
89 endosome-to-TGN recycling of transmembrane cargo (Baños-Mateos et al., 2019; McNally et
90 al., 2017; Phillips-Krawczak et al., 2015; Singla et al., 2019). We show that loss of VPS29
91 impairs CoV infection, and also causes failure of ebolavirus infection. In stark contrast, we show
92 that VPS29 deficiency facilitates IAV infection. We further show that VPS29 deficiency causes
93 profound changes in endosomal properties, including alteration of morphology, acidity and
94 proteolytic activity that differentially impact the egress of viruses from endosomes.
95

96 RESULTS

97 A genome wide screen reveals HCoV-OC43 dependency factors

98 To identify host proteins required for HCoV-OC43 infection, we performed a genome-wide
99 CRISPR screen in the A549 lung adenocarcinoma cell line. Briefly, A549 cells were transduced
100 with the Brunello sgRNA library (Doench et al., 2016; Sanson et al., 2018) at a low MOI (0.3)
101 and high coverage (500X) to generate a population of cells each harboring a single sgRNA. After
102 selection to remove untransduced cells, A549-Brunello cells were infected with HCoV-OC43 at
103 an MOI of 0.1 and incubated for 1 week to allow viral-induced cell death to occur (Figure 1A).
104 Enrichment of sgRNA sequences in the surviving cells—i.e. those putatively lacking a
105 dependency factor—was assessed using MAGeCK (Li et al., 2014).
106

107 We identified 34 candidate dependency factors, defined as genes scoring higher than the highest
108 scored non-targeting control (Figure 1B). As a positive control, we identified CASD1, the
109 enzyme responsible for the generation 9-O-acetylated sialic acids, which serve as the receptor for
110 HCoV-OC43 (Schwegmann-Wessels and Herrler, 2006). Consistent with several other genome
111 wide screens for viral dependency factors, we identified multiple genes (SLC35B2, XYLT2, and
112 B4GALT7) involved in heparan sulfate biosynthesis, implying that heparan sulfate is an
113 attachment factor for HCoV-OC43 (Gao et al., 2019; Luteijn et al., 2019; Milewska et al., 2014;
114 Park et al., 2017; Schneider et al., 2020).
115

116 To further classify gene hits (Figure 1C), we performed a functional enrichment analysis using
117 string-db followed by annotation with UniProt keywords (Szklarczyk et al., 2019; UniProt
118 Consortium, 2019). Many of the hits were associated with intracellular transport or endosome
119 activity including VPS29, the CCDC22/CCDC93/COMMD3 (CCC) complex, and the
120 WDR81/91 complex, suggesting a requirement for these functions in HCoV-OC43 infection.
121 Additionally, we identified PIK3C3, which generates phosphatidylinositol 3-phosphate (PI(3)P),
122 a phospholipid required for the recruitment of retromer to endosomes (Burda et al., 2002). Some
123 of the genes identified by our screen were also recently reported in CRISPR screens utilizing
124 SARS-CoV-2, implying that they are broadly required for coronavirus infection (Daniloski et al.,
125 2020; Zhu et al., 2021).
126

127 Requirement for candidate host factors is both cell type and virus dependent

128 We next investigated whether the VPS29/CCC complex and the WDR81/91 were required for
129 infection by a diverse panel of respiratory viruses, including coronaviruses. In addition to HCoV-
130 OC43, we tested additional seasonal HCoVs (HCoV-NL63 and HCoV-229E), rVSV/SARS-
131 CoV-2, a chimeric vesicular stomatitis virus encoding the SARS-CoV-2 Spike protein, as well as
132 other pathogenic respiratory viruses: IAV, adenovirus, and respiratory syncytial virus (RSV).
133 We used CRISPR/Cas9 to generate individual cell lines lacking each gene of interest and

134 confirmed knock-out (KO), both by sequencing target loci and by western blot analyses (Figure
135 S1A). Importantly, KO of these genes did not affect cellular viability or proliferation. Because
136 viral dependency factors identified via CRISPR screening might be required in a cell-type
137 specific manner, we evaluated the requirement of these genes for infection in multiple cell lines
138 expressing ACE2 (the receptor for both SARS-CoV-2 and HCoV-NL63): A549-ACE2, HT1080-
139 ACE2, and 293T-ACE2.

140

141 Given their function in endosomal trafficking, we hypothesized that these hits would most likely
142 affect viral entry. We therefore performed single-cycle infection assays and quantified infected
143 cells via flow cytometry. There was strong requirement for VPS29/CCC complex as well as
144 WDR81/91 in A549 cells for all CoVs tested (Figure 2A-D). However, the was no requirement
145 these factors in for IAV, adenovirus, or RSV infection of A549 cells (Figure 2E-G). In all other
146 cell lines tested, there was a strong requirement for VPS29 for all coronaviruses but no
147 dependency on VPS29 or the other candidate proteins was found for adenovirus and RSV
148 (Figure 2H-T). Since these viruses all rely on endocytic pathways for viral entry (Krzyszaniak et
149 al., 2013; Lakadamyali et al., 2004; Meier and Greber, 2004), these data indicate that
150 VPS29/CCC and WDR81/91 are specifically required for coronavirus infection, rather than
151 broadly impairing endocytic function. The magnitude of the effect of CCC complex and
152 WDR81/91 knockout on CoV infection was different in different cell lines. For example, KO of
153 the CCC complex or WDR81/91 had a blunted effect on CoV infection in HT1080-ACE2 cells
154 (Figure 2H-K). Moreover, in 293T-ACE2 cells, KO of the CCC complex inhibited HCoV-OC43
155 but not HCoV-NL63 or rVSV/SARS-CoV-2 infection, while WDR81/91 knockout impaired
156 infection for all three viruses (Figure 2O-Q).

157

158 We found that VSV infection was unaffected by VPS29 KO (Figure 2U). Because the sole
159 difference between rVSV/SARS-CoV-2 and VSV itself is that rVSV/SARS-CoV-2 enters cells
160 using the SARS-CoV-2 spike protein in lieu of VSV-G, these data suggest that it is the entry
161 pathway that imposes the requirement for VPS29. Given the strong requirement for VPS29 by all
162 tested HCoVs, in all cell lines tested, we sought to further confirm the relevance of VPS29 to
163 HCoV infection. To do so, we used CRISPR/Cas9 to KO VPS29 in normal human bronchial
164 epithelial (NHBE) primary lung cells. Loss of VPS29 strongly inhibited HCoV-OC43 infection
165 in NHBE cells (Figure 2V), suggesting that VPS29 is important for HCoV infection of
166 physiologically relevant cells.

167

168 In contrast to effects on coronavirus infection, we observed precisely the opposite effect of
169 VPS29 or CCC complex deficiency on IAV infection in HT1080-ACE2 and 293T-ACE2 cells.
170 That is, KO of VPS29 or CCC complex components enhanced IAV infection (Figure 2M,S)
171 while WDR81/91 KO had no effect. To confirm the phenotype observed using the IAV strain
172 A/WSN/33, we analyzed two separate strains of 2009 pandemic H1N1 IAV;
173 A/Netherlands/602/2009 (H1N1)pdm09 (H1N1_{2009 Netherlands}) and A/California/04/2009
174 (H1N1)pdm09 (H1N1_{2009 California}). We found that the ability of VPS29 KO to enhance IAV entry
175 was conserved in the pandemic IAV strains (Figure 2W,X). That the same set of endocytic
176 factors could promote infection of coronaviruses while antagonizing IAV infection indicates
177 endosome-based viral entry pathways are influenced by specific sets of host proteins that can
178 facilitate or restrict viral entry.

179

180 **VPS29-associated proteins facilitate CoV infection and hinder IAV infection**

181 Because of the opposing effects of VPS29 on HCoV and IAV infection, we elected to examine
182 this protein in more detail—specifically in HT1080 cells, where VPS29 KO strongly suppressed
183 CoV infection and facilitated IAV infection. VPS29 can participate in multiple different protein
184 complexes with distinct roles in normal cell biology (Baños-Mateos et al., 2019). Thus, in order
185 to clarify which VPS29 interacting proteins, if any, are important for facilitating CoV infection
186 and inhibiting IAV infection, we performed a focused siRNA screen targeting VPS29 interacting
187 proteins and assessed impact of knockdown (KD) on HCoV and IAV infection.

188 Knockdown of VPS26A, VPS29, VPS35, or RAB7A each impaired HCoV-OC43, HCoV-NL63,
189 HCoV-229E, and rVSV/SARS-CoV-2 infection (Figure 3A-D). These data strongly suggest that
190 the participation of VPS29 in the Retromer complex (VPS26A/VPS29/VPS35), which is
191 recruited to endosomes via Rab7A, is the means by which it facilitates CoV infection (Rojas et
192 al., 2008). Interestingly, KD of DSCR3 and C16orf62, which play analogous roles to VPS26 and
193 VPS35 and form the Retriever complex (McNally et al., 2017), inhibited HCoV-OC43 infection
194 but not HCoV-NL63, HCoV-229E, or rVSV/SARS-CoV-2 infection.

195

196 IAV infection was enhanced by KD of an overlapping set of VPS29 associated proteins,
197 specifically CCDC22, VPS35, VPS29, RAB7A, WASH1, and RAB21 (Figure 3E). WASH1 is a
198 member of the WASH complex, which facilitates formation of actin patches on endosomes,
199 interacts with and is critical for some protein-sorting functions of retromer (Seaman et al., 2013).
200 RAB21 is a known effector of the WASH complex (Del Olmo et al., 2019). These data thus
201 suggest that the enhancement of IAV infection in VPS29 KO cells is due to the absence of an
202 intact Retromer/WASH complex. While KO or KD of VPS29 facilitates IAV infection, KD of
203 some VPS29-interacting proteins impaired IAV infection. For example, KD of SNX6 impaired
204 IAV infection > 5-fold. However, KD of SNX6 did not affect HCoV infection, indicating that the
205 inhibition of IAV infection is not simply due to global impairment of endosomal function due to
206 SNX6 KD.

207

208 **The ability of VPS29 to facilitate CoV infection and inhibit IAV infection depends on
209 interaction with retromer components and regulators**

210 In an orthogonal approach to investigate the role of the Retromer complex in facilitating CoV
211 infection and hindering IAV infection, we generated HT1080 VPS29 KO single cell clones
212 (SCCs) and reconstituted with wildtype (WT) and mutant forms of VPS29. One VPS29 mutant
213 (I91D) does not interact with the Retromer component VPS35, while the other (L152E) does not
214 interact with TBC1D5, a RAB7A GTPase-activating protein that is critical for endosomal
215 recycling of known retromer cargoes (Collins et al., 2005; Harbour et al., 2010; Jia et al., 2016).
216 In agreement with our previous data, CoV infection was inhibited and IAV infection was
217 enhanced in the VPS29 KO SCC (Figure 3F-J). Normal HT1080 cell susceptibility was
218 substantially restored upon reconstitution with a construct expressing a WT, sgRNA-resistant
219 VPS29 (Figure S1 B,C). However, reconstitution with a construct expressing VPS29_{I91D} or
220 VPS29_{L152E} did not reverse the effects of VPS29 KO on HCoV or IAV infection (Figure 3F-J).
221 Overall, these data confirm that loss of the Retromer complex function is the major means by
222 which VPS29 KO affects CoV and IAV infection.

223

224 **VPS29 deficiency results in enlarged, deacidified endosomes**

225 To elucidate the impact of VPS29 on viral infection we next investigated the impact of VPS29
226 KO on normal endosomal function. We labeled endosomes in living cells using a construct
227 containing two FYVE domains fused to mScarlet (2xFYVE-mSCAR), which binds to PI(3)P
228 that is enriched on endosome membranes (Gillooly et al., 2000). Thereafter we treated cells with
229 Dextran labeled with pH-sensitive (pHrodo Green or pHrodo Red) or pH-insensitive (Alexa
230 Fluor (AF)-488) fluorophores to visualize endocytic cargo uptake, as well as the pH status of
231 these endosomes.
232

233 Unlike parental HT1080 cells, VPS29 KO cells displayed a prominent subset of enlarged PI(3)P-
234 positive endosomes. These enlarged endosomes were deacidified, as evident from decreased
235 pHrodo Green Dextran signal compared to endosomes in unmanipulated cells, or other smaller
236 endosomes in VPS29 KO cells (Figure 4A,B and S2). Importantly, there was a return to normal
237 endosome phenotype after reconstitution with wildtype VPS29, confirming that this effect is due
238 to VPS29 KO (Figure 4C and S2). The appearance of enlarged, deacidified vesicles was
239 maintained in VPS29 KO cells reconstituted with VPS29_{I91D} or VPS29_{L152E} (Figure 4D,E and
240 S2), suggesting that this phenotype is due to retromer dysfunction. Quantification of the pH-
241 sensitive Dextran signal from these images revealed a 3.7-fold decrease in fluorescence intensity
242 in VPS29 KO cells (Figure 4F) that is rescued upon reconstitution with WT VPS29, but not with
243 VPS29_{I91D} or VPS29_{L152E}. Importantly, the enlarged endosomes in VPS29 KO cells exhibited
244 equivalent fluorescent intensity to endosomes in normal cells when cells were incubated with
245 pH-insensitive AF-488 Dextran, indicating that while they were deacidified, they were not
246 impaired in cargo loading (Figure 5A, B and S3).
247

248 **VPS29 KO results in entrapment of rVSV/SARS-CoV-2 in endosomes**

249 Given the above findings, we hypothesized that CoV infection is impaired in VPS29 KO cells
250 due to impediment in spike dependent egress from endosomes. To test this idea, we generated
251 rVSV/SARS-CoV-2_{NG-P}, a replication-competent chimeric VSV expressing SARS-CoV-2 Spike
252 protein in lieu of VSV-G, and containing the VSV structural protein P fused to mNeonGreen
253 (NG-P), thus enabling the direct observation of entering viral particles (Schott et al., 2005).
254

255 At 60 minutes post infection of parental HT1080 cells few NG-P punctae were evident within
256 2xFYVE-mSCAR labeled endosomes, suggesting successful egress of most rVSV/SARS-CoV-
257 2_{NG-P} particles (Figure 6A and S4A) and minimal accumulation therein. However, in VPS29 KO
258 cells, enlarged endosomes contained many rVSV/SARS-CoV-2_{NG-P} punctae at 60 min after
259 infection. Likewise, when cells were infected in the presence of labeled Dextran and imaged 60
260 minutes post infection, we observed a similar phenotype with rVSV/SARS-CoV-2 particles
261 accumulated in enlarged, Dextran-containing vesicles in VPS29 KO cells (Figure 6B and S4B).
262 Overall, these data indicate that the major inhibitory effect of VPS29 KO on CoV infection is the
263 result of failed egress from endosomes.
264

265 Similar experiments in which incoming IAV virions were detected by immunofluorescence 60
266 min after (Figure 6C and S5) revealed that IAV particles did not accumulate in the enlarged
267 2xFYVE-mSCAR labeled endosomes in VPS29 KO cells. Thus, the effect of VPS29 KO on
268 rVSV/SARS-CoV-2 was indeed specific. In fact, there was significantly greater association
269 between incoming IAV and 2xFYVE-labeled endosomes in parental HT1080 cells as compared

270 to VPS29 KO cells (Figure 6C and S5), mirroring the opposing effects of VPS KO on HCoV and
271 IAV infection.

272
273 We hypothesized that such effect might be due to VPS29-dependent trafficking of antiviral
274 proteins with activity against IAV to endosomes, such as IFITM3. We observed that IFITM3
275 knockdown enhanced IAV infection of parental HT1080 cells (Figure S6A), in agreement with
276 previous reports (Feeley et al., 2011). However, IFITM3 knockdown augmented IAV infection
277 in VPS29 KO cells (Figure S6A), suggesting that the enhancement of IAV infection in VPS29
278 KO cells was not the result of loss of IFITM3 activity. Concordantly, IFITM3 localized to
279 2xFYVE-labeled endosomes in both WT and VPS29 KO cells, and there was no clear difference
280 in localization (Figure S6B). Overall, these finding suggest that enhanced IAV infection in
281 VPS29 KO cells is due to increased egress from endosomes but is not due to altered localization
282 and/or impaired activity of IFITM3.

283
284 **Impairment of CoV and ebolavirus infection in VPS29 KO cells due to loss of endosomal
285 cathepsin activity**

286 The aforementioned findings indicate that the reduced susceptibility to HCoV infection in
287 VPS29 KO cells is spike-specific and is the consequence of failed egress from endosomes. We
288 hypothesized that this effect could be due to impaired spike processing by endosomal proteases
289 during entry. We used HIV-1-based pseudotyped viruses to test the susceptibility of various CoV
290 spikes to VPS29 KO and cathepsin inhibition using the drug E64d. As rVSV/SARS-CoV-2 bears
291 a point mutation, R683G, which ablates the polybasic furin cleavage site, we tested pseudotypes
292 bearing WT or R683G mutant spike proteins, as well as spike proteins from SARS-CoV and
293 SARS-like CoV from bats and pangolins, which also do not contain polybasic cleavage sites
294 (Coutard et al., 2020).

295
296 Pseudotypes bearing both the WT and R683G mutant SARS-CoV-2 spike proteins were sensitive
297 to VPS29 KO and cathepsin inhibition. However, cathepsin inhibition did not further decrease
298 infection of VPS29 KO cells (Figure 7A). The SARS-CoV-2_{R683G} (Figure 7B), SARS-CoV
299 (Figure 7C), and the SARS-like bat (Figure 7D) and pangolin viruses (Figure 7E,F) that lack furin
300 cleavage sites were more impacted by VPS29 KO and cathepsin inhibition than WT SARS-CoV-
301 2. Indeed, in several instances, VPS29 KO and/or cathepsin inhibition resulted in undetectable
302 infection by SARS-CoV-2_{R683G}, SARS-CoV, and the SARS-like bat/pangolin CoVs. Similarly,
303 infectivity assays utilizing rVSV/SARS-CoV-2 also revealed a dose-dependent inhibition of
304 infectivity upon cathepsin inhibition in parental HT1080, but no impairment of infection upon
305 cathepsin inhibition in VPS29 KO cells (Figure 7G).

306
307 That there was no further effect of cathepsin inhibition on CoV infection in VPS29 KO cells
308 suggests that the effect of these two manipulations converge on a common pathway in promoting
309 egress from endosomes. We thus hypothesized that VPS29 KO impedes CoV infection by
310 impairing proper processing of spike by cathepsins. If this were indeed the case, then VPS29 KO
311 should impair infection mediated by ebolavirus (EBOV) glycoprotein (GP), which is known to
312 require processing by endosomal cathepsins (Schornberg et al., 2006). To test this, we performed
313 infectivity assays in WT and VPS29 KO cells using a recombinant VSV expressing EBOV GP in
314 lieu of VSV-G (rVSV/EBOV-GP) (Mulherkar et al., 2011). Indeed, we observed a strong
315 inhibition of rVSV/EBOV-GP with both cathepsin inhibition and loss of VPS29 (Figure 7H).

316 This result suggests that the susceptibility of VPS29 KO is mediated by impaired cathepsin
317 activity.

318

319 Consistent with the above conclusion, when parental HT1080 cells were treated with the
320 cathepsin inhibitor E64d, infected with rVSV/SARS-CoV-2_{NG-P} and examined microscopically,
321 we observed a phenotype similar to that seen in VPS29 KO cells (see Figure 6A). Specifically,
322 substantially more rVSV/SARS-CoV-2_{NG-P} punctae were evident within endosomes, and the
323 endosomes appear enlarged with similar appearance and morphology to those observed in
324 VPS29 KO cells (Figure 7I and S7). To directly test whether VPS29 KO results in impaired
325 endosomal cathepsin activity, we measured endosomal cathepsin activity in WT and VPS29 KO
326 HT1080 cells using a substrate that generates a fluorescent signal upon cleavage by cathepsin L.
327 Indeed, in WT cells, we observed a strong red fluorescence signal in vesicular structures,
328 indicating high levels of cathepsin activity. However, in VPS29 KO cells the red fluorescence
329 signal was nearly absent, indicative of impaired cathepsin activity in VPS29 KO cells (Figure
330 7J). To determine if the loss of cathepsin L activity was the result of failed trafficking of
331 cathepsins to the endolysosomal system, we performed immunofluorescence studies utilizing
332 tagged cathepsin L in cells with endosomes labeled with 2xFYVE-mSCAR. There was no
333 change in cathepsin L localization to 2xFYVE-mSCAR-positive endosomes in VPS29 KO cells
334 (Figure 7K). These data suggest that the loss of cathepsin activity in VPS29 KO cells is not a
335 result of impaired trafficking of cathepsin itself to endosomes, but rather change endosomal
336 conditions in VPS29 KO cells, such as increased pH, reduces cathepsin activity therein.

337

338 DISCUSSION

339 While the advent of robust, high-throughput screening modalities has generated a wealth of
340 information regarding host-viral interactions, the underlying mechanism of action for many host
341 proteins implicated by these screens remain incompletely understood. Here, utilizing HCoV-
342 OC43 as a model HCoV, we employed a genome-wide loss-of-function CRISPR screen to
343 identify and characterize factors required for efficient CoV infection. In particular, we show that
344 the retromer subunit protein VPS29 is required for productive infection by diverse CoVs in a
345 variety of cell types. Other genome-wide screens using SARS-CoV-2 have also suggested a role
346 for VPS29 and the CCC as well as RAB7A, which recruits retromer to endosomes (Daniloski et
347 al., 2020; Hoffmann et al., 2021; Wang et al., 2021; Zhu et al., 2021) in HCoV infection

348

349 While previous studies have hypothesized that the mechanism whereby VPS29/CCC complex
350 facilitates SARS-CoV-2 infection is by maintaining cell surface expression of viral receptors
351 (Daniloski et al., 2020; Zhu et al., 2021), our findings indicate a different role. Indeed, infection
352 by HCoVs that use three distinct receptors was inhibited by VPS29/CCC KO, while there was no
353 VPS29/CCC requirement for infection by IAV, adenovirus, or RSV—which should otherwise
354 also be dependent on cell-surface expression of their respective receptors. Indeed, HCoV-
355 OC43's purported receptor (9-O-acetylated sialic acid) is nearly identical to IAV's receptor
356 (sialic acid). Yet, while HCoV-OC43 infection is highly dependent on VPS29/CCC, IAV
357 infection is either unaffected by these factors (in A549 cells) or hindered by them (in HT1080
358 and 293T cells).

359

360 A possible mechanism that might account for the enhancing effect VPS29 deficiency on IAV
361 infection could be retromer-dependent trafficking of endosomal cargo that antagonizes IAV

362 infection. While this notion is consistent with our finding that showing incoming IAV
363 accumulated in endosomes to a greater extent in normal than in VPS29 KO cells, the proteins
364 that might be responsible for mediating this effect are unknown. Other possibilities, include
365 direct influence of retromer on IAV containing endosomes, In this regard, retromer dependent
366 movement of human papilloma virus (HPV) to the TGN has been reported to involve direct
367 interaction between retromer and the HPV L2 protein (Popa et al., 2015). While loss of
368 retromer/WASH complex facilitated IAV infection in HT1080 cells, loss of other retromer-
369 interacting proteins, such as SNX6 and Rab38, impaired IAV infection. Thus, distinct effector
370 functions of VPS29 may have different infection enhancing and inhibiting properties, with the
371 overall effect depending on viral and/or cell-type specific characteristics. Differences in
372 expression and/or activity of various VPS29 effector proteins may explain why VPS29 KO
373 facilitates IAV infection in HT1080 and 293T cells, but not in A549 cells.

374
375 However, VPS29 KO impaired CoV infection in all cells tested, including primary lung cells.
376 Nevertheless, we did observe some differences. Specifically, loss of both retromer and retriever
377 impaired HCoV-OC43 infection, while loss of retriever did not impair HCoV-NL63 or HCoV-
378 229E or rVSV/SARS-CoV-2 infection. These findings suggest that there may be multiple roles
379 for VPS29 in HCoV infection, with some CoVs requiring the effector functions of distinct
380 VPS29-containing complexes. The precise requirement for distinct VPS29 functions could vary
381 with cell type, for example there was a decreased requirement for the CCC complex in HT1080
382 and 293T cells. Our finding that SARS-CoV-2_{R683G}, SARS-CoV, and bat/pangolin CoVs were
383 all heavily impacted by both VPS29 KO and cathepsin inhibition suggests that these viruses are
384 especially sensitive to endocytic function, in line with recent work demonstrating that mutation
385 of the SARS-CoV-2 polybasic cleavage site drives virions to enter via the endocytic route
386 (Winstone et al., 2021).

387
388 Based on our findings, it appears that a key feature of VPS29/retromer KO cells, is elevation of
389 the pH of endolysosomal compartments. This change should impair activation of cathepsins
390 (Jerala et al., 1998), thus impeding endosomal CoV spike as well as EBOV GP processing and
391 egress from endosomes to initiate productive infection, consistent with our observations of
392 incoming virions. In agreement with this model, others have shown VPS35 deficiency results
393 reduced endosomal cathepsin activity (Cui et al., 2019). Here, however, we show that this
394 reduced endosomal activity is likely due to perturbed endolysosomal pH rather than impaired
395 trafficking of cathepsin zymogen in VPS29 KO cells. We also speculate that the perturbations in
396 endosomal pH that accompany VPS29 deficiency underlies increased cellular susceptibility to
397 IAV infection, perhaps by reducing virion exposure to destructive lysosomal proteases, or
398 increasing the duration of exposure to optimal conditions for HA-mediated membrane fusion.

399
400 Importantly, our findings suggest that the exploration of cathepsin inhibitors, or other endosomal
401 perturbing agents is a promising target for novel drugs against CoVs, which remain a potentially
402 serious emergent public health threat.

403
404 **ACKNOWLEDGMENTS**
405 We thank members of the Bieniasz Laboratory for helpful comments and discussion. This work
406 was supported by grants from National Institute of Allergy and Infectious Diseases, R01AI
407 50111 and R37AI640003 to (PDB), by a Medical Scientist Training Program grant from the

408 National Institute of General Medical Sciences T32GM007739 to the Weill
409 Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program and by the National
410 Institute of Allergy and Infectious Diseases F30AI157898 (to DP).

411

412

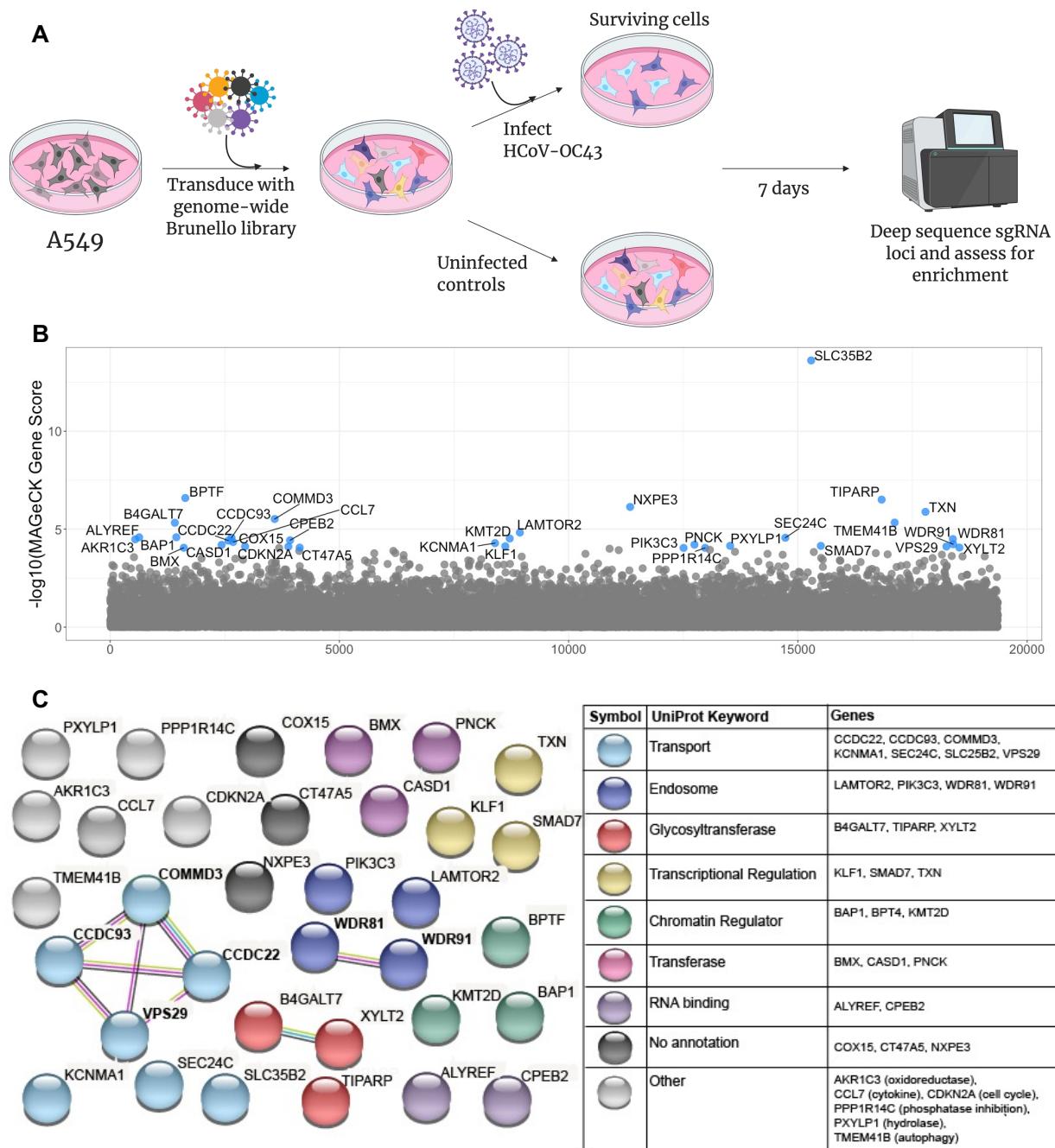
413 **AUTHOR CONTRIBUTIONS**

414 YW, DP, and PDB conceived the study. YW, DP, and AH performed experiments and analyzed
415 the data. DP, YW, and PDB wrote the manuscript.

416

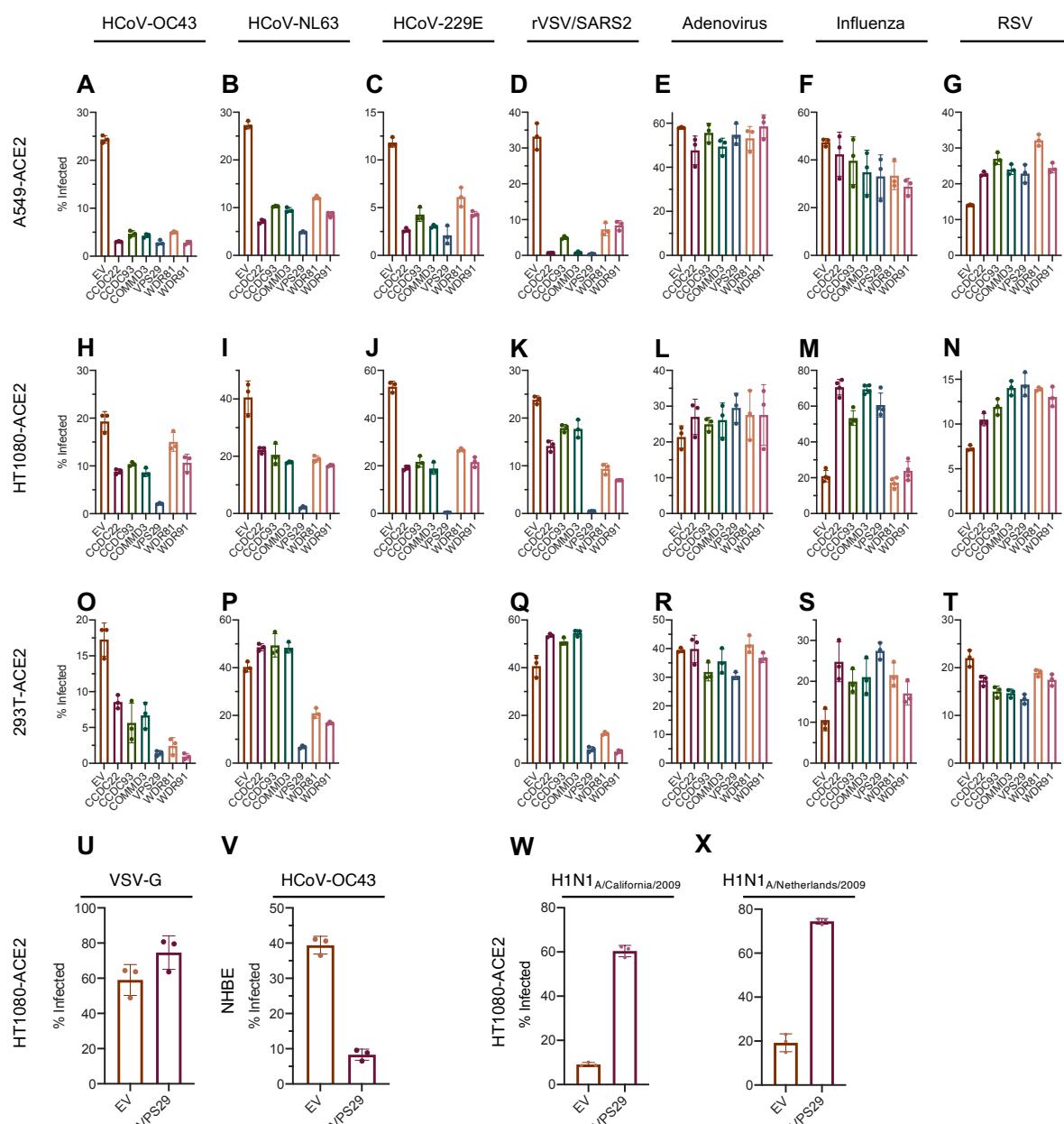
417 **DECLARATION OF INTERESTS**

418 The authors declare no competing interests.


419

420

421


422

423

424
425
426
427
428
429
430
431
432
433
434

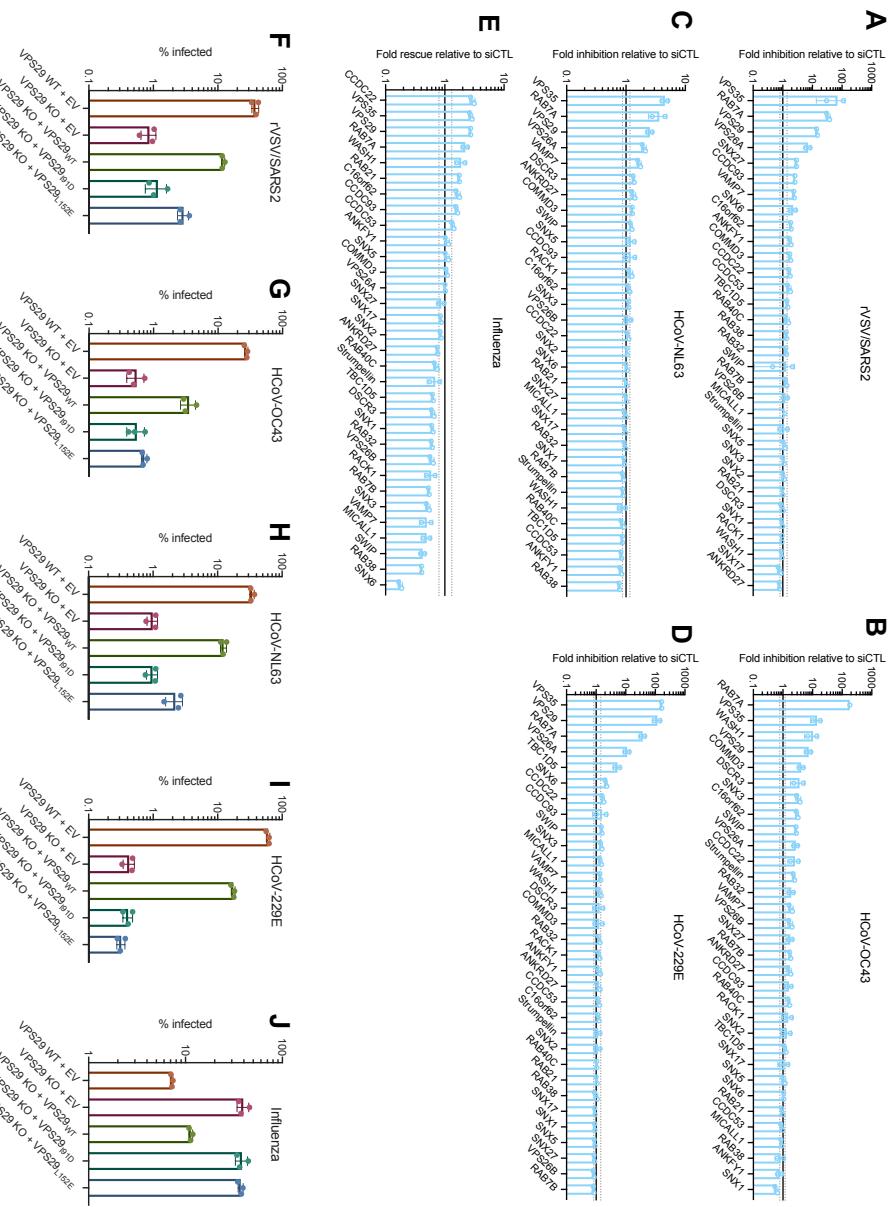

Figure 1: A CRISPR screen reveals genes influencing HCoV-OC43 susceptibility
 (A) Schematic of screening setup (B) Screen results, where the x-axis corresponds to each unique gene in the library (labeled randomly from 1 to 19,114) and the y-axis denotes the -log₁₀ MAGECK gene score. All genes scoring higher than the best-scoring non-targeting control pseudogene are labeled in blue. The screen was performed in three independent replicates (C) string-db analysis and UniProt annotation of gene hits. Sphere colors correspond to UniProt keywords and connecting lines indicate strength of evidence underlying gene-gene interactions (pink: experimentally-determined interaction; blue: annotated interaction in curated databases; gray: evidence of co-expression; yellow: text-mining).

Figure 2: Requirement for identified host proteins is cell type and virus dependent

(A-X) Cells were infected with the indicated viruses at an MOI of 0.3. At 24 hours post infection, cells were stained, and the percent infected cells was determined by flow cytometry. (A-G): A549-ACE2, (H-N, U, W-X): HT1080-ACE2, (O-T): 293T-ACE2, (V): NHBE. X-axis indicates gene knockout, EV: empty vector. Mean (bar graph) of three replicates (dots). Error bars indicate SD. Data shown is a representative of at least two independent experiments.

442

Figure 3: Effect of VPS29 KO on HCoV and IAV infection is primarily driven by loss of Retromer/WASH complex function

(A-E) HT1080 cells were transfected with a focused siRNA library targeting VPS29-interacting proteins. Two days after transfection, cells were infected with (A) rVSV/SARS-CoV-2, (B) HCoV-OC43, (C) HCoV-NL63, (D) HCoV-229E and (E) IAV at an MOI of 0.3. At 24 hours post infection, cells were stained, and the percent infected cells was determined by flow cytometry. Plotted are levels of inhibition (for HCoVs and rVSV/SARS-CoV-2) or increase (for IAV) in siRNA KD cells, relative to siRNA non-targeting control. Fold change values were calculated by comparing levels of infection in KD cells to the average of 4 separate pools of non-targeting siRNA controls. Solid black line marks fold change of 1. The dashed lines mark the highest and lowest fold changes of non-targeting siRNA controls from the average. (F-J) WT and VPS29 mutants were reconstituted in VPS29 KO cells. Cells were infected with (F) rVSV/SARS-CoV-2, (G) HCoV-OC43, (H) HCoV-NL63, (I) HCoV-229E, or (J) IAV. At 24 hours post infection, cells were stained, and the percent infected cells was determined by flow cytometry. Mean (bar graph) of three replicates (dots). Error bars indicate SD. Data shown is a representative of two independent experiments.

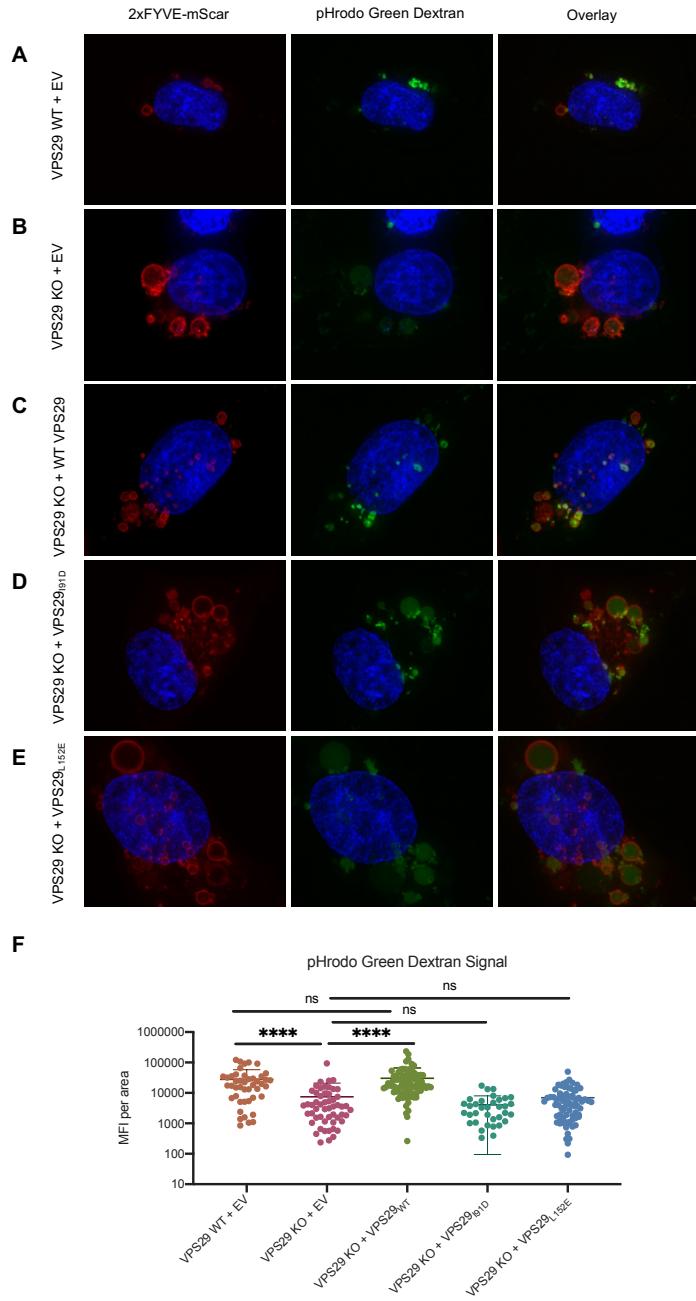
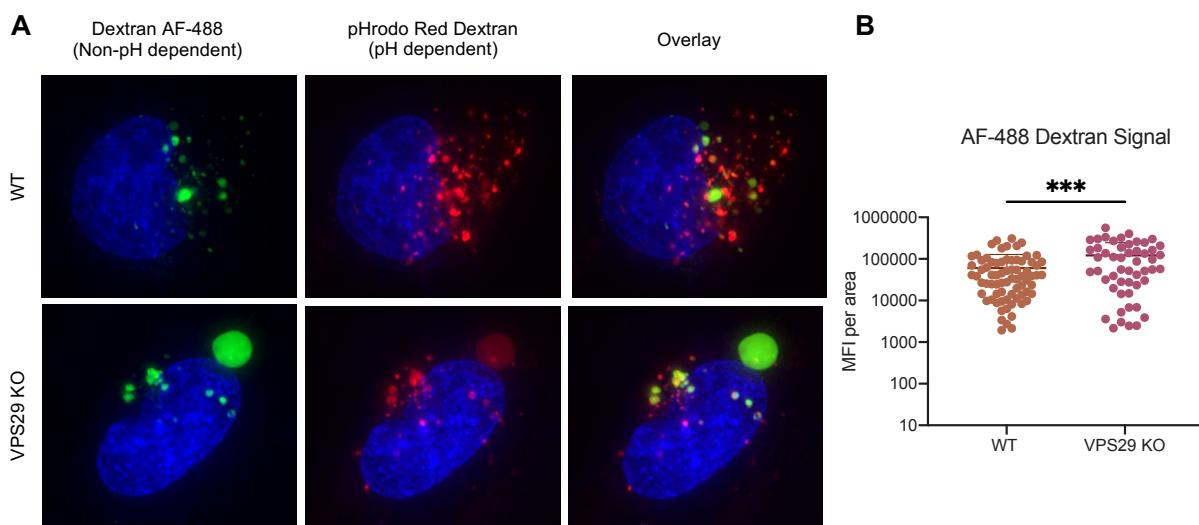
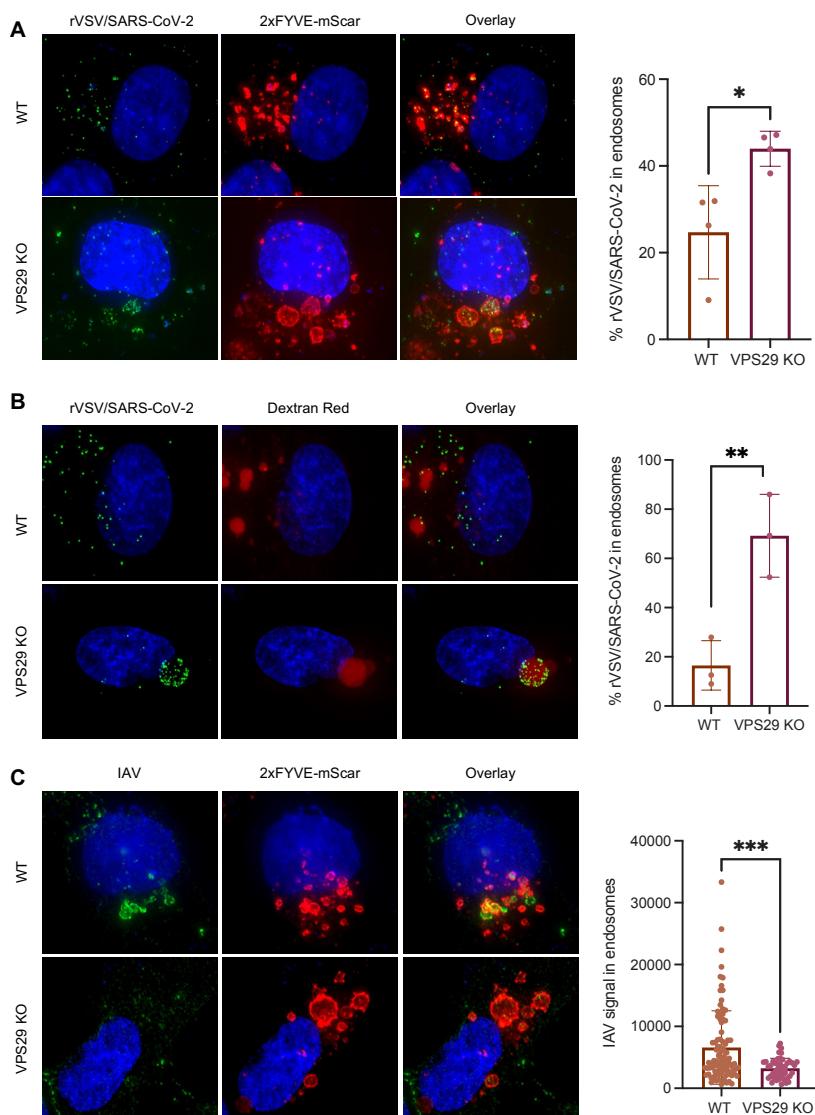



Figure 4: VPS29-KO results in enlarged, deacidified PI(3)P-rich vesicles

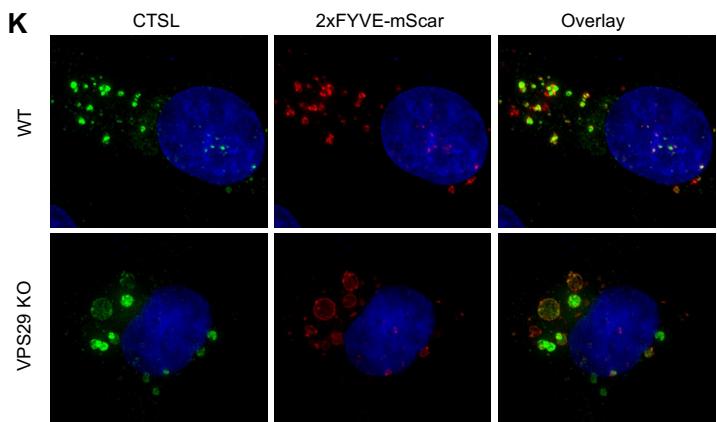
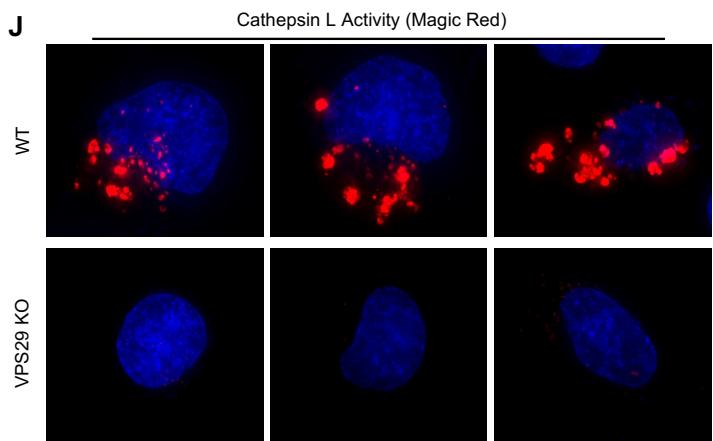
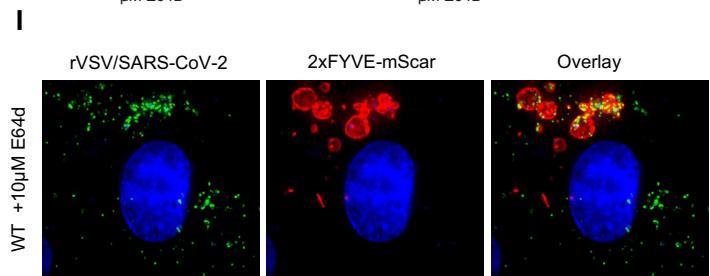
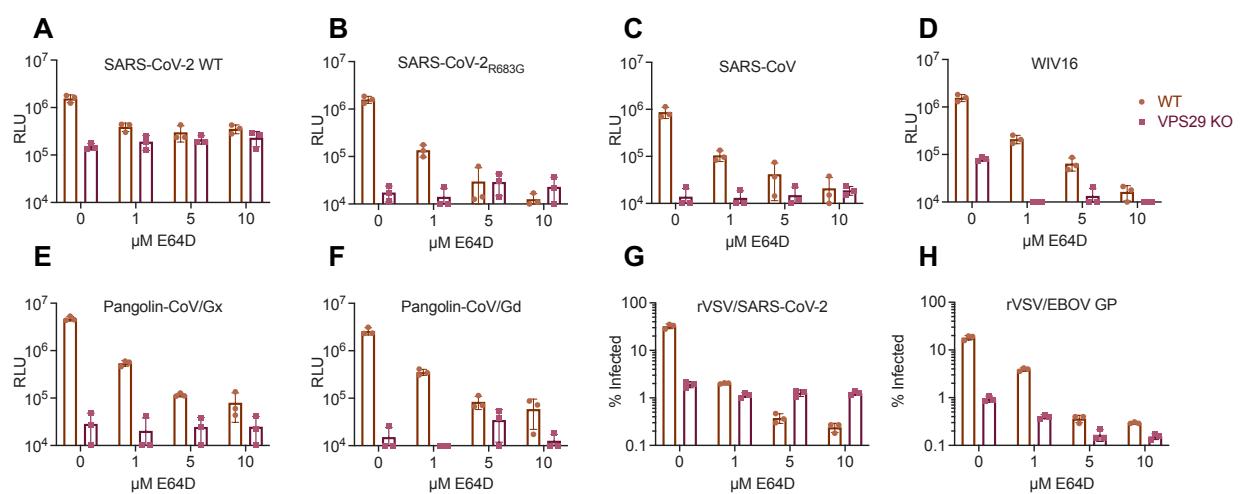
462 **Figure 4: VPS29 KO results in enlarged, deacidified lysosomes**
 463 Representative images of HT1080 cells transduced with a construct expressing 2xFYVE-
 464 mSCAR after incubation with pHrodo Green Dextran for 60 minutes. (A): VPS29 WT + EV
 465 expression cassette. (B): VPS29 KO HT1080 + EV expression cassette. (C): VPS29 KO HT1080
 466 reconstituted with WT VPS29. (D): VPS29 KO HT1080 reconstituted with VPS29_{I91D}. (E):
 467 VPS29 KO HT1080 reconstituted with VPS29_{L152E}. EV: empty vector. (F): Quantification of
 468 Mean Fluorescence Intensity (MFI) of pHrodo Green Dextran signal inside of 2x-FYVE labeled
 469 endosomes from n=4 independent images (images in A-E, as well as the additional representative
 470 images depicted in Supplemental Figure S2). Error bars indicate SD. Statistical test: Student's T
 471 test.


472

473

474 **Figure 5: Enlarged, deacidified vesicles in VPS29-KO cells are not impaired for cargo**
475 **loading**

476 (A): Representative images of HT1080 cells incubated with Dextran AF-488 (non-pH
477 dependent) and pHrodo Red Dextran (pH dependent) for 60 minutes. (B): Quantification of
478 Mean Fluorescence Intensity (MFI) of AF-488 Dextran Signal inside vesicles in WT and VPS29
479 KO cells from n=3 independent images (images in A, as well as the additional representative
480 images in Supplemental Figure S3). Error bars indicate SD. Statistical test: Student's T test.
481
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

Figure 6: VPS29 KO results in rVSV/SARS-CoV-2 specifically remaining trapped in endosomes

(A): Representative images of rVSV/SARS-CoV-2_{NG-P} infection in WT and VPS29 KO HT1080 cells. 2xFYVE-mSCAR labeled cells were infected with rVSV/SARS-CoV-2_{NG-P} for 60 minutes. Quantification indicates the percent of rVSV/SARS-CoV-2_{NG-P} punctae inside of 2x-FYVE labeled endosomes from n=4 independent images (images in A, as well as the additional representative images in Supplemental Figure S4A). (B): Representative images of WT and VPS29 KO HT1080 cells incubated for 60 minutes with Dextran Red 10,000 MW and rVSV/SARS-CoV-2_{NG-P}. Quantification indicates the percent of rVSV/SARS-CoV-2_{NG-P} punctae inside of Dextran Red labeled endosomes from n=4 independent images (images in B, as well as the additional representative images in Supplemental Figure S4B). (C): Representative images of IAV infection in WT and VPS29 KO HT1080 cells labeled with 2xFYVE-mSCAR. Cells were infected with IAV for 60 minutes then fixed and stained for IAV NP. Quantification indicates the IAV signal (MFI) inside of 2x-FYVE labeled endosomes from n=4 independent images (images in C, as well as the additional representative images in Supplemental Figure S5). Error bars indicate SD. Statistical test: Student's T test.

500

501

502 **Figure 7: Impairment of CoV infection by VPS29 KO is influenced by presence of**
503 **polybasic cleavage site and correlates with cathepsin inhibition**

504 (A-F): WT and VPS29 KO HT1080 cells were treated with the indicated concentrations of E64d
505 for 30 minutes before infection with HIV-1 based nano-luciferase reporter viruses pseudotyped
506 with Spike protein of (A): WT SARS-CoV-2, (B): SARS-CoV-2_{R683G}, (C): SARS-CoV, (D):
507 WIV16: ,(E): Pangolin-CoV/Gx, (F): Pangolin-CoV/Gd. At 48hpi cells were harvested and nano-
508 luciferase activity was measured. Limit of detection of the HIV-1-based pseudoassay = 10⁴ RLU.
509 (G-H): WT and VPS29 KO HT1080 cells were treated with the indicated concentrations of E64d
510 for 30 minutes before infection with (G): rVSV/SARS-CoV-2 or (H): rVSV/EBOV-GP. At 16
511 hours post infection, and infected cells enumerated by determined by flow cytometry. Limit of
512 detection of the flow cytometry assay = 0.1 % infection. Mean (bar graph) of three replicates
513 (dots). Error bars indicate SD. Data shown is a representative of at least two independent
514 experiments. (I): Representative images of rVSV/SARS-CoV-2_{NG-P} infection in E64d treated WT
515 HT1080. 2xFYVE-mSCAR labeled cells were treated with E64d for 30 minutes, then infected
516 with rVSV/SARS-CoV-2_{NG-P} for 60 minutes. (J): Representative images of WT and VPS29 KO
517 HT1080 cells following 60-minute incubation with Magic Red Cathepsin L Activity Kit. (K):
518 Representative images of WT and VPS29 KO HT1080 cells stably expressing V5-tagged CTSL
519 and labeled with 2xFYVE-mSCAR.

520
521
522

523 **RESOURCE AVAILABILITY**

524 ***Lead contact***

525 Further information and requests for resources and reagents should be directed to and will be
526 fulfilled by the lead contact, Paul Bieniasz (pbieniasz@rockefeller.edu)

527

528 ***Material Availability***

529 Newly generated materials associated with this study are available from the Lead Contact with a
530 completed Materials Transfer Agreement.

531

532 ***Data and code availability***

533 Sequencing data will be made available upon manuscript acceptance.

534

535 **EXPERIMENTAL MODELS AND SUBJECT DETAILS**

536 ***Cell culture***

537 HEK-293T (*H. Sapiens*; sex: female), A549 (*H. Sapiens*; sex: male), HT1080 (*H. Sapiens*; sex:
538 male), MDCK (*Canis familiaris*) and Vero cells (*Cercopithecus aethiops*) were obtained from
539 ATCC, and Huh7.5 cells (generously provided by Charles M. Rice) were maintained at 37°C and
540 5% CO₂ in Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented with 10% fetal
541 bovine serum. NHBE cells (*H. Sapiens*) were obtained from ATCC (Cat# ATCC PCS-300-010)
542 and maintained at 37°C and 5% CO₂ in Airway Epithelial Cell Basal Medium (ATCC PCS-300-
543 030) supplemented with Bronchial Epithelial Cell Growth Kit (ATCC PCS-300-040). All cells
544 have been assessed for Mycoplasma contamination.

545

546 ***Production of viral stocks***

547 HCoV-OC43 (strain: ATCC VR-759) and HCoV-229E (strain: ATCC VR-740) were obtained
548 from Zeptometrix Corporation, and HCoV-NL63 (strain: Amsterdam I) was obtained from the
549 Biodefense and Emerging Infections Research Resources Repository. Viral stocks were
550 generated by propagation on Huh7.5 cells. The IAV strains A/WSN/33 (H1N1),
551 A/Netherlands/602/2009 (H1N1)pdm09 (H1N1_{2009 Netherlands}), A/California/04/2009
552 (H1N1)pdm09 (H1N1_{2009 California}) were propagated in MDCK cells. RSV strain A2-line19F
553 expressing the red fluorescent protein monomeric Katushka 2 (mKate2; (Hotard et al., 2012)) was
554 propagated in Vero cells. Adenovirus 5 was purchased from ATCC (VR-1516) and propagated in
555 A549 cells. VSV_{IND}(eGFP) was propagated on 293T cells (Whelan et al., 2000). The replication-
556 competent chimeric recombinant vesicular stomatitis virus encoding SARS-CoV-2 S and green
557 fluorescent protein (eGFP), rVSV/SARS-2/GFP_{2E1}, has been described previously (Schmidt et
558 al., 2020) and was propagated on 293T-ACE2 cells. rVSV/EBOV-GP was propagated on Vero
559 cells as previously described (Mulherkar et al., 2011).

560

561 **METHOD DETAILS**

562 ***CRISPR-Cas9 screening***

563 The human genome-wide Brunello Library (Doench et al., 2016) in lentiCRISPRv2 was obtained
564 from Addgene (cat# 73179) and amplified according to depositor's instructions. Resulting
565 plasmid DNA was validated via NGS sequencing to confirm appropriate coverage and
566 representation (the resulting library contained 0.0% undetected guides and a skew ratio of the top
567 10% represented guides to the bottom 10% represented guides was 3.94, well below the
568 recommended cutoff of 10 for an "ideal" library (Joung et al., 2017)). To generate lentiviral

569 preparations of the Brunello library, 293T cells (6×10^6 cells per 10 cm dish) were transfected
570 with 6 μ g lentiCRISPRv2-Brunello, 6 μ g NL-gagpol, and 1.2 μ g VSV-G using PEI. 48 hours post
571 transfection, supernatants were pooled and concentrated using Amicon Ultra Centrifugal Filters.
572 Concentrated lentiviral preps were stored at -80°C and titrated on A549 cells based on
573 puromycin resistance. Briefly, 10-fold serial dilutions (from 10^{-1} to 10^{-6}) were used to transduce
574 40,000 A549 cells in a 24 well plate format. 48 hours post transduction, cells were trypsinized
575 and moved up to 6 well plates in the presence of 1.25 μ g/mL puromycin. 9 days post
576 transduction, cells were fixed, stained with Crystal Violet, and stained foci were counted to
577 measure the number of cells surviving selection (i.e. those that were transduced with
578 lentiCRISPRv2 harboring a puromycin resistance cassette). To perform the screen, 1.3×10^8
579 A549 cells were transduced with lentiCRISPRv2-Brunello at an MOI of 0.3 in order to generate
580 a population of single KO cells at high (>500X) coverage. Two days post transduction, cells
581 were placed in selection with 1.25 μ g/mL puromycin and passaged for 7 days, until there were
582 no untransduced cells remaining. Thereafter, in triplicates with 8×10^6 cells per flask, A549-
583 Brunello cells were infected or not with HCoV-OC43 at an MOI of 0.1, and passaged for 7 days
584 until >95% infection-induced cell death occurred. Cellular gDNA was isolated using Zymogen
585 Quick-DNA Midiprep Plus Kit (Zymo Research), and sequencing libraries prepared via
586 amplication of sgRNA loci utilizing F primers containing P5 and Read 1 Sequencing Primer and
587 a R primer containing P7, a barcode, and the multiplexing Index Read Sequencing Primer, as
588 described in Joung *et al*, 2017. Resulting libraries were gel purified, pooled, and sequenced on
589 the Illumina HiSeq at Genewiz using 80 cycles of Read 1 (Forward) and 8 Cycles of Index 1
590 using standard Illumina sequencing primers.
591

592 ***Pathway Analysis of screen hits***

593 All 34 candidate genes were searched using the STRING database (<https://string-db.org>) for
594 functional enrichment of protein-protein interactions using default settings, except the minimum
595 required interaction score was changed from medium confidence (0.400) to high confidence
596 (0.700). Subsequently, genes were annotated with UniProt keywords (<https://uniprot.org>)
597

598 ***Validation of CRISPR hits***

599 Individual sgRNAs targeting hits of interest were cloned into lentiCRISPRv2 via linearization
600 with BsmBI followed by ligation of annealed oligos with compatible sticky ends using primers:
601 VPS29 F: caccgGGACATCAAGTTATTCCATG; VPS29 R:
602 aaacCATGGAATAACTTGATGTCCc; CCDC22 F: caccgCCGCAGGGTTGATCACACGC;
603 CCDC22 R: aaacGCGTGTGATCAACCCTGCGGc; CCDC93 F:
604 caccgTAGAATCCAAAGCTGATCCA; CCDC93 R: aaacTGGATCAGCTTGGATTCTAc;
605 COMMD3 F: caccgCTGAAACATATCGACCCAG; COMMD3 R:
606 aaacCTGGGTGCGATATGTTCAAGc. As a control, unmodified (“empty vector”)
607 lentiCRISPRv2, which does not harbor an sgRNA cassette, was used. Lentiviral preparations
608 were obtained by transfecting 1×10^6 293Ts with 1 μ g lentiCRISPRv2, 1 μ g NL-gagpol, and .2 μ g
609 VSV-G using PEI. 2 days post transfection, supernatants were collected, filtered, and used to
610 transduce 5×10^4 A549-ACE2, HT1080-ACE2, 293T-ACE2, or NHBE cells. 2 days post
611 transduction, cells were trypsinized, placed in selection with 1.25 μ g/mL puromycin, and
612 passaged until there were no remaining viable untransduced cells. CRISPR KO was verified by
613 Sanger Sequencing and Western Blot.
614

615 ***Infectivity Assays***

616 A total of 1×10^4 cells per well were seeded on a 96-well plate in triplicate. The next day, cells
617 were infected with each virus at an MOI of ~ 0.3 . For HCoV-OC43, HCoV-NL63, and HCoV-
618 229E, infected plates were incubated at 34°C for 24 hours. For IAV, RSV, and adenovirus,
619 infected plates were incubated at 37°C for 24 hours. For rVSV/SARS-CoV-2, infected plates
620 were incubated at 37°C for 16 hours. Cells were then fixed in 4% PFA. For rVSV/SARS-CoV-2
621 and RSV, which encode eGFP and mKate2 reporter genes respectively, number of infected cells
622 were measured directly by flow cytometry. Otherwise, cells were immunostained for viral
623 antigens. Briefly, cells were blocked with 5.0% fetal bovine serum in PBS and permeabilized
624 with 0.5% Saponin before a 30 minutes incubation with: HCoV-OC43: Anti-Coronavirus Group
625 Antigen Antibody, nucleoprotein of OC-43 (1:1000, Sigma MAB9013); HCoV-NL63: Anti
626 coronavirus NL63 (1:1000, Eurofins M.30.HCo.B2D4); HCoV-229: Anti coronavirus 229E
627 (1:1000, Eurofins M.30.HCo.B1E7); IAV: Influenza A NP Antibody, FITC (1:50, Invitrogen
628 MA1-7322); Adenovirus: Adenovirus Hexon Antibody, FITC (1:50, Invitrogen MA1-7329). For
629 unconjugated primary antibodies (HCoV-OC43, HCoV-NL63, and HCoV-229E), a secondary
630 antibody conjugate AF-488 Goat anti-Mouse IgG (H+L) (1:1000, Thermo) was used before
631 infected cells were enumerated via flow cytometry.

632

633 ***siRNA screening of VPS29 interactors***

634 A list of well-known VPS29 interactors (Baños-Maetos, 2019 (Figure 1)) was selected and used
635 to construct a targeted siRNA library constructed of a pool of four different gene specific siRNA
636 sequences (ON TARGETplus SMARTpool siRNA, Dharmacon). siRNAs were reverse-
637 transfected with 5×10^3 HT1080-ACE2 using RNAiMAX (Thermo Scientific) according to the
638 manufacturer's protocol. Two- or three-days post transfection, cells were infected at an MOI of
639 ~ 0.3 and processed as above.

640

641 ***Plasmid Construction***

642 The lentiviral expression vector CSIN was derived from CSIB (Kane et al., 2013) by exchanging
643 the Blasticidin resistance cassette with Neomycin. Briefly, primers Neo_CSIB_F:

644 AAAAACACGATGATAATATGGCCACAACCAATTGAACAAAGATGGATTGCACGCAGG
645 TTCT and Neo_CSIB_R:

646 AGCTTGATATCAAGCTTGATGCCCTGCAGGTAGAAGAACTCGTCAAGAAGGGCGAT

647 AGAA were used to amplify the Neomycin resistance cassette and assemble into CSIB

648 linearized with and BstXI and SbfI using NEBuilder HiFi DNA Assembly (NEB). The 2xFYVE-
649 mSCAR endosome labeling construct was constructed by adding 2 FYVE domains to the N-
650 terminus of mScarlett. FYVE domains were PCR amplified from the Hrs protein using primers
651 FYVE_1_F:

652 ACAGACTGAGTCGCCCCGGGGGATCCGGCCAGAGAGGGCCACCGAGAGCGAT
653 GCCATGTTGC, FYVE_1_R:

654 GGCAGCAAACATGGCATCGCTCGGATCCTCCTCCCTCCGTTCCCTGTTCAGC

655 TG, FYVE_2_F:

656 CAGCTGAACAGGAAAGCGGAGGGAGGAGGAGGATCCGAGAGCGATGCCATGTTG
657 CTGCC, FYVE_2_R:

658 TCACTGCCTCGCCCTGCTCACCATGGATCCTCCTCCCTCCGTTCCCTGTTCAG

659 CT. mScarlett was PCR amplified using primers mSCAR_F:

660 AGCTGAACAGGAAAGCGGAGGGAGGAGGATCCATGGTGAGCAAGGGCGAGGC

661 AGTGA and mSCAR_R:
662 GGGGGAGGGAGA~~G~~GGGGCGGATCAGGCCAGAGAGGCCCTACTTGTACAGCTCGTCCA
663 TGCC. The resulting fragments were assembled into CSIB linearized with SfiI using NEBuilder
664 HiFi DNA Assembly (NEB).
665 To generate rVSV/SARS-CoV-2_{NG-P}, The spike CDS was reverse transcribed and PCR amplified
666 from rVSV/SARS-2/GFP_{2E1} using primers: P-NG-2E1-S-MluI_F:
667 MLUAGAGATCGATCTGTTCTGACACCGCGTATGTTGTGTTCTGGTGTGCTGCTGCC
668 A and P-NG-2E1-S-NotI_R:
669 AACATGAAGAATCTGTTGTGCAGGGCGGCCGCTTACAACAGGAGGCCACAGGAA.
670 The resulting fragment was ligated into VSV NG-P (Jia et al., 2020) plasmid linearized with
671 MluI and NotI using T4 ligase (NEB).
672

673 ***Reconstitution experiments***

674 A VPS29 coding sequence containing silent mutations in the sgRNA targeting sequence was
675 purchased from IDT and cloned into CSIN using NEBuilder HiFi DNA Assembly (NEB). The
676 VPS29_{I91D} and VPS29_{L152E} derivates were obtained via PCR mutagenesis using primers I91D F:
677 GGTACCCAAGTAGATCCTTGGGGA, I91D R: TCCCCAAGGATCTACTTGGTGACC,
678 L152E F: CCATCATTGTGGAGATGGATATCCAGGC, L152E R:
679 GCCTGGATATCCATCTCCACAAATGATGG. Resulting constructs, including an empty
680 vector CSIN used as a control, were used to transduce single cell clones obtained from bulk EV
681 or VPS29 KO HT1080-ACE2 via limiting dilution. Infectivity assays on the resulting cell lines
682 were performed as above.
683

684 ***HIV/Nanoluc CoV Pseudotype Assays***

685 To generate HIV/Nanoluc CoV pseudotyped particles, 5x10⁶ 293T cells were plated in 10mL
686 growth medium in a 10-cm dish. The next day, 7.5 µg pHIV-1_{NL4-3} ΔEnv-NanoLuc and 2.5 µg
687 indicated CoV spike plasmid were transfected using PEI. Media was changed after 8 hours of
688 incubation. After 48 hours post transfection, supernatant was harvested, passed through a 0.22-
689 µm polyvinylidene fluoride syringe filter (Millipore; SLGVR33RS), aliquoted, and stored at -
690 80°C. To perform nanoluc assays with the resulting HIV/Nanoluc CoV pseudotyped particles, a
691 total of 1x10⁴ HT1080-ACE2 WT or VPS29 KO cells per well were plated in triplicate in a 96-
692 well plate. The next day, ~1x10³ infectious units of HIV/Nanoluc CoV pseudotyped particles
693 were added to cells and incubated at 37°C for 48 hours. Thereafter, cells were harvested for
694 Nanoluc luciferase assays using the Nano-Glo® Luciferase Assay System (Promega, Cat#
695 N1150).
696

697 ***pHrodo Dextran Endocytosis assay***

698 Cells were plated in a Nunc Lab-Tek II Chamber Slide (Thermo) at 5x10³ cells per well. The
699 next day, cells were transduced with 2xFYVE-mSCAR to label endosomes. 48 hours post
700 transduction, cells were treated with pHrodo Green Dextran 10,000 MW (Thermo, cat# P35368)
701 at a concentration of 100 µg/mL for 60 minutes. Alternatively, unlabeled cells were treated with
702 an equal ratio of pHrodo Red Dextran 10,000 MW (Thermo, cat# P10361) and AF-488 Dextran
703 10,000 MW (Thermo, cat# D22910). Thereafter, cells were washed 3X in PBS and placed in
704 Live Cell Imaging Solution (Thermo Cat# A14291DJ). For 2x-FYVE labeled cells, images were
705 acquired on a DeltaVision OMX SR imaging system using a 60X Widefield oil immersion
706 objective (Olympus) with an exposure time of 50ms, 5.0% Transmission for the AF-488 channel,

707 an exposure time of 50ms, 10% Transmission for the A568 channel, and an exposure time of
708 150ms, 10% Transmission for the DAPI channel. For co-Dextran-treated cells, images were
709 acquired on a DeltaVision OMX SR imaging system using a 60X Widefield oil immersion
710 objective (Olympus) with an exposure time of 25ms, 10.0% Transmission for the AF-488
711 channel, an exposure time of 50ms, 10% Transmission for the A568 channel, and an exposure
712 time of 200ms, 10% Transmission for the DAPI channel.

713

714 ***Microscopy of rVSV/SARS-CoV-2 infected cells***

715 Cells were plated in a Nunc Lab-Tek II Chamber Slide (Thermo) at 5×10^3 cells per well. The
716 next day, cells were transduced with 2xFYVE-mSCAR to label endosomes. For rVSV/SARS-
717 CoV-2_{NG-P}, 48 hours post transduction cells were treated with 5 μ M E64d (Sigma Aldrich
718 E8640-250UG) for 30 minutes, followed by inoculation with rVSV/SARS-CoV-2_{NG-P} at an MOI
719 of 2. 60 minutes post infection, cells were washed 3x with PBS and fixed in 4% PFA.
720 Alternatively, unlabeled cells were treated with pHrodo Red Dextran and infected with
721 rVSV/SARS-CoV-2_{NG-P} for 60 minutes. 60 minutes post infection, cells were washed 3X with
722 PBS and imaged in Live Cell Imaging Solution. For cells with 2x-FYVE labeled endosomes,
723 images were acquired on a DeltaVision OMX SR imaging system using a 60X Widefield oil
724 immersion objective (Olympus) with an exposure time of 50ms, 10% Transmission for the AF-
725 488 channel, an exposure time of 100ms, 10% Transmission for the A568 channel, and an
726 exposure time of 150ms, 10% Transmission for the DAPI channel. For cells with Dextran Red
727 labeled endosomes, images were acquired on a DeltaVision OMX SR imaging system using a
728 60X Widefield oil immersion objective (Olympus) with an exposure time of 50ms, 10%
729 Transmission for the AF-488 channel, an exposure time of 50ms, 10% Transmission for the
730 A568 channel, and an exposure time of 200ms, 10% Transmission for the DAPI channel.

731

732 ***Influenza virus immunofluorescence***

733 Cells were plated in a Nunc Lab-Tek II Chamber Slide (Thermo) at 5×10^3 cells per well. The
734 next day, cells were transduced with a construct expressing 2xFYVE-mSCAR to label
735 endosomes. 48 hours post transduction, cells were infected with IAV at an MOI of ~10. 60
736 minutes post infection, cells were washed with PBS, fixed in 4% PFA, permeabilized with 0.1%
737 triton, blocked with FBS and stained for Influenza Virus Nucleoprotein (1:200, abcam cat#
738 ab128193) and antibody conjugate AF-488 Goat anti-Mouse IgG (H+L) (Thermo, 1:1000).
739 Images were acquired on a DeltaVision OMX SR imaging system using a 60X Widefield oil
740 immersion objective (Olympus) with an exposure time of 50ms, 5.0% Transmission for the AF-
741 488 channel, an exposure time of 100ms, 10% Transmission for the A568 channel, and an
742 exposure time of 100ms, 10% Transmission for the DAPI channel.

743

744 ***Quantification of fluorescence microscopy***

745 For each cell, Regions Of Interest (ROIs) corresponding to labeled endosomes were defined
746 using the freehand selection tool in Fiji. Quantification of mean fluorescence intensity inside
747 each ROI was determined using the Measure command. For punctae quantification, the number
748 of punctae inside each ROI was counted and summed to give the total number of punctae inside
749 ROIs for each cell. Additionally, the total number of punctae outside of ROIs in each cell was
750 measured. The reported % of virus in endosomes corresponds to:
751

752
$$\frac{\# \text{ of punctae inside ROIs}}{\# \text{ of punctae inside ROIs} + \# \text{ of punctae outside ROIs}} \times 100$$

753

754 ***Cathepsin L activity assay***

755 Cells were plated 2x10⁴ cells per well in a Nunc Lab-Tek II Chamber Slide (Thermo). The next
756 day, intracellular cathepsin L activity was detected using the Magic Red Cathepsin L Assay Kit
757 (Biorad cat# ICT941). Briefly, cells were incubated in 1X Magic Red and Hoechst 33342 Stain
758 for 30 minutes, then washed 3X with PBS before being placed in Live Cell Imaging Solution
759 (Thermo Cat# A14291DJ). Images were acquired on a DeltaVision OMX SR imaging system
760 using a 60X Widefield oil immersion objective (Olympus) using an exposure time of 50ms, 10%
761 Transmission for the A568 nm channel and an exposure time of 100ms, 10% Transmission for
762 the DAPI channel.

763

764 ***Cathepsin L localization staining***

765 The coding sequence of CTS_L was tagged with a 3'V5 and cloned into CSIN using NEBuilder
766 HiFi DNA Assembly (NEB) with primers CTS_L_3'_V5_F:
767 ACAGACTGAGTCGCCGGGGATCCGGCCGAGAGGGCCGCCACCATGAATCCTA
768 CACTCATCCTTGC and CTS_L_3'_V5_R:
769 GGGGGAGGGAGAGGGCGGATCAGGCCAGAGAGGCCTCACGTAGAATCGAGACCG
770 AGGAGAGGGTTAGGGATAGGCTTACCCACAGTGGGGTAGCTGGCT. Cells stably
771 expressing this 3'V5-tagged CTS_L were plated in a Nunc Lab-Tek II Chamber Slide (Thermo) at
772 5x10³ cells per well. The next day, cells were transduced with a construct expressing 2xFYVE-
773 mSCAR to label endosomes. 48 hours post transduction, cells were fixed in 4% PFA,
774 permeabilized with 0.1% triton, blocked with FBS and stained for V5 (invitrogen cat# 46-0705,
775 1:1000) and antibody conjugate AF- 488 Goat anti-Mouse IgG (H+L) (Thermo, 1:1000). Images
776 were acquired on a DeltaVision OMX SR imaging system using a 60X Widefield oil immersion
777 objective (Olympus) with an exposure time of 50ms, 5.0% Transmission for the AF-488 channel,
778 an exposure time of 100ms, 10% Transmission for the A568 channel, and an exposure time of
779 100ms, 10% Transmission for the DAPI channel.

780

781 **QUANTIFICATION AND STATISTICAL ANALYSIS**

782 Raw FASTQ files were aligned to the Brunello library and scored using the MAGeCK statistical
783 package. All flow cytometry data were analyzed using FlowJo software, version 10.6.1. All
784 graphs were generated using GraphPad Prism, version 8. Error bars correspond to the standard
785 deviation. All images were generated by maximum intensity projection using Fiji (<https://fiji.sc/>).

786

787

788 Bibliography
789

790 Baños-Mateos, S., Rojas, A.L., and Hierro, A. (2019). VPS29, a tweak tool of endosomal
791 recycling. *Curr. Opin. Cell Biol.* *59*, 81–87.

792 Böttcher-Friebertshäuser, E., Garten, W., Matrosovich, M., and Klenk, H.D. (2014). The
793 hemagglutinin: a determinant of pathogenicity. *Curr. Top. Microbiol. Immunol.* *385*, 3–34.

794 Burda, P., Padilla, S.M., Sarkar, S., and Emr, S.D. (2002). Retromer function in endosome-to-
795 Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. *J. Cell Sci.* *115*,
796 3889–3900.

797 Collins, B.M., Skinner, C.F., Watson, P.J., Seaman, M.N.J., and Owen, D.J. (2005). Vps29 has a
798 phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. *Nat. Struct.
799 Mol. Biol.* *12*, 594–602.

800 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020). The
801 species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and
802 naming it SARS-CoV-2. *Nat. Microbiol.* *5*, 536–544.

803 Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N.G., and Decroly, E. (2020). The
804 spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent
805 in CoV of the same clade. *Antiviral Res.* *176*, 104742.

806 Cui, Y., Carosi, J.M., Yang, Z., Ariotti, N., Kerr, M.C., Parton, R.G., Sargeant, T.J., and
807 Teasdale, R.D. (2019). Retromer has a selective function in cargo sorting via endosome transport
808 carriers. *J. Cell Biol.* *218*, 615–631.

809 Daniloski, Z., Jordan, T.X., Wessels, H.H., Hoagland, D.A., Kasela, S., Legut, M., Maniatis, S.,
810 Mimitou, E.P., Lu, L., Geller, E., et al. (2020). Identification of Required Host Factors for
811 SARS-CoV-2 Infection in Human Cells. *Cell*.

812 Del Olmo, T., Lauzier, A., Normandin, C., Larcher, R., Lecours, M., Jean, D., Lessard, L.,
813 Steinberg, F., Boisvert, F.-M., and Jean, S. (2019). APEX2-mediated RAB proximity labeling
814 identifies a role for RAB21 in clathrin-independent cargo sorting. *EMBO Rep.* *20*.

815 Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vainberg, E.W., Donovan, K.F., Smith, I.,
816 Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Optimized sgRNA design to maximize activity
817 and minimize off-target effects of CRISPR-Cas9. *Nat. Biotechnol.* *34*, 184–191.

818 Feeley, E.M., Sims, J.S., John, S.P., Chin, C.R., Pertel, T., Chen, L.-M., Gaiha, G.D., Ryan, B.J.,
819 Donis, R.O., Elledge, S.J., et al. (2011). IFITM3 inhibits influenza A virus infection by
820 preventing cytosolic entry. *PLoS Pathog.* *7*, e1002337.

821 Gao, H., Lin, Y., He, J., Zhou, S., Liang, M., Huang, C., Li, X., Liu, C., and Zhang, P. (2019).
822 Role of heparan sulfate in the Zika virus entry, replication, and cell death. *Virology* *529*, 91–100.

823 Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.M., Parton, R.G.,
824 and Stenmark, H. (2000). Localization of phosphatidylinositol 3-phosphate in yeast and
825 mammalian cells. *EMBO J.* *19*, 4577–4588.

826 Grove, J., and Marsh, M. (2011). The cell biology of receptor-mediated virus entry. *J. Cell Biol.*
827 *195*, 1071–1082.

828 Harbour, M.E., Breusegem, S.Y.A., Antrobus, R., Freeman, C., Reid, E., and Seaman, M.N.J.
829 (2010). The cargo-selective retromer complex is a recruiting hub for protein complexes that
830 regulate endosomal tubule dynamics. *J. Cell Sci.* *123*, 3703–3717.

831 Hoffmann, H.-H., Sánchez-Rivera, F.J., Schneider, W.M., Luna, J.M., Soto-Feliciano, Y.M.,
832 Ashbrook, A.W., Le Pen, J., Leal, A.A., Ricardo-Lax, I., Michailidis, E., et al. (2021). Functional
833 interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared

834 coronavirus host factors. *Cell Host Microbe* 29, 267–280.e5.

835 Hotard, A.L., Shaikh, F.Y., Lee, S., Yan, D., Teng, M.N., Plemper, R.K., Crowe, J.E., and
836 Moore, M.L. (2012). A stabilized respiratory syncytial virus reverse genetics system amenable to
837 recombination-mediated mutagenesis. *Virology* 434, 129–136.

838 Jerala, R., Zerovnik, E., Kidric, J., and Turk, V. (1998). pH-induced conformational transitions
839 of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation.
840 *J. Biol. Chem.* 273, 11498–11504.

841 Jia, D., Zhang, J.-S., Li, F., Wang, J., Deng, Z., White, M.A., Osborne, D.G., Phillips-Krawczak,
842 C., Gomez, T.S., Li, H., et al. (2016). Structural and mechanistic insights into regulation of the
843 retromer coat by TBC1d5. *Nat. Commun.* 7, 13305.

844 Jia, M., Liberatore, R.A., Guo, Y., Chan, K.-W., Pan, R., Lu, H., Waltari, E., Mittler, E.,
845 Chandran, K., Finzi, A., et al. (2020). VSV-Displayed HIV-1 Envelope Identifies Broadly
846 Neutralizing Antibodies Class-Switched to IgG and IgA. *Cell Host Microbe* 27, 963–975.e5.

847 Joung, J., Konermann, S., Gootenberg, J.S., Abudayyeh, O.O., Platt, R.J., Brigham, M.D.,
848 Sanjana, N.E., and Zhang, F. (2017). Genome-scale CRISPR-Cas9 knockout and transcriptional
849 activation screening. *Nat. Protoc.* 12, 828–863.

850 Kane, M., Yadav, S.S., Bitzegeio, J., Kutluay, S.B., Zang, T., Wilson, S.J., Schoggins, J.W.,
851 Rice, C.M., Yamashita, M., Hatzioannou, T., et al. (2013). MX2 is an interferon-induced
852 inhibitor of HIV-1 infection. *Nature* 502, 563–566.

853 Killerby, M.E., Biggs, H.M., Haynes, A., Dahl, R.M., Mustaquin, D., Gerber, S.I., and Watson,
854 J.T. (2018). Human coronavirus circulation in the United States 2014–2017. *J. Clin. Virol.* 101,
855 52–56.

856 Krzyzaniak, M.A., Zumstein, M.T., Gerez, J.A., Picotti, P., and Helenius, A. (2013). Host cell
857 entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation
858 of the F protein. *PLoS Pathog.* 9, e1003309.

859 Lakadamyali, M., Rust, M.J., and Zhuang, X. (2004). Endocytosis of influenza viruses. *Microbes*
860 *Infect.* 6, 929–936.

861 Laporte, M., and NaeSENS, L. (2017). Airway proteases: an emerging drug target for influenza
862 and other respiratory virus infections. *Curr Opin Virol* 24, 16–24.

863 Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown, M.,
864 and Liu, X.S. (2014). MAGeCK enables robust identification of essential genes from genome-
865 scale CRISPR/Cas9 knockout screens. *Genome Biol.* 15, 554.

866 Luteijn, R.D., van Diemen, F., Blomen, V.A., Boer, I.G.J., Manikam Sadasivam, S., van
867 Kuppevelt, T.H., Drexler, I., Brummelkamp, T.R., Lebbink, R.J., and Wiertz, E.J. (2019). A
868 Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the
869 Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. *J. Virol.*
870 93.

871 Marsh, M., and Helenius, A. (2006). Virus entry: open sesame. *Cell* 124, 729–740.

872 McNally, K.E., Faulkner, R., Steinberg, F., Gallon, M., Ghai, R., Pim, D., Langton, P., Pearson,
873 N., Danson, C.M., Nägele, H., et al. (2017). Retriever is a multiprotein complex for retromer-
874 independent endosomal cargo recycling. *Nat. Cell Biol.* 19, 1214–1225.

875 Meier, O., and Greber, U.F. (2004). Adenovirus endocytosis. *J Gene Med* 6 Suppl 1, S152–63.

876 Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., and Pyrc, K. (2014). Human
877 coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. *J. Virol.*
878 88, 13221–13230.

879 Millet, J.K., and Whittaker, G.R. (2015). Host cell proteases: Critical determinants of

880 coronavirus tropism and pathogenesis. *Virus Res.* **202**, 120–134.

881 Mulherkar, N., Raaben, M., de la Torre, J.C., Whelan, S.P., and Chandran, K. (2011). The Ebola

882 virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic

883 pathway. *Virology* **419**, 72–83.

884 Park, R.J., Wang, T., Koundakjian, D., Hultquist, J.F., Lamothe-Molina, P., Monel, B.,

885 Schumann, K., Yu, H., Krupczak, K.M., Garcia-Beltran, W., et al. (2017). A genome-wide

886 CRISPR screen identifies a restricted set of HIV host dependency factors. *Nat. Genet.* **49**, 193–

887 203.

888 Phillips-Krawczak, C.A., Singla, A., Starokadomskyy, P., Deng, Z., Osborne, D.G., Li, H., Dick,

889 C.J., Gomez, T.S., Koenecke, M., Zhang, J.-S., et al. (2015). COMMD1 is linked to the WASH

890 complex and regulates endosomal trafficking of the copper transporter ATP7A. *Mol. Biol. Cell*

891 **26**, 91–103.

892 Popa, A., Zhang, W., Harrison, M.S., Goodner, K., Kazakov, T., Goodwin, E.C., Lipovsky, A.,

893 Burd, C.G., and DiMaio, D. (2015). Direct binding of retromer to human papillomavirus type 16

894 minor capsid protein L2 mediates endosome exit during viral infection. *PLoS Pathog.* **11**,

895 e1004699.

896 Rojas, R., van Vlijmen, T., Mardones, G.A., Prabhu, Y., Rojas, A.L., Mohammed, S., Heck,

897 A.J.R., Raposo, G., van der Sluijs, P., and Bonifacino, J.S. (2008). Regulation of retromer

898 recruitment to endosomes by sequential action of Rab5 and Rab7. *J. Cell Biol.* **183**, 513–526.

899 Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullender, M.E., Vaimberg,

900 E.W., Goodale, A., Root, D.E., Piccioni, F., et al. (2018). Optimized libraries for CRISPR-Cas9

901 genetic screens with multiple modalities. *Nat. Commun.* **9**, 5416.

902 Schmidt, F., Weisblum, Y., Muecksch, F., Hoffmann, H.-H., Michailidis, E., Lorenzi, J.C.C.,

903 Mendoza, P., Rutkowska, M., Bednarski, E., Gaebler, C., et al. (2020). Measuring SARS-CoV-2

904 neutralizing antibody activity using pseudotyped and chimeric viruses. *J. Exp. Med.* **217**.

905 Schneider, W.M., Luna, J.M., Hoffmann, H.-H., Sánchez-Rivera, F.J., Leal, A.A., Ashbrook,

906 A.W., Le Pen, J., Ricardo-Lax, I., Michailidis, E., Peace, A., et al. (2020). Genome-scale

907 identification of SARS-CoV-2 and pan-coronavirus host factor networks. *Cell*.

908 Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A., and White, J. (2006). Role of

909 endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. *J. Virol.* **80**, 4174–

910 4178.

911 Schott, D.H., Cureton, D.K., Whelan, S.P., and Hunter, C.P. (2005). An antiviral role for the

912 RNA interference machinery in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* **102**, 18420–

913 18424.

914 Schwegmann-Wessels, C., and Herrler, G. (2006). Sialic acids as receptor determinants for

915 coronaviruses. *Glycoconj. J.* **23**, 51–58.

916 Seaman, M.N.J., Gautreau, A., and Billadeau, D.D. (2013). Retromer-mediated endosomal

917 protein sorting: all WASHed up! *Trends Cell Biol.* **23**, 522–528.

918 Singla, A., Fedoseienko, A., Giridharan, S.S.P., Overlee, B.L., Lopez, A., Jia, D., Song, J., Huff-

919 Hardy, K., Weisman, L., Burstein, E., et al. (2019). Endosomal PI(3)P regulation by the

920 COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling. *Nat.*

921 *Commun.* **10**, 4271.

922 Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M.,

923 Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association

924 networks with increased coverage, supporting functional discovery in genome-wide experimental

925 datasets. *Nucleic Acids Res.* **47**, D607–D613.

926 UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res.*
927 47, D506–D515.

928 Volchkov, V., and Klenk, H.D. (2018). Proteolytic processing of filovirus glycoproteins. In
929 Activation of Viruses by Host Proteases, E. Böttcher-Friebertshäuser, W. Garten, and H.D.
930 Klenk, eds. (Cham: Springer International Publishing), pp. 99–108.

931 Wang, R., Simoneau, C.R., Kulsuptrakul, J., Bouhaddou, M., Travisano, K.A., Hayashi, J.M.,
932 Carlson-Steiner, J., Zengel, J.R., Richards, C.M., Fozouni, P., et al. (2021). Genetic Screens
933 Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. *Cell* 184, 106–
934 119.e14.

935 Whelan, S.P., Barr, J.N., and Wertz, G.W. (2000). Identification of a minimal size requirement
936 for termination of vesicular stomatitis virus mRNA: implications for the mechanism of
937 transcription. *J. Virol.* 74, 8268–8276.

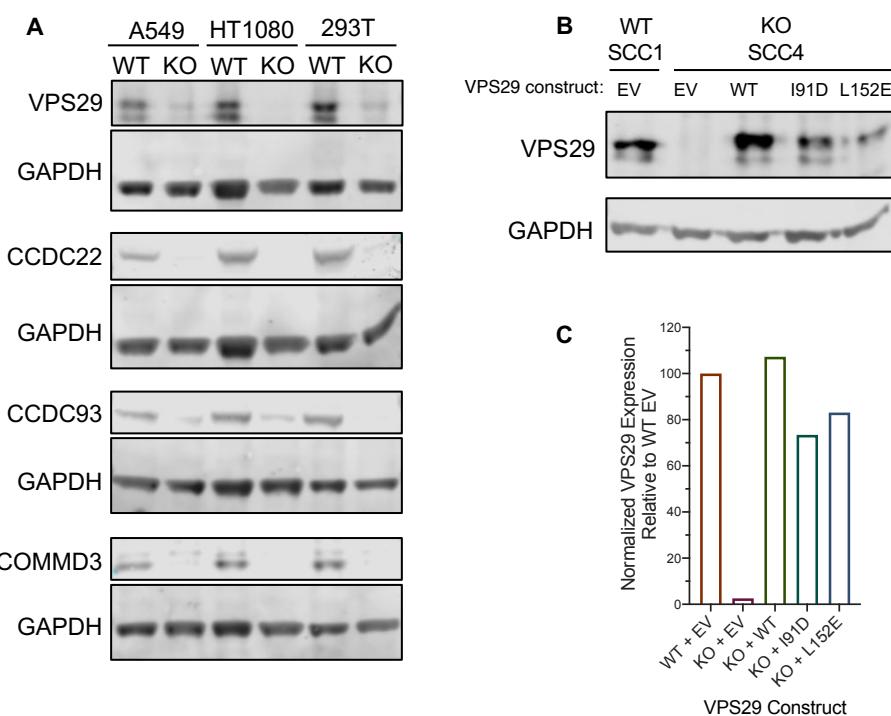
938 White, J.M., and Whittaker, G.R. (2016). Fusion of enveloped viruses in endosomes. *Traffic* 17,
939 593–614.

940 Winstone, H., Lista, M.J., Reid, A.C., Bouton, C., Pickering, S., Galao, R.P., Kerridge, C.,
941 Doores, K.J., Swanson, C., and Neil, S. (2021). The polybasic cleavage site in the SARS-CoV-2
942 spike modulates viral sensitivity to Type I interferon and IFITM2. *J. Virol.*
943 Zhu, Y., Feng, F., Hu, G., Wang, Y., Yu, Y., Zhu, Y., Xu, W., Cai, X., Sun, Z., Han, W., et al.
944 (2021). A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry.
945 *Nat. Commun.* 12, 961.

946

947

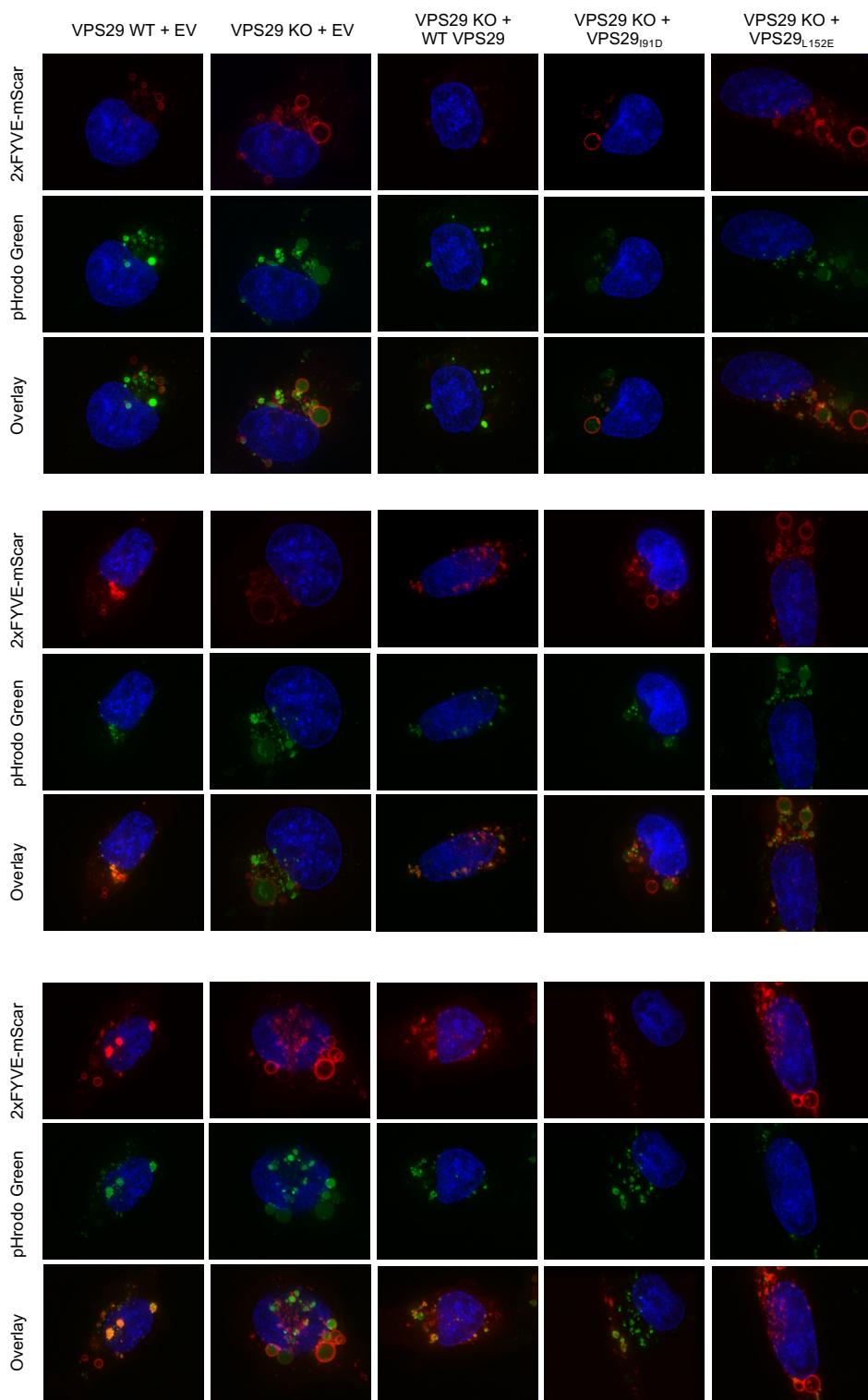
948


949 **SUPPLEMENTAL INFORMATION**

950

951 **Supplemental figures S1-S7**

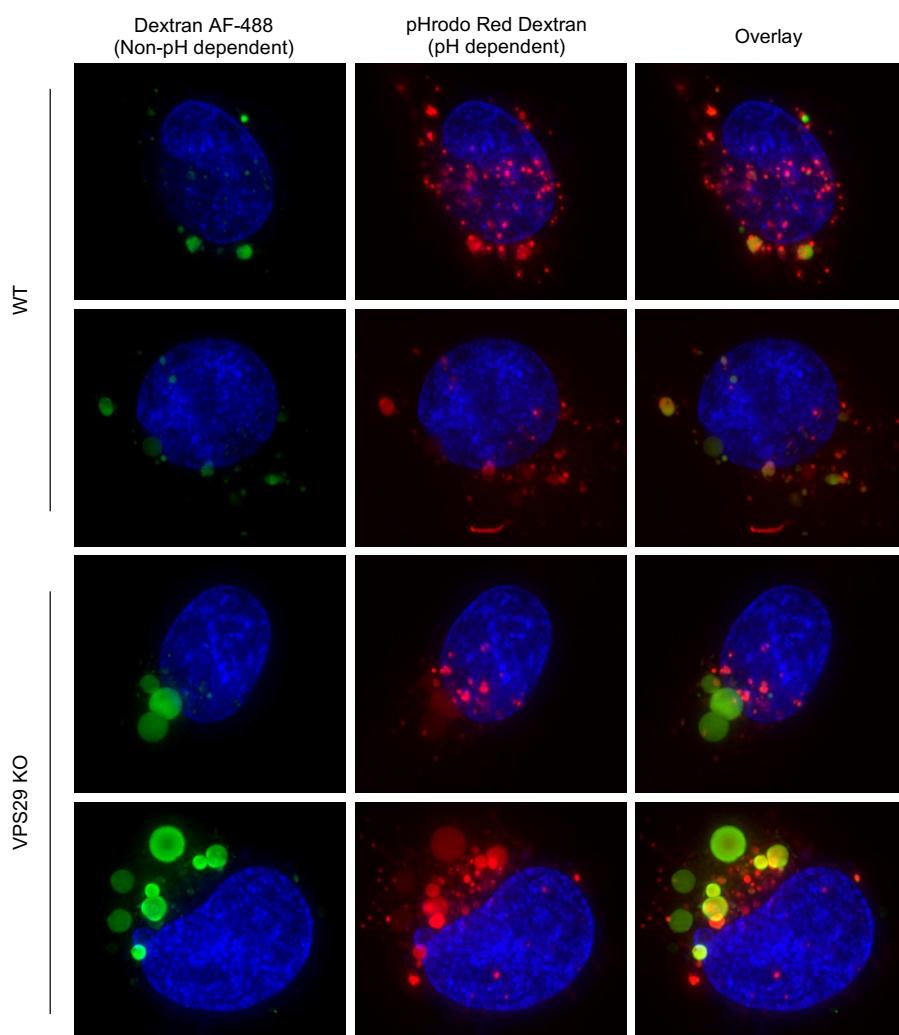
952


953

954
955
956
957
958
959
960
961

Supplemental Figure S1: Validation of CRISPR KO and VPS29 Reconstitution

(A): Western Blot confirmation of VPS29, CCDC22, CCDC93, and COMMD3 KO. (B): Western Blot confirmation of VPS29 SSC KO and reconstitution. Antibodies: VPS29 (ab236796), CCDC22 (protein tech 16636-1-AP), CCDC93 (protein tech 20861-1-AP), COMMD3 (protein tech 26240-1-AP). (C): Quantification of the level of VPS29 expression normalized to GAPDH.



962
963
964
965
966

Supplemental Figure S2: Additional representative images demonstrating VPS29 KO results in enlarged, deacidified PI(3)P-rich vesicles

Additional representative images from Figure 4. HT1080 cells transduced with 2xFYVE-mSCAR after incubation with pHrodo Green Dextran for 60 minutes

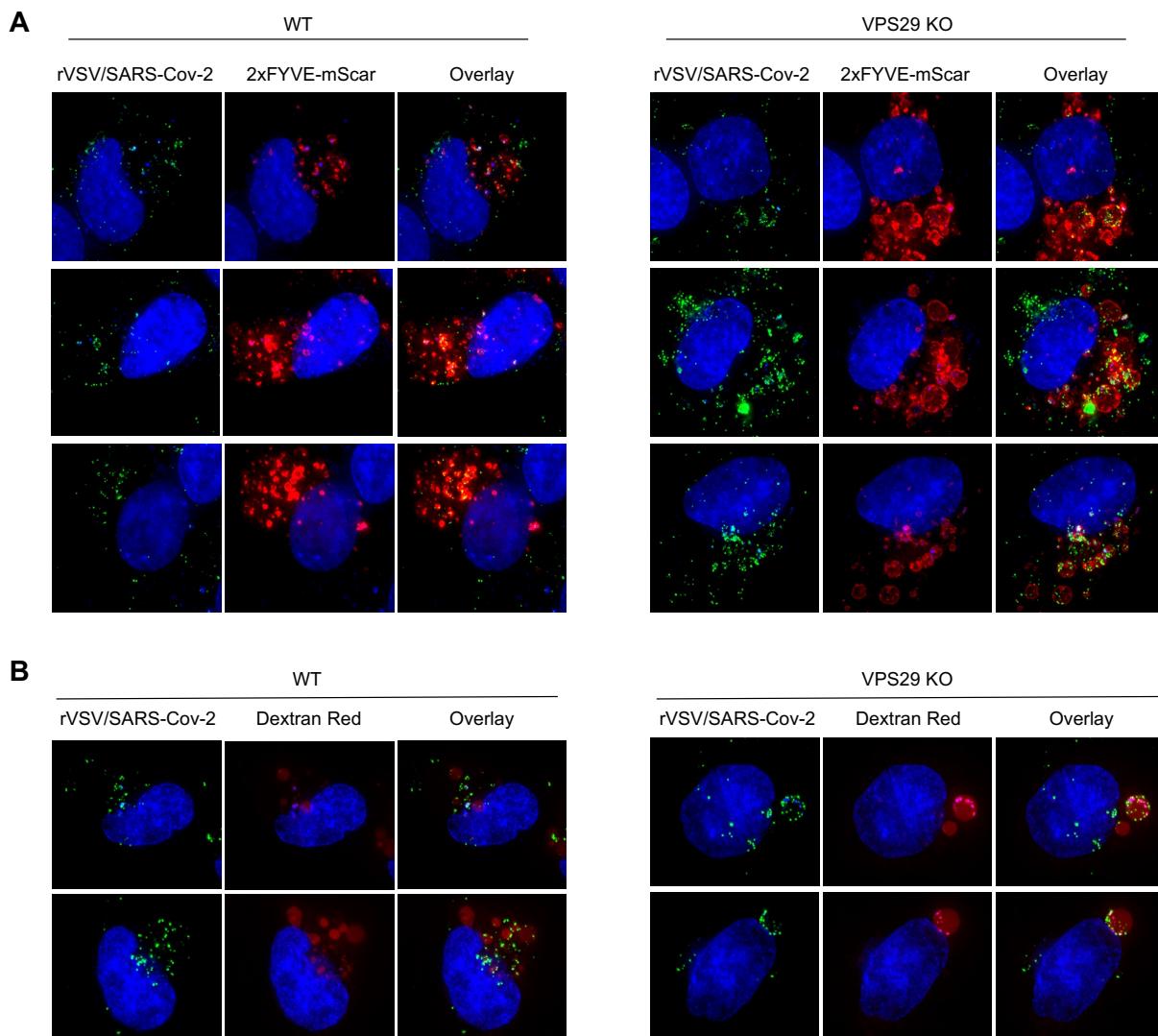
967

968

969

**Supplemental Figure S3: Additional representative images showing the enlarged,
deacidified vesicles in VPS29-KO cells are not impaired for cargo loading**

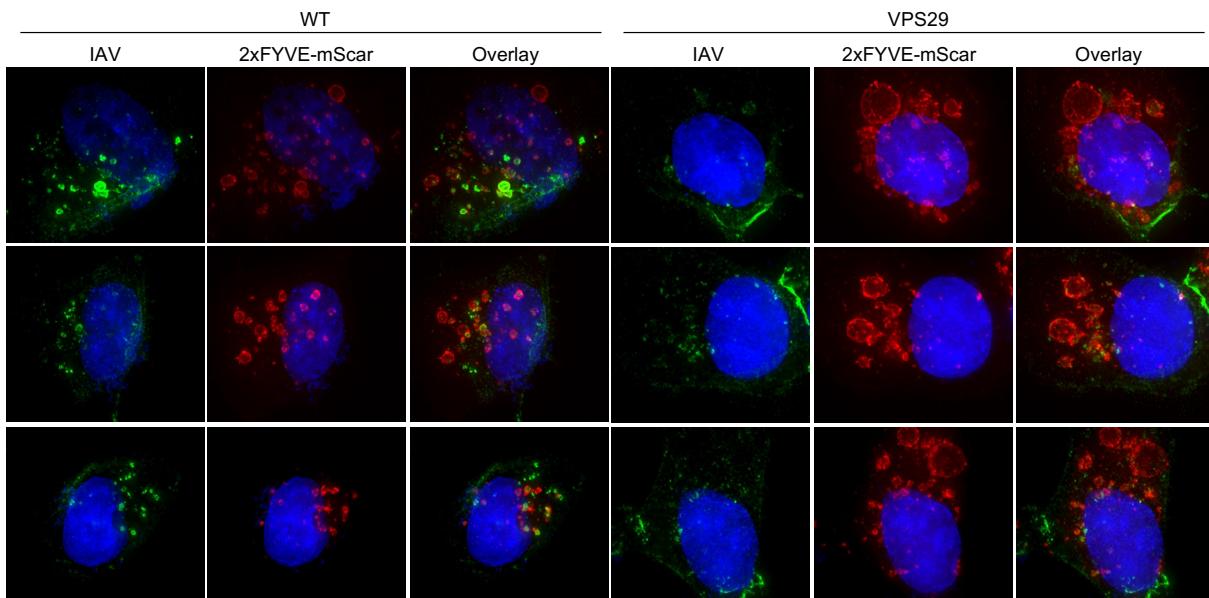
970


971

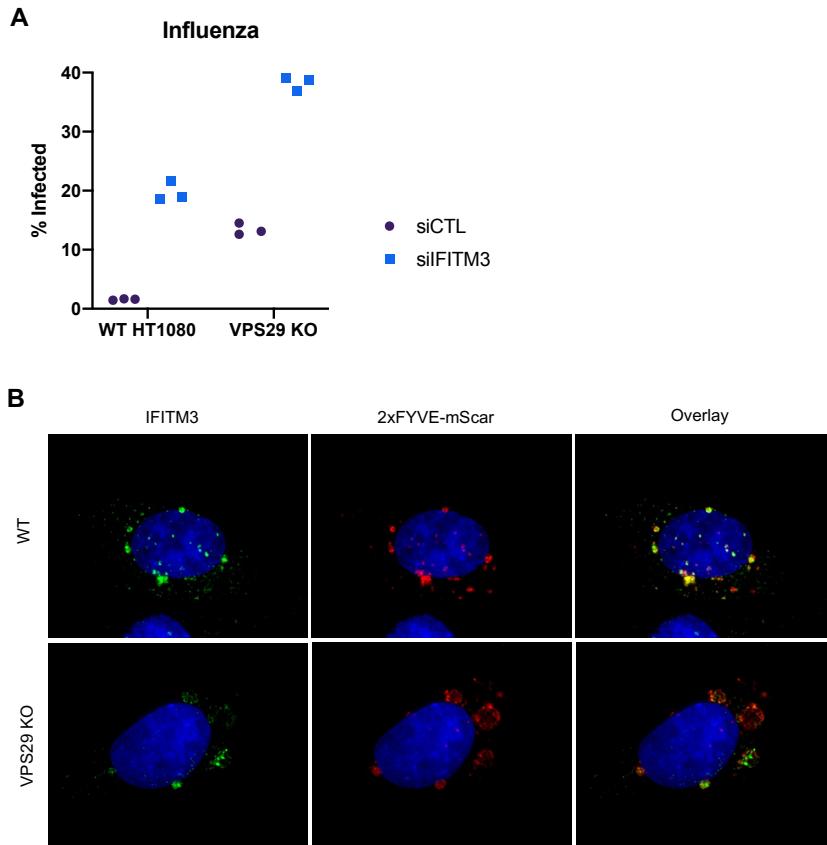
972

973

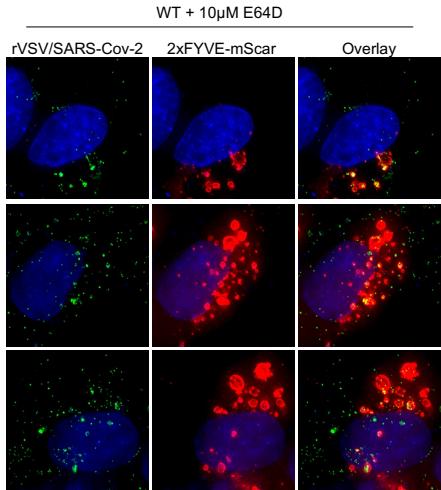
974


Additional representative images from Figure 5. WT and VPS29 KO HT1080 cells incubated for 60 minutes with an equal molar ratio of pHrodo Dextran Red 10,000 MW and Dextran AF-488 10,000 MW.

975
976
977
978
979
980
981
982


Supplemental Figure S4: Additional representative images demonstrating VPS29 KO results in rVSV/SARS-CoV-2 remaining trapped in vesicles

(A): Additional representative images from Figure 6A. rVSV/SARS-CoV-2_{NG-P} infection in WT and VPS29 KO HT1080 cells. Cells were infected with rVSV/SARS-CoV-2_{NG-P} for 60 minutes. (B): Additional representative images from Figure 6B. WT and VPS29 KO HT1080 cells incubated for 60 minutes with Dextran Red 10,000 MW and rVSV/SARS-CoV-2_{NG-P}.


983
984 **Supplemental Figure S5: Additional representative images demonstrating that IAV is more**
985 **associated with PI(3)P-rich endosomal membranes in WT HT1080 cells than in VPS29 KO**
986 **HT1080 cells.**

987 Additional representative images from Figure 6C: IAV infection in WT and VPS29 KO HT1080
988 cells labeled with 2xFYVE-mSCAR. Cells were infected with IAV for 60 minutes then fixed and
989 stained for IAV NP.
990

991
992 **Supplemental Figure S6: The enhancement of Influenza infection by VPS29 KO is not**
993 **mediated by loss of IFITM3 activity**

994 (A): WT and VPS29 KO HT1080 cells were transfected with a pool of four control siRNAs
995 (siCTL) or a pool of four siRNAs targeting IFITM3 (siIFITM3). Three days post transfection,
996 cells were infected with IAV. At 24 hours post infection, cells were stained, and the percent
997 infected cells was determined by flow cytometry. (B): Representative images of WT and VPS29
998 KO HT1080 cells stably expressing V5-tagged IFITM3 and labeled with 2xFYVE-mSCAR.
999
1000

1001
1002
1003
1004
1005
1006
1007
1008

Supplemental Figure S7: Additional representative images demonstrating cathepsin inhibition with E64d phenocopies VPS29 KO.

Additional representative images from Figure 7I: 2xFYVE-mSCAR labeled cells were treated with E64d for 30 minutes, then infected with rVSV/SARS-CoV-2_{NG-P} for 60 minutes.