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Highlights  
We explored the genetic and environmental etiology of MRI-based predicted brain age (PBA) in 
a longitudinal sample of males starting in midlife. Genetic influences on PBA are detectable in 
midlife or earlier, are longitudinally very stable, and largely explained by common genetic 
influences. 
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Abstract 
Magnetic resonance imaging data are being used in statistical models to predicted brain ageing 
(PBA) and as biomarkers for neurodegenerative diseases such as Alzheimer’s Disease. Despite 
their increasing application, the genetic and environmental etiology of global PBA indices is 
unknown. Likewise, the degree to which genetic influences in PBA are longitudinally stable and 
how PBA changes over time are also unknown. We analyzed data from 734 men from the 
Vietnam Era Twin Study of Aging with repeated MRI assessments between the ages 52 to 72 
years. Biometrical genetic analyses ‘twin models’ revealed significant and highly correlated 
estimates of additive genetic heritability ranging from 59% to 75%. Multivariate longitudinal 
modelling revealed that covariation between PBA at different timepoints could be explained by a 
single latent factor with 73% heritability. Our results suggest that genetic influences on PBA are 
detectable in midlife or earlier, are longitudinally very stable, and are largely explained by 
common genetic influences.  
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1. Introduction 
Brain magnetic resonance imaging (MRI) data are increasingly used to model predicted brain 
ageing (PBA). The models assume that MRI of neuroanatomical degeneration reflects poorer 
brain health and risk of neurodegenerative diseases such as Alzheimer’s Disease (Cole et al., 
2019; McEvoy et al., 2009; Wang et al., 2019). The modelling relies on machine learning to 
estimate associations between MRI data and chronological age in training samples of varying 
age (Cole and Franke, 2017). These associations are then applied using supervised learning 
algorithms to estimate PBA or predicted brain age difference (PBAD) (the difference between 
predicted and chronological age) in independent samples. Broadly, this approach assumes that 
individual differences in brain aging stem from biological processes influencing lifespan and 
age-related diseases, which can be explained by genetic and environmental influences (Cole et 
al., 2019). This assumption has been partly supported by two twin studies reporting the 
heritability of PBA and PBAD; Cole et al.’s (Cole et al., 2017) cross-sectional analysis of 62 
female twins at mean age 62 years and Brouwer et al.’s (Brouwer et al., 2021) longitudinal 
analysis of 673 twins aged 10 to 23 years. The latter reported PBAD heritabilities up to 79% and 
longitudinal genetic correlations ranging 0.46 to 0.68 based on grey matter density and cortical 
thickness. Although this suggests a combination of stable and age-varying genetic processes 
influencing aging in adolescents and very young adults, we are unaware of any twin studies that 
have explored the heritability and longitudinal stability of genetic and environmental risks in PBA 
or PBAD beginning middle- through to later-age when neurodegenerative diseases typically 
begin to emerge.  
 
Not only can measures of brain ageing predict cognitive decline and morbidity (Cole et al., 2019; 
Elliott et al., 2019; Franke et al., 2012; Liem et al., 2017), biologically ‘older’ brains are linked to 
older facial appearance, early cognitive decline including the progression from mild cognitive 
impairment to dementia, Alzheimer’s Disease, accelerated ageing and shorter lifespans (Cole et 
al., 2019; de Lange and Cole, 2020; Deary et al., 2009; Elliott et al., 2019; Fjell et al., 2014; 
Gaser et al., 2013; Lowe et al., 2016; Salthouse, 2010; Vos et al., 2012). Our team has 
demonstrated associations between negative life events (e.g. family deaths, financial problems, 
unemployment) and advanced PBA (Hatton et al., 2018a). However, hypotheses regarding 
heritability and the stability of genetic influences in PBA remain untested.  
 
Twin studies have demonstrated moderate to high heritability in cortical and subcortical volume 
(Baare et al., 2001; Brouwer et al., 2014; Kremen et al., 2010; Peper et al., 2007; Renteria et al., 
2014; Satizabal et al., 2019; Wright et al., 2002), cortical thickness (Kremen et al., 2013a; 
Kremen et al., 2010; Thompson et al., 2001; Vuoksimaa et al., 2015), cortical surface area 
(Brouwer et al., 2014; Eyler et al., 2011; Kremen et al., 2013a; Kremen et al., 2010; Vuoksimaa 
et al., 2015), and diffusion MRI metrics (Elman et al., 2017; Gillespie et al., 2017; Hatton et al., 
2018b). Based on these findings including those of Cole et al. (Cole et al., 2017) and Brouwer et 
al. (Brouwer et al., 2021) we hypothesized that whole brain indicators of PBA based on 
supervised machine learning combinations of cortical thickness, surface area and subcortical 
volume metrics in adults should also be heritable. Given the pivot towards early detection of 
neurodegenerative disease (Albert et al., 2011; Daviglus et al., 2010; Golde et al., 2011; 
Sperling et al., 2011a; Sperling et al., 2011b), an accurate description of the genetic and 
environmental etiology of brain aging beginning middle-age is required. Questions that have not 
been addressed include, how do genetic and environmental risks in PBA develop over time and 
are they longitudinally stable versus age-specific? Similarly, are PBA genetics in middle- and 
later-age quantitatively or qualitatively distinct? It is also unclear if genetic and environmental 
influences, protective or detrimental, accumulate and continue to exert an impact over time.  
Hypotheses of ageing such as somatic mutation theory predict an accumulation of unrepaired 
cellular and molecular damage arising from genome instability during a single generation 
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(Kirkwood, 1977, 2005; Morley, 1998). This is consistent with an autoregression model 
(Boomsma et al., 1989; Boomsma and Molenaar, 1987; Eaves et al., 1986; Guttman, 1954). If 
changes in brain ageing do stem from an accumulation of age-related genetic and 
environmental risks, the task, therefore, is to determine how well autoregression explains PBA 
data. Plausibly, genetic and environmental differences in PBA across time might be better 
explained by common or independent pathway theories positing time-independent risks (Neale 
and Cardon, 1992). Our aim, therefore, was to explore the etiology of PBA in a sample of 
middle- to later-age men with longitudinal MRI assessments. In addition to estimating PBA 
heritability, we tested competing hypotheses to determine which best explains changes in the 
genetic and environmental influences in PBA.  
 
2. Materials and methods  
2.1. Subjects 
Participants comprise middle-aged male twins who underwent MRI scanning as part of the 
Vietnam Era Twin Study of Aging (VETSA) (Kremen et al., 2013b). Wave 1 took place between 
2001-2007 (Kremen et al., 2006) (mean age=56.1, SD=2.6, range=51.1 to 60.2). Wave 2 
occurred approximately 5.5 years later (mean age=61.8, SD=2.6, range=56.0 to 65.9). Wave 3 
occurred approximately 5.7 years later (mean age=67.5, SD=2.6, range=61.4 to 71.7). All 
participants were concordant for US military service at some time between 1965-1975, but 
nearly 80% reported no combat experience. The sample is 88.3% non-Hispanic white, 5.3% 
African-American, 3.4% Hispanic, and 3.0% “other” participants. Based on data from the US 
National Center for Health Statistics, the sample is very similar to American men in their age 
range with respect to health and lifestyle characteristics (Schoeneborn and Heyman, 2009 ). 
Written informed consent was obtained from all participants.  
 
2.2. Ethics statement 
The University of California, San Diego, Human Research Protection Program Institutional 
Review Board approved the proposal to collect these data (Project #150572, 150572, 150537, 
140361, 071446, 031639, 151333). Data are publicly available through requests at the VETSA 
website (http://www.vetsatwins.org). 
 
2.3. Magnetic resonance imaging acquisition and analysis 
At Wave 1, MR images were acquired on Siemens 1.5 Tesla scanners (N=260 at University of 
California, San Diego (Siemens-Symphony); N=226 at Massachusetts General Hospital: MGH; 
Siemens-Avanto). Sagittal T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) 
sequences were employed with TI=1000 ms, TE=3.31 ms, TR=2730 ms, flip angle=7 degrees, 
slice thickness=1.33 mm, voxel size 1.3x1.0x1.3 mm. Raw DICOM MRI scans (including two 
T1-weighted volumes per case) were downloaded to the MGH site.  
 
At Wave 2, T1-weighted images providing high anatomical detail were acquired on 3T scanners 
at University of California, San Diego (UCSD) and Massachusetts General Hospital. At UCSD, 
images were acquired on a GE 3T Discovery 750scanner (GE Healthcare, Waukesha, WI, USA) 
with an eight-channel-phased array head coil. The imaging protocol included a sagittal 3D fast-
spoiled gradient echo T1-weighted image (echo time=3.164 msec, repetition time=8.084 msec, 
inversion time=600 msec, flip angle=8 degrees, pixel bandwidth=244.141, field of view=25.6 cm, 
frequency=256, phase=192, slices=172, and slice thickness=1.2 mm) At Massachusetts 
General Hospital, images were acquired with a Siemens Tim Trio, (Siemens USA, Washington, 
D.C.) with a 32-channel head coil. The imaging protocol included a 3D MPRAGE T1-weighted 
image (echotime 4.33 msec, repetition time 2170 msec, inversion time 1100 msec,flip angle 7 
degrees, pixel bandwidth 140, field of view 25.6 cm, frequency 256, phase 256, slices 160, and 
slice thickness 1.2 mm).  
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At Wave 3, all participants were scanned at UCSD. The acquisition protocol was identical to the 
protocol used at UCSD during Wave 2. 
 
As described in prior work (Eyler et al., 2012), raw image files from Wave 1, 2 and 3 were 
processed using the same in-house pipeline written in MATLAB and C by the UCSD Center for 
Multimodal Imaging and Genetics. Data were qualitatively assessed and images with severe 
scanner artifacts or excessive head motion were either rescanned where possible or excluded 
from the analysis (approximately 3%). T1-weighted structural images were corrected for 
gradient distortions (Jovicich et al., 2006) and B1 field inhomogeneity (Sled et al., 1998). 
Subcortical segmentation and surface-based cortical parcellation were performed using 
FreeSurfer, Version 5.3 (Fischl, 2012). Inaccuracies in cortical surfaces were manually 
corrected by trained neuroimaging analysts. All images required some form of manual editing to 
ensure the correct classification of the pial and white matter surfaces, with particular attention 
given to the orbitofrontal cortex, the temporal lobes, meninges, and transverse and superior 
sagittal sinuses. Problematic segmentations/parcellations were reviewed by consensus with four 
neuroimaging analysts.  
 
2.4. Predicted brain age & predicted brain age (PBA) difference endophenotypes 
Primary analyses focused on PBA. Discussed in detail elsewhere (Hatton et al., 2018a), PBA 
was estimated using the Brain-Age Regression Analysis and Computation Utility software 
BARACUS v0.9.4 (2017; Liem et al.). BARACUS uses linear support vector regression models 
to predict brain age derived from each individual’s FreeSurfer statistics. Specifically, vertex-wise 
cortical metrics were derived from the fsaverage4 standard space for cortical thickness (n=5124 
vertices) and surface area (n=5124 vertices), and subcortical segmentation metrics were 
derived from the aseg.stat file for subcortical volume (n=66 regions of interest). We used the 
BIDS-mode docker on Ubuntu 16.04 using the default database (Liem2016_OCI_norm), which 
is trained on 1166 subjects with no objective cognitive impairment (566 female/600 male, mean 
age 59.1 years, SD 15.2, range 20-80 years).  
 
In secondary analyses, we considered predicted brain age difference (PBAD) scores, which 
were calculated by subtracting PBA (referred to as “stacked-anatomy” brain age in BARACUS) 
from the chronological age. A negative PBAD is indicative of brain age estimated to be older 
than one’s chronological age. We note that while supervised machine learning algorithms such 
as BARACUS can detect informative multivariate patterns, the relative contributions of individual 
regions are not tested. Therefore, no inferences are made regarding particular regions driving 
PBA/PBAD. 
 
As noted in Section 2.1., there was considerable variation in chronological age at each wave 
and overlap in age ranges between the three assessments. Given the variation and overlap, 
longitudinal analysis of these wave-based data would therefore preclude any meaningful 
understanding of age-related changes. Ignoring irregular spacing between time intervals in 
longitudinal modeling can lead to biased parameter estimates (Estrada and Ferrer, 2019). 
Rather than employing definition variables to account for individual differences in age at 
assessment and irregular timer intervals (Mehta and Neale, 2005), our solution was to recode 
each subject’s score according to their chronological age at assessment. Thus, for example, if 
two subjects ‘a’ and ’b’ were both aged 60 at VETSA 1 and 2 respectively, each would be 
assigned a PBA score for age 60. Since each subject contributed a maximum of three data 
points between ages 51 to 72, this creates missing data for which Full Information Maximum 
Likelihood is well suited to handling. However, to reduce sparse data while maintaining 
computational efficiency, our ‘age-anchored’ PBA and PBAD scores were re-coded to one of 
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four age intervals according to each individual’s age at assessment: 51 to 55 years; 56 to 60 
years; 61 to 65 years; and 66 to 72 years.  
 
There were 260, 251, and 126 subjects with PBA scores at one, two and three age intervals 
respectively. Since there were only 3 VETSA assessments, no subjects had data from all four 
age intervals. Five participants were ascertained twice in the same five-year age interval. Only 
their first observation was included. Prior to twin modelling all PBA and PBAD scores were 
residualized for the effects of scanner (i.e., 1.5T vs 3T) and ethnicity using the umx_residualize 
function in the umx software package (Bates et al., 2019), and given the range in birth year 
(1943 to 1955), residuals were also adjusted for cohort effects.  
 
2.5. Statistical analyses 
The OpenMx2.9.9.1 software package (Boker et al., 2011) in R3.4.1 (R Development Core Team, 
2018) was used to estimate correlations between the PBA scores and to fit univariate and 
multivariate genetic twin models (Neale and Cardon, 1992). OpenMx software coding used for 
the multivariate analyses is included in the Supplement. Given the numbers of incomplete twin 
pairs (see Supplement Table S1), methods such as Weighted Least Squares would result in 
significant listwise deletion thereby altering the accuracy of the PBA and PBAD means and 
variances. Fortunately, the raw data Full Information Maximum Likelihood (FIML) option in 
OpenMx2.9.9.1 (Boker et al., 2011) has the advantage of not only being robust to violations of 
non-normality but also enables analysis of missing or incomplete data as well as the direct 
estimation of covariate effects. More accurate means and variance improve the estimation of 
the variances and covariance structure used to test our competing hypotheses.  

 
Figure 1 

 
2.6. Univariate analyses 
In univariate analyses, the total variation in each PBA score was decomposed into additive (A) 
heritability, shared or common environmental (C), and non-shared or unique (E) environmental 
variance components (see Figure 1). This approach is referred to as the ‘ACE’ variance 
component model. The decomposition is achieved by exploiting the expected genetic and 
environmental correlations between MZ and DZ twin pairs. MZ twin pairs are genetically 
identical, whereas DZ twin pairs share, on average, half of their genes. Therefore, the MZ and 
DZ twin pair correlations for the additive genetic effects are fixed to rA=1.0 and rA=0.5 
respectively. The modelling assumes that shared environmental effects (C) are equal in MZ and 
DZ twin pairs (rC=1.0), while non-shared environmental effects (E) are by definition uncorrelated 
and include measurement error. 

 
2.7. Multivariate analyses to test competing theories 
This univariate method is easily extended to the multivariate case to estimate the size and 
significance of genetic and environmental influences within and between PBA over time.  
In order to have a reference for contrasting and choosing the best fitting model, we first fitted a 
multivariate ACE ‘correlated factors’ (Figure 2a). This is a saturated model that reproduces 
perfectly all mean and variance-covariance information for the observed PBA variables.  
 

Figure 2 
 
The ACE correlated factors model makes no theoretical prediction regarding how genes and 
environments change over time. In contrast, the autoregression model (Figure 2b) predicts that 
time-specific random genetic or environmental effects may persist over time (autoregressive 
effects) (Eaves et al., 1986). As described elsewhere (Boomsma et al., 1989; Boomsma and 
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Molenaar, 1987; Eaves et al., 1986), autoregression assumes that a trait measured at time t is 
partly a function of the same trait measured at a prior timepoint t-1. New variation at each 
assessment reflects time-specific genetic or environmental influences. Such autoregression 
may occur between phenotypes, or between the latent genetic or environmental true scores. 
The variance in the genetic and environmental true scores on each occasion is a function of (i) 
new random genetic and environmental effects or innovations arising at each time point and (ii) 
the causal contribution, via the beta coefficient, from the true scores expressed at preceding 
times. All cross-temporal correlations within subjects arise when the contribution of innovations 
are more or less persistent over time. These contributions may, under some circumstances 
accumulate, potentially giving rise to developmental increases in genetic or environmental 
variance and increased correlations between adjacent measures. Depending on the magnitude 
of an innovation and its relative persistence, the observed variances and cross-temporal 
covariances may also increase during development towards a stable asymptotic value. Another 
feature of the autoregressive model is that cross-temporal correlations tend to decay as a 
function of increasing time differential. Our modeling also included occasion-specific residual 
variance including measurement error not captured by the autoregression process. See Eaves 
et al. (Eaves et al., 1986) for graphical examples of an application to longitudinal cognitive data.  
 
In contrast, the common pathway (CP) model (Figure 2c) predicts a covariance structure 
between all four PBA scores explained by a common liability decomposed into A, C, and E 
influences. As with factor analysis, the CP is ‘indicated’ by the strength of the factor loadings to 
each observed PBA score. Residual variances or risks unique to each PBA score are further 
decomposed into variable specific genetic and environmental residuals. To further explore the 
multivariate space, we fitted a model with two common factors.  
 
Finally, the independent pathway model (Figure 2d) predicts that latent genetic and 
environmental risk factors separately generate covariance between the PBA scores. Again, 
variances unique to each PBA score not captured by these independent pathways are 
decomposed into variable specific genetic and environmental residuals. 
 
2.8. Model fit 
The best-fitting model was determined using a using a likelihood ratio test and the Akaike’s 
Information Criterion (AIC) (27). For each best-fitting univariate and multivariate model, the 
parameters were then successively fixed to zero and their significance determined using a 
likelihood ratio chi-square test. We have argued elsewhere that the advantage of AIC is its deep 
theoretical connections to cross-validation (Kirkpatrick et al., 2015). Specifically, in large 
samples, the AIC is expected to select that model in the candidate set which minimizes the error 
of prediction in new samples of the same size from the population (where the error is based on 
a log-likelihood function) (Kirkpatrick et al., 2015). Specifically, the AIC is expected to minimize 
the Kullback–Leibler (KL) divergence from full reality at the given sample size. A sensible 
objective of model selection is to choose the model that has the smallest KL divergence from full 
reality. The full reality, of course, is not known, and may not even be knowable. Indeed, a 
complete description of full reality would be infinitely long. However, if we accept the possibility 
that no statistical model can completely describe reality, then the premise of there being a ‘true 
model’ that generated the data becomes rather dubious. In summary, because full reality may 
be unknowable, we do not presume that the true model is knowable from our data and 
consequently, chose our fit index based on this philosophy. Rather than proposing to identify the 
true model, the AIC selects the best-approximating model based on an optimal balance of 
parsimony and model fit. 
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3. Results  
The numbers of complete and incomplete twin pairs by zygosity are shown in Supplementary 
Table S1. Descriptive statistics for each PBA score before and after residualization of the 
means and variances are shown in Supplementary Table S2. 
  
3.1. Strength of association 
As shown in Table 1, the phenotypic correlations between the age-anchored PBA scores at 
each age interval were high and ranged from 0.67 to 0.76.  
 
Table 1. Pairwise polyserial phenotypic correlations for the 
predicted brain age (PBA) scores. Polyserial correlations 
represent the associations between the underlying liability rather 
than observed phenotypic distributions (Pearson, 1900; Pearson 
and Pearson, 1922).  
 
        1. 2. 3. 4. 

1. PBA 51 to 55 1 
   

2. PBA 56 to 60 0.67 1 
  

3. PBA 61 to 65 0.76 0.74 1 
 

4. PBA 66 to 72 0.67 0.72 0.75 1 
 
3.2. Twin pair correlations 
Table 2 shows the twin pair correlations by zygosity for PBA at each age interval. If familial 
aggregation was entirely attributable to shared family environments, then monozygotic (MZ) and 
dizygotic (DZ) twin pair correlations would be statistically equal. In contrast, if familial 
aggregation was entirely attributable to shared additive (or non-additive) genetic factors, then 
DZ correlations would be ½ (or less) the size of the MZ twin pair correlations. Here, DZ twin pair 
correlations ranged from rdz=0.1 to rdz=0.6 and were approximately 1/3 the size of the MZ twin 
pair correlations. This is consistent with familial aggregation attributable to genetic risks. 
 
Table 2. Monozygotic & dizygotic twin pair polyserial correlations (corrMZ & CorrDZ) along with 
standardized variance components and 95% confidence intervals components for the best-fitting additive 
genetic (A) & non-shared environment (E) univariate models. 
  

corrMZ (95%CIs) CorrDZ (95%CIs) 
 

A (95%CIs) E (95%CIs) 
PBA 51 to 55 0.68 (0.53-0.78) 0.13 (-0.19-0.42) 

 
0.64 (0.54-0.69) 0.36 (0.31-0.46) 

PBA 56 to 60 0.70 (0.59-0.78) 0.29 ( 0.11-0.46) 
 

0.71 (0.61-0.79) 0.29 (0.21-0.39) 
PBA 61 to 65 0.60 (0.49-0.70) 0.20 ( 0.01-0.38) 

 
0.58 (0.45-0.68) 0.42 (0.32-0.55) 

PBA 66 to 72 0.66 (0.55-0.75) 0.18 (-0.07-0.58) 
 

0.61 (0.47-0.71) 0.39 (0.29-0.53) 
 
3.3. Univariate analyses 
Full univariate model fitting results for each PBA score are shown Table S3. At each interval, 
the ‘AE’ model with no common or shared environmental effects provided the best fit to the 
data. As summarized in Table 2, familial aggregation in each PBA score could be entirely 
explained by additive genetic influences (A) ranging from 59% to 75%. All remaining variation 
was explained by non-shared environmental influences including measurement error (E).  
 
3.4. Multivariate analyses 
Modelling fit results for the autoregression, 1- and 2-factor common pathway and the 
independent pathway models including comparisons with the reference ‘ACE’ correlated factors 
model are shown in Table 3. Both the autoregression and independent pathway models fitted 
the data poorly as judged by the significant change in their likelihood chi-squared ratios (D-2LL) 
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and their higher AIC values. In contrast, the changes in the likelihood for the 2-factor and 1-
factor common pathway models were not significant. Here, the later, more parsimonious model 
provided a better comparative fit as judged by the lower AIC. In subsequent modeling based on 
this best fitting 1-factor common pathway model (see Supplementary Table S4), both the ‘CE’ 
and ‘E’ sub-models deteriorated significantly when compared to the saturated ACE whereas the 
‘AE’ model yielded a non-significant likelihood ratio chi-square difference as well as the lowest 
AIC.  

 
Table 3. Predicted brain age (PBA) multivariate model fitting results & comparisons between the saturated ACE 
correlated factors model (reference), autoregression, 1- & 2-factor common pathways, & the independent 
pathways sub-models. Best fitting model bolded.  

ep -2LL df D-2LL Ddf p AIC 
ACE correlated factors (reference) 34 8117.21 1405 - - - 8185.21 
Autoregression 18 8148.24 1421 31.03 16 0.013 8184.24 
2-factor common pathway 32 8123.46 1409 6.25 4 0.181 8187.46 
1-factor common pathway 23 8136.07 1417 18.86 12 0.092 8182.07 
Independent pathways 28 8140.52 1411 23.31 6 0.001 8196.52 
Note: ep = number of estimated parameters, -2LL = -2 x log-likelihood, D-2LL = change in -2 x log-likelihood, Ddf = change in degrees of 
freedom, AIC = Akaike Information Criteria. The ACE correlated factors is useful for ensuring that the observed variance-covariance structure 
is positive definitive and for evaluating any potential model misspecification (Neale et al., 2006; Verhulst et al., 2019). Under the correlated 
factors we observed negative estimates for the shared environmental (C) variance components. Although this could reflect either stochastic 
variation or genetic dominance for which this sample is underpowered to detect (Martin et al., 1978), all ‘C’ influences could be dropped from 
model without any significant deterioration in fit such that additive genetic risks explained all sources of familial aggregation in the best-fitting 
correlated factors. 
 
Figure 3 shows this best-fitting multivariate ‘AE’ single factor or common pathway model. A 
single common factor, with 73% additive genetic and 27% non-shared environmental variance, 
best explained the covariance between the PBA scores. In this model, the total genetic 
variances (common & residual influences) in PBA at ages 51-55, 56-60, 61-65 and 66-72 were 
59%, 73%, 59% and 67% respectively. For PBA at ages 61-65, the residual genetic variance 
was non-significant, indicating that genetic variance here is entirely captured by the common 
factor.  
 

Figure 3 
 
Genetic correlations between the four PBA scores were high and ranged from 0.68 to 0.89 
(Table 3) indicating that the same genes are largely influencing PBA across time. In contrast, 
the environmental correlations were moderate to high, ranging from 0.45 to 0.60 (Table 3) 
suggesting that large proportions of the environmental influences are unique to each age 
interval. 

 
Table 3. Additive genetic (below diagonal) & non-shared 
environmental correlations based on the best fitting ‘AE’ 1-factor 
common pathway model. 
        1. 2. 3. 4. 
1. PBA 51 to 55 1 0.49 0.47 0.45 
2. PBA 56 to 60 0.82 1 0.60 0.58 
3. PBA 61 to 65 0.92 0.87 1 0.55 
4. PBA 66 to 72 0.83 0.78 0.88 1 

 
We then applied the same univariate and multivariate modelling pipeline to the PBAD scores. 
Results are shown in Supplementary tables S5-S9. The pairwise phenotypic correlations for the 
PBAD scores (Supplementary Table S5) were very close to the PBA phenotypic correlations in 
Table 1. Likewise, the proportion of additive genetic variance in the best fitting univariate PBAD 
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models (Supplementary Table S6) was very similar to the univariate PBA variance components 
in Table 2. The best-fitting multivariate model was again the single factor common pathway 
multivariate model (Supplementary Table S7) from which all shared or common environmental 
‘C’ effects could be removed without any significant deterioration in the model fit 
(Supplementary Table S8). Finally, not only were the patterns of additive genetic and non-
shared environmental factor correlations in the best fitting 1-factor common pathway ‘AE’ model 
(Supplementary Table S9) for PBAD nearly identical to those in Table 3, the heritability of the 
common pathway was again 74% (Supplementary Figure S1).  
 
4. Discussion 
Individual differences in MRI-based estimates of PBA and PBAD appear highly heritable, with 
genetic influences accounting for approximately three-quarters of the overall variance. Genetic 
influences in PBA are also highly correlated across time and are best explained by a common 
set of risk factors observable in midlife. Consequently, efforts to identify common molecular 
variants in PBA (Smith et al., 2020) may not require age-stratified samples. Our findings are 
also consistent with the hypothesis that common genetic risks explain most of the individual 
differences in brain ageing beginning in midlife and onwards. 
 
Regarding environments, we found that PBA could not be explained by any shared or between-
group environmental influences. Instead, all environments were entirely random and unshared 
and only moderately correlated across time. Thus, in terms of individual differences in brain 
ageing, environments shared between family members, e.g. similar household incomes and 
SES (Davies et al., 2015; van der Loos et al., 2013), are of less importance than environments 
that are unique to individuals, e.g. diet, drug use or allostatic stressors such as negative life 
events (Hatton et al., 2018a). This finding may have implications concerning the efficacy of 
community-based versus individually-targeted efforts to slow rates of brain ageing.  
 
Our hypothesis of accumulative environmental and molecular risks predicted by  
somatic mutation theories that should be captured by autoregression modelling was not 
supported. Instead, our data were more consistent with what is perhaps a counterintuitive 
explanation. To the extent that any unrepaired damage is linked to genetic variation in our 
global indices of PBA, our modelling provided little support for autoregression features or 
accumulation of age-related or age-specific genetic risks over time. Likewise, we found no 
evidence to support the hypothesis that age-specific environmental risks are accumulative. 
 
Instead, our best-fitting model suggests that brain ageing is best explained by stable genetic 
and environmental influences acting via a highly heritable common pathway accounting for most 
of the individual differences over a 21-year period. Our modelling makes no prediction regarding 
the number of genes likely involved in brain ageing. Given recent genome wide association 
scan (GWAS) findings based on multiple brain ageing indices (Smith et al., 2020), including a 
GWAS of lifespan (Timmers et al., 2019), we speculate that ageing processes are highly 
polygenic. Our statistically derived common pathway should not be interpreted to represent any 
identifiable biological structure(s) governing this supervised learning index of ageing. It is, 
however, consistent with Kirkwood’s theory of a centrally regulated process of ageing, which 
under selection, has evolved to optimize the “allocation of metabolic resources across core 
processes like growth, reproduction, and maintenance” (Kirkwood, 2005). Kirkwood et al. also 
argued that ‘network’ theories of ageing used to describe multiple processes (Kirkwood, 1977, 
2005) ought to distinguish upstream mechanisms that set ageing in motion from downstream 
mechanisms that affect ageing at the cellular level toward the end of life (Kowald and Kirkwood, 
1996). The high genetic correlation of rg=0.72 between ages 51 to 55 and 66 to 72 suggests that 
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the broad genetic risks underpinning any putative ‘upstream’ and ‘downstream’ processes are 
mostly shared in common.  
 
4.1. Limitations  
Our results should be interpreted in the context of four potential limitations.  
 
First, our hypothesis testing was not exhaustive. If PBA is related to rates of cellular or 
molecular ageing (Kirkwood, 2005), plausibly, genetic and environmental influences could 
unfold over time, and be better explained by growth processes (Duncan and Duncan, 1991; 
Duncan et al., 1994; McArdle, 1986; McArdle and Epstein, 1987; Nesselroade and Baltes, 
1974). Although each twin pair was assessed on the same scanner on each measurement 
occasion, MRI data were collected on different scanners (i.e., 1.5T at VETSA 1 vs 3T at VETSA 
2 and 3) resulting in likely measurement non-invariance across assessments. Consequently, 
data were residualized for these and other covariate effects. This resulted in the loss of 
interpretable mean and variance information necessary for latent growth curve modeling.  
 
Second, data were limited to ages 51 to 72. Plausibly, genetic and environmental 
autoregression processes occurred before the first assessment (Elliott et al., 2019). There may 
also exist sub-groups of individuals for whom different autoregressions or hybrid auto-
regression plus common factor models provide a better explanation of change. These 
theoretical alternatives are not within the scope of the current analyses and data.  
 
Third, the age distribution of VETSA spans a decade, but the interval between assessments 
was less than this, so results should be interpreted as the average change of individuals with 
this age range. Nevertheless, we repeated our analyses using wave-based data whereby the 
assessment occasion is treated as a different time point while modeling age at assessment as a 
covariate. We also reduce the  
 
Finally, our results may not generalize to women or ethnic minorities. We know of no other 
genetically informative twin studies with comparable and longitudinal MRI data. The uniqueness 
and size of our sample is its key strength.  
 
4.2. Conclusions 
This is the first study to explore the genetic and environmental influences on PBA in a 
longitudinal sample.  We assessed males age 51 to 72 years and report three major findings. 
First, measures of PBA were highly correlated across time. Second, the heritability estimates 
based on univariate twin analyses ranged from 59% to 74%. Finally, there was no evidence that 
PBA could be explained by an accumulation of age-specific genetic or environmental risks. 
Instead, genetic influences at each age interval were highly correlated and captured by a single, 
common factor with a heritability of 73%. Future analyses should explore the sources of genetic 
and environmental covariation between brain ageing and other complex behaviors related to 
cognitive decline. 
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Figures 
 
Figure 1. Univariate variance decomposition to estimate the relative contribution of genetic & environmental influences in predicted brain ageing 
(PBA). A = additive genetic, C = common / shared environmental, and E = unshared environmental influences, rC = correlation of 1 for MZ and DZ 
twin pairs, rA = correlations 1 for MZ and 0.5 for DZ twin pairs. 
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Figure 2. Multivariate correlated factors (a) and competing hypothetical models to explain the sources of variance-covariance between the 
predicted brain age (PBA) scores. These include (b) the auto-regression, (c) common pathway model, and (d) independent pathway models. For 
brevity, only additive genetic (A) & non-shared environmental (E) factors are shown. 
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Figure 3. Best fitting common pathway (CP) multivariate model for predicted brain age (PBA) comprising  additive genetic (A) and non-shared 
environment (E) variance components. CP variance components are standardized. All parameters included 95% confidence intervals. 
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