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ABSTRACT

Although database search tools originally developed for shotgun proteome have been widely
used in immunopeptidomic mass spectrometry identifications, they have been reported t
achieve undesirably low sensitivities and/or high false positive rates as taafetheé hugely
inflated search space caused by the lack of specific enzymic digestions in immuwwpepiio
overcome such a problem, we have developed a -guatiied immunopeptidome database
building tool named IntroSpect, which is designed to fiestrt the peptide motifs from high
confidence hits in the initial search and then build a targeted database fod redizeh.
Evaluated on three representative HLA class | datasets, IntroSpaotpa@ve the sensitivity by

an average of 80% comparing to conventional searches with unspecific digestions while
maintaining a very high accuracy (~96%) as confirmed by synthetic validation egp&sinA
distinct advantage of IntroSpect is that it does not depend on any external HLA data so that i
performs equally well on both wedkudied and poorbgtudied HLA types, unlike a previously
developed method SpectMHC. We have also designed IntroSpect to keep a global Ff2aR that
be conveniently controlled, similar to conventional database search engines. Rially,
demonstratéhe practical value of IntroSpect by discovering neoantigens from MS data directly.

IntroSpect is freely available attps://github.com/BGI2016/IntroSpect




bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454768; this version posted August 4, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Thestudy of immunopeptidome, which is the collection of peptides presented on a cell surface
by major histocompatibility complex (MHC) molecules, is invaluable to the development of
nextgeneration vaccines and immunotherapies against autoimmunity, infectious disedses,
cancer[1-8]. Usually, the identification of immunopeptidome by mass spectrometry (MS) is
carried out with standard database search t@ol€][ such as MSGF+ [11], Comet [L2], Open
pFind [13], X!ITandem [L4], and MaxQuant[15]. These tools, mainly designed for shotgun
proteome, are not able to effectively handle the huge search space caused by midgpestiin
in immunopeptidome 16-18], resulting in low sensitivity and/or high false positive rates on
peptide identificatia [19-24.

Conventional database search for immunopeptidome consists of the following steps:
generating search space by unspecific digestion, assigning the spectra ddfdditCpeptides to
their sequences, and scoring and filtering assignments by a daettssrdiscovery rate (FDR)
[25,26. Unspecific digestiorcould potentially cut proteins between every two adjacent amino
acids, leading to a huge search space. Previous studies have suggested that the ovdrly inflate
search space couldverestimate FDR and lead to low sensitivit®7{29. To increase the
sensitivity of immunopeptidomedatabase searchwo classes otomputational methods have
been developed: the first class, including MSres2@dp PeepRescore2f3d], and MHCquant3Q],
aims to optimize th scoring and filtering of assignments and will be referred to as post
processing tools in this manuscript; the second class, such as SpectB|H&nhs tooptimize
the generation of search space and will be referred to as database buildin§pgeot&IHC
builds the targeted search space based on-pi@tide binding predictions, which is trained

from existing HLAbinding peptide databases. Its performance will be heavily influenced by the
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54 accuracy of the corresponding binding prediction, which may not work well for pstodyed
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HLAs [22]. Furthermore, SpectMHC combines the iterative searches of unspecificiatigest
database and HLAInding peptide database, making it infeasibledlzulate a global FDR3[],
which is important for controlling theverall error rate32].

To increase the sensitivity of immunopeptidome detection, we developed a novejuncted
immunopeptidome database building tool named IntroSpect. IntroSpect trairsffdatat
PSSM models based on the high scoring peptitlestified by conventional database search and
builds a targeted database to carry out refined seardhelnemainder of this paper, we will
detail the development of IntroSpect, demonstrate its superior performanceexstng
database building tools and show how it can be used to identify neoantigens from MS data
directly, an important application in cancer immunotherapies. We believe our fiedigbée,

op@h-source tool makes a significant contribution to advance the field of immunopeptidomics.

MAT ERIALS AND METHODS

Generation of cell lines

The K562 and HCT116 cell lines were obtained from ATCC (American Type Culture
Collection, Manassas, VA and the K562 cell line was engineered to express a single HLA
allele as follows. It was transduced using a highly efficient retroviral vemidmg HLA
A*11:01. The vectors were transfected into a 293T packaging cell line and replidatemtive

virus supernatants were harvested. After infection of K562 cells with the swgrrraattibody

74 directed flow cytometry sorting was done to obtztis with hgh expressions of HLA-A*11:01.

75 Cells were grown in T75 flasks to a density of 1 X ddlls before hrvesting for experiments.
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Purification of HLAI peptides

HLA-I peptides were obtained from K562 and HCT116 cells as described pre\igsislin
brief, 1 x 18 cells were dissociated using 40 ml of lysis buffer with 0.25% Sodium deoxycholate,
1% noctyl glucoside, 100 mM PMSF and protease inhibitor cocktails in PBS at 4 °C for 60 min.
Lysate were further cleared by 30 min centrifugation at 14,000 g. Cleared lysate were
immunoaffinity purified with pafHLA class | complexes antibody covalently bound tot&re
A Sepharose C4B beads. Beads were first washed with 10 column volumes of 150 mM NacCl,
20 mM Tris HCI (buffer A), then 10 column volumes of 400 mM NaCl, 20 mM Tris HCI, then
10 volumes of buffer A again, and finally with 10 column volumes of 20 mM Tris HCI, pH 8.0.
The HLA-1 molecules were eluted at room temperature using 0.1 fic &wed. Eluate were then
loaded on Sefak tC18 cartridges (Waters, 50mg) and washed with 0.1% TFA. The peptides
were separated from HLAcomplexes on the C18 cartridges by eluting with 30% ACN in 0.1%
TFA and concentrated to 20 pl using vacuum centrifugation. Finally, 5 pl sample was used for

MS analysis.

LC-MS/MS analysis of HLA-I peptides

BILA-I peptides of K562 and HCT116 cells were separated by HPLC (15 cm long, 75 pum inner
diameter columns with ReproSfur C18AQ 1.9 um resin) and eluted intm ®rbitrap Fusion
Lumos mass spectrometer (ProxeBiosystems, Thermo Fisher Scientific). Peptides were
separated with a gradient of30% buffer (80% ACN and 0.5% acetic acid) at a flow rate of 250
nL/min over 65 min. MS was performed using ddépendent acquisition (DDA) mode. MS1
scans were conducted a resolution of 120,000 over a scan range of 338D m/z with a target

value of 3 x 18 Based on MS1 scans, MS2 scans were conducted at a resolution of 60,000 at
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98 100 m/z with a target value of 1 x*1@Fragment ion was produced by higher energy ootz

99 dissociation (HCD) at 28% collision energy with a precursor isolation window of 2 m/z.

100 Sequencing and analysis

101 For HCT116 cell line, DNA extractions, libraries construction, and sequencingefmhir
102 100bp) were conducted according to protocols of SEP2000 platform (BGIShenzhen,

103 China). RNASeq data of the HCT116 cell line were downloaded from the NCBI (SRR4228899).

104 Low-quality reads were removed with SOAP nuke v1.5.6.[BNA-Seq data were processed by

105 minimap2 v2.11[35] for read alignment and AAK [36] for variant analysis. RN/Aeq data

106 were processed by HISAT v2.1[87] for read alignment, GATK v3.7 [36] for variant analysis

107 and RSEM v1.3.038] for transcript quantification. A total of 480,905 potential neoantigens (9

10811 mer) were generatédm the sequences with variants.

109 Mass spectrometry database search

110 MS data of B721.22139] and Jurkat22] cell lines were downloaded from public databases

111 (B721.221, MSV00008052th MassIVE; Jurkat, PXD011723 in PRIDE The raw files of

112 public and inhase MS data wereonverted to mgf files using ProteoWizard msConvertGUI.[40]

113 TheMS-GF+ search tool (release 2018.07.17) was employed to search the databases against the
114 converted MS data. The conventional database contains 161,521 Udidrbiuman pragin

115 entries (2017.12.20) and 245 frequently observed contaminants such as human keratins, bovine
116 serum proteins, and proteases. For HCT116 dataset, 480,905 potential neoantigens were added to
117 the databaseParameters of M&F+ are: variable modifications, -términal acetylation

118 (42.010565 Da) and methionine oxidation (15.994915 Da); enzyme, unspecific cleavage;

119 precursor ion tolerance, 10 ppm; peptide lengthh,19charge, 5. For IntroSpect search, the
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daabase contains the peptides that passed the filtering of PSSM models and tthes pepti
identified by conventional search. Except that the enzyme was set to no cleavage, other
parameters were the same as those of conventional sParcblatof42] (version3.02.0) post
processing tool was applied for the estimation at the peptide level of <1% &DBoth
IntroSpect and conventional search. From the pout.tab output file generated byatBercol

assignments to the contaminants were eliminated.

Gibbs clustering of HLA-I peptides

The peptides identified by conventional database search was clustered into variqs gr
using GibbsCluste2.0 Server[43], with the following parameters: number of clusters; 1
motif length, 9; max deletion length 2; max insertion length 0; number of seeds for initial
conditions, 5; penalty factor for intetuster similarity, 0.8; weight on small clusters, 5; trash
cluster to remove outliers, enable; threshold for discarding to trash, 2; number tadritepeer
sequence per temperature step, 10. The peptides in the clusters with the highesei€LD w

retained for further analysis.

PSSM model training anfiltering

Based on theclusters we built PSSM models as described previogW] to learn the
corresponding sequence motifs for peptides in different groups. Briefly, each eRmienthe
PSSM matrix is the likelihood of a specific amino agidt a given position We calculatedP,;
as follows
26 log<e,
whereF4 denotes the frequency of a specific amino acid at the specific position in the peptides

identified by conventional searcBx denotes the frequency of the specific amino acid from a
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142 background database (such as Uniprot human protein database)k eneé random value
143 (ranging from 0 to 1) generated from a Dirichlet distribu{®]. To filter the whole proteome
144 database to generate a targeted one, we define the motif score of a given peptide a®the sum

145 theP, at each site in the PSSM and only kepsthwith a motif score greater than 0.3.

146  Synthetic peptide validation

147 A total of 118 mandomly selected peptides from K562 dataset were synthesizkednalyzed
148 under the same MS conditions with K562 HLA | peptides. The mirror plots of spectradmetw
149 synthetic peptides and eluted peptides were generated by48P\W o validate a peptide wth

150 could be presented by MHICcomplex, the following criteria were considered: i) the variation of
151 retention time between precursor ions was less than Jijrtime pattern and retention time were

152matched between synthetic and target peptidésno less than 5 product ions.

153 Peptide Pearson Correlation Coefficient (PCC) calculation

154 To quantify the similarity between two sets of peptidéhk the same length, we calculated the
155 Pearson Correlation Coefficient (PCC) of the amino a@duencies betweendm. For a given
156 positioni, we first calculated the empirical probability mass fiord (pmfs) of the amino acid
157 distributions in both the firstx{ and secondyj sets. The PCC between these two random

158 variablesX; andY;, PCCixivi, is then computed as
0 0 — O AN
159 2% 8= —, ..

160where cov is the covariance addfjare the standard deviations.

161 Code Availability
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162 We have made IntroSpeavailable on GitHub: https://github.com/BGI2016/IntroSpect. It is a
163 commandine tool written in Perlwhich requires GibbsCluster v2.0 preinstalled, in Darwin
164 (Mac) or Linux platforms. The tool takes an input protein FASTA database and peptides
165 identified by conventional search and outputs targeted database which could be used for refined
166 high sensitivity identification.

167

168 RESULTS

169 The development of IntroSpect

170 In order to reduce the overly inflated search space caused by unspecific diges&ons
171 developed a strategy of magtiided digestion in IntroSpect. The megifiided digestion leads to

172 a small and targeted database in whichpibgtides that are extremely unlikely to be present in a
173 given sample will be filtered oulReptides thatlo exst in the sample will get higher g values due
174 to less competitionsmaking it easier for real peptides to stay after FDRring. Therefore,

175 IntroSpect can achieve higher statistical power, and iglemiifre peptides at the same FDR

176 Searchwith IntroSpet includes four steps (Figure l1la). Step 1 is to import the conventional
177 protein database and MS raw data into the search engine, and obtain peptides that [@Rs 1% F
178 filtering. These higkconfidence peptides are then clustered into groups by GibbsCluster2.0 in
179 step 2, and peptides in the same group are used to train a pspgimfic scoring matrix (PSSM)
180 model to learn their motifs. In step 3, the PSSM mosdealsed to score eagieptidein the

181 conventional database, and peptides with PSSM score(th6.8ptimal threshold in our tgsts

182 well as those with FDR < 1% in the fingiund are combined to become the new search space.

183 Step 4 runs the secomdund search against this new, targeted database to identify peptides that
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184 pass 1% FDR as the final output. Unlike previous mroltind search strategie$921 where

185 different rounds of results are combined, we decide to add thediinstl peptides directly into

186 the targeted database for the second (and final) round search, so that a globanFB&R c
187 obtained.As we will show later, the vast majority of first roundopides will still appear in the

188 final results. Steps 2 and 3 are written in Perl to form the IntroSpect packalgesteps 1 and 4

189 are left to the users to decide how to build the conventional database and to run the sewch engi

190 of their choice.

10
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192 Figure 1. IntroSpect improvepeptide identificatiorsensitivity by reducing the search space. (a)
193 The flowchart of the conventional database search and IntroSpect databas€sekmttbSpect

194 significantly decreases the database size and incrémsetentified peptides. The database size
195 is calculatedas the number of-@1mer peptides in the database. The gray boxes on the top

196 denote the cell lines.

197 IntroSpect can identify substantially more peptides

198 To evaluate IntroSpect, wested its performance mHC class | immunopeptidome datasets
199 from Jurkat, K562 and B721.221 cell lines (Table 1).fis usedMS-GF as the search engine

200 and Percolator for 1% FDR filtering, aman IntroSpect, SpectMHC and conventional database
201 search to identify d1mer peptides on these dataseis,48] The databases generated by
202 Introspect are much smaller than the conventional databases (0.5%, 0.7%amespectively,

203 Figure 1b), and search with these reduced databases resulted in substantially no@® ynegbdr

204 the same FDR (1:8 1.4 and 2.4 folds respectively, Figure 1b, Figure )SThe databases

205 generated by Introspect are also significantly smaller than those by SpectMKICtd~1/10

206 Figure 1b), and the newly identified peptides 4ar8, 1.9, and 13.8 folds than those of
207 SpectMHC (Figure 1b). We further calculated the rati@sdigned spectra to total spectra in
208 these three search strategies. IntroSpect can assign 41.67%~156.18% more spebtsetiodn t
209 conventional database search aadb3%~79.21% more than SpectMHC (Figurg. S2

210 In addition, we tested troSpectwith another two common search engines, i.e., Comet
211 (combined with Percolator) and MaxQuant, and observed the same trend. Moreapecif

212 when using Comet, IntroSpect can identify 3.3, 3.5 and 5.8 folds of total peptides comparing
213 with conventional search and 1.0, 2.3 and 2.0 folds of new peptides comparing with SpectMHC;

214 when using MaxQuant, the improvements are 2.9, 1.8 and 1.8 folds for conventional search and

12
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2.6, 1.5 and 1.8olds for SgctMHC respectively (Figure3p These results clearlghow that
IntroSpect is not only much more sensitive than conventional search but also considerably mor

sensitive than SpectMHC, a previously developed method that also aims to optinsearttte

218 space for immunopeptidome.

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1.Summary of immunopejolome data sets.

B721.221 K562 Jurkat
A*03:01,
B*07:02,
HLA A*02:07 A*11:01 B*35:03,
Dataset ¢*04:01,
C*07:02
Source Public Inhouse Public
(MSV000080527) (PXD011723)
Total spectra 111,662 64,572 670,119

IntroSpect achieved a similar accuracy as conventional search

To assess the accuracy of peptides identified by IntraSpecfirst compared the proportion
of identified peptides predicted to be binders by both IntraSged the conventional search.
Similar strategies have been prawsty applied to check for the quality of MS d§2&, 23, 39
49]. We predicted IC50 values of peptides using netMHCpaf50)Cand drew the distribution
of IC 50 values for all identified peptides, with a vertical line indicating theffctdr binders
(IC50 < 500nm, Figure 2a). Please note that SpectMHC was not included in this analysis since
netMHCpan has already been used whaeilding the targeted database. We found that overall
these two sets of distributions are very similar across the three datatiethose identified by
IntroSpect had slightly more binders (87.86% vs. 85.09% for Jurkat, 89.04% vs. 88.80% for
K562 and 26.02% vs. 25.50% for B721.221). Notably, the percentggedittedbinders in the
engineered singlallele B721.221 cell line, whose HLA type is A*02:07, is very low, as has

been previously showf39]. This is because A*02:07 is a poorly studied HLAlallevith a total

13
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233 of 180 binding affinity data points available, among which 22 are binders. This also partially
234 explains why IntroSpec’s improvement over SpectMHC is particularly high for thisedata

235 We further visualized HLAvinding motifs using iceLag [51,53. Sequence logos of the

236 representative-tner peptides from IntroSpect and conventional database search displayed high
237 similarity in all datasets (Figure 2b). In addition, weantified the similarities of the HLA

238 binding motifs based on the Pearson Correlation Coeffidetween the amino acid

239 frequenciedPCGCaar) of peptides ball positions The average PCg&: of all positions All) and

240 each anchor position (P2, P3, #83-56] are all greater than 0.95 (Figure 2c). We also obtained
241 peptides of the correspondimtl_A allele from IEDB and compared them with those obtained by
242 us, and the results showed that the sequence motifs of our datasets were highbntavigist

243 those from IEDB (Figure 94

14
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Figure 2. Immunopeptides from IntroSpect and conventional database seaxdrasimilar. (a)

The distribution of predicted IC50 values of peptides identified by the conventiodal a
IntroSpect search: the red dotted lines represent IC50 = 500nM, and the peptides inrglagaded a
arepredicted to bestrong or weak binders, with tingpercentages marked above the figure. (b)
The sequence logo comparison of immunopeptides in various datasets (B7R1022W/,
K562-A*11:01 and JurkaB*07:02) by the conventional and IntroSpect sealch.Pearson
correlation coefficients between thmiao acid frequencies by the conventional and IntroSpect

2&2arch at P2, P3, R@d allpositions of 9-mer peptides, the red broken line indicates 0.95.

Finally, to validate the peptides identified by IntroSpect, we randomly selected @f list
peptides from the K562 dataset. A total of 118 peptides (27 peptides newly identified by
IntroSpect 91 peptides identified by both method#re synthesized and analyzed under the
same MS acquisition conditions as that of K562 cell line. The spectra of symbgtids with
highest PSM scores were then compared to the spectra of eluted peptides fromlKb@&ice
the experiment to confirm or reject the peptide identity. We found that 97.80% of the peptides
(89 out of 91) identified by both methods could be confirmed by spectral validation, as well as
96.30%(26 out of 27) detected by IntroSpect method diilgble 2). Collectively, these results

demonstrated that IntroSpect can not only identify many more peptides but also achieve a

262accuracy that is on a par withet conventional search method.

263

264

Table 2. Randomly selected peptides identified by IntroSpect and conventional datababke sear

were confirmed by spectral validation

Identified Selected for Confirmed Precision

Dataset Source peptides Synthesis positive (%)

ksez Both conventional , 4qp 01 89 97.80
and IntroSpect

16
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IntroSpect only 993 27 26 96.30

IntroSpect inherits the results of conventinal database search

In MS data analysis, spectra provide the raw evidence for identified pepkita®fore, the
essence of newly identified peptides by IntroSpect is a reassignment of thea speaic
recognized in conventional search. Based on IntroSpect’s methodology, we hypothesized that the
identified spectra and peptides from IntroSpect would cover the vast majoribose# from
conventional search. Indeed, when we calculated the overlap of both identified spectra a
peptides from the two methods, the overlapped spectra or peptides accounted for more than 99%
of those identified by the conventional method in all three datasets (Figure 3a). Moteera
were on average 48% of spectra and 44% of peptides identified by IntroSpect alone h@re furt
observed that part of the unique spectra identified by IntroSpect (6% to 58%) matched to
peptides already identified by conventional search, boosting the evidence of these previously
identified peptides (17% to 88%, Figure 3Wje call thenrefined peptideswhich are those that
can be identified in the conventional search but assigned extra spectra by Intrib$peairth
pointing out that on average 21% of refined peptides had only 1 supported spectrum in the
conventional search, but these proportions went down to zero with the added spectra identified
by IntroSpect, while the proportion of refined peptides matched with more than 2aspect
increased from 58% to 90% (Figure 3c). Both lines of evidence, i.e., the overlap between
IntroSpect and conventional search and the added support of IntroSpect identified fepectr
refined peptides, showed the high consistency betweentiheseearch strategies, and validated

our design choice of not simply aggregating different rounds of iterative search, whiehecend

286the extra benefit of a unified global FDR.
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Figure 3. The high consistency in the spectra and peptides between the conventional search and
RB&Spect searcl{a) Most of spectra (top panel) or immunopeptides (bottom panel), detected by
conventional method, can be identified through IntroSpect. Regions 1, 2, and 3 denote spectra
(top panel) or immunopeptides (bottom panel), detected by conventional method only, both
methods, or IntroSpect onlyThe percentages are calculated based on the total nushber
peptides or spectra identified by both methods. The gray boxes on the right panel denote cell
lines. (b) A fraction of spectra newly identified by the IntroSpect matched to pefrifiesd
peptides) that had been previously identified by the conventional searching. The refimgespept
were marked in dark colofc) The assigned spectra for refined peptides were signifycantl

increased.

The database generated by IntroSpect is smaller and more targeted

Previous studies have suggested that small, targeted skedadn@ beneficial for MS database
search 16]. Here we have shown that IntroSpect does have a snu@tabase and is more
sensitive than SpectMHC (Figure 1b, 1c). However, since IntroSpect learns muatifghie
initial search results while SpectMHC learns motifs froxtemal data, we suspect their
targeted databases differ more than just size. To investigate this, we adjestecesholds of
IntroSpect and SpectMHC to obtain pairs of target databases with the safoe thiee<562 cell
line, which has been engineered to express a siigke-A*11:01 allele. All the generated
databases of different sizes were used to identify peptides for the K562 datasetro8ymetnt
still had significantadvantages over SpectMH@ terms of the numbers of identified peptides
(Figure 4a). Furthermore, although the overlap between the databases by the two methods wa
small (~20%), the overlap between the identified peptides was large (~80%ieamahtbers of

peptides solely identified by IntroSpect was about 10 times more than those by SpectMHC

19
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311 across different database sizes (Figure 4b). Clearly, tlessdts indicate that the database
312 generated by IntroSpect is more targeted, or of higher quality when used in MS database searc
313 comparing with that by SpectMHC. This is likely because motifs learned fronautie 8IS data

314 (as in IntroSpect) are a better match than those learoedeixternal data (as in SpectMHC). To

315 quantify, we calculated the averagCaar at all positions betwen the peptides in the databases
316 and those identified by SpectMHC or IntroSpect, and IntroSpect does have highgf CC
317 across different database sizes (Figdece Figure $). We also computed the same quantity
318 across all three datasets with the defdlitesholds (PSSM score > 0.3 for IntroSpect and
319 NetMHCpan 4.0 rank <2% for SpectMHC) of SpectMHC and IntroSped olservedthe same

320 trend(Figure 4d).

321
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Figure 4. The IntroSpecgenerates a smaller and more targeted database thah3$ipaictMHC.

(a) The line plot compared the numbers of identified peptides by SpectMHC and IntroSpect on
databases with various matching sizes. The data point with an asterisk corresponasatiif the
score of 0.3, the empirically chosen optimal threshold for IntroSfi®cthe bar plot shows the
relationship between the databases and identified peptides of IntroSpect and SpemiMHC
databases with various size®) The line plot compared the P&Eby SpectMHC and
IntroSpectsearch on databases with various sizes. (d)-B@CP2, P3, P9 and.R positions of

the database and identified peptides by SpectMHC, IntroSpect and conventiorrabgseidmee

330atasets (B721.221, K562 and Jurkat).
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IntroSpect identified more neoantigens than conventional method

Having established the superior performance of IntroSpect, we next applied ikdp a
application in immunology, which is to directly identify neoantigens from MS profilindghef t
immunopeptidome. This is a very challenging problem since neoantigens are typically of low
abundance. However, due to the practical importance of neoantigens in cancer immpiegthera
great efforts have been made to identify them in the past, going beyond the standard MS
techniques, such as manual inspections of MS spectra without stringent FDRdfi[E&ti or
experimentally altering the antigen processing machinery (APM) comporemntsreéase the
abundance of neoantigens [58:61

Here, we generated immunopeptidome as well as sequeratedodthe HCT116 cell line by
standard experimental techniques and focused on comparing the abilities of coralesgarch
and IntroSpect in identifying neoantigens. Based on the sequencing data of HCT116, we first
generated alB-11 mer potential neoantigerahd added them to the Uniprot databased

performed conventional and IntroSpect search as described previously. As befo&pdair
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was able to identify substantially more peptides than conventional search (2,222 versus 1,435),
but more importantly, 10 neoantigens were identified by IntroSpect versus 4 by conventional
search, a more than two fold increase (Figure 5a, TableASIgxpected, the-galues of these

10 neoantigens were significantly reduced in IntroSpect comparing with conventiordd sea
(Figure 5b). We also manually inspected the supported spectra of these 10 neoantigens and they
are all of high quality (Figure 5c, Figure)S To further exam the quality of these identified
neoantigens, we exhaustedly search for established experimental evidenem ointtiuding

ligand presentation, qualitative binding, IFNg release assay Gic. Ve were able to find
previous evidence for 1 of the 4 neoantigens identified by conventional search but 5 of the 6
additional neoantigens discovered by InstroSpect (6 of 10 in total). Becker etcehtly
proposed to use 5AZA to treat the HCT116 cell line to enhance its antigen presentation proces
and identified a number of extra neoantigens based on this tecii@iuénterestingly, while
conventional search with our data was not able to identify any of the neoantigens discovered by
Becker et al., IntroSpect was able to identify two of them (SLMEQIPHL arld@MVFENTY).

In summary, we believe that this brief case study has shown the good potential of bitmoSpe

practical applications.
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361
362 Figure 5. IntroSpectidentified more neoantigens thahe conventional searclfa) Flowcharts

363 indicating key steps involved in neoantigen discovery. (b) Percolatatugs of neoantigens
364 identified by both methods are plotted. The grids at the bottom of the plot mark the neoantigens

365 with positive assayesults fromother research. The Ndd® peptideAEADAALQKA) has no
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g-value in the conventional search, and we define it to be 1. (c) Spectra of neoantigeateandi
newly assigned by IntroSpect. Peaks represent b ions in green, y ions in orange and precursor

ions in dark grey.

DISCUSSION
Currently, highthroughput immunopeptidome profiling are usually based on MS database

search, but the lack of specific digestion leads to low sensitiéye, we developed IntroSpect,

a motifguided immunopeptidome database building tool, to overcome this challenge. By testing
on diverseimmunopeptidomealatasets, we showed thHatroSpect could significantly increase

the sensitivity ofidentification comparing with not only conventional search, but also a
previously developed database building tool SpectMHC, while maintaining a high accuracy. |
also worth mentioning that it can be easily combined with existing post processiag Wil to
potentially achieve further performance improvement. However, IntroSpeaioti without
limitations. For example, the current PSSM model is pegadgth and HLA allele specific,
which means that the higtonfidence peptides identified in thatial search must be further
subdivided for model training. When the peptides identified from conventional search is
relatively few, say <500, the training set of a certain length and HLA allele begiato small to
effectively train the corresponding P8Smodel, and in such cases, the external data based
SpectMHC could perform better. We plan to next adopt deep learning techniques to leverage
existing, large scale MS data to ftrain length independent sequence models and then adapt the
pretrained moded to specific experiments by transfer learning. The motif scores, which only
serve as an empirically chosen threshold to filter out highly unlikely peptides, could also be
better utilized.One way to do so is to assign weighted prior probabilities foereifit peptides

based on their motif scores when doing database search, similar to whatrhdereealLi S et
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389 al’s recentlydevelopectonstrained de novo sequencing appro&h Nonetheless, we believe

390 the simple and effective strategy implemented in IntroSpect has significanilgdnthe quality

391 of MS profiled immunopeptidome analysis forward and opened the door to apply this exciting
392 MS technique in broader scenarios, such as in understandingcanonical or post

393 translationallymodified immunopeptides [64,§5
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