

1 **Title:** Long-distance dispersal of pigeons and doves generated new ecological opportunities for
2 host-switching and adaptive radiation by their parasites.
3

4 **Authors:** Bret M. Boyd¹, Nam-Phuong Nguyen^{2,3}, Julie M. Allen⁴, Robert M. Waterhouse⁵, Kyle
5 B. Vo¹, Andrew D. Sweet⁶, Dale H. Clayton⁷, Sarah E. Bush⁷, Michael D. Shapiro⁷, and Kevin P.
6 Johnson⁸
7

8 **Affiliations:**

9 ¹Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia,
10 USA

11 ²Boundless Bio, INC, La Jolla, California, USA

12 ³Department of Computer Science, University of Illinois, Champaign, Illinois, USA

13 ⁴Department of Biology, University of Nevada, Reno, Reno, Nevada, USA

14 ⁵Department of Ecology and Evolution, University of Lausanne and Swiss Institute of
15 Bioinformatics, Lausanne, Switzerland

16 ⁶Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA

17 ⁷School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA

18 ⁸Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign,
19 Illinois, USA

20

21 **Address correspondence to** boydbm@vcu.edu

22

23 **Abstract**

24

25 Adaptive radiation is an important mechanism of organismal diversification, and can be triggered
26 by new ecological opportunities. Although poorly studied in this regard, parasites present an ideal
27 system to study adaptive radiations because of their close associations with host species. Both
28 experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves
29 have undergone an adaptive radiation, resulting in differences in both body size and overall
30 coloration. Here we show that long-distance dispersal by dove hosts was important for parasite
31 diversification, providing new ecological opportunities for parasites to speciate by host-switching.
32 We further show that these new opportunities for host-switching decreased over time, and
33 cospeciation became the more dominant mode of parasite speciation. Taken together, our results
34 suggest that host dispersal, followed by host-switching, provided novel ecological opportunities
35 that facilitated adaptive radiation by parasites.

36

37 **Keywords:** Phylogenomics, cospeciation, Columbidae, ectoparasite, lice

38

39 **Introduction**

40

41 Adaptive radiations have profoundly influenced the development of evolutionary theory [1,2]. An
42 adaptive radiation occurs when speciation is triggered by new ecological opportunities [1,3].
43 Classic examples of adaptive radiation involve the evolution of diverse morphological features,
44 such as bill shape in Galapagos finches [4] and Hawaiian honeycreepers [5], body shape in
45 Caribbean anole lizards [6], mouthparts and body shape in African rift lake cichlid fishes [7], and
46 growth habit in Hawaiian silversword plants [8]. These notable radiations occurred in isolated
47 habitats, such as volcanic islands or recently formed lakes, in which a newly colonizing lineage
48 diversified into multiple lineages in response to new ecological opportunities [1,3].

49

50 Relatively few studies of adaptive radiation have focused on animal parasites, despite the fact that
51 they represent much of the world's biodiversity [9]. There is great potential for adaptive radiation
52 by parasites, especially when a parasite lineage can switch to a novel host lineage that was not
53 previously colonized. In particular, when a parasite species colonizes a previously un-infested
54 host lineage (analogous to a free-living species dispersing to an uninhabited island or lake), the
55 parasite may subsequently switch among the species in that host lineage, resulting in parasite
56 diversification [9]. This, in short, is an example of adaptive radiation of parasites across host
57 "islands".

58

59 Two recent studies identified the ecological mechanisms of adaptive speciation within a group of
60 animal parasites [10,11], the wing lice (Insecta: Phthiraptera: *Columbicola*) of pigeons and doves
61 (hereafter doves; Aves: Columbiformes). Wing lice are permanent ectoparasites that pass all stages
62 of their life cycle on the body of the host, feeding on downy feathers and escaping from host
63 preening by inserting between the feather barbs in the wing [9]. In these lice, both size and color
64 are correlated with that of their hosts [10,12,13]. Recent experimental studies demonstrated the
65 adaptive basis of size and color [10,11]. Wing lice (*Columbicola columbae*) transferred to pigeon
66 breeds that differ dramatically in size (simulating host-switching), rapidly evolved differences in
67 size within a few generations [11]. Size was an adaptation to escape host-preening defense [11,12].
68 Changes in body size triggered reproductive isolation, a precursor to speciation, due to a mismatch

69 between male and female body sizes that limited copulation [11]. Through similar transfer
70 experiments, louse coloration was shown to be an adaptation for crypsis, such that lice transferred
71 to white pigeon breeds became lighter and those to dark breeds became darker [10]. Again, this
72 adaptation was selected by host preening defense, as birds more readily removed lice that did not
73 match host coloration [10]. Together, these experiments demonstrated the adaptive basis of
74 morphological variation across this clade of parasites and recreated the diversity of size and color
75 phenotypes observed across known wing louse species [10,13]. Moreover, these studies show how
76 parasites can potentially rapidly and dramatically diversify when presented with novel ecological
77 conditions.

78 Given that the adaptive mechanisms underpinning reproductive isolation have been identified
79 through experimental work emulating host-switching [10,11], we went beyond these studies to
80 focus on the ecological opportunities for host-switching that serve as a foundation for adaptive
81 radiations in parasites. Host dispersal and contact between host species have been recognized as
82 having the potential to increase parasite diversity [14-16]. Here we specifically focused on the
83 role host dispersal plays in bringing parasite lineages into contact with novel host species with
84 which they did not previously overlap in geographic range. We then evaluated whether this novel
85 range overlap provided new opportunities for host-switching by identifying host dispersal events
86 that preceded parasite speciation through host-switching [17]. If host-switching was facilitated by
87 host sympatry, two possibilities exist: first, resident parasites may have switched to newly arriving
88 hosts; reciprocally, parasites on the newly arriving hosts may have switched to resident hosts
89 [18,19]. By comparing the dove and wing louse trees, we identified the direction of host-switching
90 by parasites following host dispersal.

91 While ecological opportunity is essential for the occurrence of adaptive radiations, these
92 opportunities are finite and radiating lineages will ultimately saturate open niche space [20-23].
93 Thus, in an adaptive radiation, the predominant mode of speciation should change over time. In
94 host-parasite systems, parasite speciation events can be categorized as having resulted from 1)
95 host-switching, which involves dispersal to and establishment on a host species on which a parasite
96 did not previously occur, or 2) cospeciation, which is the simultaneous divergence of host and
97 parasite lineages [9]. Using cophylogenetic reconstruction and time-calibrated trees of doves and
98 their wing lice, we classified louse speciation events as resulting from either host-switching or
99 cospeciation. Finally, we compared the relative timing of these two events. Specifically, we
100 evaluated whether the age of dove wing louse speciation events triggered by host-switching tend
101 to be older than speciation events triggered by cospeciation. This pattern might be predicted if
102 host lineages become more fully colonized by a parasite lineage over time, eventually filling up
103 open niches and reducing ecological opportunity. Taken together, these analyses provide a
104 framework to evaluate the phylogenetic and biogeographic underpinnings of adaptive radiation in
105 host-parasite systems, by focusing on new ecological opportunities generated by long-distance
106 host dispersal and the relative timing of host-switching and cospeciation events.

107

108 **Methods**

109

110 A total of 61 species of doves were used for whole genome sequencing. These species were
111 selected to include dove species that host the parasitic wing lice in the phylogenomic tree described
112 by Boyd et al. [24]. Genomic DNA was extracted from dove tissues and sequenced on the Illumina

115 HiSeq platform. Protein-coding genes were identified from the *Columba livia* reference genome
116 using the MAKER pipeline [25,26]. We then identified single-copy orthologous genes in the
117 genome of *C. livia* and all Sauropsida available in OrthoDB v8 [27]. We then removed candidate
118 within-clade paralogs (supplementary methods). Sequence reads from each library were mapped
119 to the remaining *C. livia* orthologs using Bowtie2 (v2.3.4.1) [28]. Final gene sequences for all 61
120 dove species were generated by taking the consensus base at each position [29] and clustered into
121 orthologous gene sets.

122
123 We used two methods to infer the evolutionary relationships of dove species. Ortholog sets were
124 aligned as translated amino acid sequences using UPP (v2.0) [30] and back translated to nucleotide
125 sequences. RAxML (v8.2.9) [31] was used to estimate individual gene trees under the GTR+Γ
126 models and 100 bootstrap replicates. ASTRAL-II (v4.9.9) [32], a coalescence-based analysis, was
127 used to estimate a species tree from the maximum likelihood (ML) gene trees. Next, we sought to
128 estimate the dove phylogeny from all of the sequence data simultaneously. We generated a
129 concatenated alignment including all sequence data to estimate the ML tree based on this
130 supermatrix. For each gene tree, the GTR+Γ parameters were estimated for each codon position,
131 and k-means clustering was applied to these codon rate parameters to create a partition for the
132 alignment. An ML tree was estimated from the partitioned alignment using RAxML under GTR+Γ
133 models. A total of 100 bootstrap replicate trees were computed to infer support.

134
135 MCMCTree, implemented in PAML (v4.9) [33], was then used to estimate the timing of dove and
136 wing louse speciation events. We identified six dove fossils suitable as minimum age internal
137 calibration points (table S1). A maximum constraint was added to the root in order to estimate
138 global DNA substitution rates. Two different analyses were conducted to accommodate two
139 different root constraints (table S1). The oldest fossil in the tree, *Arenicolumba*, is a biogeographic
140 anomaly (fossil described from New World, but closely allied species found in Old World) [34],
141 so each analysis was done both with and without this fossil calibration. Likewise, wing louse
142 species divergence times were estimated in millions of years using the ML tree described by Boyd
143 et al. [24]. Nine internal calibration points were used based on terminal cospeciation events, in
144 which terminal sister species of lice were associated with terminal sister species of hosts (table
145 S1). The age ranges of these internal calibration points were based on the 95% confidence intervals
146 of the estimated dates of these nodes in host trees. Maximum constraints were added to the root
147 and to estimate global DNA substitution rates (table S1). We conducted four analyses in total
148 using all possible combinations of two different maximum constraints and two different sets of
149 internal calibration points (based on different estimates of the timing of cospeciation given the two
150 different host trees). In both dove and louse trees, branch lengths were estimated using baseml
151 and then divergence times were estimated under a GTR+Γ model with Markov chain Monte Carlo
152 (MCMC) approximation and an independent rates model. We determined that node age estimates
153 converged between identical runs using Tracer (v1.7.1) [35]. Additionally, a time-calibrated tree
154 was then used to estimate the ancestral species ranges of doves using BioGeoBEARS (v1.1.1) [36]
155 under the optimal model of DIVA-like+J.

156
157 JANE (v4) [37] was used to identify host-parasite cospeciation events and speciation following
158 host-switching by comparing host and parasite phylogenies. In total, three comparisons were
159 conducted. First, we compared louse and host trees disregarding node ages. Second, we compared
160 louse and host trees while binning speciation events within three different time intervals based on

161 node age. The three intervals were based on a review of Gondwanan biotic interchange (66-45,
162 45-30, and 30-0 mya) [38]. Time-constrained comparisons were conducted with one louse time-
163 tree and both available host time-trees (additional comparisons were not needed, given the time
164 intervals used, because the node age category assignments were identical). In all comparisons,
165 nodes in the louse tree with less than 75% bootstrap support were collapsed to reflect ambiguity
166 around species relationships. Using the BioGeoBEARS reconstruction, we identified lineages in
167 the tree that were inferred to have colonized one biogeographic region from another. By
168 combining the results from JANE and BioGeoBEARS, we evaluated whether dove lineages
169 moving from one region to another 1) acquired lice from a dove lineage already in that region, or
170 2) carried lice to a new region where they switched to dove lineages already in the region. We
171 also categorized each speciation event (i.e. node) in the louse tree as the result of: 1) host-switching
172 or 2) cospeciation. Using the estimated dates for each of these events, we plotted the relative ratio
173 of cospeciation and host-switching events to overall speciation events and the generation of
174 parasite diversity over time.

175

176 Results

177

178 We identified 6,363 single-copy orthologs from which to infer the phylogenetic relationships of
179 61 dove species. Simultaneous analysis of a supermatrix (11,103,960 bases) produced a well-
180 supported tree (100% bootstrap support for 62 of 63 nodes; figure S1) that was largely in agreement
181 with a coalescence-based species tree (0.99-1 posterior probability for 60 of 63 nodes; figure S2).
182 Species divergence times were estimated using two different sets of root maximum constraints,
183 and these analyses suggest that doves began to diversify around 51 or 60 mya depending on root
184 age calibration (figures 1, S3-S4). Removing a biogeographically unusual and comparatively old
185 fossil from the genus *Arenicolumba* resulted in node ages that were only slightly younger (45 or
186 55 mya), indicating that this fossil did not have a dramatic impact on the results. Species
187 divergence time estimates for wing lice showed diversification began around either 15 or 24 mya
188 depending on root age calibration (figures S5-S8). Both dove and wing louse trees were structured
189 by geographic region, and ancestral area reconstruction suggested Australasia + New World was
190 the ancestral range of doves. The earliest divergence splits the dove tree into two clades, one with
191 an Australasian origin (Raphinae) and the other with a New World origin (Claravinae +
192 Columbinae; figure 1). During the Neogene, members of the Australasian clade went on to
193 colonize Eurasia and Africa, while members of the New World clade went on to colonize
194 Australasia, Eurasia, and Africa.

195

196 An initial comparison of the dove and wing louse trees, without considering the timing of
197 speciation events, suggests that the lice had an ancestral host among the Australasian dove clade
198 (table S2). When the timing of louse speciation events is constrained by time intervals informed
199 by habitat connectivity (wing louse diversification beginning at 15 or 24 mya), the analysis again
200 supported a single geographic origin of wing lice. However, the ancestral host of wing lice is
201 unclear, with four possible origins: one in Australasia, two in the New World, and one in Africa
202 (figures S9-S11, table S2). Comparisons of dove and louse trees identified 32 cospeciation events
203 and 28 host-switching events (figure 2; table S2). The overall proportion of cumulative wing louse
204 speciation events attributable to cospeciation increased over time (figures 3, S12). The median
205 age of louse speciation events due to cospeciation was significantly younger than those due to
206 host-switching (Wilcoxon Signed Rank test $P = 0.021$). A comparison of host and parasite trees

207 without consideration of time constraints found additional cospeciation events (table S2).
208 However, based on divergence times obtained from the host tree, these additional events would
209 have occurred prior to our estimates for the onset of louse diversification, and thus are incompatible
210 with the time calibrated host and parasite trees. Examining dove clades that are inferred to have
211 colonized new biogeographic regions through long-distance dispersal, we observed two patterns:
212 1) doves acquiring lice from native hosts following dispersal and colonization of a new region (3
213 cases) and 2) a dove bringing lice to new region through dispersal, which then switch to a native
214 host in that region (1 case). Three examples of doves acquiring lice from native hosts after
215 colonizing a new region include *Columba* species, which had a New World origin and acquired
216 parasites after colonizing Africa; *Turtur* species, which had an Australasian origin and acquired
217 lice after colonizing Africa; and *Macropygia* + *Reinwardtoena* species, which had a New World
218 origin and acquired lice upon colonizing Australasia. An example of doves bringing lice to new
219 region include lice carried from Africa to Australasia by dispersing *Columba* species, where the
220 lice then switched to the genus *Chalcophaps* (figures S9-S11).

221
222

223 Discussion

224

225 In this study, we explored new ecological opportunities provided by host dispersal for adaptive
226 radiation in parasites. Specifically, we used phylogenomic datasets derived from whole genome
227 sequence reads for both dove hosts and their wing louse parasites to reconstruct the biogeographic
228 context and timing of host-switching events. We found that long-distance dispersal by doves, in
229 multiple cases, was followed by a host-switching event of their lice to a novel host lineage with
230 which that louse lineage now had geographic overlap. In addition, over the course of wing louse
231 diversification, we found that the contribution of host-switching to parasite speciation declined
232 over time, relative to cospeciation. These results indicate that hosts without a lineage of parasites
233 initially presented a new ecological opportunity for adaptive radiation by their parasites.

234

235 Focusing specifically on the evolutionary history of the avian hosts, our phylogenomic results
236 show that early dove diversification was shaped by continental drift and occurred prior to the
237 diversification of extant wing louse species groups. Modern dove species diversity is highest in
238 the southern hemisphere, with centers of dove diversity found in Australasia, Asia, South America,
239 and central Africa [39]. Our analyses point to a subset of these areas, specifically South America
240 and Australasia, as the ancestral range of doves. Doves began to diversify just after the K-Pg
241 boundary, when Australia and South America were connected via Antarctica. The Australia-
242 Antarctica-South American land bridge had a near tropical climate during this period [40], which
243 could have supported a diverse assemblage of early dove species across the region and allowed
244 them to move among these continents [38,41]. Australia broke away from Antarctica at 49-50
245 mya [42], followed by South America at 39 mya [43]. The timing of this separation corresponds
246 to initial divergence of dove lineages, with one lineage remaining in the New World and the other
247 in Australasia.

248

249 Following the geologic breakup of the ancestral range of doves, further diversification was shaped
250 by long-distance dispersal. The separation of Australia and South America from Antarctica marks
251 the start of a period when doves could have used Antarctica as a stepping-stone in dispersal
252 between Australia and South America. We found evidence of one such event, with cuckoo-doves

253 (*Macropygia*+*Reinwardtoena*) moving from the New World to Australasia at this time. The
254 establishment of circumpolar ocean currents around Antarctica 33-34 mya [44] substantially
255 cooled the region [45] and would have prevented further use of this region as a stepping-stone
256 between Australia and the New World [38]. During this later period of dispersal, we see evidence
257 of the movement of green doves (*Treron*), emerald doves (*Chalcophaps*), and wood doves (*Turtur*)
258 from Australasia to Eurasia and Africa. We also see evidence of movement from the New World
259 to the Old World by a clade of rock (*Columba*) and collared (*Streptopelia*) doves (this lineage
260 colonized Africa, Eurasia, and Australasia).

261
262 While doves began to diversify shortly after the K-Pg boundary, wing louse speciation was delayed
263 relative to host speciation and appears to have been facilitated by host-switching following host
264 dispersal. It appears that a single wing louse lineage was isolated within a single geographical
265 region prior to diversification. Wing louse diversification began at 15 or 24 mya, with lice
266 colonizing multiple continents. The timing of wing louse diversification corresponds with the later
267 period of host dispersal. Thus, host dispersal appears to have provided ecological opportunity for
268 host-switching by wing lice. In particular, our phylogenetic reconstructions indicate that resident
269 wing lice switched to newly arriving dove lineages. We also see evidence of the reverse pattern,
270 i.e., wing lice on newly arriving host lineages switched to resident doves.

271
272 Host-switching allowed wing lice to establish on new host clades, leading to parasite radiation.
273 However, our data show that parasite speciation events triggered by host-switching events are
274 significantly older than host-parasite cospeciation events, highlighting the relative importance of
275 dispersal followed by host-switching early in wing louse diversification. However, as new host
276 groups became infested, our data indicate that host-switching became less frequent, suggesting
277 that congeneric competition [46] may have diminished ecological opportunities of wing louse
278 speciation by interfering with host-switching and establishment. A key finding from this work,
279 was not that speciation is diminished following loss of ecological opportunity, but that
280 cospeciation became a relatively more common mode of divergence. This shift was detectable by
281 classifying the mechanism of speciation (host-switching versus cospeciation) relative to time.
282

283 Our results suggest that long-distance dispersal and colonization of new biogeographic regions by
284 host species is important for the initial diversification of parasites and that parasites may take
285 advantage of new ecological opportunities on novel host species. Our results further suggest that
286 long-distance dispersal by host species can shape parasite diversity over evolutionary timescales,
287 providing new opportunities for adaptive radiation by parasites. We observed parallels between
288 our study system and another host-parasite system, lice that parasitize humans. There is evidence
289 that: 1) modern humans acquired head lice from extinct hominids following dispersal and
290 colonization of Eurasia [47], 2) humans carried head lice with them as they colonized the New
291 World via Beringia [48,49], and 3) human lice switched to New World primates after humans
292 colonized the New World [50]. These events mirror the evolutionary patterns of wing lice and
293 their hosts and suggest these processes may be important for parasite diversification more broadly.
294 Additional studies examining the consequences of long-distance host dispersal on parasite
295 speciation and adaptive radiation are needed across a variety of parasites. The results of such
296 studies may have broad relevance to the biology of invasive species and species conservation
297 [18,19].
298

299 **Ethics**

300

301 Research on animals was conducted under University of Illinois, Champaign, Illinois IACUC
302 protocols 10119, 13121, and 15212.

303

304 **Data accessibility**

305

306 Data are available from Figshare 10.6084/m9.figshare.12730337 and raw sequence data are
307 available from the Short Read Archive <https://www.ncbi.nlm.nih.gov/sra> and are organized under
308 BioProject PRJNA318048.

309

310 **Competing interests**

311

312 We declare we have no competing interests.

313

314 **Author contributions**

315

316 Study design (BMB, KPJ, DHC, SEB, MDS), sample procurement (KPJ, SEB, DHC), genome
317 annotation (MDS), identified single-copy orthologs (RMW, BMB), designed and implemented
318 ortholog assembly method (BMB, KPJ), ML and ASTRAL tree construction (NPN), fossil
319 evaluation and MCMCTree doves (JMA), MCMCTree lice (KPJ, BMB), comparative analysis
320 (KBV, BMB, ADS), biogeographic analysis (BMB), manuscript preparation (BMB, NPN, JMA,
321 RMW, KBV, ADS, DHC, SEB, MDS, KPJ).

322

323 **Funding**

324

325 This work was supported by the U.S. National Science Foundation grants DEB-1342604, DEB-
326 1926919, and DEB-1925487 to KPJ; DEB-1342600 to DHC, SEB, and MDS; DEB-9703003 and
327 DEB-0107947 to DHC; DEB-1149160 to MDS; and DEB-1925312 to JMA; U.S. National
328 Institutes of Health grant R01GM115996 to MDS; Swiss National Science Foundation grant
329 PP00P3_170664 to RMW; and the Virginia Commonwealth University, Department of Life
330 Sciences.

331

332 **Acknowledgements**

333

334 We thank the following institutions for providing samples of dove tissues used in this study: Field
335 Museum of Natural History, University of Kansas Museum of Natural History, Louisiana State
336 University Museum of Natural Science, University of Washington Burke Museum, Australian
337 National Wildlife Collection, and the U.S. National Museum of Natural History. We thank David
338 Steadman of the Florida Museum of Natural History for help interpreting fossil evidence, and
339 James Baldwin-Brown of the University of Utah for helpful advice. High Performance Computing
340 resources provide by the High Performance Research Computing (HPRC) Core Facility at Virginia
341 Commonwealth University (<http://chipc.vcu.edu>) were used for conducting the research reported
342 in this work.

343

344 **References**

345

346 1. Gillespie RG, Bennett GM, Meester LD, Feder JL, Fleischer RC, Harmon LJ, Hendry AP,
347 Knope ML, Mallet J, Martin C, et al. 2020. Comparing adaptive radiations across space,
348 time, and taxa. *J. Heredity*. **111**, 1-20.

349 2. Losos JB, Mahler DL. 2010. Adaptive radiation: the interaction of ecological opportunity,
350 adaptation, and speciation. In Bell MA, Futuyma DJ, Eanes WF, Lvinton JS., Ed. *Evolution
351 Since Darwin: The First 150 Years*. MA: Sinauer. 381-420pp.

352 3. Simpson GG. 1953. *The Major Features of Evolution*. New York: Columbia Uni. Press. pp434.

353 4. Grant PR, Grant BR. 2008. *How and Why Species Multiply: The Radiation of Darwin's Finches*.
354 Princeton, NJ: Princeton University Press.

355 5. Lerner HRL, Meyer M, James HF, Hofreiter HF, Fleischer RC. 2011 Multilocus resolution of
356 phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. *Cur.
357 Biol.* **21**, 1838-1844.

358 6. Losos JB. 2009. *Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles*.
359 Berkeley, CA: University of California Press.

360 7. Meyer A, Kocher TD, Basasibawaki P, Wilson AC. 1990. Monophyletic origin of Lake Victoria
361 cichlid fishes. *Nature* **347**, 550-553.

362 8. Seehausen O. 2004. Hybridization and adaptive radiation. *Trends Ecol. Evol.* **19**, 198-207.

363 9. Clayton DH, Bush SE, Johnson KP. 2015. Coevolution of life on hosts: integrating ecology and
364 history. Chicago Uni. Press. pp249.

365 10. Bush, SE, Villa, SM, Altuna, JC, Johnson, KP, Shapiro, MD and Clayton, DH. 2019. Host
366 defense triggers rapid adaptive radiation in experimentally evolving parasites. *Evol. Lett.*
367 **3**, 120–128.

368 11. Villa SM, Altuna JC, Ruff JS, Beach AB, Mulvey LI, Poole EJ, Campbell HE, Johnson KP,
369 Shapiro MD, Bush SE, Clayton DH. 2019. Rapid experimental evolution of reproductive
370 isolation from a single natural population. *Proc. Natl. Acad. Sci.* **116**, 13440-13445.

371 12. Clayton DH, Bush SE, Goates BM, Johnson KP. 2003. Host defense reinforces host-parasite
372 cospeciation. *Proc. Natl. Acad. Sci.* **100**, 15694-15699.

373 13. Bush SE, Kim D, Reed M, Clayton DH. 2010. Evolution of cryptic coloration in ectoparasites.
374 *Am. Nat.* **176**, 529-535.

375 14. Hoberg EP, Brooks DR. 2010. Beyond vicariance: integrating taxon pulses, ecological fitting,
376 and oscillation in evolution and historical biogeography. In Morand S, Krasnov BR. Eds.
377 *The Biogeography of Host-parasite Interactions*. Oxford, Uni. Press. 7-20p.

378 15. Dittmar K. 2010. Palaeogeography of parasites. In Morand S, Krasnov BR. Eds. *The
379 Biogeography of Host-parasite Interactions*. Oxford, Uni. Press. 21-30p.

380 16. Alvarex N, McKey D, Kjellberg F, Hossaert-McKey M. 2010. Phylogeography and historical
381 biogeography of obligate specific mutualisms. In Morand S, Krasnov BR. Eds. *The
382 Biogeography of Host-parasite Interactions*. Oxford, Uni. Press. 31-40p.

383 17. Bataille A, Levin II, Sari EHR. 2018. Colonization of parasites and vectors. In Parker PG. Ed.
384 *Disease Ecology, Social and Ecological Interactions in the Galapagos Islands*. pp 45-79.

385 18. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. 2009. Parasite spillback: a
386 neglected concept in invasion ecology? *Ecology*. **90**, 2047-2056.

387 19. Chalkowski K, Lepczyk CA, Zohdy S. 2018. Parasite ecology of invasive species: conceptual
388 framework and new hypotheses. *Trends Parasitol.* **34**, 655-663.

389 20. Phillimore AB, Price TD. 2008. Density-dependent cladogenesis in birds. *PLoS Biol.* **6**, e71.

390 21. Burbrink FT, Pyron RA. 2010. How does ecological opportunity influence rates of speciation,
391 extinction, and morphological diversification in new world ratsnakes (tribe
392 Lampropeltini)? *Evolution*. **64**, 934-943.

393 22. Rabosky DL, Lovette IJ. 2008. Explosive evolutionary radiations: decreasing speciation or
394 increasing extinction through time? *Evolution*. **62**, 1866-1875.

395 23. Nee S, Moores AO, Havey PH. 1992. Tempo and mode of evolution revealed from molecular
396 phylogenies. *Proc. Natl. Acad. Sci. USA*. **89**, 8322-8326.

397 24. Boyd BM, Allen JM, Nguyen NP, Sweet AD, Warnow T, Shapiro MD, Villa SM, Bush SE,
398 Clayton DH, Johnson KP. 2017. Phylogenomics using target-restricted assembly resolves
399 intrageneric relationships of parasitic lice (Phthiraptera: *Columbicola*). *Syst. Biol.* **66**, 896-
400 911.

401 25. Cantarel BL, Krof I, Robb SFC, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M.
402 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism
403 genomes. *Genome Res.* **18**, 188-196.

404 26. Holt C, Campbell M, Keays DA, Edlman N, Kapusta A, Maclary E, Maclary E, Domyan ET,
405 Suh A, Warren WC, Yandell M, et al. 2018. Improved genome assembly and annotation
406 for the rock pigeon (*Columba livia*). *G3*. **8**, 1391-1398.

407 27. Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simao FA, Pozdnyakov IA,
408 Ioannidis P, Zdobnov EM, 2015. OrthoDB v8: update of the hierarchical catalog of
409 orthologs and underlying free software. *Nucl. Acids Res.* **43**, D250-D256.

410 28. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*. **9**,
411 357-359.

412 29. Li H, Handsaker B, Wysoker A, Fennel T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
413 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map
414 format and SAMtools. *Bioinf.* **25**, 2078-2079.

415 30. Nguyen ND, Mirarab S, Kumar K, Warnow T. 2015. Ultra-large alignments using phylogeny-
416 aware profiles. *Genome Biol.* **16**, 124.

417 31. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
418 phylogenies. *Bioinf.* **30**, 1312-1313.

419 32. Mirarab S, Warnow T. 2015. ASTRAL-II: coalescent-based species tree estimation with many
420 hundreds of taxa and thousands of genes. *Bioinf.* **31**, i44-i52.

421 33. Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* **24**,
422 1586-1591.

423 34. Steadman DW. 2008. Doves (Columbidae) and cuckoos (Cuculidae) from the early Miocene
424 of Florida. *Bull. Flor. Mus. Natl. Hist.* **48**, 1-16.

425 35. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in
426 Bayesian phylogenetics using Tracer 1.7. *Syst. Biol.* **67**, 901-904.

427 36. Matzke NJ. 2018. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary
428 analysis with R scripts. V.1.1.1. published on GitHub Nov. 6, 2018.

429 37. Conow C, Fielder D, Ovadia Y, Libeskind-Hada R. 2010. Jane: a new tool for the cophylogeny
430 reconstruction problem. *Algorithms Mol. Biol.* **5**, 16.

431 38. van den Ende C, White LT, van Welzen PC. 2017. The existence and break-up of the Antarctic
432 land bridge as indicated by both amphi-Pacific distributions and tectonics. *Gondwana Res.*
433 **44**, 219-227.

434 39. Walker JS. 2007. Geographical patterns of threat among pigeons and doves (Columbidae).
435 *Oryx*. **41**, 289-299.

436 40. Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Rohl U,
437 Tauxe L, Raine JI, et al. 2012. Persistent near-tropical warmth on the Antarctic continent
438 during the early Eocene epoch. *Nature*. **488**, 73-77.

439 41. Pereira SL, Johnson KP, Clayton DH, Baker AJ. 2007. Mitochondrial and nuclear DNA
440 sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation
441 in the Paleogene. *Syst. Biol.* **56**, 656-672.

442 42. Bijl PK, Bendle JAP, Bohaty SM, Pross J, Schouten S, Tauxe L, Stickley CE, McKay RM,
443 Rohl U, Olney M, et al. 2013. Eocene cooling linked to early flow across the Tasmanian
444 Gateway. *Proc. Natl. Acad. Sci.* **110**, 9645-9650.

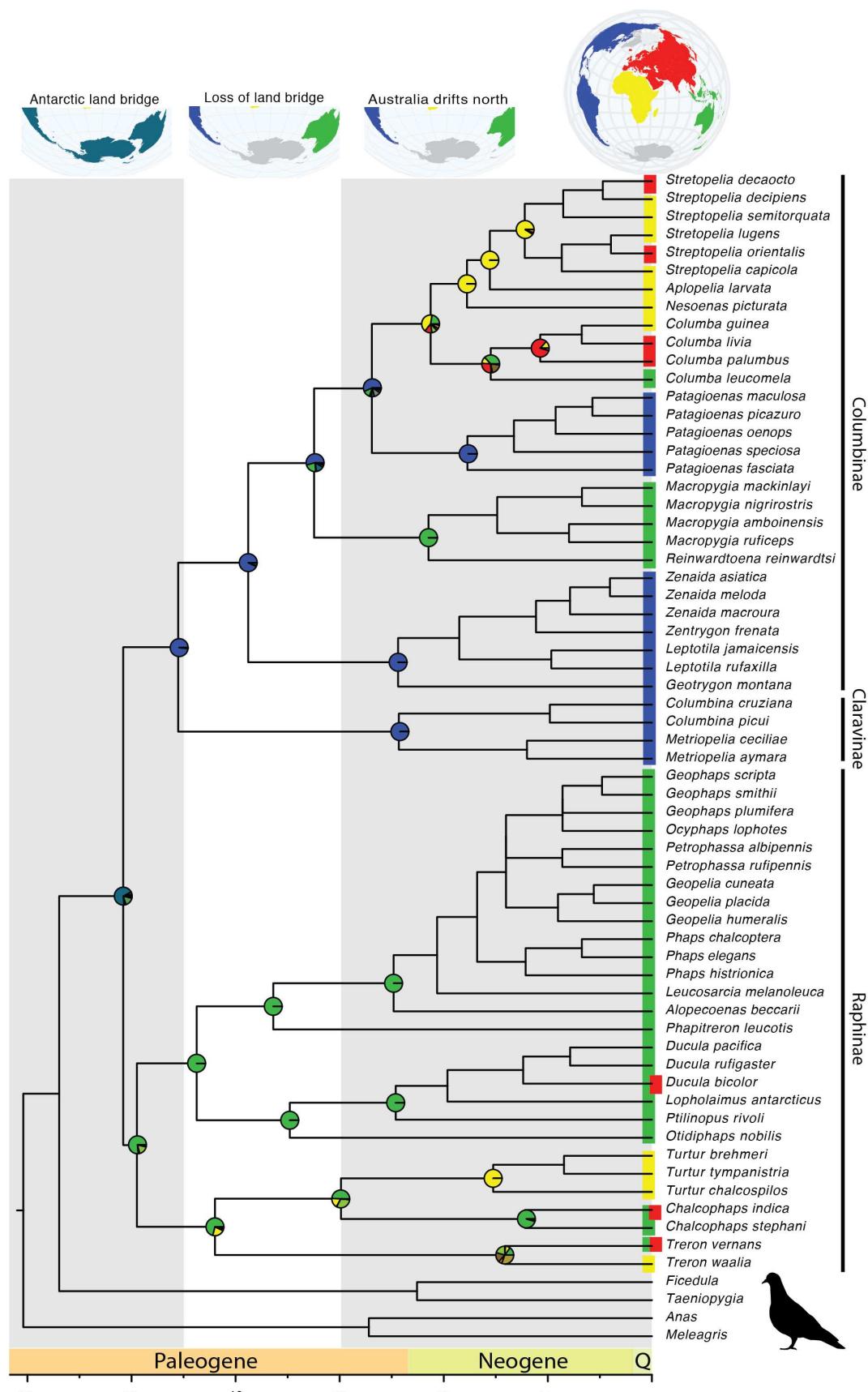
445 43. Borrelli C, Cramer BS, Katz ME. 2014. Bipolar Atlantic deepwater circulation in the middle-
446 late Eocene: effects of Southern Ocean gateway openings. *Paleoceanogr. Paleoclimatol.*
447 **29**, 308-327.

448 44. Stickley CE, Brinkhuis H, Schellenberg SA, Sluijs A, Rohl U, Fuller M, Grauert M, Huber M,
449 Warnaar J, Williams GL. 2004. Timing and nature of the deepening of the Tasmanian
450 Gateway. *Paleoceanogr. Paleoclimatol.* **19**, PA4027.

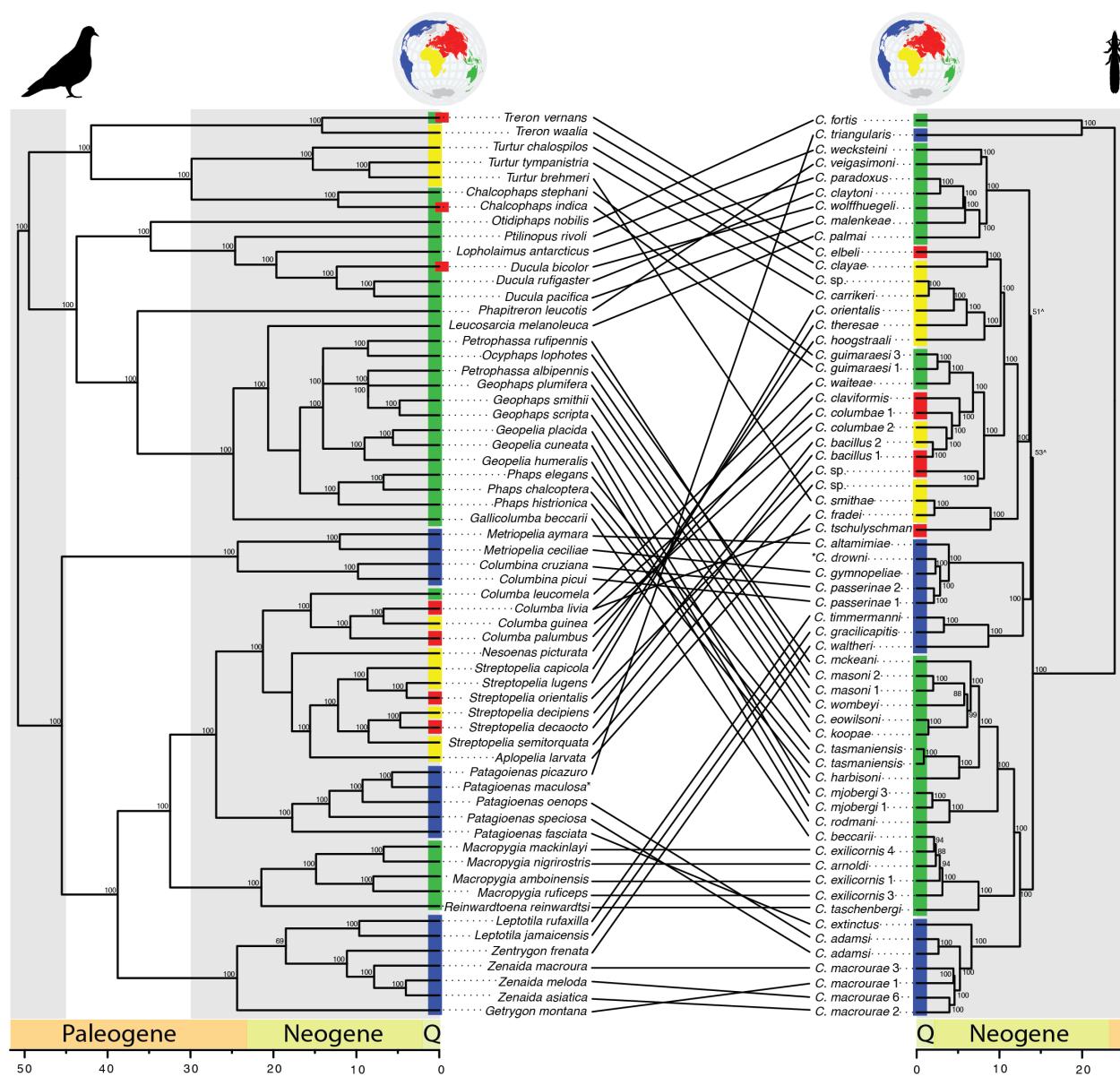
451 45. Douglas PMJ, Affek HP, Ivany LC, Houben AJP, Sijp WP, Sluijs A, Schouten S, Pagani M.
452 2014. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface
453 temperatures. *Proc. Natl. Acad. Sci.* **111**, 6582-6587.

454 46. Malenke JR, Newbold N, Clayton DH. 2011. Condition-specific competition governs the
455 geographic distribution and diversity of ectoparasites. *Am. Nat.* **177**, 522-534.

456 47. Reed DL, Smith VS, Hammond SL, Rogers AR, Clayton DH. 2004. Genetic Analysis of lice
457 supports direct contact between modern and archaic humans. *PLoS Biol.* **2**, e340.

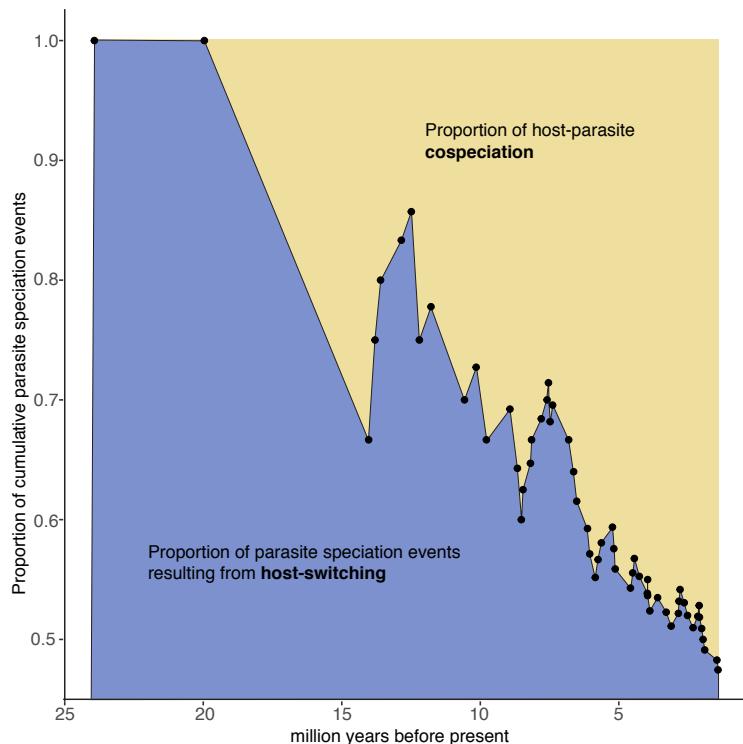

458 48. Arriaza B, Orellana NC, Barbosa HS, Menna-Barreto RFS, Araujo A, Standen V. 2011. Sever
459 head lice infestation in an Andean mummy of Arica, Chile. *J. Parasitol.* **98**, 433-436.

460 49. Rick FM, Rocha GC, Dittmar K, Coimbra Jr. CEA, Reinhard K, Bouchet F, Ferreira LF, Araujo
461 A. 2002. Crab louse infestation in pre-Columbian America. *J. Parasitol.* **88**, 1266-1267.


462 50. Drail R, Abi-Rached L, Bouteille A, Djossou F, Barker SC, Raoult D. 2016. Host switching of
463 human lice to new world monkeys in South America. *Infect. Genet. Evol.* **39**, 225-231.

464

465 **Figures and tables**



467 **Figure 1.** Time calibrated phylogeny of doves based on sequences of 6,363 nuclear single-copy
468 orthologs. Scale bar at base of figure represents age in millions of years ago and geographic
469 periods are designated above scale bar. Gray and white columns represent time intervals
470 significant to biotic interchange across the Australia-Antarctica-South American land bridge and
471 subsequent loss of habitat connectivity used to inform host-parasite phylogeny comparisons (66-
472 45, 45-30, and 30-0 mya). Colors at tree tips represent modern geographic ranges of pigeon and
473 dove species and circles at nodes represent estimated ancestral ranges corresponding with the globe
474 at the top of the tree. Blue-green color in basal circle represents an ancestral range combining
475 Australia and South America, corresponding to the Australia-Antarctica-South American land
476 bridge illustrated at top of the figure. World maps created using rnaturalearth
477 (<https://github.com/ropensci/rnaturalearth>).

Figure 2. Time calibrated phylogeny of doves based on sequences of 6,363 nuclear single-copy orthologs (left) and their parasitic wing lice based on sequences of 977 single-copy orthologs

482 (right). Links between tree tips represent host-parasite associations. Conventions as in figure 1.
483 * indicates taxa removed for comparative analysis. ^ indicates nodes collapsed in parasite tree for
484 comparative analysis. World maps created using rnaturalearth
485 (<https://github.com/ropensci/rnaturalearth>).
486

487
488 **Figure 3.** Proportion of cumulative host-parasite cospeciation events and parasite speciation
489 events resulting from host-switching over time. Data based on cophylogenetic reconstructions of
490 doves and wing lice that assumes an Australasian origin of parasitic wing lice with speciation
491 events constrained by three time periods that correspond with host dispersal between geographical
492 regions described in figure 1. Wing louse speciation event ages based on phylogenetic results
493 described in figure S12.
494