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 31 

Abstract 32 

Humans adapt their learning strategies to changing environments by estimating the 33 

volatility of the reinforcement conditions. Here, we examine how volatility affects 34 

learning and the underlying functional brain organizations using a probabilistic reward 35 

reversal learning task. We found that the order of conditions was critically important; 36 

participants adjusted learning rate going from volatile to stable, but not from stable to 37 

volatile, environments. Subjective volatility of the environment was encoded in the 38 

striatal reward system and its dynamic connections with the prefrontal control system. 39 

Flexibility, which captures the dynamic changes of network modularity in the brain, was 40 

higher in the environmental transition from volatile to stable than from stable to volatile. 41 

These findings suggest that behavioral adaptations and dynamic brain organizations in 42 

transitions between stable and volatile environments are asymmetric, providing critical 43 

insights into the way that people learn under uncertainty. 44 

 45 
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 47 

Introduction 48 

Learning in an uncertain environment requires flexibility, appropriately adjusting 49 

perceived action-outcome associations. Individuals must adjust quickly in dynamic 50 

environments to update prior estimation of the association between action and outcome. 51 

In stable environments, people relaxedly fine-tune strategies to maintain beliefs about 52 

unchanging associations. Flexibly adjusting learning strategies between different 53 

environments is critical to optimal performance (1, 2). However, adaptations to different 54 

environments largely rely on the order in which people experience changes (3). People 55 

may adapt more quickly in one direction (e.g., moving from a more to less effortful 56 

context relative to its opposite). Transfer effects, for example, have historically been 57 

shown to favor the difficult to easy direction (4). 58 

Uncertainty is an inherent structure of the environment, the estimates of which 59 

could be used to characterize organismal adaptability (5). Most theoretical propositions 60 

of uncertainty are focused on three key types of uncertainty: irreducible uncertainty, 61 

estimation uncertainty, and unexpected uncertainty (5-7). Irreducible uncertainty, the 62 

first-order uncertainty, is represented by risk, wherein the probability of an 63 

option-outcome association is known but the outcome of reward or punishment remains 64 

uncertain (8). Second-order (estimation) uncertainty reflects ambiguity, wherein the 65 

probability of a stimulus being associated with a given outcome is unknown and needs to 66 

be estimated (8). Unexpected (or third-order) uncertainty is volatility, the frequency at 67 

which the association between the stimulus and outcome varies dynamically. Irreducible 68 

(first-order) and estimation (second-order) uncertainty constitute expected or known 69 

uncertainty (5, 7). In responses to expected uncertainty, individuals need more 70 

observations to estimate the state of the environment but have to ignore or discount 71 

specific surprise outcomes, whereas decisions in unexpected uncertainty or volatility 72 

rely on the most recent observations given that the association between options and 73 

outcomes are likely changing. To adapt to a complex environment, it is necessary to 74 

identify and estimate the expected and unexpected uncertainty leading to a surprise 75 

event, which may reflect a major change in action-outcome associations. Recent studies 76 

suggest that individuals make use of uncertainty to guide their decisions during the 77 

learning process (6, 9, 10). Difficulties in estimating environmental uncertainty may 78 

contribute to maladaptive functions in internalizing psychological disorders (e.g., 79 

anxiety, depression) (11, 12). Although previous studies have shown different learning 80 

rates between stable and volatile environments (1, 2, 11), adaptation processes and brain 81 

function underlying directional changes in volatility (i.e., the transition from stable to 82 

volatile environment vs. from volatile to stable environment) remain unclear. 83 

Adaptation to uncertainty is underpinned by dynamic and distributed brain 84 

networks. The anterior cingulate cortex (ACC), a part of the salience network which 85 

detects error and conflict, fluctuates co-incidentally with estimated volatility (1, 2, 9, 13). 86 

Key regions of the default mode network, such as the posterior cingulate cortex (PCC), 87 

have also shown to be negatively correlated with unexpected uncertainty (8, 10, 13). The 88 

orbitofrontal cortex (OFC) and caudate, parts of the reward network, have shown 89 

increased activity during changing learning and reward probabilities (9, 14-17). One 90 

recent study has also shown that surprise and uncertainty during learning are 91 

dynamically encoded by the frontoparietal control network, which is linked to 92 
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appropriate behavioral adaptation (18). Network flexibility, measured by the association 93 

of nodes to modules of brain networks, has also been shown to positively predict new 94 

learning (19). Therefore, the combination of quantitative behavioral models and brain 95 

network models, have considerable promise for understanding human learning (20). 96 

In this study, we examined how the human brain adapts to transitions in 97 

environmental volatility (i.e., the transition from volatile to stable environments in 98 

comparison to transitions from stable to volatile environments). Given the historical 99 

transfer effect (easier going from hard to easy than vice versa (4)), we predicted more 100 

effortful adaptation in the direction from volatile to stable environments than the other 101 

way around. Dynamic organization of the brain networks underlying the transfer effect 102 

associated with environmental volatility were tested using dynamic brain network 103 

analyses on functional magnetic resonance imaging (fMRI) data. 104 

 105 

Results 106 

Thirty-seven participants were asked to complete an adjusted probabilistic reward 107 

reversal learning task while undergoing functional magnetic resonance imaging (fMRI). 108 

On each trial, participants had to choose one of two options with specific reward 109 

probabilities (Fig. 1a). In the stable block, two options are consistently associated with 110 

reward probabilities of 75% and 25%, respectively (Fig. 1b). In the volatile block, the 111 

reward probabilities associated with the options changed between high (80%) and low 112 

(20%) every 20 trials (Fig. 1c). To perform optimally, participants had to estimate the 113 

reward probabilities of two options from the outcome of previous trials. Option selection 114 

and reaction time were recorded. Brain activity was also measured. Three participants 115 

were excluded from all analyses as they missed more than 10 of the 180 trials during the 116 

primary task (5.6%). 117 

Behavioral Results. Learning rate (α) reflects how participants’ choice at a given time 118 

was influenced by recent previous outcomes. A high learning rate means that current 119 

choice is strongly guided by recent outcomes and reflects rapidly changing 120 

stimulus-outcome associations. High learning rates are more suitable for volatile 121 

environments. In contrast, a low learning rate means that a surprising outcome has little 122 

effect on the subsequent choice. Low learning rates are more suitable to stable 123 

environments, reflecting that people may not change their selections. We estimated 124 

learning rates by fitting a Rescorla-Wagner (RW) learning model to their choices in the 125 

three blocks 2, 11. We also used a Bayesian learning model, which estimates the volatility 126 

of the task 2, 11. Model comparison indicated that the RW model using Grid search 127 

provided the best model-to-data fit (RW Grid ML: 115.61 ± 38.57, RW Grid EV: 117.58 128 

± 37.79, RW fMIN: 122.96 ± 37.88, Bayesian: 260.02 ± 53.82, F(3, 99) = 139.5, p < 0.001; 129 

Fig. 2a). There was no difference between the ML estimate and EV estimate (p = 0.931). 130 

The RW model with Grid Search also generated the largest correlation between modeled 131 

probability and participants’ choices (RW Grid ML: 0.801 ± 0.110, RW Grid EV: 0.801 132 

± 0.108, RW fMIN: 0.771 ± 0.104, Bayesian: 0.736 ± 0.699, F(3, 99) = 10.615, p < 0.001; 133 

Fig. 2b). Therefore, the Bayesian model was only used to estimate environmental 134 

volatility. 135 

To understand how participants’ behaviors and mental representations changed over 136 

time, we examined participants’ cumulative true responses and modeled choices. In 137 

general, participants could successfully capture changes in probability across the whole 138 
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experiment. Compared to the Bayesian model, the RW model fitted behavioral data 139 

better in both the stable-volatile-stable task and the volatile-stable-volatile task (Fig. 2c, 140 

d). We also estimated the environmental volatility ���� by using the Bayesian model 141 

across the whole task. The estimated volatility increased suddenly after reversal and 142 

decreased gradually in the stable state (Fig. 2e, f). However, this variability in the 143 

volatile-stable-volatile task was not strong, especially in the stable state, which suggests 144 

that participants perceived/expected the environment as having high uncertainty. A 145 

repeated measures ANOVA of the Order and Volatility showed different tendencies of 146 

estimated volatility between the stable-volatile-stable task and volatile-stable-volatile 147 

task (F(1, 32) = 41.936, p < 0.001, η2 = 0.567; Fig. S1). Post hoc analyses showed that 148 

estimated volatility differed as a function of an interaction with order; the volatile state 149 

(0.809) was significantly larger than the stable state (0.584) within the 150 

stable-volatile-stable task (F(1, 32) = 40.85, p < 0.001), whereas the stable state (0.809) 151 

was significantly higher than the volatile state (0.712) within the volatile-stable-volatile 152 

task (F(1, 32) = 7.65, p = 0.009). 153 

  We observed a decrease in learning when shifting from volatile to stable conditions 154 

across both ordered tasks (Fig. 2g). To confirm whether participants adapted their 155 

learning rates by order of transition (from stable to volatile state vs. from volatile to 156 

stable state), adapted learning rates were calculated by subtracting learning rate in the 157 

stable state from the volatile state. A repeated measures ANOVA of the Order and 158 

Transition showed that the adapted learning rates were significantly higher in volatile to 159 

stable transitions (adapted αv-s = 0.076) than stable to volatile transitions (adapted αs-v = 160 

-0.002), regardless of the task type (F(1, 32) = 5.141, p = 0.03, η2 = 0.138; Fig. 2h). Further 161 

analysis showed that adapted learning rate from volatile to stable state is significantly 162 

larger than zero which means that learning rate in the volatile state (0.4514) was larger 163 

than in the stable state (0.3714; t(1, 33) = 2.413, p = 0.022). These results indicate that 164 

participants adapted their learning more in the transition from volatile to stable states 165 

than the other way around. The learning rate was not significantly different in the 166 

volatile environment from the stable environment (p > 0.05; Fig. S2). The adapted 167 

leaning rate in volatile to stable transitions was not significantly correlated to anxiety, 168 

depression or impulsivity (ps > 0.05; Fig. S3). Potential correlations were not explored 169 

for adapted learning rate in stable to volatile transitions due to lack of effect.  170 

Neuroimaging Results. The estimation of environmental volatility in the Bayesian 171 

model was negatively associated with activity in the bilateral caudate nuclei (left 172 

caudate, peak at x, y, z = -18, 12, 15, 87 voxels; right caudate, peak at x, y, z = 21, 15, 18, 173 

54 voxels; p FWE < 0.05; Fig. 3a). The increased blood oxygenation 174 

level-dependent (BOLD) signal in the bilateral caudate nuclei reflected lower estimated 175 

environmental volatility. Activity of the bilateral caudate nuclei in response to volatility 176 

was also associated with the variance of learning rates across the three blocks (r(33) = 177 

0.437, p = 0.01; Fig. 3b). These results revealed that encoding of environmental 178 

volatility in the caudate could predict the adjustment of learning strategies across the 179 

three blocks. 180 

To explore brain network configurations related to volatility, we performed PPI 181 

analysis, using the bilateral caudate nuclei as seeds. We found that the bilateral caudate 182 

nuclei showed positive connectivity with the right dorsolateral prefrontal cortex (dlPFC) 183 

and left fusiform gyrus (FFG) related to volatility (dlPFC, peak at x, y, z = -36, 12, 30, 93 184 
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voxels; FFG, peak at x, y, z = -18, -90, -6, 118 voxels; p FWE < 0.05; Fig. 3c). Correlation 185 

analyses showed that functional connectivity between the bilateral caudate nuclei and 186 

right dlPFC was positively associated with averaged learning rate across the three blocks 187 

(r(33) = 0.36, p < 0.05; Fig. 3d). Connectivity between the caudate and middle frontal 188 

gyrus (MFG) differed as a function of Order and Transition (F(2, 64) = 3.587, p = 0.033, η2 189 

= 0.101; See Fig. 4b). Post hoc analysis revealed a significant decrease of caudate-MFG 190 

connectivity in the transition from volatile to stable relative to the stable to volatile 191 

transition, only for the stable-volatile-stable order (F(1, 32) = 5.470, p < 0.05; Fig. 4c). To 192 

explore whether the caudate-MFG pathway tracked with volatility, we calculated 193 

correlations between environmental volatility and connectivity of the bilateral caudate 194 

and right MFG in each trial of each participant (Fig. S4). A one-sample t-test showed 195 

that correlations were not significantly different from zero (ps>0.05). 196 

Given that the brain dynamically adapts to the changing environment as a complex 197 

system, we examined dynamic modular structures of multilayer brain networks over 198 

multiple temporal scales. The modularity index was adapted to identify at which 199 

temporal scale the node was best partitioned into communities (Fig. 5a). Modularity 200 

analyses showed that � at the smallest temporal scale (10s, one trial) was significantly 201 

higher than the other temporal scales (ps < 0.001; Fig. 5b). To examine changes of the 202 

community properties among the three blocks, we calculated the network flexibility 203 

within each block at 10s intervals (each block comprised 60 time-windows). Network 204 

flexibility decreased as a function of learning, especially from volatile to stable 205 

transitions (Fig. 5d). Repeated measures ANOVA of Order and Transition showed that 206 

adapted flexibility was significantly higher from volatile to stable transitions (adapted 207 

flexibility = 0.0054) than from stable to volatile transitions (adapted flexibility = 208 

-0.0019), regardless of the task type (F(1, 32) = 4.672, p = 0.038, η2 = 0.127; Fig. 5e). Post 209 

hoc analysis showed that adapted flexibility from volatile to stable transitions was not 210 

significantly larger than zero (t(1, 33) = 1.589, p > 0.05). The contrast between 211 

volatile-to-stable and stable-to-volatile transitions showed that adapted flexibility was 212 

associated with activity in the left frontal pole (FP), right superior parietal lobule (SPL), 213 

left supramarginal gyrus (SMG), lateral occipital cortex, right OFC, left 214 

parahippocampal gyrus and brain stem (ps < 0.05; Fig. 5f). Correlation analyses didn’t 215 

show any significant relationships between adapted flexibility and adapted learning 216 

rates (ps > 0.05). 217 

 218 

Discussion 219 

The ability to adapt, on multiple levels, to constantly changing environments 220 

ensures optimal behavior for reward maximization and punishment minimization. Our 221 

results show distinctive behavioral adaptations and brain organizations in transitions 222 

between environments with varied volatility. Participants exhibited more adaptation and 223 

perceived higher volatility in stable environments among transitions from volatile to 224 

stable relative to stable to volatile environments. Subjective volatility of the 225 

environment was encoded in the bilateral caudate nuclei and its connectivity with the 226 

right dlPFC. Notably, modular organizations of dynamic caudate-dlPFC connectivity 227 

changed most within shorter time windows, reflecting the need for the brain to adapt 228 

quickly while learning of rapid environmental changes. 229 
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The asymmetrical adaptation between the volatile-stable and the stable-volatile 230 

transitions, suggest a greater need for adaptation under stable to volatile transitions. 231 

Heightened adaptation can be largely explained by early learning among major 232 

environmental changes. Participants exhibited greater adaptation under stable to volatile 233 

transitions when the first block was stable relative to when the first block was volatile. 234 

Asymmetrical adaptation is consistent with previous findings of transfer effects; shifts 235 

from a difficult task to an easier one is often more effortful than transfer in the opposite 236 

direction (4). While previous studies have shown higher learning rates in the volatile 237 

environment and in the stable environment (2, 11), our findings suggest important 238 

carryover effects such that experience with volatile environments may impact 239 

subsequent learning in a stable environment and vice versa. The idea has been supported 240 

in principle by a recent social norm violation study, which shows that participants 241 

preconditioned on unfair offers rejected comparable fair offers less frequently than 242 

participants preconditioned on generous offers (21). 243 

Several brain systems play key roles in adaptation to environmental transitions. 244 

The caudate nucleus, a critically part of the midbrain dopaminergic system, plays a key 245 

role in processing incentive salience (22)and learning associations between stimuli and 246 

responses (17). A large number of studies have shown that the caudate encodes several 247 

learning parameters, including expected value (23), action values (24), reward 248 

prediction errors (25, 26), and learning rates (16). A primate study has shown that 249 

monkeys with caudate dopaminergic depletions exhibit marked difficulty in 250 

reconstructing the stimulus-reward associations after reversal (15). The current findings 251 

show that the caudate also encodes estimated volatility, suggesting a new role of the 252 

caudate in learning. The present result is consistent with previous findings that the 253 

caudate is engaged in volatility estimates to fine-tune the weights of recent or remote 254 

prediction errors in predicting forthcoming needs for control (27). Consistent with 255 

previous findings on the direct engagement of the dlPFC in encoding volatility (9, 14), 256 

our results show a modulatory role of the connectivity between the caudate and right 257 

dlPFC in estimating volatility. Accumulating evidence has shown that the frontostriatal 258 

network is modulated by cognitive control (28-30). Therefore, changes in the 259 

frontostriatal pathway associated with cognitive control might be involved in estimates 260 

of environmental volatility. Contrary to previous work (1, 2, 9, 31), we did not find 261 

robust volatility-related signals in the ACC. One potential explanation might be that the 262 

magnitude of outcome in our task was fixed rather than variable as in previous studies (2, 263 

11). Changing outcome probabilities and outcome magnitudes may have increased task 264 

difficulty in prior work. It is possible that strong contrast effects (e.g. high probability 265 

with low magnitude vs. low probability with high magnitude) might drive ACC activity 266 

in previous studies. 267 

In transition from the volatile-stable direction to the stable-volatile direction, 268 

participants showed higher network flexibility, suggesting a dynamic reorganization of 269 

the brain in adaptation to environmental volatility. Dynamics of functional brain 270 

connectivity has been widely used to examine the complex human cognition of 271 

moment-by-moment changes in learning (32-34), by providing dynamic measurements 272 

of flexibility in coordination among different brain states in responses to adaptative 273 

behaviors (35, 36). Based on dynamic functional connectivity, modular structures 274 

aggregated by small subsystems or modules might facilitate behavioral adaptation (19). 275 
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These findings point to a pivotal role of the frontoparietal control network in the adapted 276 

flexibility of individuals in transitions between environments with different volatility. 277 

In conclusion, to the best of our knowledge, the current work is the first to examine 278 

the way that the human brain adapts to transitions in environmental volatility. Our 279 

results show asymmetrical behavioral and neural adaptations during the environmental 280 

transitions with superior adaptation under transitions from stable to volatile 281 

environments rather than the opposite. These flexible adaptations are modulated by the 282 

striatal reward system and its dynamic connections with the prefrontal control system. 283 

The current work sheds light on the nature of the human brain adaptations to navigation 284 

of variable environments in daily life. 285 

 286 

Materials and Methods 287 

Participants. Thirty-Seven (20 females) Chinese participants, aged between 18 and 30 288 

years (mean±SD = 21.62±2.79 years), without any history of psychiatric disorders were 289 

recruited from several Universities in Beijing. Three participants were excluded from all 290 

analyses as they missed more than 10 of the 180 trials during the primary task (5.6%). 291 

The study protocol was approved by the local Ethics Committee. All participants 292 

provided informed consent. 293 

General procedure. To ensure participants understood the probability and reversal 294 

components underlying the task, a three-stage training task was implemented (37). 295 

Participants then completed an adjusted probabilistic reward reversal learning task while 296 

undergoing fMRI. Participants completed the trait subscale of the Spielberger’s 297 

State-Trait Anxiety Inventory (38), the Self-rating Depression scale (39) and Barrett 298 

impulsivity scale (40). After the experiment, all participants were fully debriefed and 299 

received payment based on their task performance. 300 

Task design. A probabilistic reward reversal learning task (Fig. 1a) was adapted from 301 

previous reversal learning tasks used to examine learning strategies in environmental 302 

volatility (2, 11). The task consists of three blocks of 60 trials in which participants were 303 

required to make choices between two options with specific reward probabilities (Fig. 304 

1b, 1c). In the stable block, two options were stably associated with reward probabilities 305 

at 75% and 25%, respectively. In the volatile block, the probabilities of the two options 306 

switched between high (80%) and low (20%) reward probability every 20 trials. To test 307 

whether adaptations differ between the transition from stable to volatile and the 308 

transition from volatile to stable blocks, participants were randomly assigned to 309 

complete the three blocks either in the order of stable-volatile-stable or 310 

volatile-stable-volatile without taking a break. None of the participants was informed 311 

that tasks would be divided into three different blocks. 312 

In each trial, two options with horizontal and vertical gratings were presented with 313 

a visual angle of approximately 8°. Participants were required to make decisions within 314 

3s. Once they responded, the selected option would be highlighted via a white frame to 315 

acknowledge the choice with a duration of 0.2s. Sequentially, a question mark was 316 

presented at the center of the screen with a jitter interval at 2-4s, to indicate that the 317 

outcome was pending. At the phase of outcome, reward (green “+ 1”) or no reward (red 318 

“+ 0”) was presented at the center of the screen for two seconds. At the end of trial, an 319 

inter-trial interval with a fixation cross was presented for 0.8-5.8s, to ensure total trial 320 

duration was 10s. 321 
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The Rescorla-Wagner model. Participants’ learning rates in three blocks were 322 

estimated by a simple Rescorla-Wagner (RW) learning model (41). In �� � 1���  trial, 323 

the predicted reward probability of option A, �������, was updated using the following 324 

equation, 325 

                         ������� 	 ����� � 
 � ����                     (1). 326 

The ������� and ����� represent the expected values. Specifically, the predicted reward 327 

probability of the chosen option A for the �� � 1��� and ���  trial. The 
 
 �0, 1� 328 

indicates the learning rate and ���� is the prediction error on the ���  trial which was 329 

calculated by comparing the actual reward ���� with the expected value �����, 330 

                            ���� 	 ���� � �����                      (2). 331 

The likelihood of the option chosen by participants on the ���  trial was estimated by a 332 

sigmoidal probability distribution,  333 

                  ����� 	 �
������

�
����������	���

	 	

	��
�
�	����������

                (3). 334 

Here, � 
 �0, 10� indicates the inverse temperature parameter which controls the 335 

degree to which an option would be chosen. When ����� is larger than �
���, the larger 336 

the �, the higher probability that option A would be chosen. 337 

Participants were instructed that the difference between the probabilities of two 338 

options would be clear without mentioning that they were opposite, and both add to one. 339 

Although it is theoretically possible for participants to learn about the probabilities of 340 

two options independently, the probability of the unchosen option B was calculated as 341 

follows, 342 

                            �
��� 	 1 � �����                         (4). 343 

The probability of the second option was fixed to make learning simpler. 344 

The Bayesian learner model. We also assume that participants would track the 345 

probabilities of option and outcome optimally by a Bayesian rule which has been 346 

described in previous studies (1, 2, 11). Here, we provide a brief overview. In each trial, 347 

the outcome ����, reward or not, was determined by the underlying estimated probability 348 

of option ����: 349 

                               p���|���                            (5). 350 

The probability of option in the ��� trial, ����, was determined by the probability of the 351 

option on the �� � 1��� , ����	�, and the estimated volatility on the ��� , ����: 352 

                             p��������	�, �����                        (6). 353 

The volatility v refers to an estimate of the expected rate of change of r. According to the 354 

Bayesian model, a low volatility would be estimated and each new outcome would have 355 

little influence on the estimate of r in a stable environment, whereas a high volatility 356 

would be estimated in a fast-changing environment, implying r may be expected to 357 

change quickly. The model also assumes that the way participants track environmental 358 

volatility is same as the way participants track the changing probability, 359 

                             p��������	� , �����                       (7). 360 

The environmental volatility on the ��� , �, was determined by the volatility of the 361 

preceding trial, ����	�, and the control parameter, ����. A large k implies that stable or 362 

volatile environment switches to the other one frequently. 363 
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All parameters representing the participant’ expectations of the statistics of the 364 

environment were modeled by the joint probability distribution,  365 

������, ����, �|�����	 
 ������|����	 ��� ����, �� , �|���	������|�� , �	
���������|��, ����	
�� (8). 366 

Model fitting. The learning rates and inverse temperature parameters were firstly fitted 367 

by a grid search. However, while increasing the precision of two parameters (e.g., 
 368 

[0:0.01:1] and � (0:0.1:10]), the number of all possible combinations of two parameters 369 

across three blocks via grid search requires a very large amount of memory. To resolve 370 

this issue, we first adopted the solution that these parameters would be estimated 371 

separately for each of the three blocks by the grid search. The first prediction values in 372 

block 2 and block 3 (trial 61 and 121) were from previous estimates (trial 60 and 120). 373 

We also adopted the function fMINSEARCH (fMIN) in Matlab to estimate the 374 

parameters without having to measure every single point. To determine the best-fitting 375 

values of the learning rates and inverse temperature parameters, we used both the 376 

maximum likelihood estimate (ML) and expected value estimate (EV) (multiplying the 377 

value of each bin with the probability of that value). Additionally, trials with no response 378 

and trials in which reaction time less than 200ms were excluded. 379 

Model selection. The Bayesian information criterion (BIC) was used to assess which 380 

model best captured participants’ choices. Lower value indicates the better fitting. L is 381 

the likelihood, m is the number of estimated parameters, N is the number of observations. 382 

The Bayesian observer model includes 3 parameters (r, v, k). The RW model with 383 

fMINSEARCH that can look for minima without every single point includes 6 384 

parameters (
, � per block). The RW model with Grid search includes 2 parameters. 385 

Since this model fitted the participants’ choices separately for three blocks, the BIC of 386 

each block was first calculated and then added together to get the total BIC for each 387 

participant.  388 

                              ��� � -2 log �  � � log �                        (9). 389 

To examine the fitting effect of model, we calculated the correlation of the participants’ 390 

choices with probabilities estimated by the RW and Bayesian model. The average 391 

correlation coefficient was then used as a corroboration to indicate which model was 392 

best.   393 

fMRI data acquisition. MRI data were collected on a 3T Siemens Prisma MRI scanner 394 

with a 64-channel head-neck coil at the Center for MRI Research, Peking University. 395 

Functional MRI images were acquired with a simultaneous multiband echo planar 396 

imaging (EPI) sequence (TR/TE = 1000/30 ms; FOV = 224 × 224 mm; matrix = 64 × 64; 397 

slice thickness = 3.5 mm; slice number = 34; flip angle = 73°; multiband factor = 2). 398 

High spatial resolution T1-weighted anatomical images were obtained with the 399 

magnetization�prepared rapid gradient�echo (MPRAGE) sequence (TR/TE = 400 

2530/2.98 ms; FOV = 256 × 256 mm; matrix = 256 × 256; slice thickness = 1 mm; flip 401 

angle = 7°). 402 

fMRI data preprocess. All images were preprocessed using SPM12 (Wellcome Trust 403 

Center for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The 404 

fMRI data were first corrected for head motion, and the realigned images were 405 

coregistered to the T1 structural image which had been manual reoriented to the anterior 406 

commissure and then segmented into white matter, gray matter, cerebrospinal fluid 407 

(CSF), bone, soft tissues, and air using default tissue probability maps of SPM12. The 408 

images were then normalized to the standard Montreal Neurological Institute (MNI) 409 
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space with final resolution of 3 mm3. Finally, normalized images were smoothed with a 410 

Gaussian kernel of 6 mm full-width at half-maximum. 411 

fMRI data analysis. To identify the brain responses to the environmental volatility, we 412 

constructed a general linear model (GLM) with the onsets of the options presentation 413 

modulated by a parametric regressor (the environmental volatility), onsets of the choice 414 

selection, onsets of the jitter period modulated by the volatility, onsets of the feedback 415 

delivery modulated by the volatility, onsets of trials with insufficient response time (< 416 

200 ms, including non-response trials), onsets of trials with large head motion (the 417 

framewise displacement, FD > 0.5). Additionally, six estimated head movement 418 

regressors and a FD regressor were also included as covariates of no interest. The 419 

regressors in the GLM design matrix were then convolved with the canonical 420 

hemodynamic response function (HRF). Group analyses for brain activation were 421 

performed with a random-effect model using a one-sample t-test. All results were 422 

whole-brain corrected for multiple comparison by a voxel-wise uncorrected threshold at 423 

p < 0.001 with a family-wise error (FWE) corrected for cluster-level at p < 0.05. 424 

Psychophysiological interaction analyses. To identify the volatility-specific changes 425 

in the interaction between brain regions in whole brain functional connectivity, the 426 

psychophysiological interaction (PPI) was performed by using the significant cluster as 427 

seed region of interest (ROI) which was related with estimated volatility. For each 428 

participant, the first eigenvariate of the ROI was extracted to get the individual voxel 429 

time-course. In order to generate the PPI interaction term, this time-course was 430 

deconvolved with the canonical HRF and then multiplied by the vector of the estimated 431 

volatility. This interaction term was then convolved with the canonical HRF and entered 432 

into a PPI GLM along with the vectors of the onsets for the estimated volatility during 433 

the feedback, the original eigenvariate time-course and covariates of no interest (six 434 

head movement and a FD). After that, we performed second-level analyses with 435 

one-sample t-test for the contrast images of the PPI interaction term. The results were 436 

corrected for a voxel-wise uncorrected thresholded at p < 0.001 with an extent 437 

FWE-corrected cluster-level p < 0.05. 438 

Dynamic Functional connectivity. To examine dynamic changes between the 439 

seed-ROI and the significant clusters from PPI analysis, we extracted BOLD signals 440 

from the corresponding ROIs based on the AAL atlas. The linear Pearson’s correlations 441 

between the seed and target regions were calculated in three blocks to estimate 442 

individual dynamic functional connectivity. 443 

Dynamic Brain Networks. To explore modular organizations of the brain in the 444 

dynamic adaptation, the modular structures spanning several temporal scales were 445 

constructed according to previous recommendations (19). The smoothed images were 446 

temporally detrended to reduce the effects of linear drift and nuisance signals were 447 

removed to reduce the effects of non-neuronal fluctuation, including head motion, the 448 

white matter and the CSF. fMRI data were then band-pass filtered to reduce the effects of 449 

low frequency drift and high-frequency physiological noises with 0.06-0.12 Hz (19). 450 

The whole brain was parcellated into 112 ROIs identified in the 3mm Harvard-Oxford 451 

(HO) atlas. To construct the individual functional connectivity matrices, the mean 452 

BOLD time series were first estimated by averaging voxel time series in each ROI and 453 

the linear Pearson’s correlation ��� between all pairs of ROIs � and  . To correct for 454 

multiple comparisons, we first computed the p-values !�� of each ��� using the 455 
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MATLAB function corrcoef and then tested the significance of !��  using a False 456 

Discovery Rate (FDR) of p < 0.05. The !�� of the correlation matrix elements ��� 457 

which passed the FDR corrections was retained. Otherwise, the correlation matrix 458 

elements ��� were set to zero. These corrected matrices ���
  constituted adjacency 459 

matrices A, elements of which #�� 	 ���
 . Based on our experimental setting, we 460 

measured functional connectivity over several temporal windows: [10s, 20s 30s, 40s, 461 

50s, 60s, 75s, 100s, 120s, 150s, 200s, 300s, 600s, 1800s]. The node in each functional 462 

connectivity matrix was partitioned into a community by maximizing the modularity 463 

index � (42). To identify organizations of subtle networks, we constructed the 464 

undirected weighted graphs that preserving the information of the strength of 465 

connections ��� (43). A spectral optimization algorithm was used to optimize the 466 

modularity index � (44). The most popular formula of � was used (44) as follows, 467 

                      � 	 	

��
∑ %#�� � ���


��
& ��'� , '����                 (10), 468 

where ( 	  	
�

∑ #���� , �� is the strength of node �, ��  is the strength of node  . When 469 

node � and node   are in the same module, ��'� , '�� 	 1; Otherwise, it equals 0. Both 470 

positive and negative weighted correlation coefficients were used to construct the 471 

community with the assumption that it would provide more useful information about the 472 

modularity partitions than only using positive correlation matrix elements (45). The 473 

modularity was generalized (46) as 474 

             �� 	 	

����� ∑ )#�� � *+� ��
�
�

�

�� � +� ��
��


�

�� ,- ��'� , '����       (11), 475 

where +� and +� are resolution parameters which usually set as one for simplicity and 476 

.�
� 	 ∑ .��

�
� , .�

� 	 ∑ .��
�

� , .� 	 ∑ .��
�

�� . Although it has been argued that �� and 477 

�� should be treated equally because positive and negative connections play different 478 

roles in functional brain networks (45), we defined an asymmetric formula of modularity 479 

as below based on previous studies which proposed that high-�� modularity partitions 480 

are more optimal than high-�� objectively (45), 481 

  � 	 �� � .�

.� � .�
�� 

	 	

�� ∑ )#��
� � +�

��
�
�

�

�� - ��'� , '���� � 	

����� ∑ %#��
� � +�

��
��


�

�� & ��'� , '����     (12). 482 

The maximization of the modularity index � categorizes the nodes into the 483 

communities such that the total edge weight within the module is as large as possible. 484 

Hence, we selected one temporal window with the largest � over the several temporal 485 

windows. To measure changes in the modules during the learning, we calculated the 486 

flexibility of a node /� at each block. The flexibility was defined as the number of times 487 

the node changed modular assignment throughout the block, normalized by the number 488 

of all possible changes(19). The flexibility of the network in each block was calculated 489 

as below, 490 

                               0 	 	

�
∑ /��
��	                        (13), 491 

where time window 1 	 600 34(!5�67 89674⁄ . 492 
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Figures 633 

 634 

Fig. 1. Task design. a) Experimental procedure. Participants were required to choose 635 

one of the two options with either horizontal or vertical gratings to maximize reward. A 636 

response cue indicated which option had been selected. A variable jitter was followed 637 

by reward presentation. In the outcome phase, the reward (green “+ 1”) or the no 638 

reward (red “+ 0”) was presented for two seconds. b) Reward probabilities across 639 

the course in the stable-volatile-stable task. This task consisted of three blocks 640 

(stable-volatile-stable). In the stable block, one option was linked to a reward with 75% 641 

probability while the other one would be followed by a reward with 25% probability. 642 

In the volatile block, the reward probabilities of the two options would switch between 643 

20% and 80% every 20 trials. c) Reward probabilities across the course in the 644 

volatile-stable-volatile task. This task consisted of three blocks 645 

(volatile-stable-volatile). The reward probability of options was same with the one in 646 

the stable-volatile-stable task.  647 

  648 
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 649 

Fig. 2. Behavioral results. a) Model comparison by Bayesian information criterion 650 

(BIC). The RW Grid model shows the lowest BIC among all models. Error bars 651 

represent the standard error. b) Model comparison by the correlation of modeled 652 

probability with participants’ choices. The RW Grid models showed the largest 653 

correlations among all models. Error bars represent the standard error. c d) Learning 654 

curves illustrating participants’ choices and estimates of model during the c) 655 

Stable-Volatile-Stable task and d) Volatile-Stable-Volatile task. The black dashed 656 

line represents the experiment setting of the probability of the highly rewarded option. 657 

The black solid line represents the participant’s choices. The salmon solid line 658 

represents the Rescorla-Wagner model prediction. The dark turquoise solid line 659 

represents the Bayesian model prediction. To illustrate participants’ choices and model 660 

predictions, the variation across the participants and trials has been reduced by 661 

smoothing using a running average of four trials. f) Environmental volatility 662 

estimated by the Bayesian model across the whole experiment. e) 663 

Stable-Volatile-Stable task. In the stable-volatile-stable task, estimated volatility 664 

(black solid lines, righthand axes) decreased gradually in the stable states and increased 665 
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suddenly after each reversal. f) Volatile-Stable-Volatile task. In the 666 

volatile-stable-volatile task, after the first volatile state, estimated volatility (black solid 667 

lines, righthand axes) decreased slowly in the stable state. The underlying reward 668 

probabilities of the task are presented with black dashed lines (lefthand axes). g h) 669 

Learning rates in each state. g) Learning rates fitted by the Rescorla-Wagner 670 

model to choices in each block of each task. Salmon dashed line for 671 

stable-volatile-stable task. Dark turquoise dashed line for volatile-stable-volatile task. 672 

Dots represented the mean of participants’ learning rates. Error bars represented the 673 

standard deviation of participants’ learning rates in each block. h) The adapted 674 

learning rates were significantly higher from volatile to stable state than it from 675 

stable to volatile state, regardless of the order in which the two blocks were first 676 

completed. Error bars represent the standard error. 677 
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 679 

Fig. 3. Brain activation. a) Responses of bilateral caudate nuclei to estimated 680 

volatility. Activity of the bilateral caudate nuclei (x = -18, y = 12, z = 15) was 681 

negatively associated with the estimated volatility in outcome evaluation. b) Volatility 682 

related brain activity predicated changes in learning rates across blocks. The 683 

degree to which bilateral caudate nuclei tracked estimated volatility could predict the 684 

variance of the learning rates across the three blocks. c) Brain regions showed 685 

significant functional connectivity with bilateral caudate nuclei modulated by 686 

environmental volatility. d) Correlation between caudate-related connectivity and 687 

learning rate. 688 
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 690 

Fig. 4. Dynamic functional connectivity. a) The locations of regions of interest (the 691 

caudate) and its target region (the MFG). Both of the two regions were defined based 692 

on the Anatomical Automatic Labeling (AAL) atlas). b) The connection between the 693 

caudate and middle frontal gyrus across blocks. c) Changes of connectivity 694 

between the caudate and dlPFC between transitions from volatile to stable and 695 

from stable to volatile environment. 696 
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 699 

Fig. 5. Dynamic brain networks. a) Schematic overview of the dynamic brain 700 

network analysis. The modular architectures of functional connectivity were detected 701 

by the modularity index. b) Modularity index Q of community across several 702 

temporal scales. c) The number of modules of community across several temporal 703 

scales. Error bars represent the standard error. d) Network flexibilities in three blocks 704 

during the learning were calculated at 10s temporal scale. Salmon dashed line for 705 

the stable-volatile-stable task; Dark turquoise dashed line for the 706 

volatile-stable-volatile task. Dots represent the mean of flexibilities. Error bars 707 

represent the standard deviation of network flexibilities in each block. e) The adapted 708 

flexibility between transitions from volatile to stable and from stable to volatile 709 

environments). Error bars represent the standard error. f) The brain regions 710 

represented adapted flexibility effect. FP, frontal pole; SPL, superior parietal lobule; 711 

SMG, supramarginal gyrus; OLi, lateral occipital cortex; OFC, orbitofrontal cortex, 712 

PHG, parahippocampal gyrus; L, left; R, right. 713 
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