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Abstract

Humans adapt their learning strategies to changing environments by estimating the
volatility of the reinforcement conditions. Here, we examine how volatility affects
learning and the underlying functional brain organizations using a probabilistic reward
reversal learning task. We found that the order of conditions was critically important;
parti cipants adjusted learning rate going from volatile to stable, but not from stable to
volatile, environments. Subjective volatility of the environment was encoded in the
striatal reward system and its dynamic connections with the prefrontal control system.
Flexibility, which captures the dynamic changes of network modularity in the brain, was
higher in the environmental transition from volatile to stable than from stable to voltile.
These findings suggest that behavioral adaptations and dynamic brain organizations in
transitions between stable and volatile environments are asymmetric, providing critical
insights into the way that people learn under uncertainty.
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I ntroduction

Learning in an uncertain environment requires flexibility, appropriately adjusting
perceived action-outcome associations. Individuals must adjust quickly in dynamic
environments to update prior estimation of the association between action and outcome.
In stable environments, people relaxedly fine-tune strategies to maintain beliefs about
unchanging associations. Fexibly adjusting learning strategies between different
environmentsiscritical to optimal performance (1, 2). However, adaptations to different
environments largely rely on the order in which people experience changes (3). People
may adapt more quickly in one direction (e.g., moving from a more to less effortful
context relative to its opposite). Transfer effects, for example, have historically been
shown to favor the difficult to easy direction (4).

Uncertainty is an inherent structure of the environment, the estimates of which
could be used to characterize organismal adaptability (5). Most theoretical propositions
of uncertainty are focused on three key types of uncertainty: irreducible uncertainty,
estimation uncertainty, and unexpected uncertainty (5-7). Irreducible uncertainty, the
first-order uncertainty, is represented by risk, wherein the probability of an
option-outcome association is known but the outcome of reward or punishment remains
uncertain (8). Second-order (estimation) uncertainty reflects ambiguity, wherein the
probability of a stimulus being associated with a given outcomeis unknown and needs to
be estimated (8). Unexpected (or third-order) uncertainty is volatility, the frequency at
which the association between the stimulus and outcome varies dynamically. Irreducible
(first-order) and estimation (second-order) uncertainty constitute expected or known
uncertainty (5, 7). In responses to expected uncertainty, individuals need more
observations to estimate the state of the environment but have to ignore or discount
specific surprise outcomes, whereas decisions in unexpected uncertainty or volatility
rely on the most recent observations given that the association between options and
outcomes are likely changing. To adapt to a complex environment, it is necessary to
identify and estimate the expected and unexpected uncertainty leading to asurprise
event, which may reflect amajor change in action-outcome associations. Recent studies
suggest that individuals make use of uncertainty to guide their decisions during the
learning process (6, 9, 10). Difficulties in estimating environmental uncertainty may
contribute to maladaptive functions in internalizing psychological disorders (e.g.,
anxiety, depression) (11, 12). Although previous studies have shown different learning
rates between stable and volatile environments (1, 2, 11), adaptation processes and brain
function underlying directional changesin volatility (i.e., the transition from stable to
volatile environment vs. from volatile to stable environment) remain unclear.

Adaptation to uncertainty is underpinned by dynamic and distributed brain
networks. The anterior cingulate cortex (ACC), a part of the salience network which
detects error and conflict, fluctuates co-incidentally with estimated volatility (1, 2, 9, 13).
Key regions of the default mode network, such as the posterior cingulate cortex (PCC),
have also shown to be negatively correlated with unexpected uncertainty (8, 10, 13). The
orbitofrontal cortex (OFC) and caudate, parts of the reward network, have shown
increased activity during changing learning and reward probabilities (9, 14-17). One
recent study has also shown that surprise and uncertainty during learning are
dynamically encoded by the frontoparietal control network, which islinked to
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93 appropriate behavioral adaptation (18). Network flexibility, measured by the association
94 of nodes to modules of brain networks, has also been shown to positively predict new
95 learning (19). Therefore, the combination of quantitative behavioral models and brain
96 network models, have considerable promise for understanding human learning (20).
97 In this study, we examined how the human brain adapts to transitionsin
98 environmental volatility (i.e., the transition from volatile to stable environmentsin
99 comparison to transitions from stable to volatile environments). Given the historical
L00 transfer effect (easier going from hard to easy than vice versa (4)), we predicted more
101 effortful adaptation in the direction from volatile to stable environments than the other
102 way around. Dynamic organization of the brain networks underlying the transfer effect
103 associated with environmental volatility were tested using dynamic brain network
L04 analyses on functional magnetic resonance imaging (fMRI) data.
105
106  Results
107 Thirty-seven participants were asked to complete an adjusted probabilistic reward
L08 reversal learning task while undergoing functional magnetic resonanceimaging (fMRI).
L09 On each trial, participants had to choose one of two options with specific reward
110 probabilities (Fig. 1a). In the stable block, two options are consistently associated with
111 reward probabilities of 75% and 25%, respectively (Fig. 1b). In the volatile block, the
112 reward probabilities associated with the options changed between high (80%) and low
113 (20%) every 20 trids (Fig. 1c). To perform optimally, participants had to estimate the
114 reward probabilities of two optionsfrom the outcome of previoustrials. Option selection
115 and reaction time were recorded. Brain activity was also measured. Three participants
116 were excluded from all analyses as they missed more than 10 of the 180 trials during the
117 primary task (5.6%).
118 Behavioral Results. Learning rate (o) reflects how participants’ choice at agiven time
119 was influenced by recent previous outcomes. A high learning rate means that current
120 choiceis strongly guided by recent outcomes and reflects rapidly changing
121 stimulus-outcome associ ations. High learning rates are more suitable for volatile
122 environments. In contrast, alow learning rate means that a surprising outcome has little
123 effect on the subsequent choice. Low learning rates are more suitable to stable
124 environments, reflecting that people may not change their selections. We estimated
125 learning rates by fitting a Rescorla-Wagner (RW) learning model to their choicesin the
126 three blocks * ™. We also used a Bayesian |earning model, which estimates the volatility
127 of thetask ™. Model comparison indicated that the RW model using Grid search
128 provided the best model-to-datafit (RW Grid ML: 115.61 + 38.57, RW Grid EV: 117.58
129 +37.79, RW fMIN: 122.96 + 37.88, Bayesian: 260.02 + 53.82, F(3, 99 = 139.5, p < 0.001;
L30 Fig. 2a). There was no difference between the ML estimate and EV estimate (p = 0.931).
131 The RW model with Grid Search also generated the largest correlation between modeled
132 probability and participants’ choices (RW Grid ML: 0.801 + 0.110, RW Grid EV: 0.801
133 +0.108, RW fMIN: 0.771 + 0.104, Bayesian: 0.736 + 0.699, F(3 g9 = 10.615, p < 0.001,
134 Fig. 2b). Therefore, the Bayesian model was only used to estimate environmental
135 volatility.
136 To understand how participants’ behaviors and mental representations changed over
137 time, we examined participants’ cumulative true responses and modeled choices. In
138 general, participants could successfully capture changesin probability across the whole
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139 experiment. Compared to the Bayesian model, the RW model fitted behavioral data

140 better in both the stable-volatile-stable task and the volatile-stable-volatile task (Fig. 2c,
141 d). We also estimated the environmental volatility v(;) by using the Bayesian model
142 across the whole task. The estimated volatility increased suddenly after reversal and
143 decreased gradually in the stable state (Fig. 2e, f). However, this variability in the

144 volatile-stable-volatile task was not strong, especially in the stable state, which suggests
145 that participants perceived/expected the environment as having high uncertainty. A

146 repeated measures ANOVA of the Order and Volatility showed different tendencies of
147 estimated volatility between the stablevolati le-stable task and volatile-stable-volatile
148 task (F(y, 3 = 41.936, p < 0.001, #° = 0.567; Fig. S1). Post hoc analyses showed that
149 estimated volatility differed as afunction of an interaction with order; the volatile state
L50 (0.809) was significantly larger than the stable state (0.584) within the

151 stable-volatile-stable task (F(1, 32) = 40.85, p < 0.001), whereas the stable state (0.809)
152 was significantly higher than the volatile state (0.712) within the volatile-stable-volatile
153 task (F(l, 2) = 7.65, p= 0009)

154 We observed a decrease in learning when shifting from voléatile to stable conditions
155 across both ordered tasks (Fig. 2g). To confirm whether participants adapted their

156 learning rates by order of transition (from stable to volatile state vs. from volatile to

157 stable state), adapted learning rates were calculated by subtracting learning rate in the
158 stable state from the volatile state. A repeated measures ANOVA of the Order and

159 Transition showed that the adapted learning rates were significantly higher in volatile to
160 stable transitions (adapted a,.s = 0.076) than stable to volatile transitions (adapted o, =
161 -0.002), regardless of thetask type (F(1, 32 = 5.141, p= 0.03, * = 0.138; Fig. 2h). Further
162 analysis showed that adapted |learning rate from volatile to stable state is significantly
163 larger than zero which means that learning rate in the volatile state (0.4514) was larger
164 than in the stable state (0.3714; t(1, 33 = 2.413, p = 0.022). These results indicate that
165 parti cipants adapted their learning more in the transition from volatile to stable states
166 than the other way around. The learning rate was not significantly different in the

167 volatile environment from the stable environment (p > 0.05; Fig. S2). The adapted

168 leaning rate in volatile to stable transitions was not significantly correlated to anxiety,
169 depression or impulsivity (ps> 0.05; Fig. S3). Potential correlations were not explored
L70 for adapted learning rate in stable to volatile transitions due to lack of effect.

171 Neuroimaging Results. The estimation of environmental volatility in the Bayesian

172 model was negatively associated with activity in the bilateral caudate nuclei (left

173 caudate, peak at X, y, z=-18, 12, 15, 87 voxels; right caudate, peak at X, y, z= 21, 15, 18,
L74 54 voxels; p rue < 0.05; Fig. 3a). The increased blood oxygenation

L75 level-dependent (BOLD) signal in the bilateral caudate nuclei reflected lower estimated
L76 environmental volatility. Activity of the bilateral caudate nuclei in response to volatility
177 was also associated with the variance of learning rates across the three blocks (r (a3 =
178 0.437, p=0.01; Fig. 3b). These results reveaed that encoding of environmental

L79 volatility in the caudate could predict the adjustment of learning strategies across the
180 three blocks.

181 To explore brain network configurations related to volatility, we performed PPI

182 analysis, using the bilateral caudate nuclei as seeds. We found that the bilateral caudate
183 nuclei showed positive connectivity with the right dorsolateral prefrontal cortex (dIPFC)
184 and left fusiform gyrus (FFG) related to volatility (dIPFC, peak at x, y, z=-36, 12, 30, 93
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185 voxels; FFG, peak at X, y, z=-18, -90, -6, 118 voxels; p rwe < 0.05; Fig. 3c). Correlation
186 analyses showed that functional connectivity between the bilateral caudate nuclei and
187 right dIPFC was positively associated with averaged learning rate across the three blocks
188 (r(zs = 0.36, p < 0.05; Fig. 3d). Connectivity between the caudate and middle frontal
189 gyrus (MFG) differed asafunction of Order and Transition (F(2, 64y = 3.587, p = 0.033, n
190 =0.101; See Fig. 4b). Post hoc analysis revealed a significant decrease of caudate-MFG
191 connectivity in the transition from volatile to stable relative to the stable to volatile

192 transition, only for the stable-volatile-stable order (F(1, 32 = 5.470, p < 0.05; Fig. 4c). To
193 explore whether the caudate-M FG pathway tracked with volatility, we calculated

194 correlations between environmental volatility and connectivity of the bilateral caudate
195 and right MFG in each trial of each participant (Fig. $4). A one-sample t-test showed
196 that correlations were not significantly different from zero (ps>0.05).

197 Given that the brain dynamically adapts to the changing environment as a complex
198 system, we examined dynamic modular structures of multilayer brain networks over
199 multiple temporal scales. The modularity index was adapted to identify at which

200 temporal scale the node was best partitioned into communities (Fig. 5a). Modularity
201 analyses showed that @ at the smallest temporal scale (10s, onetrial) was significantly
202 higher than the other temporal scales (ps < 0.001; Fig. 5b). To examine changes of the
203 community properties among the three blocks, we calculated the network flexibility

204 within each block at 10s intervals (each block comprised 60 time-windows). Network
205 flexibility decreased as a function of learning, especially from volatile to stable

206 transitions (Fig. 5d). Repeated measures ANOVA of Order and Transition showed that
207 adapted flexibility was significantly higher from volatile to stable transitions (adapted
208 flexibility = 0.0054) than from stable to volatile transitions (adapted flexibility =

209 -0.0019), regardless of the task type (Fq, 32 = 4.672, p=0.038, 4° = 0.127; Fig. 5¢). Post
210 hoc analysis showed that adapted flexibility from volatile to stable transitions was not
211 significantly larger than zero (t, 3 = 1.589, p > 0.05). The contrast between

212 volatile-to-stable and stable-to-volatile transitions showed that adapted flexibility was
213 associated with activity in the | eft frontal pole (FP), right superior parietal lobule (SPL),
214 left supramarginal gyrus (SMG), lateral occipital cortex, right OFC, left

215 parahippocampal gyrus and brain stem (ps < 0.05; Fig. 5f). Correlation analyses didn’t
216 show any significant rel ationships between adapted flexibility and adapted learning

217 rates (ps > 0.05).

218

219  Discussion

220 The ability to adapt, on multiple levels, to constantly changing environments

221 ensures optimal behavior for reward maximization and punishment minimization. Our
222 results show distinctive behavioral adaptations and brain organizations in transitions
223 between environments with varied volatility. Participants exhibited more adaptation and
224 perceived higher volatility in stable environments among transitions from volatile to
225 stable relative to stable to volatile environments. Subjective volatility of the

226 environment was encoded in the bilateral caudate nuclei and its connectivity with the
227 right dIPFC. Notably, modular organizations of dynamic caudate-dIPFC connectivity
228 changed most within shorter time windows, reflecting the need for the brain to adapt
229 quickly while learning of rapid environmental changes.
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230 The asymmetrical adaptation between the volatile-stable and the stable-volatile
231 transitions, suggest a greater need for adaptation under stable to volatile transitions.

232 Heightened adaptation can be largely explained by early learning among major

233 environmental changes. Participants exhibited greater adaptation under stable to volatile
234 transitions when the first block was stable relative to when the first block was volatile.
235 Asymmetrical adaptation is consistent with previous findings of transfer effects; shifts
236 from a difficult task to an easier oneis often more effortful than transfer in the opposite
237 direction (4). While previous studies have shown higher learning rates in the volatile
238 environment and in the stable environment (2, 11), our findings suggest important

239 carryover effects such that experience with volatile environments may impact

240 subsequent learning in astable environment and vice versa. The idea has been supported
241 in principle by arecent social norm violation study, which shows that participants

242 preconditioned on unfair offers rejected comparable fair offers less frequently than

243 parti cipants preconditioned on generous offers (21).

244 Several brain systems play key roles in adaptation to environmental transitions.
245 The caudate nucleus, a critically part of the midbrain dopaminergic system, plays akey
246 role in processing incentive salience (22)and learning associations between stimuli and
247 responses (17). A large number of studies have shown that the caudate encodes several
248 learning parameters, including expected value (23), action values (24), reward

249 prediction errors (25, 26), and learning rates (16). A primate study has shown that

250 monkeys with caudate dopaminergic depletions exhibit marked difficulty in

251 reconstructing the stimulus-reward associ ations after reversal (15). The current findings
252 show that the caudate also encodes estimated volatility, suggesting anew role of the
253 caudate in learning. The present result is consistent with previous findings that the

254 caudate is engaged in volatility estimates to fine-tune the weights of recent or remote
255 prediction errors in predicting forthcoming needs for control (27). Consistent with

256 previous findings on the direct engagement of the dIPFC in encoding volatility (9, 14),
257 our results show a modulatory role of the connectivity between the caudate and right
258 dIPFC in estimating volatility. Accumulating evidence has shown that the frontostriatal
259 network is modulated by cognitive control (28-30). Therefore, changesin the

260 frontostriatal pathway associated with cognitive control might be involved in estimates
261 of environmental volatility. Contrary to previous work (1, 2, 9, 31), we did not find

262 robust volatility-related signals in the ACC. One potential explanation might be that the
263 magnitude of outcomein our task was fixed rather than variable asin previous studies (2,
264 11). Changing outcome probabilities and outcome magnitudes may have increased task
265 difficulty in prior work. It is possible that strong contrast effects (e.g. high probability
266 with low magnitude vs. low probability with high magnitude) might drive ACC activity
267 in previous studies.

268 In transition from the volatile-stable direction to the stable-volatile direction,

269 participants showed higher network flexibility, suggesting a dynamic reorganization of
270 the brain in adaptation to environmental volatility. Dynamics of functional brain

271 connectivity has been widely used to examine the complex human cognition of

272 moment-by-moment changes in learning (32-34), by providing dynamic measurements
273 of flexibility in coordination among different brain states in responses to adaptative

274 behaviors (35, 36). Based on dynamic functional connectivity, modular structures

275 aggregated by small subsystems or modules might facilitate behavioral adaptation (19).
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276 These findings point to apivotal role of the frontoparietal control network in the adapted
277 flexibility of individuals in transitions between environments with different volatility.
278 In conclusion, to the best of our knowledge, the current work isthefirst to examine
279 the way that the human brain adapts to transitions in environmental volatility. Our

280 results show asymmetrical behavioral and neural adaptations during the environmental
281 transitions with superior adaptation under transitions from stable to volatile

282 environments rather than the opposite. These flexible adaptations are modulated by the
283 striatal reward system and its dynamic connections with the prefrontal control system.
284 The current work sheds light on the nature of the human brain adaptations to navigation
285 of variable environments in daily life.

286

287  Materialsand Methods

288 Participants. Thirty-Seven (20 females) Chinese participants, aged between 18 and 30
289 years (meantSD = 21.62+2.79 years), without any history of psychiatric disorders were
290 recruited from several Universitiesin Beijing. Three participants were excluded from all
201 analyses as they missed more than 10 of the 180 trials during the primary task (5.6%).
202 The study protocol was approved by the local Ethics Committee. All participants

293 provided informed consent.

294 General procedure. To ensure participants understood the probability and reversal

205 components underlying the task, a three-stage training task was implemented (37).

296 Participants then completed an adjusted probabilistic reward reversal learning task while
297 undergoing fMRI. Participants completed the trait subscale of the Spielberger’s

208 State-Trait Anxiety Inventory (38), the Self-rating Depression scale (39) and Barrett

209 impulsivity scale (40). After the experiment, all participants were fully debriefed and
300 received payment based on their task performance.

301 Task design. A probabilistic reward reversal learning task (Fig. 1a) was adapted from
302 previous reversal learning tasks used to examine learning strategies in environmental
303 volatility (2, 11). Thetask consists of three blocks of 60 trials in which participants were
304 required to make choices between two options with specific reward probabilities (Fig.
305 1b, 1c). In the stable block, two options were stably associated with reward probabilities
306 at 75% and 25%, respectively. In the volatile block, the probabilities of the two options
307 switched between high (80%) and low (20%) reward probability every 20 trials. To test
308 whether adaptations differ between the transition from stable to volatile and the

309 transition from volatile to stable blocks, participants were randomly assigned to

310 complete the three blocks either in the order of stable-volatile-stable or

311 volatile-stable-volatile without taking a break. None of the participants was informed
312 that tasks would be divided into three different blocks.

313 In each trial, two options with horizontal and vertical gratings were presented with
314 avisual angle of approximately 8°. Participants were required to make decisions within
315 3s. Once they responded, the selected option would be highlighted via a white frame to
316 acknowledge the choice with aduration of 0.2s. Sequentially, a question mark was

317 presented at the center of the screen with ajitter interval at 2-4s, to indicate that the

318 outcome was pending. At the phase of outcome, reward (green “+ 1”) or no reward (red
319 “+ 0”) was presented at the center of the screen for two seconds. At the end of trial, an
320 inter-trial interval with a fixation cross was presented for 0.8-5.8s, to ensure total trial
321 duration was 10s.
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322 The Rescorla-Wagner model. Participants’ learning rates in three blocks were
323 estimated by a simple Rescorla-Wagner (RW) learning model (41). In (i + 1)** trial,
324 the predicted reward probability of option A, V_+1), was updated using the following
325 eguation,
326 Va(i+1) = Va(i) + a X 6(i) (1)
327 The Va1 and V) represent the expected values. Specifically, the predicted reward
328 probability of the chosen option A for the (i + 1) and i*" tria. The a € [0,1]
329 indicates the learning rate and &;y isthe prediction error on the it" trial which was
330 calculated by comparing the actual reward r(;, with the expected value V¢,
331 6(0 =ry — Vo 2.
332 The likelihood of the option chosen by participants on the i trial was estimated by a
333 sigmoidal probability distribution,

eBVa(i) 1
. Fa = 0~ 1PV ) )
335 Here, B € (0,10] indicates the inverse temperature parameter which controls the
336 degree to which an option would be chosen. When V) islarger than V, ), the larger
337 the B, the higher probability that option A would be chosen.
338 Participants were instructed that the difference between the probabilities of two
339 options would be clear without mentioning that they were opposite, and both add to one.
340 Although it is theoretically possible for participants to learn about the probabilities of
341 two options independently, the probability of the unchosen option B was calculated as
342 follows,
343 Vo =1 -V, (4).
344 The probability of the second option was fixed to make learning ssmpler.
345 The Bayesian lear ner model. We also assume that participants would track the
346 probabilities of option and outcome optimally by a Bayesian rule which has been
347 described in previous studies (1, 2, 11). Here, we provide a brief overview. In each trial,
348 the outcome y(;), reward or not, was determined by the underlying estimated probability
349 of option 7;:
350 pilry) ®).
351 The probability of option in the i*" trial, r;), was determined by the probability of the
352 option onthe (i — 1)**, r(;_,,, and the estimated volatility on the i, v;:
353 p(ri |T'(i_1), U(i)) (6).
354 The volatility v refers to an estimate of the expected rate of change of r. According to the
355 Bayesian model, alow volatility would be estimated and each new outcome would have
356 little influence on the estimate of r in a stable environment, whereas a high volatility
357 would be estimated in a fast-changing environment, implying r may be expected to
358 change quickly. The model also assumes that the way participants track environmental
359 volatility is same as the way participants track the changing probability,
360 9] (Ui |17(i—1)' k(i)) .
361 The environmental volatility on the i**, v, was determined by the volatility of the
362 preceding trial, v(;_;), and the control parameter, k;. A large k implies that stable or
363 volatile environment switches to the other one frequently.
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364 All parameters representing the participant’ expectations of the statistics of the

365 environment were modeled by the joint probability distribution,

366 P(is1, View klY<ivr) X pWisalried) [ v v kly<)p Wisd|vi, K) dv]p (i, vie Ddr; (8).
367 Modd fitting. The learning rates and inverse temperature parameters were firstly fitted
368 by a grid search. However, while increasing the precision of two parameters (e.g., a
369 [0:0.01:1] and B (0:0.1:10]), the number of all possible combinations of two parameters
370 across three blocks via grid search requires avery large amount of memory. To resolve
371 this issue, we first adopted the solution that these parameters would be estimated

372 separately for each of the three blocks by the grid search. The first prediction valuesin
373 block 2 and block 3 (trial 61 and 121) were from previous estimates (trial 60 and 120).
374 We also adopted the function fMINSEARCH (fMIN) in Matlab to estimate the

375 parameters without having to measure every single point. To determine the best-fitting
376 values of the learning rates and inverse temperature parameters, we used both the

377 maximum likelihood estimate (ML) and expected value estimate (EV) (multiplying the
378 value of each bin with the probability of that value). Additionally, trials with no response
379 and trials in which reaction time less than 200ms were excluded.

380 Model selection. The Bayesian information criterion (BIC) was used to assess which
381 model best captured participants’ choices. Lower value indicates the better fitting. L is
382 the likelihood, misthe number of estimated parameters, N isthe number of observations.
383 The Bayesian observer model includes 3 parameters (r, v, k). The RW mode with

384 fMINSEARCH that can look for minima without every single point includes 6

385 parameters (a, B per block). The RW model with Grid search includes 2 parameters.
386 Since this model fitted the participants’ choices separately for three blocks, the BIC of
387 each block was first calculated and then added together to get the total BIC for each

388 participant.

389 BIC = -2logL +mlogN 9).

390 To examine thefitting effect of model, we calculated the correlation of the participants’
391 choices with probabilities estimated by the RW and Bayesian model. The average

392 correlation coefficient was then used as a corroboration to indicate which model was
393 best.

394 fMRI data acquisition. MRI data were collected on a 3T Siemens PrismaMRI scanner
395 with a 64-channel head-neck coil at the Center for MRI Research, Peking University.
396 Functional MRI images were acquired with a simultaneous multiband echo planar

397 imaging (EPI) sequence (TR/TE = 1000/30 ms; FOV = 224 x 224 mm; matrix = 64 x 64;
398 slice thickness = 3.5 mm; slice number = 34; flip angle = 73°; multiband factor = 2).
399 High spatial resolution T1-weighted anatomical images were obtained with the

100 magnetization 1 prepared rapid gradient”echo (MPRAGE) sequence (TR/ITE =

101 2530/2.98 ms; FOV = 256 x 256 mm; matrix = 256 x 256; slice thickness =1 mm; flip
102 angle=7°).

103 fMRI data preprocess. All images were preprocessed using SPM 12 (Wellcome Trust
104 Center for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The

105 fMRI datawere first corrected for head motion, and the realigned images were

106 coregistered to the T1 structural image which had been manual reoriented to the anterior
107 commissure and then segmented into white matter, gray matter, cerebrospinal fluid

108 (CSF), bone, soft tissues, and air using default tissue probability maps of SPM12. The
109 images were then normalized to the standard Montreal Neurological Institute (MNI)

9
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110 space with final resolution of 3 mm?. Finally, normalized images were smoothed with a
111 Gaussian kernel of 6 mm full-width at half-maximum.
412 fMRI data analysis. To identify the brain responses to the environmental volatility, we
113 constructed a general linear model (GLM) with the onsets of the options presentation
114 modulated by a parametric regressor (the environmental volatility), onsets of the choice
115 selection, onsets of thejitter period modulated by the volatility, onsets of the feedback
116 delivery modulated by the volatility, onsets of trials with insufficient response time (<
117 200 ms, including non-response trials), onsets of trials with large head motion (the
118 framewise displacement, FD > 0.5). Additionally, six estimated head movement
419 regressors and a FD regressor were also included as covariates of no interest. The
120 regressors in the GLM design matrix were then convolved with the canonical
121 hemodynamic response function (HRF). Group analyses for brain activation were
122 performed with a random-effect model using a one-sample t-test. All results were
123 whole-brain corrected for multiple comparison by a voxel-wise uncorrected threshold at
124 p < 0.001 with afamily-wise error (FWE) corrected for cluster-level at p < 0.05.
125 Psychophysiological interaction analyses. To identify the volatility-specific changes
126 in the interaction between brain regions in whole brain functional connectivity, the
127 psychophysiological interaction (PPl) was performed by using the significant cluster as
128 seed region of interest (ROI) which was related with estimated volatility. For each
129 participant, the first eigenvariate of the ROI was extracted to get the individual voxel
130 time-course. In order to generate the PPI interaction term, this time-course was
131 deconvolved with the canonical HRF and then multiplied by the vector of the estimated
132 volatility. Thisinteraction term was then convolved with the canonical HRF and entered
133 into a PPl GLM aong with the vectors of the onsets for the estimated volatility during
134 the feedback, the original eigenvariate time-course and covariates of no interest (six
135 head movement and a FD). After that, we performed second-level analyses with
136 one-sample t-test for the contrast images of the PPI interaction term. The results were
137 corrected for a voxel-wise uncorrected thresholded at p < 0.001 with an extent
138 FWE-corrected cluster-level p < 0.05.
139 Dynamic Functional connectivity. To examine dynamic changes between the
140 seed-ROI and the significant clusters from PPl analysis, we extracted BOLD signals
141 from the corresponding ROIs based on the AAL atlas. The linear Pearson’s correlations
142 between the seed and target regions were calculated in three blocks to estimate
143 individual dynamic functional connectivity.
144 Dynamic Brain Networks. To explore modular organizations of the brain in the
145 dynamic adaptation, the modular structures spanning several temporal scales were
146 constructed according to previous recommendations (19). The smoothed images were
147 temporally detrended to reduce the effects of linear drift and nuisance signals were
148 removed to reduce the effects of non-neuronal fluctuation, including head motion, the
149 white matter and the CSF. fMRI datawere then band-pass filtered to reduce the effects of
150 low frequency drift and high-frequency physiological noises with 0.06-0.12 Hz (19).
151 The whole brain was parcellated into 112 ROIs identified in the 3mm Harvard-Oxford
152 (HO) atlas. To construct the individua functional connectivity matrices, the mean
153 BOLD time series were first estimated by averaging voxel time seriesin each ROI and
154 the linear Pearson’s correlation r;; between all pairs of ROIs i and j. To correct for
155 multiple comparisons, we first computed the p-values p;; of each r;; using the

10
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156 MATLAB function corrcoef and then tested the significance of p;; using aFalse
157 Discovery Rate (FDR) of p < 0.05. The p;; of the correlation matrix elements 7;;
158 which passed the FDR corrections was retained. Otherwise, the correlation matrix
159 elements r;; were set to zero. These corrected matrices rj; constituted adjacency
160 matrices A, elements of which Ajj = J. Based on our experlmental setting, we
161 measured functional connectivity over several temporal windows: [10s, 20s 30s, 40s,
162 50s, 60s, 75s, 100s, 120s, 150s, 200s, 300s, 600s, 1800s]. The node in each functional
163 connectivity matrix was partitioned into a community by maximizing the modularity
164 index Q (42). To identify organizations of subtle networks, we constructed the
165 undirected weighted graphs that preserving the information of the strength of
166 connections r;; (43). A spectral optimization algorithm was used to optimize the
167 modularity index Q (44). The most popular formula of @ was used (44) as follows,
1 kikj
168 Q=X [Aij - z—mj] 8(919;) (20),
169 where m = %Z ij» ki isthestrength of node i, k; isthe strength of node ;. When
170 node i and nodej arein the same module, 6(gi, g]-) = 1; Otherwiseg, it equals 0. Both
171 positive and negative weighted correlation coefficients were used to construct the
172 community with the assumption that it would provide more useful information about the
473 modularity partitions than only using positive correlation matrix elements (45). The
174 modularity was generalized (46) as
W:—W _w; W
¥75 0t =——%; [ (]/+ Ly )] 8(g909;) (1),
476 where y* and y~ are resolution parameters which usually set as one for ssmplicity and
177 wi = X;w, wit = Xiw, w = 3wt Although it has been argued that Q* and
478 Q~ should be treated equally because positive and negative connections play different
479 rolesin functional brain networks (45), we defined an asymmetric formula of modularity
180 as below based on previous studies which proposed that high-Q* modularity partitions
181 are more optimal than high-Q~ objectively (45),
— N+ -
Q=0+ wt+w- ¢
wl+w+ w; wj
182 = ﬁZij [A:r, —y* W+] ] 6(gi: gj) w++w_2” [A _] 5(91'; gj) 12).
183 The maximization of the modularity index @ categorizes the nodes into the
184 communities such that the total edge weight within the moduleis as large as possible.
185 Hence, we selected one temporal window with the largest @ over the severa temporal
186 windows. To measure changes in the modules during the learning, we calculated the
187 flexibility of anode f; at each block. The flexibility was defined as the number of times
188 the node changed modular assignment throughout the block, normalized by the number
189 of all possible changes(19). The flexibility of the network in each block was calculated
190 as below,
191 = Z =1 fi (13),
192 wheretime window N = 600/temporal scale.

11
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Fig. 1. Task design. a) Experimental procedure. Participants were required to choose
one of the two options with either horizontal or vertical gratings to maximize reward. A
response cue indicated which option had been selected. A variable jitter was followed
by reward presentation. In the outcome phase, the reward (green “+ 1”) or the no
reward (red “+ 0") was presented for two seconds. b) Reward probabilities across
the coursein the stable-volatile-stable task. This task consisted of three blocks
(stable-volatile-stable). In the stable block, one option was linked to a reward with 75%
probability while the other one would be followed by a reward with 25% probability.

In the volatile block, the reward probabilities of the two options would switch between
20% and 80% every 20 trials. c) Reward probabilities acr ossthe coursein the
volatile-stable-volatile task. This task consisted of three blocks
(volatile-stable-volatile). The reward probability of options was same with the onein
the stable-volatile-stable task.
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350 Fig. 2. Behavioral results. a) Model comparison by Bayesian information criterion
351 (BIC). The RW Grid model shows the lowest BIC among all models. Error bars
352 represent the standard error. b) M odel comparison by the correation of modeled
353 probability with participants choices. The RW Grid models showed the largest
354 correlations among all models. Error bars represent the standard error. ¢ d) Learning
355 curvesillustrating participants' choices and estimates of model during the c)
356 Stable-Volatile-Stable task and d) Volatile-Stable-Volatile task. The black dashed
357 line represents the experiment setting of the probability of the highly rewarded option.
558 The black solid line represents the participant’s choices. The salmon solid line
559 represents the Rescorla-Wagner model prediction. The dark turquoise solid line
360 represents the Bayesian model prediction. To illustrate participants’ choices and model
361 predictions, the variation across the participants and trials has been reduced by
362 smoothing using arunning average of four trials. f) Environmental volatility
363 estimated by the Bayesian model across the whole experiment. €)
364 Stable-Volatile-Stable task. In the stable-volatile-stable task, estimated volatility
365 (black solid lines, righthand axes) decreased gradually in the stable states and increased
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366 suddenly after each reversal. f) Volatile-Stable-Volatile task. In the

367 volatile-stable-volatile task, after the first volatile state, estimated volatility (black solid
368 lines, righthand axes) decreased slowly in the stable state. The underlying reward

369 probabilities of the task are presented with black dashed lines (lefthand axes). g h)
570 Learning ratesin each state. g) Learning ratesfitted by the Rescorla-Wagner
571 model to choicesin each block of each task. Salmon dashed line for

572 stable-volatile-stable task. Dark turquoise dashed line for volatile-stable-volatile task.
573 Dots represented the mean of participants' learning rates. Error bars represented the
374 standard deviation of participants' learning rates in each block. h) The adapted

575 lear ning rates wer e significantly higher from volatile to stable state than it from
576 stable to volatile state, regar dless of the order in which the two blocks wer e first
577 completed. Error bars represent the standard error.

578
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Fig. 3. Brain activation. a) Responses of bilateral caudate nuclei to estimated
volatility. Activity of the bilateral caudate nuclel (x =-18, y = 12, z = 15) was
negatively associated with the estimated volatility in outcome evaluation. b) Volatility
related brain activity predicated changesin learning r ates acr oss blocks. The
degree to which bilateral caudate nuclei tracked estimated volatility could predict the
variance of the learning rates across the three blocks. ¢) Brain regions showed
significant functional connectivity with bilateral caudate nuclei modulated by
environmental volatility. d) Correlation between caudate-related connectivity and

learning r ate.
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Fig. 4. Dynamic functional connectivity. a) The locations of regions of interest (the
caudate) and itstarget region (the M FG). Both of the two regions were defined based
on the Anatomical Automatic Labeling (AAL) atlas). b) The connection between the
caudate and middle frontal gyrus across blocks. ¢) Changes of connectivity
between the caudate and dIPFC between transitions from volatile to stable and
from stableto volatile environment.
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599
700 Fig. 5. Dynamic brain networks. a) Schematic overview of the dynamic brain
701 networ k analysis. The modular architectures of functional connectivity were detected
702 by the modularity index. b) Modularity index Q of community acr oss sever al
703 temporal scales. ) The number of modules of community across several temporal
704 scales. Error bars represent the standard error. d) Network flexibilitiesin three blocks
705 during the lear ning were calculated at 10stempor al scale. Salmon dashed line for
706 the stable-volatile-stable task; Dark turquoise dashed line for the
707 volatile-stable-volatile task. Dots represent the mean of flexibilities. Error bars
708 represent the standard deviation of network flexibilitiesin each block. €) The adapted
709 flexibility between transitionsfrom volatile to stable and from stable to volatile
710 environments). Error bars represent the standard error. f) The brain regions
711 represented adapted flexibility effect. FP, frontal pole; SPL, superior parietal lobule;
712 SMG, supramarginal gyrus; OLi, lateral occipital cortex; OFC, orbitofrontal cortex,
713 PHG, parahippocampal gyrus; L, left; R, right.
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