

Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation

3

4 Hongchen Shen,^{1#} Zhe Zhou,^{1#} Haihuan Wang,^{1#} Mengyang Zhang,¹ Minghao Han,² Yun Shen,^{2*}
5 Danmeng Shuai^{1*}

6

7 1 Department of Civil and Environmental Engineering, The George Washington University,
8 Washington, D. C., 20052

9 2 Department of Chemical and Environmental Engineering, University of California, Riverside,
10 Riverside, C. A., 92521

11

12 # Equal Contribution.

13 * Corresponding Authors:

14 Danmeng Shuai: Phone: 202-994-0506, Fax: 202-994-0127, Email: danmengshuai@gwu.edu,
15 Website: <http://materwatersus.weebly.com/>

16 Yun Shen: Phone: 951-827-2423, Fax: 951-827-5696, Email: yun.shen@ucr.edu, Website:
17 <https://yunshen.weebly.com/>

18

19

20

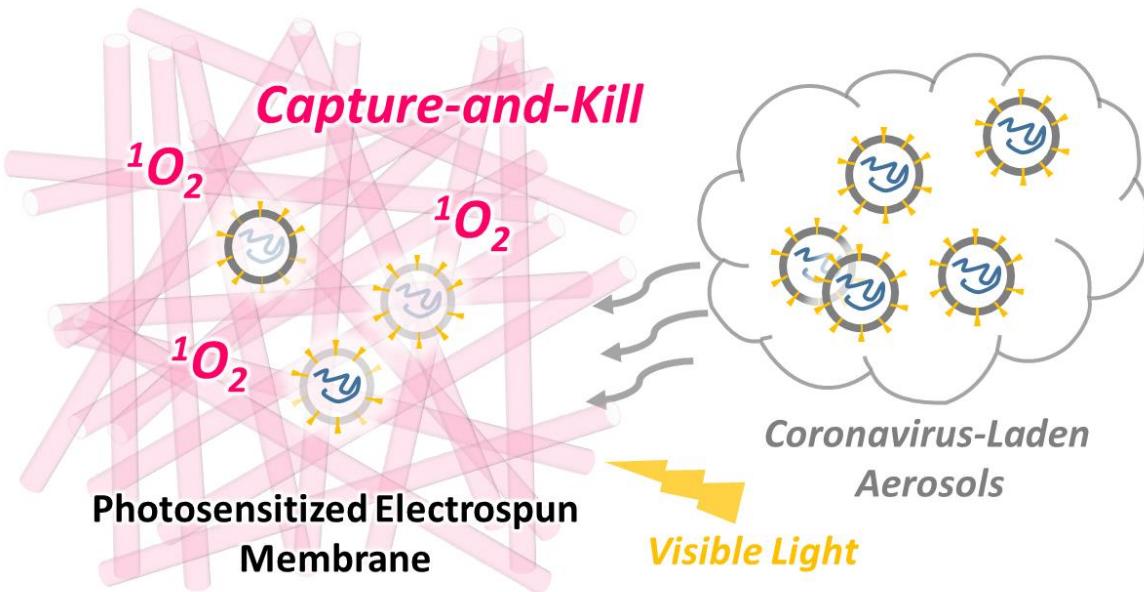
21 **Abstract**

22 To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized
23 electrospun nanofibrous membranes were fabricated to effectively capture and inactivate
24 coronavirus aerosols. With an ultrafine fiber diameter (~ 200 nm) and a small pore size (~ 1.5 μm),
25 the optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-
26 A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the
27 photosensitizer for the membranes because of its excellent reactivity in generating virucidal singlet
28 oxygen, and the membranes rapidly inactivated 98.9% of MHV-A59 in virus-laden droplets only
29 after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and
30 impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular
31 level. Membrane robustness was also evaluated, and no efficiency reduction for filtering MHV-
32 A59 aerosols was observed after the membranes being exposed to both indoor light and sunlight
33 for days. Nevertheless, sunlight exposure photobleached the membranes, reduced singlet oxygen
34 production, and compromised the performance of disinfecting MHV-A59 in droplets. In contrast,
35 the membranes after simulated indoor light exposure maintained their excellent disinfection
36 performance. In summary, photosensitized electrospun nanofibrous membranes have been
37 developed to capture and kill airborne environmental pathogens under ambient conditions, and
38 they hold promise for broad applications as personal protective equipment and indoor air filters.

39

40 **Keywords:** *Electrospinning, Photosensitizer, Coronavirus, Aerosols, Disinfection*

41


42

43 **Synopsis**

44 Photosensitized electrospun nanofibrous filters with excellent capture-and-kill performance
45 against coronaviruses were designed and implemented to prevent the airborne transmission of
46 COVID-19.

47

48 **Table of Contents**

49

50

51

52

53

54

55 **1. Introduction**

56 Airborne transmission of SARS-CoV-2 has been recognized as an important route for spreading
57 COVID-19 by the World Health Organization and the U.S. Centers for Disease Control and
58 Prevention.^{1,2} SARS-CoV-2 aerosols could suspend, accumulate, and remain infectious in the air
59 for a long duration up to hours.³ To reduce the transmission of SARS-CoV-2 through aerosols,
60 physical barriers like face masks and indoor air filters have been successfully implemented. In
61 particular, numerous studies have emphasized the important role of wearing masks in reducing the
62 spread of COVID-19.⁴⁻⁶ Electrospinning has emerged as a promising nanotechnology for
63 developing non-woven, ultrafine fibrous membranes that are excellent for removing aerosols.⁷⁻⁹
64 The electrospun membranes have a reduced pore size (tens of nanometers to several micrometers),
65 an increased specific surface area, and enhanced porosity to enable efficient aerosol filtration and
66 a low pressure drop in filtration.⁷ Furthermore, the surface and volume charges within the
67 electrospun membranes improve aerosol filtration through electrostatic attraction.^{10,11} Particularly,
68 our previous study has underscored that the electrospun membranes caught up to 99.9% of
69 coronavirus aerosols whose size was within or close to that of the most penetrating particles in
70 mechanical air filtration.¹² However, like most masks and air filters currently used on the market,
71 electrospun membranes only physically capture viral aerosols but they do not inactivate the viruses,
72 which could lead to secondary contamination and potential infection (e.g., via the contact of the
73 contaminated masks/air filters or viruses dislodged from the masks/filters).¹³

74

75 The goal of our study is to (i) develop highly efficient and robust photosensitized electrospun
76 nanofibrous membranes that can both physically capture and chemically disinfect coronavirus
77 aerosols, and (ii) elucidate the mechanism of photooxidation and inactivation of coronaviruses at

78 a molecular level. We selected dye photosensitizers as antimicrobial additives for electrospinning,
79 because they produce highly reactive singlet oxygen (${}^1\text{O}_2$) for effective and rapid virus disinfection,
80 they can be excited under the irradiation of visible light that is readily available in indoor
81 environments, they are low cost, and some of them have been approved by the U.S. Food and Drug
82 Administration for biomedical applications and thus pose little to no health risks to humans (e.g.,
83 rose bengal (RB)). Our membranes enable a self-cleaning feature for disinfecting coronaviruses
84 under ambient conditions, and photosensitized disinfection does not reduce the aerosol filtration
85 efficiency of the membranes. The photoreactive electrospun membranes can find broad air
86 filtration applications, such as face masks, respirators, and indoor air filters, and they are developed
87 for the first time for preventing the airborne transmission of SARS-CoV-2 and beyond.

88

89 We first optimized the composition for preparing the photosensitized electrospun nanofibrous
90 membranes to yield the best NaCl aerosol filtration efficiency, the lowest pressure drop in filtration,
91 and the highest reactivity for producing ${}^1\text{O}_2$ under visible light irradiation. Next, we tested the
92 filtration efficiency and inactivation kinetics of coronavirus aerosols to best understand
93 performance of the optimum membranes for controlling the airborne transmission of COVID-19.
94 We then conducted a thorough mechanistic investigation on how the membranes inactivated
95 coronaviruses, damaged viral genome, and impaired viral lifecycle in host cells. Last but not least,
96 to understand the lifetime of the membranes for practical engineering applications, we aged the
97 membranes under continuous light exposure up to 7 days and evaluated their long-term
98 performance of coronavirus aerosol filtration and coronavirus disinfection. Our promising results
99 highlighted that the photosensitized electrospun nanofibrous membranes showed outstanding
100 filtration performance for removing coronavirus aerosols, they rapidly disinfected coronaviruses

101 under visible light irradiation, and they maintained excellent performance when used in indoor
102 environments for a long duration.

103

104 **2. Materials and Methods**

105 **2.1 Fabrication of photosensitized electrospun membranes**

106 A series of two-layer photosensitized membranes were fabricated by electrospinning. Briefly, a
107 homogeneous electrospinning dope solution containing x wt% of polyvinylidene difluoride (PVDF)
108 ($x = 8-20$) and a dye photosensitizer in *N,N*-dimethylformamide/acetone (7/3, v/v) was electrospun
109 onto one layer of polypropylene (PP) fabrics (VWR[®] Basic Protection Face Mask). During the
110 electrospinning of 10-20 wt% of PVDF, the solution feeding rate, electric field, and
111 electrospinning duration was maintained at 0.6 mL h⁻¹, 1 kV cm⁻¹, and 20 min, respectively. For
112 electrospinning 8 wt% of PVDF, the solution feeding rate, electric field, and electrospinning
113 duration was kept at 0.4 mL h⁻¹, 1 kV cm⁻¹, and 30 min, respectively, to reduce bead formation.
114 The dyes including 0.3 wt% of RB, 0.015 wt% of methylene blue hydrate (MB), 0.3 wt% of crystal
115 violet (CV), 0.015 wt% of (-)-riboflavin (RF), and 0.003 wt% of toluidine blue O (TBO) were
116 used. Mass percentage of PVDF and the dyes was calculated with respect to the total mass of the
117 electrospinning dope solution, and the maximum dye concentration was selected based on dye
118 solubility in the solution. The two-layer photosensitized electrospun membranes were denoted as
119 PVDF x -dye name (e.g., PVDF15-RB). Membranes that were electrospun from 15 wt% of PVDF
120 without dyes onto a layer of PP fabrics (VWR[®] Basic Protection Face Mask) were also fabricated
121 for comparison (i.e., PVDF15).

122

123 Three-layer photosensitized electrospun membranes (here referred to as sandwiched membranes),
124 which consisted of an additional PP fabric top layer (Amazon, skin friendly non-woven fabrics)
125 on the top of the two-layer photosensitized electrospun membranes, were particularly assembled
126 for aerosol filtration and pressure drop tests. The sandwiched structure protected the electrospun
127 layer from destruction during and after filtration (e.g., removal from the filter holder). Based on
128 our previous study, the PP fabrics had negligible impact on aerosol removal and pressure drop,
129 because of their very large pore size compared with the aerosol size (~120 μm versus $< 2 \mu\text{m}$) and
130 high porosity.¹²

131

132 **2.2 Characterization of photosensitized electrospun membranes**

133 The nanofiber diameter of electrospun membranes was characterized by scanning electron
134 microscopy (SEM, FEI Teneo LV). For each membrane, at least 50 fibers were selected for
135 analyzing the diameter. The pore size of two-layer photosensitized electrospun membranes was
136 characterized by a gas liquid porometry method (POROLUXTM 100/200/500, shape factor of
137 0.715, APTCO Technologies LLC, Belgium). The pressure drop of sandwiched photosensitized
138 electrospun membranes was determined with a face velocity of 5.3 cm s^{-1} . Dye leaching from two-
139 layer photosensitized electrospun membranes was estimated by optical absorbance measurements
140 (UV-vis spectrophotometer, Hach DR6000), and details are in **Text S2**. $^1\text{O}_2$ production of the two-
141 layer photosensitized electrospun membranes was quantified in a liquid setup containing furfuryl
142 alcohol (FFA, 1 mM) under the exposure of both simulated reading light (100% 7W white LED
143 with a lamp-to-membrane distance of 15 cm) and simulated indoor light (3% 7W white LED with
144 a lamp-to-membrane distance of 33 cm), and the steady-state $^1\text{O}_2$ concentration ($[^1\text{O}_2]_{\text{ss}}$) was
145 calculated by dividing the measured first-order decay rate constant of FFA by the second-order

146 reaction rate constant between $^1\text{O}_2$ and FFA ($1.2 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$). Simulated reading light had a
147 higher photon flux and optical power density than those of simulated indoor light, and they were
148 recorded in **Figure S1** and **Table S1** (AvaSpec-2048 Fiber Optic Spectrometer). FFA was
149 monitored by high performance liquid chromatography (Shimadzu LC-20AT Prominence).

150

151 **2.3 Determination of filtration efficiency for removing NaCl and coronavirus aerosols**

152 NaCl solution (0.1 M) and murine hepatitis virus A59 (MHV-A59) in water ($\sim 10^6\text{-}10^7$ gene copies
153 mL^{-1} , diluted from the virus stock by ~50 times with nuclease-free water) were used for
154 aerosolization and filtration tests. MHV-A59 was selected because it is a β -coronavirus that shares
155 the same family and the size with SARS-CoV-2 (85 nm of MHV-A59 versus 50-200 nm of SARS-
156 CoV-2).¹⁴ Details of MHV-A59 propagation are in **Text S3**. Only for the aerosol size
157 characterization, aerosols were generated from ultrapure water containing polystyrene and silica
158 nanoparticles (00876-15, Polysciences; SISN100-25M, nanoComposix; both were 100 nm) to
159 simulate MHV-A59 aerosols, because both nanoparticles and the MHV-A59 had a similar size and
160 concentration during aerosolization and the two different nanoparticles had representative
161 hydrophobicity/hydrophilicity. In the filtration tests (i.e., filter-on), a portion of NaCl or MHV-
162 A59 aerosols were captured by the sandwiched membranes, whereas the penetrating aerosols were
163 retained by an impinger. In the control experiments (i.e., filter-off), no filter was in place and all
164 generated aerosols were retained by the impinger. The filtration efficiency was determined based
165 on the difference of the amount of NaCl or MHV-A59 in the impinger between filter-off and filter-
166 on experiments over the amount of NaCl or MHV-A59 in the impinger in the filter-off experiment.
167 At least duplicates were conducted for each filtration test and control experiment. Details of the
168 setup and experimental conditions are described in our previous study and also in **Text S4**.¹² NaCl

169 was quantified by ion chromatography (Dionex ICS-1100), and the amount and infectivity of
170 MHV-A59 were quantified by the reverse transcription-quantitative polymerase chain reaction
171 (RT-qPCR) and the integrated cell culture-reverse transcription-quantitative polymerase chain
172 reaction (ICC-RT-qPCR), respectively.

173

174 **2.4 RT-qPCR quantification of coronaviruses**

175 MHV-A59 collected in the impinger was concentrated by centrifugal ultrafiltration (Nanosep, 300
176 kDa, Pall Laboratory), and next proceeded for RNA extraction by a Zymo Quick-RNA Viral Kit
177 (R1035). MHV-A59 was quantified by RT-qPCR by amplifying a fraction of its ORF5 gene for
178 the structural protein M.^{15,16} The TaqMan™ Fast Virus 1-Step Master Mix Kit (Thermo Fisher
179 Scientific Inc., 4444432) was used for RT-qPCR. Details of RNA extraction efficiency, the
180 sequence and concentration of primers, probe, and cDNA standard, reverse transcription and PCR
181 programs, PCR amplification efficiency, positive and negative controls, and inhibition tests are
182 summarized in **Text S5**. All the RT-qPCR data were reported following MIQE guidelines.^{12,17}

183

184 **2.5 Evaluation of coronavirus infectivity after photosensitization**

185 Compared with conventional infectivity assays based on plaque forming units or median tissue
186 culture infectious dose (TCID₅₀), ICC-RT-qPCR is a rapid, sensitive, and reliable method for
187 quantifying the infectivity of coronaviruses, based on RT-qPCR of viral gene copy numbers after
188 virus replication in the host cells. The experimental conditions of ICC-RT-qPCR were optimized,
189 and the method is valid for quantifying the infectivity of MHV-A59 because a linear correlation
190 was observed between virus infectivity quantified by ICC-RT-qPCR and the viral load before

191 infection determined by RT-qPCR (**Figure S2**). Special attention should also be paid for
192 interpreting the virus infectivity quantified by ICC-RT-qPCR, because ICC-RT-qPCR compared
193 with a conventional cell culture assay could overestimate the dosage of reactive oxygen species
194 (ROS) to achieve the same level of virus inactivation.¹⁸

195

196 The infectivity of MHV-A59 captured on the photosensitized electrospun membrane was
197 evaluated by ICC-RT-qPCR after the exposure to simulated reading light. Briefly, the viruses on
198 the membrane were eluted in nuclease-free water, concentrated by centrifugal ultrafiltration
199 (Nanosep, 300 kDa, Pall Laboratory), and proceeded for cell infection and RT-qPCR
200 quantification. Details are included in **Text S6**. Unfortunately, the infectivity of MHV-A59 that
201 was eluted from the membrane after aerosol filtration was not able to be quantified by ICC-RT-
202 qPCR, because aerosolization lost most of the viruses (i.e., only ~1 out of a million viruses was
203 able to be aerosolized in our system) and a low multiplicity of infection did not allow virus
204 propagation in the host cells.¹⁹ To facilitate quantifying the photoreactivity of photosensitized
205 electrospun membranes for inactivating MHV-A59, we designed a liquid setup that virus-laden
206 droplets were loaded on the membrane surface under the exposure of both simulated reading light
207 and simulated indoor light (details in **Text S7**). First-order infectivity decay rate constants, $k_{infectivity}$,
208 were obtained from the negative slope of the linear regression of the natural logarithm of MHV-
209 A59 infectivity versus the light exposure duration. The liquid setup was amended with a high viral
210 load, and it provided reliable and quantifiable infectivity of the virus after light exposure. The
211 liquid setup could best simulate the scenario of coronavirus inactivation when virus-laden
212 respiratory droplets are captured on the masks. Control experiments that evaluated MHV-A59
213 inactivation by PVDF15 under the irradiation of simulated reading light and by PVDF15-RB in

214 the dark were also conducted. Triplicates were conducted for MHV-A59 inactivation by PVDF15-
215 RB under light exposure, and duplicates were conducted for the control experiments.

216

217 **2.6 Evaluation of coronavirus gene damage after photosensitization**

218 After photosensitization, the ORF5 gene damage of both filter-captured MHV-A59 aerosols and
219 MHV-A59 in droplets was evaluated by RT-qPCR. The same experimental setup for investigating
220 MHV-A59 infectivity was used, as described in **Section 2.5**, and MHV-A59 aerosols captured on
221 the sandwiched PVDF15-RB and MHV-A59 droplets on PVDF15-RB were subjected to the
222 irradiation of simulated reading light. The samples were next collected at different time intervals
223 for RT-qPCR quantification, as described in **Section 2.4**. Photooxidation damaged the viral genes
224 and prevented its RT-qPCR quantification, and only the intact genes were able to be determined.
225 Control experiments that evaluated the ORF5 gene damage of captured MHV-A59 aerosols on
226 PVDF15 under the irradiation of simulated reading light and on PVDF15-RB in the dark were also
227 conducted. First-order ORF5 gene damage rate constants, k_{gene} , were obtained from the negative
228 slope of the linear regression of the natural logarithm of the ORF5 gene copy number quantified
229 by RT-qPCR versus the light exposure duration. Triplicates were conducted for the ORF5 gene
230 damage of MHV-A59 by PVDF15-RB under light exposure, including both viral aerosols and
231 droplets; and duplicates were conducted for the control experiments.

232

233 **2.7 Evaluation of coronavirus' lifecycle after photosensitization**

234 The impact of photosensitization on coronavirus' lifecycle in host cells, including virus binding
235 and internalization, was investigated. The same liquid setup as described in **Section 2.5** was used,

236 and MHV-A59 droplets on PVDF15-RB were subjected to the irradiation of simulated reading
237 light (details in **Text S8**). Incubation MHV-A59 with L-929 cells at 4 °C only allowed virus
238 binding, whereas subsequent increase of the incubation temperature to 37 °C permitted virus
239 internalization.^{20–22} First-order rate constants of apparent damage to coronavirus' lifecycle were
240 obtained from negative slope of the linear regression of the natural logarithm of RT-qPCR
241 quantified viruses bound to and internalized into the cells versus the light exposure duration, and
242 they are denoted as $k_{app_binding}$ and $k_{app_internalization}$, respectively. The rate constants of true damage
243 to virus binding and internalization were calculated as $k_{binding}=k_{app_binding}-k_{gene}$ and
244 $k_{internalization}=k_{app_internalization}-k_{app_binding}$, respectively.¹⁸ The correction for $k_{app_binding}$ was to
245 distinguish the decrease of ORF5 gene PCR signal due to ORF5 gene damage by photooxidation
246 and the loss of virus binding function by the same treatment; and the correction for $k_{app_internalization}$
247 was to exclude the contribution of the decrease of ORF5 gene PCR signal due to damaged virus
248 binding by photosensitization. Triplicates were conducted for the damage of coronavirus' lifecycle
249 after photosensitization.

250

251 **2.8 Aging and robustness of photosensitized electrospun membranes**

252 Fresh two-layer photosensitized electrospun membranes were aged under different light exposure
253 to explore their robustness and lifetime for capturing and killing coronaviruses. Briefly, PVDF15-
254 RB was exposed to indoor light (fluorescent light in the laboratory) and simulated indoor light up
255 to 7 days and outdoor sunlight up to 4 days, and the aged membranes were denoted as PVDF-RB-
256 I, PVDF-RB-S, and PVDF-RB-O, respectively. The light spectrum and intensity for aging are
257 included in the **Figure S1** and **Table S1**. Particularly, indoor light and simulated indoor light had
258 almost identical photon flux and optical power density. After aging, the membranes were

259 characterized by SEM for morphology and nanofiber diameter, and their production of ${}^1\text{O}_2$ under
260 the irradiation of both simulated reading light and simulated indoor light was also measured, as
261 described in **Section 2.2**. Aged membranes were also used for testing the filtration efficiency for
262 removing MHV-A59 aerosols and the inactivation of MHV-A59 droplets, as described in **Sections**
263 **2.3 and 2.5**.

264

265 **2.9 Data analysis**

266 Student's t test was utilized to determine whether the calculated first-order reaction rate constants
267 of infectivity decay, ORF5 gene damage, and the damage of virus binding and internalization were
268 different from 0. Student's t test was also used for the statistical comparison of the difference
269 between two first-order reaction rate constants, $[{}^1\text{O}_2]_{\text{ss}}$, and aerosol filtration efficiencies. All p
270 values < 0.05 were considered statistically significant.

271

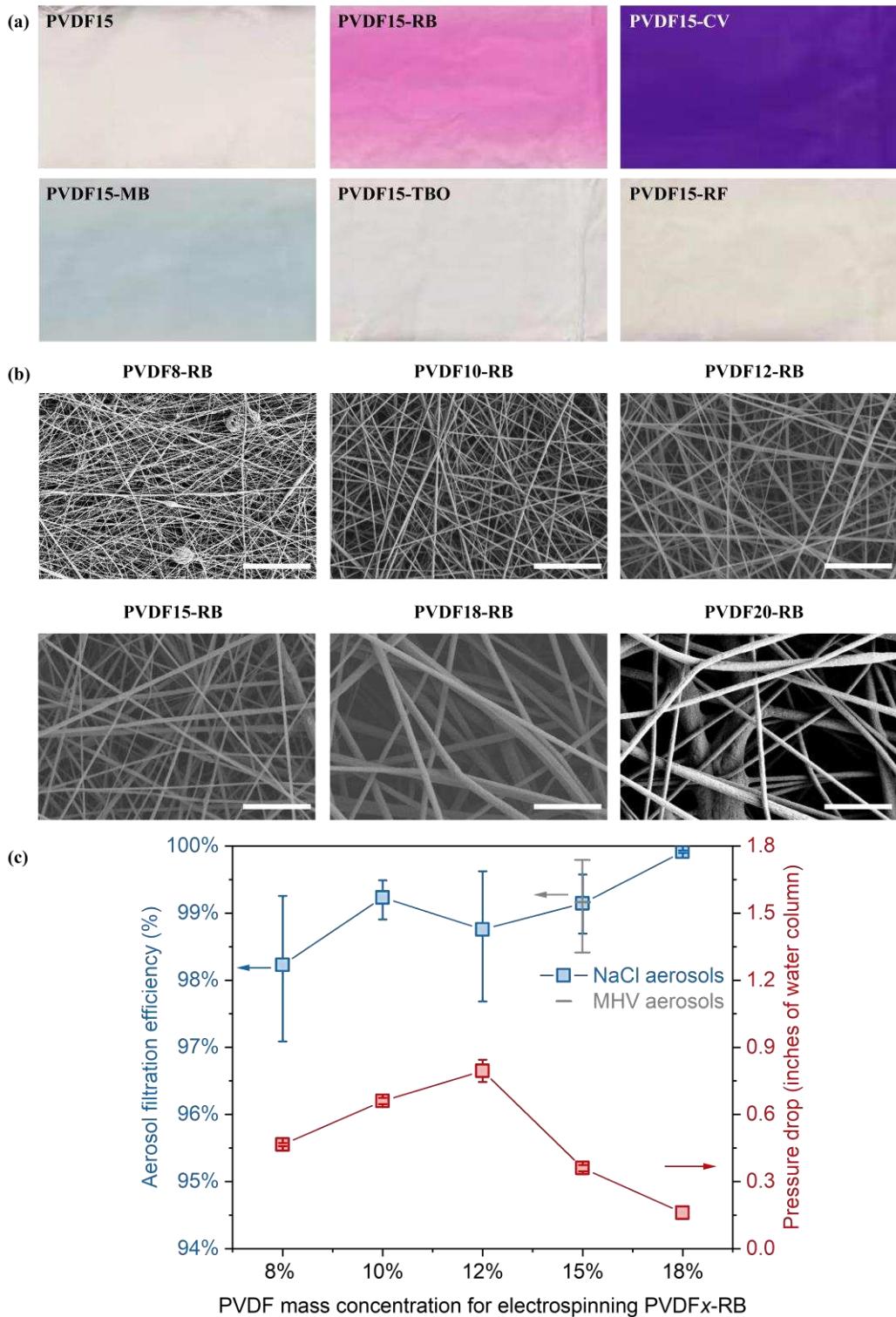
272 **3. Results and Discussion**

273 **3.1 Optimizing photosensitized electrospun membranes**

274 All photosensitized electrospun membranes showed the color of the photosensitizers, in contrast
275 to the white bare PVDF membranes, indicating the successful incorporation of photosensitizers
276 into the PVDF matrix (**Figure 1a**). The loading of photosensitizers was maximized based on their
277 solubility in the electrospinning dope solution to ensure the best photoreactivity for inactivating
278 coronaviruses. The hydrophilic photosensitizers were embedded in the hydrophobic PVDF, which
279 minimized photosensitizer leaching. Specifically, only 2.20 wt% of RB was released when

280 PVDF15-RB was immersed in water for 6 h, suggesting that the moisture from human breath or
281 ambient air would not induce significant photosensitizer leaching when the membranes are used
282 as masks and indoor air filters. To select the photosensitizer with the best photoreactivity, $[{}^1\text{O}_2]_{\text{ss}}$
283 produced from the electrospun membranes loaded with different photosensitizers was
284 characterized. Under the exposure of simulated reading light with a higher light intensity,
285 PVDF15-RB produced a $[{}^1\text{O}_2]_{\text{ss}}$ of $(6.94 \pm 2.19) \times 10^{-13}$ M, which was 2.31, 3.81, 8.68, and 4.08
286 times higher than that of PVDF15-MB, PVDF15-CV, PVDF15-RF, and PVDF15-TBO ($p < 0.05$,
287 **Figure S4**). Under the irradiation of simulated indoor light with a lower light intensity, PVDF15-
288 RB and PVDF15-MB outperformed other photosensitized electrospun membranes for producing
289 ${}^1\text{O}_2$ ($p < 0.05$, **Figure S4**). Therefore, RB was identified as the most photoreactive dye additive for
290 membrane fabrication. The fact that PVDF15-RB has the highest photoreactivity could be
291 attributed to the increased photon absorption under white LED light irradiation (maximum
292 absorption wavelength of RB is 546 nm) and a high quantum yield of the intersystem crossing of
293 RB for producing ${}^1\text{O}_2$.^{23,24}

294


295 The PVDF concentration for developing photosensitized electrospun membranes was next
296 optimized to improve filtration performance. As the key factors determining the aerosol filtration
297 efficiency, the nanofiber diameter and pore size of the membranes were characterized at different
298 polymer concentrations. The nanofiber diameter of PVDF8-RB, PVDF10-RB, PVDF12-RB,
299 PVDF15-RB, PVDF18-RB, and PVDF20-RB was 60 ± 16 , 116 ± 24 , 164 ± 48 , 196 ± 44 , $521 \pm$
300 191, and 423 ± 114 nm, respectively (**Figure 1b**). Generally, the nanofiber diameter increased with
301 the increase of the PVDF concentration from 8 to 15 wt% and the membranes possessed uniform
302 nanofibers. When PVDF concentration reached to 18 and 20 wt% for electrospinning, the fibers

303 were not uniform anymore and some very large fibers were present. This could be attributed to a
304 significantly increased viscosity of the electrospinning dope solution and instable and non-
305 continuous electrospinning jets.²⁵ In addition, the nanofiber diameter and pore size of PVDF15-
306 RB (196 ± 44 nm, 1.46 ± 0.15 μm) was smaller than those of the bare electrospun membrane of
307 PVDF15 (315 ± 73 nm, 2.70 ± 0.20 μm), likely due to the presence of anionic RB and increased
308 conductivity of the dope solution for electrospinning.^{12,26,27}

309

310 The filtration efficiency of NaCl aerosols was further examined for those PVDFx-RB membranes.
311 Our previous study has demonstrated the filtration efficiency of NaCl aerosols was a conservative
312 indicator for understanding the removal of coronavirus aerosols.¹² The average filtration efficiency
313 for NaCl aerosols was 98.2%, 99.2%, 98.8%, 99.1%, and 99.9% for PVDF8-RB, PVDF10-RB,
314 PVDF12-RB, PVDF15-RB, and PVDF18-RB, respectively (**Figure 1c**). PVDF20-RB was not
315 tested for filtering aerosols because the membrane was apparently non-uniform after
316 electrospinning. Pressure drop in filtration was also determined to understand the breathability or
317 energy consumption in filtration. With the increase of the PVDF concentration from 8 to 12 wt%
318 in the RB-sensitized electrospun membranes, the pressure drop increased from 0.47 ± 0.01 to 0.80
319 ± 0.05 inches of water column (inches wc). However, further increase of the PVDF concentration
320 from 12 to 18 wt% reduced the pressure drop to 0.16 ± 0.00 inches wc (**Figure 1c**). The low
321 pressure drop at a low PVDF concentration could be attributed to the slip effect of air molecules
322 on the ultrafine nanofibers, whereas the low pressure drop at a high PVDF concentration could be
323 resulted from a high membrane porosity.²⁸ PVDF15-RB had the best filtration performance
324 including a high aerosol filtration efficiency and a low pressure drop, the best photoreactivity in
325 terms of ${}^1\text{O}_2$ production, and uniform nanofibers across the whole membrane that allows

326 manufacturing at scale. Therefore, PVDF15-RB was selected for the following study of
327 coronavirus filtration and inactivation.

328

329 **Figure 1.** (a) Photosensitized nanofibrous membranes electrospun with various photosensitizers;
330 (b) SEM for the RB-sensitized electrospun membranes with different PVDF concentrations. Scale
331 bars in SEM images are 5 μm ; (c) NaCl and MHV-A59 aerosol filtration efficiency and pressure
332 drop in filtration for RB-sensitized electrospun membranes with different PVDF concentrations
333 (PVDF x -RB). Blue squares and error bars in the filtration efficiency graph represent average and
334 maximum/minimum values of duplicates, and red squares and error bars in the pressure drop graph
335 represent the average and standard deviation of triplicates.

336

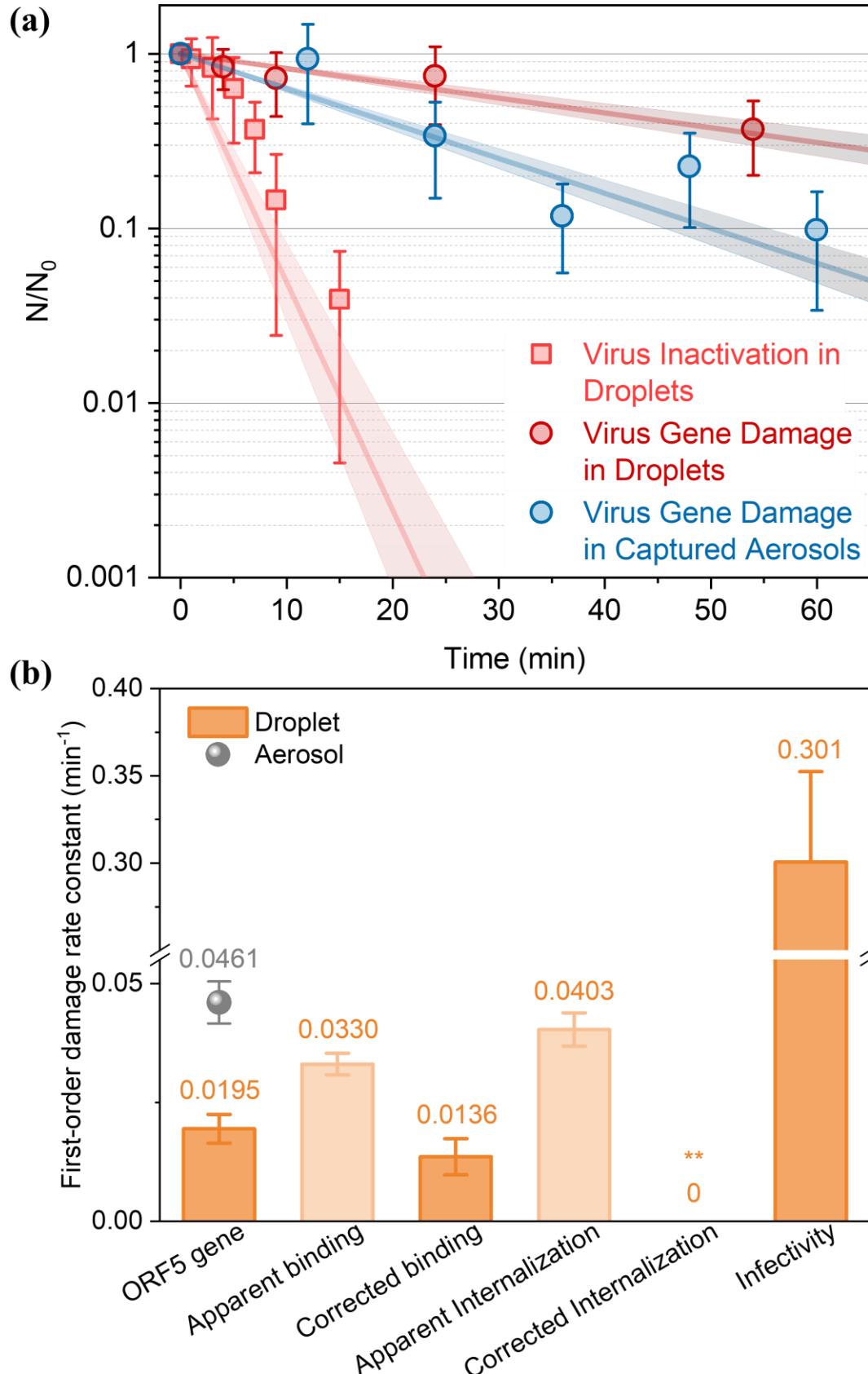
337 **3.2 Photosensitized electrospun membranes for capturing and inactivating coronavirus**
338 **aerosols**

339 The optimized electrospun membrane of PVDF15-RB was further challenged by MHV-A59
340 aerosols, and it removed 99.2% of the viral aerosols on average (**Figure 1c**). The filtration
341 efficiency for MHV-A59 aerosols was on par with that for removing NaCl aerosols (99.1%, $p >$
342 0.05), and it was much higher compared with filtration efficiency of MHV-A59 aerosols by
343 commercial masks, including a surgical mask (98.2%), a cotton mask (73.3%), and a neck gaiter
344 (44.9 %).¹² The excellent aerosol filtration efficiency was resulted from the ultrafine nanofibers
345 and the small pore size of the electrospun membrane. Our previous study also reported that
346 PVDF15 captured 99.1% of the MHV-A59 aerosols,¹² which was comparable with that of
347 PVDF15-RB ($p > 0.05$). Size distribution of simulated MHV-A59 aerosols, generated from
348 polystyrene and silica nanoparticles in water, underscored that the most dominant aerosols were
349 in the size of 420-450 nm (**Figure S5**). Aerosol size characterization also highlighted that 79.9-
350 89.5% of the simulated MHV-A59 aerosols were between 200 and 500 nm (**Figure S5**) and they
351 were considered as the most penetrating aerosols in mechanical filtration.^{29,30} The optimized

352 photosensitized electrospun membrane holds promise for effectively removing the most
353 challenging coronavirus aerosols, which could minimize and prevent the airborne transmission of
354 pathogens.

355

356 Beyond physical capture of the coronavirus aerosols, photosensitized electrospun membranes also
357 inactivated the captured coronaviruses under visible light irradiation through the rapid and potent
358 oxidation by ${}^1\text{O}_2$. The captured MHV-A59 aerosols on PVDF15-RB were exposed to the
359 irradiation of simulated reading light for 1 h, and the ORF5 gene copy number of MHV-A59 was
360 reduced by 93.7%, giving k_{gene} of $0.0461 \pm 0.0044 \text{ min}^{-1}$ (**Figures 2a and 2b**). In contrast, in the
361 control experiments, no apparent ORF5 gene damage was observed when the photosensitizer or
362 the visible light was not present (**Figure S6**). These results indicated that the photosensitized
363 electrospun membranes damaged the coronavirus genome and could potentially inactivate the
364 viruses upon visible light exposure. However, only a small fraction of MHV-A59 genome was
365 quantified (~100 bases) in the RT-qPCR, and it could not represent or reveal the damage in other
366 regions in the whole genome (~31.5 kb). Different regions across the viral genome can contain
367 diverse nucleotide sequences and form unique secondary structures, which may have distinct
368 susceptibility to ROS oxidation.³¹ A genome-wide approach that quantifies a large fraction of the
369 genome damage by PCR could be used to reasonably predict the whole genome damage upon
370 oxidation in the future.³² More importantly, the quantity of the ORF5 gene determined by RT-
371 qPCR did not represent the viability of MHV-A59. During photosensitization, RB produces ${}^1\text{O}_2$
372 as the key ROS for inactivating viruses, through the oxidation of genomes, proteins, lipids, and
373 any other functional biomolecules of the viruses.^{33,34} Because ROS are broad-spectrum oxidants
374 that damage multiple viral biomolecules at the same time and any critical damage could


375 compromise viral viability, virus infectivity was observed to decrease more quickly compared with
376 intact genes.¹⁸ Therefore, the RT-qPCR quantification of intact genes can serve as a conservative
377 approach to understand virus infectivity, but the infectivity assay is needed to elucidate the
378 inactivation efficiency by the photosensitized electrospun membranes.

379

380 Though the ORF5 gene copy number of MHV-A59 aerosols was successfully quantified by RT-
381 qPCR with a high sensitivity, virus infectivity was below the detection limit of ICC-RT-qPCR
382 because only few coronaviruses were harvested from the membranes. The majority of
383 coronaviruses were lost during aerosolization, since the partitioning coefficient of the coronavirus
384 (the virus concentration in aerosols to that in the liquid solution for aerosolization) was only 5.80
385 $\pm 4.26 \times 10^{-7}$. To overcome the challenges in quantifying the viability of coronavirus aerosols, we
386 loaded MHV-A59 droplets (~ 1 mm thick) on PVDF15-RB and determined virus infectivity during
387 photosensitized disinfection. The setup best mimicked virus-laden respiratory droplets captured
388 by the masks, and it allowed the accurate quantification of virus infectivity because of a higher
389 concentration of MHV-A59 in the droplets than that in the aerosols. Under simulated reading light
390 exposure, we observed significant coronavirus inactivation, with $k_{infectivity}$ of $0.301 \pm 0.052 \text{ min}^{-1}$
391 (**Figure 2** and **2b**). That is said, 98.9% of coronaviruses were inactivated after only 15 min
392 irradiation of the simulated reading light. In contrast, we did not see any noticeable coronavirus
393 inactivation under simulated indoor light exposure up to 30 min. Control experiments of PVDF15
394 under simulated reading light exposure and PVDF15-RB in the dark did not inactivate the
395 coronaviruses either (**Figure S7**). These results indicated that photosensitization with the presence
396 of both the dye and photons is needed for coronavirus inactivation. In addition, PVDF15-RB
397 produced more ${}^1\text{O}_2$ under the irradiation of simulated reading light than simulated indoor light

398 $([{}^1\text{O}_2]_{\text{ss}} = (6.94 \pm 2.19) \times 10^{-13}$ versus $(4.95 \pm 0.80) \times 10^{-14} \text{ M}$) (**Figure S4**), and thus much more
399 rapid coronavirus inactivation was observed under light exposure with a stronger intensity. We
400 also found that the ORF5 gene damage rate of MHV-A59 in the droplets was lower than that of
401 aerosolized MHV-A59 captured on the membranes after exposure to simulated reading light (k_{gene}
402 $= 0.0195 \pm 0.0030$ versus $0.0461 \pm 0.0044 \text{ min}^{-1}$, *p* < 0.05, **Figure 2** and **2b**). The slower ORF5
403 gene damage could be attributed to the shorter lifetime and diffusion length of ${}^1\text{O}_2$ in water
404 compared with that in the air (2 μs in distilled water versus 2.80 s in the air), due to energy
405 dissipation resulted from the collision between ${}^1\text{O}_2$ and water molecules.^{35,36} The dissolved oxygen
406 concentration in water was also lower than the oxygen concentration in the air (< 10 mg L⁻¹ in the
407 water versus 275 mg L⁻¹ in the air at 25 °C), which might limit ${}^1\text{O}_2$ production in the aqueous
408 phase.³⁷ Since ${}^1\text{O}_2$ was the key ROS in photosensitization and it did not bias damaging the viral
409 genome and inactivating the viruses, the liquid setup is considered as a conservative system to
410 evaluate the inactivation of MHV-A59 aerosols captured on the photosensitized electrospun
411 membrane. Therefore, it is reasonable to speculate that the inactivation of infectious or viable
412 MHV-A59 in the aerosols captured on the membrane will be much faster than that in the droplets,
413 though the infectivity of viral aerosols was not quantifiable in our study.

414

416 **Figure 2.** (a) First-order reaction kinetics of MHV-A59 infectivity decay in droplets and first-
417 order reaction kinetics of MHV-A59 ORF5 gene damage in both droplets and membrane-captured
418 aerosols. N/N_0 represents ORF5 gene copy numbers quantified by ICC-RT-qPCR (for infectivity)
419 or RT-qPCR (for gene damage) at light exposure duration t to that at light exposure duration zero.
420 Linear regression of common logarithm of N/N_0 versus light exposure duration and its standard
421 errors are illustrated. Error bars represent the standard deviation of triplicates. All tests were
422 conducted under simulated reading light exposure. (b) First-order damage rate constants for the
423 MHV-A59 ORF5 gene, and virus binding, internalization, and infectivity under simulated reading
424 light exposure. (**) denotes the rate constant was assigned a value of zero because there was no
425 statistical difference between the apparent damage rate constants of internalization and binding ($p >$
426 0.05). Error bars represent the standard error of the negative slope of linear regression.

427

428 **3.3 Impact of photooxidation on the lifecycle of coronaviruses**

429 We next investigated the effect of photosensitization on the lifecycle of coronaviruses in host cells,
430 particularly virus binding and internalization, to understand the impact of ROS on coronavirus
431 inactivation at a molecular level. For a viable MHV-A59, the viral spike (S) protein first binds to
432 the receptor of the host cells, murine carcinoembryonic antigen-related cell adhesion molecule 1a
433 (mCEACAM1a), and initiates the viral lifecycle.³⁸ Next, MHV-A59 transports RNA genomes into
434 the host cells by direct fusion of the viral envelope membrane with the cell plasma membrane, or
435 by endocytosis with subsequent fusion of the viral envelop membrane and the endosomal
436 membrane.³⁹ After internalization, viral genomes start replication as soon as sufficient machinery
437 proteins are produced. Once progeny viruses are constructed and assembled, they are released from
438 the old host cells and start their new lifecycle by infecting more host cells. It is clear that virus

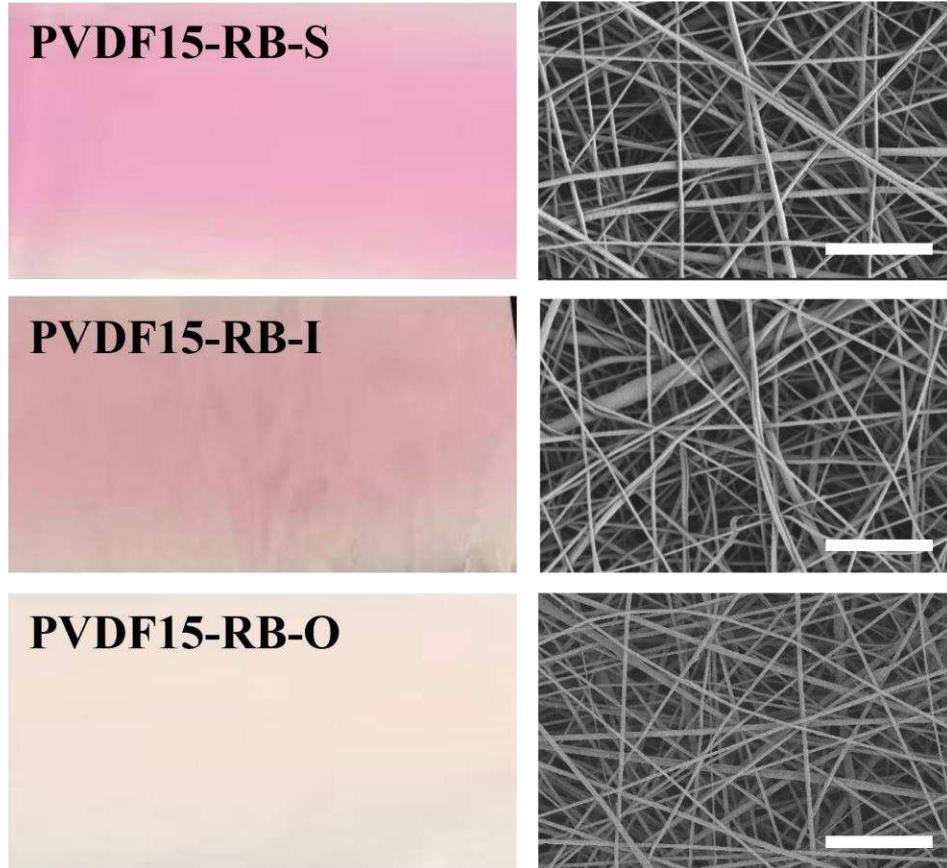
439 binding and internalization are key steps that determine the fate and infectivity of coronaviruses,
440 and any damage to these biological processes could compromise the infectivity of the viruses.

441

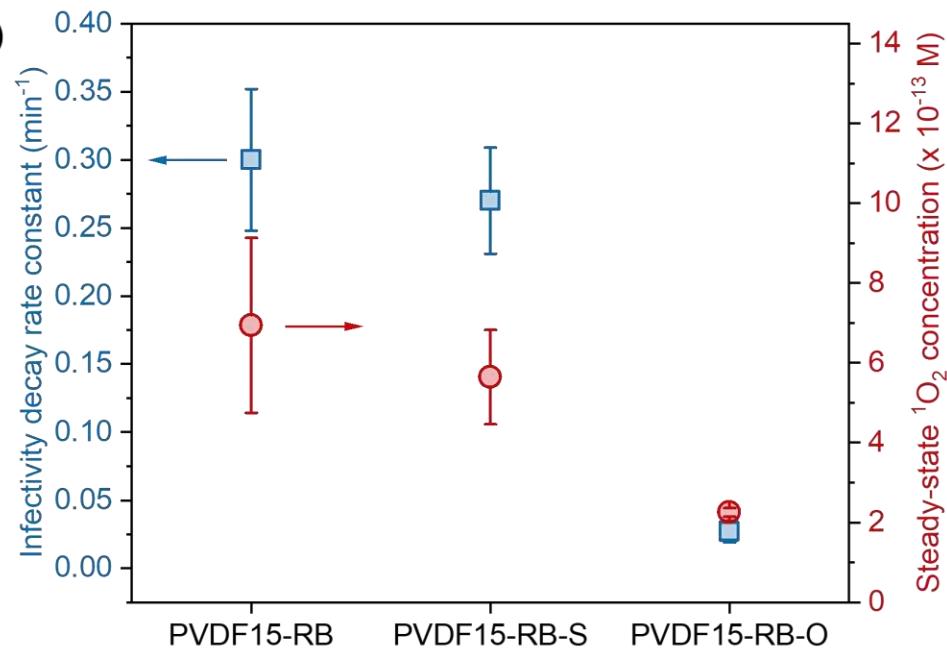
442 We evaluated MHV-A59 binding and internalization in the liquid setup. Coronavirus binding to
443 the L-929 cells was impaired after photooxidation, and $k_{app_binding}$ was estimated as 0.0330 ± 0.0023
444 min^{-1} . By excluding the contribution of ORF5 gene damage by oxidation ($k_{gene} = 0.0195 \pm 0.0030$
445 min^{-1}), the true decay rate constant of coronavirus binding ($k_{binding}$) was $0.0136 \pm 0.0038 \text{ min}^{-1}$ (p
446 < 0.05 , **Figure 2b**). Coronavirus internalization into the L-929 cells is the subsequent step after
447 virus binding, therefore the difference between $k_{app_internalization}$ and $k_{app_binding}$ is considered as the
448 true damage to coronavirus internalization ($k_{internalization}$). However, photooxidation did not
449 compromise coronavirus internalization, because $k_{app_internalization}$ and $k_{app_binding}$ were statistically
450 the same (0.0403 ± 0.0035 versus $0.0330 \pm 0.0023 \text{ min}^{-1}$, $p > 0.05$, **Figure 2b**). The S protein of
451 MHV-A59 plays important roles in both virus binding and internalization: the receptor-binding
452 domain in subunit 1 governs virus attachment to the host cells and the fusion peptide in subunit 2
453 is responsible for virus internalization.^{38,40} $^1\text{O}_2$ produced in photosensitization non-selectively
454 oxidizes and damages viral biomolecules, including the S protein. However, we speculate that the
455 receptor-binding domain might be much more susceptible to $^1\text{O}_2$ oxidation compared with the
456 fusion peptide, because the latter contains a large amount of Ala and Gly that react with $^1\text{O}_2$
457 slowly.^{41,42} It could explain why virus binding but not internalization was significantly impaired
458 after photosensitization, and further research is required.

459

460 **3.4 Aging of photosensitized electrospun membranes and their long-term performance**


461 Photosensitizers are generally sensitive to long-term light exposure, because the generated ${}^1\text{O}_2$ also
462 oxidizes the photosensitizers, leads to photobleaching, and reduces the photoreactivity for the
463 continuous production of ${}^1\text{O}_2$ and virus inactivation. After 4 days of sunlight exposure (including
464 both daytime and nighttime), the color of PVDF15-RB-O was significantly faded in comparison
465 to fresh PVDF15-RB. Nevertheless, after 7 days of continuous irradiation of simulated indoor light
466 and real indoor light, no apparent fading was observed for PVDF15-RB-S and PVDF15-RB-I
467 (**Figure 3a**). ${}^1\text{O}_2$ production was also characterized for all these aged membranes, and $[{}^1\text{O}_2]_{\text{ss}}$ was
468 $(2.26 \pm 0.11) \times 10^{-13}$, $(5.64 \pm 1.18) \times 10^{-13}$, and $(7.75 \pm 1.70) \times 10^{-13}$ M for PVDF15-RB-O,
469 PVDF15-RB-S, PVDF15-RB-I, respectively, under the scenario of simulated reading light
470 exposure (**Figure S4**). Significant less ${}^1\text{O}_2$ production was observed for PVDF15-RB-O when
471 compared to PVDF15-RB ($p < 0.05$), but a similar amount of ${}^1\text{O}_2$ was generated from PVDF15-
472 RB, PVDF15-RB-S, and PVDF15-RB-I (all $p > 0.05$). Membrane morphology was also
473 characterized, but aging under light exposure for extended duration did not change the nanofiber
474 diameter: the diameters were 203 ± 51 , 200 ± 43 , and 183 ± 45 nm for PVDF15-RB-I, PVDF15-
475 RB-S, and PVDF15-RB-O, respectively, in comparison with the fresh PVDF15-RB with a fiber
476 diameter of 196 ± 44 nm (**Figure 3a**).

477


478 Aged membranes were subjected for MHV-A59 aerosol filtration tests, and they all showed high
479 filtration performance: the average filtration efficiency of PVDF15-RB-I, PVDF15-RB-S, and
480 PVDF15-RB-O was 99.97, 99.96, and 99.95%, respectively. Aging under extended light exposure
481 did not physically damage the membranes, and thus the aged membranes maintained excellent
482 performance for removing MHV-A59 aerosols. However, aging did compromise membrane
483 performance for coronavirus inactivation, particularly the significantly faded membrane after

484 sunlight aging: PVDF15-RB-O inactivated MHV-A59 in droplets with $k_{infectivity}$ only of $0.0273 \pm$
485 0.0079 min^{-1} , which was 11.0 times lower than that of PVDF15-RB ($0.301 \pm 0.052 \text{ min}^{-1}$, both
486 tested under simulated reading light irradiation, $p < 0.05$, **Figure 3b**). In contrast, PVDF15-RB-S
487 that did not fade after the aging by simulated indoor light kept its photoreactivity, and it inactivated
488 MHV-A59 in droplets with $k_{infectivity}$ of $0.268 \pm 0.0386 \text{ min}^{-1}$, which was comparable with that of
489 PVDF15-RB (also tested under simulated reading light irradiation, $p > 0.05$). Fast coronavirus
490 inactivation kinetics could be attributed to a higher $[{}^1\text{O}_2]_{ss}$ produced by the membranes (**Figure**
491 **3b**). Since humans spend most of their time indoor and the risk of COVID-19 airborne
492 transmission is much higher for indoor than outdoor activities, our results underscored that when
493 used for face masks the photosensitized electrospun membranes could maintain their excellent
494 performance of coronavirus aerosol filtration and coronavirus inactivation for a long duration
495 under indoor light exposure.

(a)

(b)

497 **Figure 3.** (a) Photos and SEM images of PVDF15-RB membranes after aging. Scale bars in the
498 SEM images are 5 μ m; (b) first-order decay rate constants of MHV-A59 infectivity in droplets and
499 the corresponding $^1\text{O}_2$ production on fresh and aged PVDF15-RB membranes. All tests of virus
500 inactivation and $^1\text{O}_2$ production were conducted under the irradiation of simulated reading light.
501 Error bars for the infectivity decay rate constant represent the standard error of the negative slope
502 of the linear regression of common logarithm of infectivity versus light exposure duration, and
503 error bars for the steady-state $^1\text{O}_2$ concentration represent the standard deviation of triplicate
504 measurements.

505

506 **4. Environmental Implication**

507 Our study leverages nanotechnology to advance the design and fabrication of masks, respirators,
508 and air filters, and it addresses the grand challenge of the airborne transmission of COVID-19.
509 Photosensitized electrospun membranes showed excellent performance for capturing and killing
510 coronavirus aerosols, i.e., they removed 99.2% of MHV-A59 aerosols, and inactivated 98.9% of
511 MHV-A59 droplets only after 15 min of desk lamp irradiation. Electrospinning is an industrial
512 viable and economically feasible technology for manufacturing new air filtration media at scale
513 that could outperform current products on the market,^{43,44} such as cloth face masks and indoor air
514 filters, for filtering out airborne pathogens. Miniaturized and portable electrospinning apparatuses
515 further facilitate the wide deployment of the technique for individuals and small communities.⁴⁵
516 Moreover, integration of dye photosensitizers as effective, low-cost, and biocompatible
517 antimicrobial additives enables easy decontamination of air filtration media in and after use.
518 Compared with many other disinfection strategies for reusing the masks and respirators in the
519 COVID-19 pandemic, such as the treatment by heat, ultraviolet light irradiation, ozone, or

520 hydrogen peroxide vapor,⁴⁶⁻⁴⁸ photosensitized electrospun air filters generate broad-spectrum
521 biocides of $^1\text{O}_2$ *in situ* under visible light exposure at the room temperature and pressure, and $^1\text{O}_2$
522 could potentially damage multiple viral biomolecules and multiple steps in viral lifecycle to
523 effectively inactivate coronaviruses. Photosensitized disinfection is less chemical and energy
524 intensive, and it does not compromise the aerosol filtration efficiency after disinfection. In addition,
525 color intensity and fading of the dye photosensitizers could serve as an indicator of the
526 antimicrobial lifetime of the air filtration media.⁴⁹

527

528 Future studies should focus on developing robust photoreactive air filters with extended lifetime
529 to overcome the challenges of photobleaching of the dye-sensitized membranes, e.g., replacing the
530 dyes with stable visible-light-responsive photocatalysts. In addition, further elucidating the
531 mechanism of ROS damage to the coronaviruses will provide fundamental insights on designing
532 advanced antimicrobial air filters.

533

534 **Acknowledgements**

535 We acknowledge the NSF RAPID grants (CBET-2029411 and CBET-2029330) and the NSF grant
536 (CBET-2028464) for supporting our research. We thank The George Washington University (GW)
537 Nanofabrication and Imaging Center for SEM characterizations and GW BSL2+ lab facilities for
538 the bioaerosol study. We thank Dominick J. Carluccio and Ryan Archer at the CH Technologies
539 (USA), Inc. for characterizing aerosol size distribution.

540

541 **ASSOCIATED CONTENT**

542 **Supporting Information**

543 Experimental details; spectral irradiance, photon flux, and optical power density of the light
544 sources; linear correlation of MHV-A59 infectivity with the viral load before infection; steady-
545 state ${}^1\text{O}_2$ concentrations produced by photosensitized electrospun air filters; aerosol size
546 distribution; ORF5 gene damage of MHV-A59 aerosols in control experiments; infectivity of
547 MHV-A59 droplets in control experiments.

548

549 **Reference**

550 (1) CDC. Coronavirus disease 2019 (COVID-19). <https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html>.

552 (2) Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 09 July 2020. <https://apps.who.int/iris/handle/10665/333114>.

554 (3) van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. *N. Engl. J. Med.* **2020**, *382* (16), 1564–1567.

558 (4) Rowan, N. J.; Moral, R. A. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): role of new sustainable NPI design innovations and predictive mathematical modelling. *Sci. Total Environ.* **2021**, *772*, 145530.

562 (5) Kwon, S.; Joshi, A. D.; Lo, C.-H.; Drew, D. A.; Nguyen, L. H.; Guo, C.-G.; Ma, W.; Mehta, R. S.; Shebl, F. M.; Warner, E. T.; Astley, C. M.; Merino, J.; Murray, B.; Wolf, J.; Ourselin, S.; Steves, C. J.; Spector, T. D.; Hart, J. E.; Song, M.; VoPham, T.; Chan, A. T. Association of social distancing and face mask use with risk of COVID-19. *Nat. Commun.* **2021**, *12* (1), 3737.

566 (6) Cheng, Y.; Ma, N.; Witt, C.; Rapp, S.; Wild, P. S.; Andreae, M. O.; Pöschl, U.; Su, H. Face masks effectively limit the probability of SARS-CoV-2 transmission. *Science* **2021**, *372* (6549), 1439–1443.

569 (7) Matulevicius, J.; Kliucininkas, L.; Prasauskas, T.; Buivydiene, D.; Martuzevicius, D. The
570 comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate,
571 polyacrylonitrile and cellulose acetate nanofiber media. *J. Aerosol Sci.* **2016**, *92*, 27–37.

572 (8) Choi, J.; Yang, B. J.; Bae, G.-N.; Jung, J. H. Herbal extract incorporated nanofiber
573 fabricated by an electrospinning technique and its application to antimicrobial air filtration. *ACS*
574 *Appl. Mater. Interfaces* **2015**, *7* (45), 25313–25320.

575 (9) Leung, W. W. F.; Sun, Q. Electrostatic charged nanofiber filter for filtering airborne novel
576 coronavirus (COVID-19) and nano-aerosols. *Sep. Purif. Technol.* **2020**, *250*, 116886.

577 (10) Lovera, D.; Bilbao, C.; Schreier, P.; Kador, L.; Schmidt, H.-W.; Altstädt, V. Charge storage
578 of electrospun fiber mats of poly(phenylene ether)/polystyrene blends. *Polym. Eng. Sci.* **2009**, *49*
579 (12), 2430–2439.

580 (11) Gao, H.; He, W.; Zhao, Y.-B.; Opris, D. M.; Xu, G.; Wang, J. Electret mechanisms and
581 kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison
582 with corona-charged membranes. *J. Membr. Sci.* **2020**, *600*, 117879.

583 (12) Shen, H.; Zhou, Z.; Wang, H.; Zhang, M.; Han, M.; Durkin, D. P.; Shuai, D.; Shen, Y.
584 Development of electrospun nanofibrous filters for controlling coronavirus aerosols. *Environ. Sci.*
585 *Technol. Lett.* **2021**. <https://doi.org/10.1021/acs.estlett.1c00337>.

586 (13) Blachere, F. M.; Lindsley, W. G.; McMillen, C. M.; Beezhold, D. H.; Fisher, E. M.; Shaffer,
587 R. E.; Noti, J. D. Assessment of influenza virus exposure and recovery from contaminated surgical
588 masks and N95 respirators. *J. Virol. Methods* **2018**, *260*, 98–106.

589 (14) Bárcena, M.; Oostergetel, G. T.; Bartelink, W.; Faas, F. G. A.; Verkleij, A.; Rottier, P. J.
590 M.; Koster, A. J.; Bosch, B. J. Cryo-electron tomography of mouse hepatitis virus: insights into
591 the structure of the coronavirion. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106* (2), 582–587.

592 (15) Besselsen, D. G.; Wagner, A. M.; Loganbill, J. K. Detection of rodent coronaviruses by
593 use of fluorogenic reverse transcriptase-polymerase chain reaction analysis. *Comp. Med.* **2002**, *52*
594 (2), 111–116.

595 (16) Yoo, D.; Pei, Y.; Christie, N.; Cooper, M. Primary structure of the sialodacryoadenitis virus
596 genome: sequence of the structural-protein region and its application for differential diagnosis.
597 *Clin. Diagn. Lab. Immunol.* **2000**, *7* (4), 568–573.

598 (17) Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller,
599 R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L.; Vandesompele, J.; Wittwer, C. T. The MIQE
600 guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin.*
601 *Chem.* **2009**, *55* (4), 611–622.

602 (18) Romero-Maraccini, O. C.; Shisler, J. L.; Nguyen, T. H. Solar and temperature treatments
603 affect the ability of human rotavirus Wa to bind to host cells and synthesize viral RNA. *Appl.*
604 *Environ. Microbiol.* **2015**, *81* (12), 4090–4097.

605 (19) Altan-Bonnet, N.; Perales, C.; Domingo, E. Extracellular vesicles: vehicles of *en bloc* viral
606 transmission. *Virus Res.* **2019**, *265*, 143–149.

607 (20) Bönsch, C.; Zuercher, C.; Lieby, P.; Kempf, C.; Ros, C. The Globoside receptor triggers
608 structural changes in the B19 virus capsid that facilitate virus internalization. *J. Virol.* **2020**, *84*
609 (22), 11737–11746.

610 (21) Hackett, B. A.; Cherry, S. Flavivirus internalization is regulated by a size-dependent
611 endocytic pathway. *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115* (16), 4246–4251.

612 (22) Hackett, B. A.; Yasunaga, A.; Panda, D.; Tartell, M. A.; Hopkins, K. C.; Hensley, S. E.;
613 Cherry, S. RNASEK is required for internalization of diverse acid-dependent viruses. *Proc. Natl.*
614 *Acad. Sci. U.S.A.* **2015**, *112* (25), 7797–7802.

615 (23) Murasecco-Suardi, P.; Gassmann, E.; Braun, A. M.; Oliveros, E. Determination of the
616 quantum yield of intersystem crossing of rose bengal. *Helvetica Chimica Acta.* **1987**, *70* (7), 1760–
617 1773.

618 (24) Rauf, M. A.; Graham, J. P.; Bukallah, S. B.; Al-Saedi, M. A. S. Solvatochromic behavior
619 on the absorption and fluorescence spectra of rose bengal dye in various solvents. *Spectrochim.*
620 *Acta A Mol. Biomol. Spectrosc.* **2009**, *72* (1), 133–137.

621 (25) Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning of linear homopolymers
622 of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity,
623 molecular weight and concentration in a good solvent. *Polymer* **2005**, *46* (13), 4799–4810.

624 (26) Angammana, C. J.; Jayaram, S. H. Analysis of the effects of solution conductivity on
625 electrospinning process and fiber morphology. *IEEE Trans. Ind. Appl.* **2011**, *47* (3), 1109–1117.

626 (27) Choi, J. S.; Lee, S. W.; Jeong, L.; Bae, S.-H.; Min, B. C.; Youk, J. H.; Park, W. H. Effect
627 of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-*co*-3-
628 hydroxyvalerate). *Int. J. Biol. Macromol.* **2004**, *34* (4), 249–256.

629 (28) Zhao, X.; Wang, S.; Yin, X.; Yu, J.; Ding, B. Slip-effect functional air filter for efficient
630 purification of PM_{2.5}. *Sci Rep.* **2016**, *6* (1), 35472.

631 (29) Podgórski, A.; Bałazy, A.; Gradoń, L. Application of nanofibers to improve the filtration
632 efficiency of the most penetrating aerosol particles in fibrous filters. *Chem. Eng. Sci.* **2006**, *61* (20),
633 6804–6815.

634 (30) He, X.; Reponen, T.; McKay, R. T.; Grinshpun, S. A. Effect of particle size on the
635 performance of an N95 filtering facepiece respirator and a surgical mask at various breathing
636 conditions. *Aerosol Sci. Technol.* **2013**, *47* (11), 1180–1187.

637 (31) Chang, R. L.; Stanley, J. A.; Robinson, M. C.; Sher, J. W.; Li, Z.; Chan, Y. A.; Omdahl, A.
638 R.; Wattiez, R.; Godzik, A.; Matallana-Surget, S. Protein structure, amino acid composition and
639 sequence determine proteome vulnerability to oxidation-induced damage. *EMBO J.* **2020**, *39* (23),
640 e104523.

641 (32) Rockey, N.; Young, S.; Kohn, T.; Pecson, B.; Wobus, C. E.; Raskin, L.; Wigginton, K. R.
642 UV disinfection of human norovirus: evaluating infectivity using a genome-wide PCR-based
643 approach. *Environ. Sci. Technol.* **2020**, 54 (5), 2851-2858.

644 (33) Kim, J.; Lee, H.; Lee, J.-Y.; Park, K.-H.; Kim, W.; Lee, J. H.; Kang, H.-J.; Hong, S. W.;
645 Park, H.-J.; Lee, S.; Lee, J.-H.; Park, H.-D.; Kim, J. Y.; Jeong, Y. W.; Lee, J. Photosensitized
646 production of singlet oxygen via C₆₀ fullerene covalently attached to functionalized silica-coated
647 stainless-steel mesh: remote bacterial and viral inactivation. *Appl. Catal. B* **2020**, 270, 118862.

648 (34) Li, Y.; Zhang, C.; Shuai, D.; Naraginti, S.; Wang, D.; Zhang, W. Visible-light-driven
649 photocatalytic inactivation of MS2 by metal-free g-C₃N₄: virucidal performance and mechanism.
650 *Water Res.* **2016**, 106, 249–258.

651 (35) Wang, K.-K.; Song, S.; Jung, S.-J.; Hwang, J.-W.; Kim, M.-G.; Kim, J.-H.; Sung, J.; Lee,
652 J.-K.; Kim, Y.-R. Lifetime and diffusion distance of singlet oxygen in air under everyday
653 atmospheric conditions. *Phys. Chem. Chem. Phys.* **2020**, 22 (38), 21664–21671.

654 (36) Merkel, P. B.; Kearns, D. R. Radiationless decay of singlet molecular oxygen in solution.
655 Experimental and theoretical study of electronic-to-vibrational energy transfer. *J. Am. Chem. Soc.*
656 **1972**, 94 (21), 7244–7253.

657 (37) Wang, L. K.; Vielkind, D.; Wang, M. H. Mathematical models of dissolved oxygen
658 concentration in fresh water. *Ecol. Modell.* **1978**, 5 (2), 115–123.

659 (38) Peng, G.; Sun, D.; Rajashankar, K. R.; Qian, Z.; Holmes, K. V.; Li, F. Crystal structure of
660 mouse coronavirus receptor-binding domain complexed with its murine receptor. *Proc. Natl. Acad.*
661 *Sci. U.S.A.* **2011**, 108 (26), 10696–10701.

662 (39) Burrell, C. J.; Howard, C. R.; Murphy, F. A. Coronaviruses. *Fenner and White's Medical*
663 *Virology* **2017**, 437–446.

664 (40) Luo, Z.; Weiss, S. R. Roles in cell-to-cell fusion of two conserved hydrophobic regions in
665 the murine coronavirus spike protein. *Virol.* **1998**, 244 (2), 483–494.

666 (41) J. Davies, M. Reactive species formed on proteins exposed to singlet oxygen. *Photochem.*
667 *Photobiol. Sci.* **2004**, 3 (1), 17–25.

668 (42) Sjöberg, B.; Foley, S.; Staicu, A.; Pascu, A.; Pascu, M.; Enescu, M. Protein reactivity with
669 singlet oxygen: influence of the solvent exposure of the reactive amino acid residues. *J. Photochem.*
670 *Photobiol. B* **2016**, 159, 106–110.

671 (43) Yu, M.; Dong, R.; Yan, X.; Yu, G.; You, M.; Ning, X.; Long, Y. Recent advances in
672 needleless electrospinning of ultrathin fibers: from academia to industrial production. *Macromol.*
673 *Mater. Eng.* **2017**, 302 (7), 1700002.

674 (44) Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial upscaling of
675 electrospinning and applications of polymer nanofibers: a review. *Macromol. Mater. Eng.* **2013**,
676 298 (5), 504-520.

677 (45) Mouthuy, P.-A.; Groszkowski, L.; Ye, H. Performances of a portable electrospinning
678 apparatus. *Biotechnol. Lett.* **2015**, *37* (5), 1107–1116.

679 (46) Dennis, R.; Pourdeyhimi, B.; Cashion, A.; Emanuel, S.; Hubbard, D. Durability of
680 disposable N95 mask material when exposed to improvised ozone gas disinfection. *JoSaM*. **2020**,
681 2 (1).

682 (47) Rubio-Romero, J. C.; Pardo-Ferreira, M. del C.; Torrecilla-García, J. A.; Calero-Castro, S.
683 Disposable masks: disinfection and sterilization for reuse, and non-certified manufacturing, in the
684 face of shortages during the COVID-19 pandemic. *Saf. Sci.* **2020**, *129*, 104830.

685 (48) Oh, C.; Araud, E.; Puthusser, J. V.; Bai, H.; Clark, G. G.; Wang, L.; Verma, V.; Nguyen,
686 T. H. Dry heat as a decontamination method for N95 respirator reuse. *Environ. Sci. Technol. Lett.*
687 **2020**, *7* (9), 677–682.

688 (49) Ryberg, E. C.; Chu, C.; Kim, J.-H. Edible dye-enhanced solar disinfection with safety
689 indication. *Environ. Sci. Technol.* **2018**, *52* (22), 13361–13369.

690

691

692

693

694

695

696

697