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Abstract

A major challenge to the characterization of intrinsically disordered regions (IDRs), which are
widespread in the proteome, but relatively poorly understood, is the identification of molecular
features that mediate functions of these regions, such as short motifs, amino acid repeats and
physicochemical properties. Here, we introduce a proteome-scale feature discovery method for
IDRs. Our method, which we call “reverse homology”, exploits the principle that important
functional features are conserved over evolution as a contrastive learning signal for deep
learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out
homologue from another set of IDRs sampled randomly from the proteome. We pair reverse
homology with a simple architecture and interpretation techniques, and show that the network
learns conserved features of IDRs that can be interpreted as motifs, repeats, or other features like
charge or spaced patterns of amino acids. We also show that our model can be used to produce
specific predictions of what residues and regions are most important to the function, providing a
computational strategy for designing mutagenesis experiments in uncharacterized IDRs. Our
results suggest that feature discovery using neural networks is a promising avenue to gain
systematic insight into poorly understood protein sequences.

Introduction

Despite their critical role in protein function, the systematic characterization of intrinsically
disordered regions (IDRs) remains elusive (Van Der Lee et al., 2014; Kulkarni and Uversky,
2018; Lindorff-Larsen and Kragelund, 2021). IDRs comprise of about 40% of the residues in
eukaryotic proteomes (Davey, 2019). Unlike structured domains, IDRs do not fold into a stable
secondary or tertiary structure, and this lack of structure helps facilitate many key functions. For
example, some IDRs mediate protein-protein interactions, because their lack of structure allows
them to adapt their conformation to different interaction partners (Wright and Dyson, 2015;
Davey, 2019). A general property of IDRs is that they diverge rapidly at the primary amino acid
sequence level (PritiSanac et al., 2019). This rapid evolution means that IDRs challenge classic
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bioinformatics techniques that depend upon positional sequence alignments, including BLAST
and Pfam (Van Der Lee et al., 2014; Lindorff-Larsen and Kragelund, 2021).

Instead of relying on detection of sequence homology by alignment, a recently proposed strategy
has been to identify functionally relevant features of IDRs that can be computed from sequence
(Zarin et al., 2019). Although the sequence may diverge, higher-order features that are critical to
the proper function of the IDRs are typically conserved (Moses et al., 2007; Beh, Colwell and
Francis, 2012; Zarin et al., 2017). These features are highly diverse. The best understood features
are “short linear motifs”, peptides of 4-12 residues (Kumar ez al., 2020). In some cases, multiple
copies or local clustering of motifs is necessary for function (Moses, Hériché and Durbin, 2007).
Other IDRs depend upon global “bulk” features that are distributed through the entire sequence.
For example, mitochondrial import IDRs require the sequence to be positively charged and
hydrophobic (Bauer, Doetsch and Corbett, 2015), certain phase-separating proteins require IDRs
with many R/G repeats that facilitate condensate-forming interactions (Chong, Vernon and
Forman-Kay, 2018), and alternating positive and negative charged regions in an IDR of the cell-
cycle regulating protein p27 mediates the strength of phosphorylation of key regulatory sites
(Das et al., 2016). Combining features like these, curated from nearly three decades of IDR
research, can characterize IDR function on a proteome-wide level, by describing IDR properties
as a pattern across many distinct features (Zarin et al., 2019). Indeed, conserved molecular
functions were used as input for general predictions of IDR functions (Zarin et al., 2021).

These literature-curated features are likely biased by researchers’ interests because they stem
from small-scale experiments. Our knowledge of features important to IDRs is therefore not
likely to be comprehensive. Indeed, features are continuously being discovered as research on
IDRs develops: recently characterized features include aromatic amino acid patterning for prion-
like domains (Martin et al., 2020) or hydrophobic residues for activation domains (Erijman et al.,
2020). Features important for less characterized IDRs are less likely to be represented.

Here, we set out to design a systematic computational method for discovering features in IDRs,
that is unbiased by prior knowledge or interest. The problem of feature discovery runs closely
parallel to the concept of motif discovery (Das and Dai, 2007; Mohamed, Elloumi and
Thompson, 2016): given a set of functionally related sequences, motif discovery methods
attempt to find overrepresented subsequences with the idea that these motifs may represent
conserved binding, interaction, or regulatory sites informative of the function of proteins. Motif
discovery approaches range from fully unsupervised to regression approaches where function is
predicted from sequence. Among the most successful strategies for motif discovery are those that
exploit the principle that important functional motifs are conserved over evolution (Hardison,
2003; Budovskaya et al., 2005; Xie et al., 2005). Because comparative sequence data is available
at genomic and proteomic scales, and is unbiased by a particular experimental condition or
research question, comparative genomic and proteomic approaches have the potential to discover
large numbers of functional motifs. However, alignment-based approaches to find conserved
motifs in IDRs identify only a small minority (~5%) of the residues in IDRs (Nguyen Ba et al.,
2012); short motifs of about 2-10 residues often occur as small islands of conservation in IDRs
that have no detectable sequence homology otherwise (Davey et al., 2012). These short motifs
are not expected to describe the “bulk molecular properties such as charge or hydrophobicity,
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that are expected to be important for IDR function and appear to be conserved during evolution
(Zarin et al., 2019).

In order to develop a proteome-scale feature discovery approach capable of using evolution to
learn more expressive features, we applied neural networks. To learn biologically relevant
features, neural networks must be asked to solve a training task (i.e. a pre-specified loss function)
(LeCun, Bengio and Hinton, 2015). Current approaches to infer sequence function using neural
networks employ regression tasks, where models learn to predict expert annotations or large-
scale measurements (Alipanahi et al., 2015; Avsec et al., 2021; Dhaval Vaishnav et al., 2021).
For example, training genomic sequence models on labels representing the presence or absence
of transcription factor binding leads to the model learning features that directly correspond with
the consensus motifs for these transcription factors (Koo and Eddy, 2019). Similarly, training
neural networks to predict high-throughput measurements of activation domain function led to
the discovery of clusters of hydrophobic residues within acidic regions as a key sequence feature
(Eriyman et al., 2020; Sanborn et al., 2021). While these supervised approaches discover
important features, we reasoned that they would only learn features relevant to the specific
training task.

Instead, we sought to use evolutionary conservation as a learning signal. Since orthologous
sequences can be automatically obtained using sequence comparison and gene order (Altenhoff
etal.,2021; Howe et al., 2021), labels about homology can be automatically obtained for IDRs.
We therefore investigated self-supervised learning. Self-supervised learning trains models on
“proxy” tasks resembling play and exploration (Jing and Tian, 2019), for which the labels can be
automatically generated from data. These tasks are not directly useful, but are intended to teach
the model transferable skills and representations, and are designed so the models learn
autonomously without expert labels. Several self-supervised learning methods have been applied
to protein sequences, and have been effective in teaching the models features that are useful for
downstream analyses (Alley et al., 2019; Heinzinger et al., 2019; Rao et al., 2019, 2021; Lu et
al., 2020; Rives et al., 2021). However, the majority of these tasks directly repurpose methods
from natural language processing (Alley et al., 2019; Heinzinger et al., 2019; Rao et al., 2019;
Rives et al., 2021), and it is unclear what kinds of features the tasks induce the models to learn in
the context of protein sequences.

We designed a new self-supervised method that purposes principles in comparative proteomics
as a learning signal for our models. While IDRs generally cannot be aligned over long
evolutionary distances (Riback et al., 2017), they can still be considered homologous if they
occur at similar positions in homologous proteins (Zarin et al., 2019). Given a subset of
homologous IDRs, our model is asked to pick out a held-out homologue from the same set, from
a large set of non-homologous sequences. This task, which we call reverse homology, requires
our model to learn conserved features of IDRs, in order to distinguish them from non-
homologous background sequences. Our method is a contrastive learning method, a strategy that
is now frequently employed in self-supervised learning (Oord, Li and Vinyals, 2018; Chen et al.,
2020; Liu et al., 2020; Lu et al., 2020; Lu, Lu and Moses, 2020). We show that reverse
homology can be applied on a proteome-wide scale to learn a large set of diverse features. While
these “reverse homology features” are learned by the neural network to solve the reverse
homology proxy task, we show that they can be visualized and interpreted, are enriched in
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functional terms, and can be purposed for bioinformatics analyses that yield hypotheses
connecting specific features to function.

We combine reverse homology with a simple architecture and interpretation techniques. We
show how these interpretations can be paired with functional enrichments on a protein set level,
or used to understand features that contribute towards function for any specific given IDR. Taken
together, our results demonstrate that unbiased feature discovery is an unexplored application of
self-supervised learning for protein sequences.

Results
Reverse Homology

To learn functional features of IDRs unbiased by prior knowledge, we propose a novel self-
supervised proxy task that uses evolutionary homology between protein sequences to pose a
contrastive learning problem. Homologous proteins derive from a shared evolutionary ancestor,
and will frequently share similar functions (Pearson, 2013). For full proteins and structured
domains, homology can be reliably identified based on sequence similarity (Pearson, 2013).
Because they evolve rapidly and can have no statistically detectable similarity, it is difficult to
assign homology using positional sequence similarity alone. However, IDRs are usually flanked
by structured regions that are easily identified as homologous (Zarin et al., 2017). Since these
structured regions will usually align well, and since the order of domains is usually strongly
conserved in proteins (Kummerfeld and Teichmann, 2009), IDRs that occur at the same position
across homologous proteins in a multiple-sequence alignment can be considered to be
homologous even when they share little sequence similarity (Figure 1A) (Chen et al., 2006a,
2006b; Bellay et al., 2011; Colak et al., 2013). As bioinformatics tools can accurately annotate
what parts of a protein are IDRs (Jones and Cozzetto, 2015; Hanson et al., 2017), defining
homologous groups of IDRs using multiple-sequence alignments across the entire proteome can
be defined as a fully automated operation (Zarin et al., 2019).

We will use these sets of homologous IDRs as the basis for our proxy task (see Methods for a
more detailed definition.) Given a set of homologous IDRs, a neural network (Figure 1D) is
asked to determine which sequence is a held-out homologue from a set of IDRs where the other
sequences are randomly drawn non-homologous sequences (Figure 1E). We call this task
"reverse homology", because it "reverses" the typical sequence homology search process, where
we have a target sequence of unknown homology, and we search across many query sets or
sequences to assign homology (Pearson, 2013). In our task, we give the model a query sequence
of known homology, and ask it to determine if target sequences are homologous or not. We show
a schematic description of reverse homology for IDRs as Figure 1.
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Figure 1. A schematic description of the reverse homology method. Details that are more specific to our
implementation, as opposed to being part of the general method, are highlighted in grey. A) At the top, we
show the multiple sequence alignment for the yeast protein Prx1 (as an example - during training, we
iterate over all IDRs in all proteins) across 15 yeast species. Positionally aligned residues are highlighted
in blue. The yellow dotted line box shows the boundaries of an IDR in Prx1. B) By taking IDRs from
different species in the yellow dotted box in A, we construct a set of homologous IDRs, H (shown as
yellow lines) C) We sample a subset of IDRs (blue dotted box) from H and use this to construct the query
set (blue box). We also sample a single IDR (purple dotted box) from Hnot used in the query set and add
this to the target set (purple box). Finally, we populate the target set with non-homologous IDRs (green),
sampled at random from other IDRs from other proteins in the proteome. D) This panel includes detail s
that are more specific to our implementation (highlighted in grey). The query set is encoded by the query
set encoder g4. The target set is encoded by the target set encoder g,. In our implementation, we use a
five-layer convolutional neural network architecture. We label convolutional layers with the number of
kernels x the number of filters in each layer. Fully connected layers are labeled with the number of filters.
E) The output of g, is a single representation for the entire query set. In our implementation, we pool the
sequences in the query set using a simple average of their representations. The output of g, is a
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representation for each sequence in the target set. The training goal of reverse homology is to learn
encoders g; and g, that produce a large score between the query set representation and the homologous
target representation, but not non-homologous targets. In our implementation, this is the dot product:
g1 (Sq) © 92(St4) > 01 (Sq) - g, (s;_). After training, we extract features using the target sequence
encoder. For this work, we extract the pooled features of the final convolutional layer, as shown by the
arrow in D.

In previous work, we explained the theoretical principles behind using evolutionary homology as
a basis for contrastive learning (Lu, Lu and Moses, 2020): our method is expected to learn
conserved features of protein sequences, which we argue are likely important for the conserved
function of rapidly-diverging IDRs (Supplementary Methods).

We implemented our method with a lightweight convolutional neural network architecture (grey
box in Figure 1). We use both max and average pooling to reflect different ways in which local
features can contribute to functions of IDRs. Some functions may only require a feature to be
present or absent; for example, a single SH3 binding motif (Stollar ez al., 2009) may be sufficient
for recognition and function. We reasoned max pooling, which identifies a single window that
maximally activates (i.e. creates the highest feature value for) the feature, would capture these
kinds of features. Other functions require multiple copies of a feature (Moses, Hériché and
Durbin, 2007), a certain proportion of the sequence to have a feature (Chong, Vernon and
Forman-Kay, 2018), or scale as more of the feature is present (Zarin et al., 2017). We reasoned
average pooling, which produces the average activation value across all windows, would allow
for the capture of additive distributed properties within the receptive field of the convolutional
layers. This architecture facilitates interpretation (see Methods): we pair our trained models with
several neural network interpretation methods to understand the features learned. In principle,
this architecture can be replaced with many others, but we leave exploration of possible
architectures to future work (see Discussion.)

Reverse homology learns a diverse range of features for yeast intrinsically disordered
regions

We trained a reverse homology model using 5,306 yeast IDR homology sets containing a total of
94,106 sequences. To qualitatively understand the features that this model learns, we produced a
UMAP scatterplot (McInnes, Healy and Melville, 2018), where each point represents a feature,
using the correlation distance between activation values across IDR sequences for each feature.
We paired this with an interpretation method that generates sequence logos for each feature,
(adapted from (Koo and Eddy, 2019); see Methods). Note that while the width of the max
sequence logos correspond to the receptive field of the convolutional layers, to represent the
maximum single window that the max pooling extracts features from, the width of the average
sequence logos are arbitrarily chosen to be the same width of the max sequence logo to be more
comparable even though these features pool information across the entire sequence. Figure 2
shows the features from the final convolutional layer of our target sequence encoder, chosen
because the sequence logo interpretation method we use is designed for convolutional layers, and
because the target sequence encoder is trained to encode single sequences.
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Figure 2. UMAP scatterplot of reverse homology features for our yeast model. Reverse homology
features are extracted using the final convolutional layer of the target encoder: max-pooled features are
shown in red, while average-pooled features are shown in blue. We show the sequence logo
corresponding to select features, named using the index at which they occur in our architecture (see
Methods for how these are generated). Amino acids are colored according to their property, as shown by
the legend at the bottom. All sequence logos range from O to 4.0 bits on the y-axis.

Overall, we observed four major axes of features. To the left of the scatterplot, we observed
features with negatively charged amino acids (e.g., Average F81 and Max F164). Features with
positively charged amino acids were concentrated at the bottom right (e.g. Max F11 and Average
F173). Features containing hydrophobic amino acids are at the top of the distribution (e.g.,
Average F238, Max F54, and Max F72). Finally, we observed features rich in uncharged polar
amino acids (e.g., Average F136, Max F252 and Average F124) or alanine (e.g., Average F255
and Max F42) scattered along the bottom of our UMAP.

Features in between these poles often exhibited a mixture of properties. For example, Max F211,
Max F174, and Max F163 all contain both negative and hydrophobic residues, Max F54 contains
both positive and hydrophobic residues, and Max F49 contains both aromatic and polar amino
acids.

Specific features captured both motifs and bulk properties known to be important for IDR
function. As examples of motifs, Max F252 is consistent with the TPP phosphorylation motif
(Schwartz and Gygi, 2005), while Max F87 is similar to the PKA phosphorylation motif RRxS
(Smith, Samelson and Scott, 2011). As examples of bulk properties, Average F173 captures RG
repeats important for phase separation (Chong, Vernon and Forman-Kay, 2018), while other
average features look for combinations of amino acids with similar biochemical properties
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(Average F136 measures S/T content, Average F124 measures N/Q content, and Average F81
measures acidic amino acids D/E). Finally, other features captured patterns that we were not able
to associate with previously known IDR properties: for example, Average F107 captures spaced
out arginine repeats (e.g. RxRx), and Max F244 captures a window of positive to negative charge
transition. We hypothesize these features could represent charge patterning in IDRs (Das and
Pappu, 2013; Sawle and Ghosh, 2015).

Overall, we were able to identify 70 of 512 features as complete or partial matches to motifs or
bulk features previously considered to be important to IDRs (Supplementary File 1). We
consider this number a lower bound as there are features that we were uncertain about. Together,
our global analysis demonstrates that reverse homology induces our model to learn a wide
diversity of biochemically sensible features.

Reverse homology features are predictive of yeast IDR function and correlated with
previous literature-curated features

Having qualitatively confirmed that our model learns diverse features, our next goal was to more
systematically evaluate if these features are biologically meaningful. To do this, we first
benchmarked vector representations of IDRs extracted using our model on a series of
classification problems predicting various aspects of IDR function (Supplementary Tables 2.1,
2.2, and 2.3 in Supplementary File 2; details on classification datasets, classifiers, and baselines
are also in Supplementary File 2). We reasoned that performance on these classification
problems would indicate whether our model is learning features relevant to these IDR functions.

Overall, we observe across most problems that self-supervised protein representation learning
methods (Alley et al., 2019; Heinzinger et al., 2019; Rao et al., 2019) outperform expert-
designed knowledge-based features curated from literature (Zarin et al., 2019) (Supplementary
Tables 2.1-2.3). For our reverse homology method, we observed a trade-off depending on layer
between the performance of the representation on our benchmark tasks and interpretability.
Representations from the final fully connected layer of our target encoder perform comparably to
other self-supervised protein representation learning methods, suggesting that our model can
represent IDRs at a similar level of performance but with a more constrained low-parameter
architecture and substantially less training data. However, the features in this layer are less
interpretable with our interpretation methods than the convolutional layers. We also find that
representations from the final convolutional layer perform worse on our classification tasks.
Despite this, representations from our final convolutional layer still outperform the literature-
curated features at most problems, suggesting that these features may still encode more
functional information than expert-curated features, and features from an untrained randomly-
initialized model, confirming that this performance is dependent on training with our self-
supervised proxy task. For the remainder of this paper, we will focus on the features from the
final convolutional layer of the target encoder, as our goal in this paper is to interpret the features
learned to form hypotheses about function.

To test if our reverse homology features are sensitive to different kinds of biological functions
than literature-curated features, plotted (Figure 3A) the enrichments for GO terms
(Supplementary Table 2.3 in Supplementary File 2). In this benchmark, we counted proteins that
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had a protein with the same GO term as their nearest neighbor in the reverse homology feature
space, and compared the fraction to the background. Importantly, this analysis includes all GO
Slim terms (curated by the SGD database (Cherry et al., 2012)) with at least 50 proteins in our
set of proteins with IDRs (for a total of 92 terms), so it is not biased towards functions previously
known to be associated with IDRs.

Overall, we find that while some GO Slim categories are highly enriched with both feature sets
(e.g. “Cell wall organization”, “Translation” or “Ribosome biogenesis”, highlighted in Figure
3A), other categories are much more enriched with our reverse homology features than literature-
curated features (e.g. “Oxidoreductase Activity”, “Intracellular Protein Transport”, or “Golgi
Membrane”). Conversely, some categories are more enriched using literature-curated features
(e.g. “Meiosis”, “Intracellular Signal Transduction”, or “DNA replication’). These results
suggest that the neural network is learning features relevant to biological processes that are

different from the ones associated with literature-curated features.
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Figure 3. A) Scatterplot of the fold enrichment for the set of nearest neighbors using feature
representations from the final convolutional layer of the target encoder of our reverse homology model,
versus literature-curated feature representations, for 92 GO Slim terms. We show the names of some GO


https://doi.org/10.1101/2021.07.29.454330
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454330; this version posted July 31, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

terms in text boxes. B) Bar plots of the maximum correlation between all neural network features in the
final convolutional layer of our models, versus each of the 66 literature-curated features. Literature-
curated features are grouped by their category, as shown in the bottom legend. Correlations from our
trained reverse homology model are shown as black outlined boxes, while correlations from a randomly
initialized untrained model are shown in grey. In the text box, we show the number of features where the
reverse homology features are more correlated, more than 2.0x correlated, and less than 0.5x times
correlated than the untrained random features.

Finally, we compared reverse homology features to literature-curated features by Zarin et al.
(Zarin et al., 2019). For each of these features (66 out of 82 features) that can be expressed as
regular expressions we compared the correlation of our trained reverse homology model to a
randomly initialized model, as random untrained models have shown to be a strong baseline for
protein representation learning problems (Shanehsazzadeh, Belanger and Dohan, 2020; Lu, Lu
and Moses, 2021). (Figure 3B). We reasoned that a good measure of consistency between
features detected by our neural network and literature-curated features is having the neural
network feature activated at the same positions in amino acid sequences as the literature-curated
feature.

Figure 3B shows the correlation of the maximally correlated neural network feature from the
final convolutional layer of our target encoder, for each of the 66 literature-correlated features,
using our trained model versus a randomly initialized untrained model. (Supplementary File 3
contains a table of all features, their regular expressions, and the maximal correlations with our
trained and random models.) Due to the large number of parameters in neural network models,
random untrained models have shown to be a strong baseline for protein representation learning
problems (Shanehsazzadeh, Belanger and Dohan, 2020; Lu, Lu and Moses, 2021). In our case,
many of the literature-curated features are relatively simple and reflect only single amino acid
repeats, or relationships between subsets of 2-3 amino acids, and may be easy to be captured by
chance given the large number of parameters. We reasoned that features from a random
untrained model would therefore be a strong baseline that would demonstrate where correlations
with prior biological features must be learned.

In general, we observe higher correlations with 55 of 63 literature-curated features with our
reverse homology model than an untrained random model. Features corresponding to motifs are
learned significantly better by our reverse homology model than the random model (n=37, paired
t-test p-value 4.63E-06; mean 0.042 and standard deviation 0.0475). Features corresponding to
physicochemical properties (n=7; p-value 0.067; mean 0.1091 and standard deviation 0.1266)
and repeats (n=14; p-value 0.077; mean 0.042 and standard deviation 0.082) are more correlated,
but with less confidence than motifs. In contrast, features learned by our model are not more
correlated with features capturing single amino acid content compared to a randomly initialized
model, and are in fact, slightly less correlated on average (n=_8; p-value 0.4409; mean -0.02 and
standard deviation 0.067). These results are consistent with the intuition that shorter repeats of
one or two amino acids are more likely to be present in features by random chance, but longer
and more specific combinations like motifs must be learned.
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Features that recognize bulk properties associated with cell wall maintenance and phase
separation

Having confirmed the global biological relevance of our features, we next sought to test whether
we could associate individual reverse homology features with previously known functional
features and use them to understand functions of uncharacterized IDRs. First, we considered
features recognizing S/T repeats (Average F136 — Figure 4A) and RG repeats (Average F65 —
Figure 4C).
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Figure 4. Sequence logos, feature distributions, and one example of in-silico mutational scanning map for

each average feature. (A,C) Sequence logos and a histogram of the value of the feature across all IDRs is
shown for Average F136 (A) and Average F65 (C). We annotate the histograms with the top activating
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sequences. (B,D) We show mutational scanning maps for F136 for an IDR in Uthl in B and for F65 for
an IDR in Lgel (D), which are the 4™ and 6™ most activating sequences for their respective features.
Mutational scanning maps are visualized as heat maps and letter logos. For the heat maps, each cell
corresponds to the change in value for the feature if that position in the sequence (wild-type sequence is
shown on the x-axis, the numbers correspond to the amino acid coordinates in the protein) is mutated to
the amino acid shown on the y-axis. A shared color map for all heat maps is shown in the top right. For
the mutational scanning letter maps, positions above the axis are positions where retaining the original
amino acid is generally preferable, while positions below the axis are positions where the feature could
generally be improved by mutating to another amino acid. The height of the combined letters corresponds
to the total magnitude of the change in the feature for all possible mutations (which we define as the
favourability). For positions above the axis, we show amino acids that result in the highest value for the
feature (i.e. the most favored amino acids at that position.) For positions below the axis, we show amino
acids that result in the lowest value for the feature (i.e. the most disfavored amino acids at that position.)

Long regions of S/T-rich segments are often sites of O-glycosylation in yeast proteins (Gonzdlez,
Brito and Gonzalez, 2012). A previous computational analysis revealed that fungal proteins with
an extremely high proportion of S/T-rich regions in their sequence are often cell wall proteins
involved in maintenance of the cell wall (Gonzalez, Brito and Gonzalez, 2012). Consistent with
this, we find an enrichment (using the GOrilla tool (Eden et al., 2009)) for cell wall proteins
(15/31, g-value 3.16E-16), cell wall organization or biogenesis proteins (20/31, gq-value 1.69E-
15), and extracellular region proteins (17/31, g-value 4.15E-20) in the proteins with IDRs that
highly activate Average F136. For our S/T repeat feature Average F136, we observed that the top
3 IDRs are all cell wall proteins: Cwpl (Van der Vaart et al., 1995) and Tir3 (Abramova et al.,
2001) are cell wall mannoproteins, while Wsc2 is involved in maintenance of the cell wall under
heat shock (Verna et al., 1997). Our 4" ranked IDR is in Uth1, which is predominantly known as
a mitochondrial inner membrane protein (Welter et al., 2013). However, deletion of Uthl alters
the polysaccharide composition of the cell wall, with mutants being more robust to lysis
conditions, leading to the argument that Uth1’s role at the cell wall, not the mitochondria, better
explains its functions in cell death (Ritch ez al., 2010).

To analyze the IDR in Uthl1 in closer detail, we produced in-silico mutational scanning maps
(Figure 4B). We systematically mutated each amino acid position in the IDR to every other
amino acid, and measured the change the mutation induces in the value of Average F136. We
visualize these mutational scanning maps two ways. First, we visualize them as heat maps, as
shown in the bottom of Figure 4B: mutations that would result in a drop in the value of the
feature are shown in blue, while mutations that increase the feature are shown in red. Second, as
shown in the top of Figure 4B, we visualize them as sequence logos, which we term “letter
maps” to distinguish them from the sequence logos shown in Figure 3 (see Methods for details).
In these letter maps, residues that the feature favors (i.e., would generally result in a drop in the
feature if mutated) are shown above the axis, while residues the feature disfavors are shown
below the axis. For favored positions, we show the amino acids that are most favored; note that
this may not always be the wild-type amino acid, as the feature can still generally favor the wild-
type, but favor other amino acids more or equally. For disfavored positions, we show the amino
acids that are more disfavored. More details on how these in-silico mutational scanning maps are
produced can be found in the Methods. Overall, analyzing the IDR at 52-104 in Uthl reveals
long tracts of S, T, and A-rich regions that are favored by our features (Figure 4B).
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Similarly, RG repeats are found in phase-separating RNA-binding proteins that form
membraneless organelles (Chong, Vernon and Forman-Kay, 2018). Consistent with this, we
found an enrichment for RNA-binding (13/20, FDR g-value 6.37E-5) proteins and for proteins
localizing to the ribonucleoprotein complex (9/20, g-value 1.47E-1) in the IDRs that most
strongly activate Average F65.

Indeed, for our RG-repeat feature Average F65, 4 out of 6 of the top IDRs are proteins with
known stretches of RG-repeats (Dbp2 - (Kharel et al., 2020)), and 3 are phase-separating
proteins mediated by interactions between RG-rich regions (Sbpl - (Poornima et al., 2019), Npl3
and Nopl1 - (Chong, Vernon and Forman-Kay, 2018)). Interestingly, while Lgel is also known to
phase-separate through its N-terminal IDR, also identified in our analysis, this IDR is not
canonically considered an RG-rich IDR and instead has been described as an R/Y-rich region
(Gallego et al., 2020). Closer analysis of Average F65 applied on the Lgel N-terminal IDR
(Figure 4D) indicates that the feature also prefers Ys and other aromatic acids in addition to R;
although replacing G with most other amino acids reduces the value of the feature, replacing G
with R, Y, or W improves the value of the feature in most spots. The preference for aromatic
amino acids in addition to RG-repeats is consistent with aromatic amino acids mediating similar
pi interactions as RG-repeats (Chong, Vernon and Forman-Kay, 2018; Kharel et al., 2020). We
hypothesize that our feature may reflect this relationship and may be subsuming two types of
features previously thought of as distinct (RG-repeats and R/Y-rich regions) into a single logic.

Discovery of subclasses of PKA phosphorylation consensus sites

As examples of features that recognize motifs, we identified at least two features that recognize
variations of the PKA phosphorylation consensus motif RRxS (Smith, Samelson and Scott,
2011). Max F231 (shown on the x-axis in Figure 5) recognizes the canonical consensus motif,
while Max F87 (y-axis in Figure 5) recognizes a more stringent variation RRRSS.
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Figure 5. Scatterplot of the activation for Max F231 versus Max F87 across all yeast IDRs. We show the
sequence logo for each respective feature on their axis. Cut-offs for highly activating IDRs, defined as at
least 70% of the maximum activating IDR, are shown as the grey dotted lines. IDRs with validated PKA
(Tpkl, Tpk2, or Tpk3) phosphorylation sites are circled in blue. IDRs where an 8 amino acid window
around the maximum activating position for Max F231 overlaps a serine phosphorylation site in Biogrid
(Oughtred et al., 2021) are in orange. All other IDRs are shown in grey.

We found that both features were predictive of PKA targets. In total, the Biogrid database
(Oughtred et al., 2021) had validated PKA phosphorylation targets in 24 yeast IDRs, shown with
blue outlines in the scatterplot in Figure 5. Of these, 8 of 24 were in the top activating IDRs for
Max F231 (defined as more than 70% of the value of the maximally activating IDR), reflecting
an enrichment of 18.7 times compared to lesser-activating IDRs (8/139; Fisher exact test p-value
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8.8E-08). 2 were contained in the top activating IDRs for Max F87, reflecting a lesser but still
significant enrichment of 9.1 times (2/52; p-value 0.022).

We next verified that for the validated PKA targets identified by feature, the feature was
correctly identifying the actual PKA phosphorylation site. We found that for both features, a
yeast PKA homologue (Toda et al., 1987) phosphorylation site was present in an 8-amino acid
window around the maximally activating position in the sequence, with the sole exception of the
IDR spanning positions 86-506 in Rgtl. While this IDR meets the threshold for both features,
both features identify an “RRKS” subsequence at position R477 as the maximally activating
position; however, the actual PKA sites in this IDR are at S283 and S284, and S480 is not
recorded as a known serine phosphorylation site. We hypothesize that S480 could represent an
additional PKA site for this protein.

Since the exact phosphorylation site of many PKA targets (Pautasso et al., 2016) is not known or
at least recorded in the Biogrid database, we also tested if sites identified by our features are
enriched in serine phosphorylation sites in general. Overall, Biogrid contains 14994 unique
serine phosphorylation sites that occur in yeast IDRs. For the top activating IDRs for each
feature, we counted the number of IDRs that had a serine phosphorylation site in an 8-amino acid
window around the maximally activated position in the sequence. We compared this to an
expectation of 1000 samples of an equivalent number of IDRs chosen at uniform probability,
with 8 amino acid windows also sampled randomly from these IDRs. For Max F231, 68/139
IDRs contained at least one serine phosphorylation site, a 4.5 times enrichment over random
expectation (z-score 63.8, expectation mean 15.3 and standard deviation 3.7). For Max F87,
25/52 IDRs contained at least one serine phosphorylation site, a 4.4 times enrichment over
random expectation (z-score 22.4, expectation mean 5.6 and standard deviation 2.2). Taken
together, these results confirm that the neural network has identified two features that represent
the phosphorylation consensus site for PKA, and that many of the predicted sites may represent
uncharacterized sites that are phosphorylated in vivo.

Qualitatively, we observed that the sequence logo of Max F87 resembles two overlapping PKA
motifs. A recent study indicates that PKA is capable of phosphorylating two serines in a row
(Dengler et al., 2021). The authors observe in these cases, one serine is constitutively
phosphorylated, and the other serine requires increased PKA activity, and hypothesize this multi-
site phosphorylation might be a regulatory mechanism. Based on this hypothesis, we wondered if
the distinction between Max F87 and Max F231 is that the former is more specific to sites of
double phosphorylation. We analyzed the frequency of two adjacent phosphorylated serines in
the 8-amino acid window around the maximally activated position of the top activating
sequences for both features: 13 of 52 IDRs are doubly phosphorylated for windows identified by
Max F87, while 15 of 139 IDRs are for windows identified by Max F231, suggesting that Max
F87 identifies 2.31 times more doubly phosphorylated regions (Fisher exact test p-value 0.020).
Our results suggest that the doubly phosphorylated PKA consensus is a more widespread
mechanism than currently appreciated, and illustrate the power of our unsupervised approach to
discover unexpected and subtle biological patterns.
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A positive-to-negative charge transition window is associated with nucleolar function

Finally, we identified a feature that recognizes a site of positive-to-negative charge transition,
Max F244. The sequence logo for this feature (Figure 6A) indicates that sequence segments
activating this feature typically have basic amino acids at the start of the sequence, and acidic
amino acids at the end of the sequence. We note that this feature is similar to previous expert-
defined features that measure the separation between positive and negative charged residues (Das
and Pappu, 2013; Sawle and Ghosh, 2015), which is generally known to be important to IDRs;
our feature is likely related, but identifies a single local window instead of measuring these
charge transitions as a property across the entire sequence.
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Figure 6. Sequence logos and in-silico mutational scanning maps for charge transition feature. (A) The
sequence logo for Max F244. (B,C) Mutational scanning maps for Max F244 for an IDR in Nop56 (B)
and an IDR in Nsr1 (C). Note that we only show a segment of the mutational scanning maps in this figure
due to the long length of these IDRs. Mutational scanning maps are visualized as heat maps and letter
maps. For the heat maps, each cell corresponds to the change in value for the feature if that position in the
sequence (wild-type sequence is shown on the x-axis, the numbers correspond to the amino acid
coordinates in the protein is mutated to the amino acid shown on the y-axis. A shared color map for all
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heat maps is shown in the top right. For the mutational scanning letter maps, positions above the axis are
positions where retaining the original amino acid is generally preferable, while positions below the axis
are positions where the feature could generally be improved by mutating to another amino acid. The
height of the combined letters corresponds to the total magnitude of the change in the feature for all
possible mutations (which we define as the favourability). For positions above the axis, we show amino
acids that result in the highest value for the feature (i.e. the most favored amino acids at that position.) For
positions below the axis, we show amino acids that result in the lowest value for the feature (i.e. the most
disfavored amino acids at that position.)

We found an enrichment for nucleus (21/23, gq-value 1.22E-2) and nucleolus-localized (8/23, g-
value 2.37E-2) proteins in the proteins with IDRs that strongly activate Max F244. Many of
these proteins are well-characterized nucleolar proteins (including Nsrl, Nop7, Nop56, Rix1,
Rix7, Dbp7 and Erbl).

Due to the nature of the max pooled features, which recognize a single maximally activating
window, the in-silico mutational scanning maps focus on one specific segment of the sequence,
as opposed to average features associated with cell wall maintenance and phase separation
discussed above, which generally distribute across the entire sequence. We observed that for
several of the nucleolar proteins, the region of the sequence activating Max F244 was often
preceded or succeeded by a highly charged region on one end, and a more neutral region on
another end. We show two examples in Figure 6. In Nop56 (Figure 6B), the C-terminal segment
succeeding the activating region is characterized by lysine repeats (with some acidic amino acids
interspersed.) In Nsrl (Figure 6C), the N-terminal segment preceding the activating region is
characterized by repetitive negative charges and serines.

While we were not able to associate these activating regions with any previous literature, we did
find that they are often adjacent to charged regions that are critical to protein-protein
interactions. In Nop56, the C-terminal lysine-rich region from E464 to D504 has previously been
described as the “K-tail” (Oruganti et al., 2007) and is important interaction with fibrillarin
(Gagnon et al., 2012); our in-silico mutational scanning map indicates that K464 to D460 is the
most important region for Max F244 in the C-terminal IDR of Nop56. Similarly, in Nsrl, a
deletion study of the acidic N-terminal region spanning M1 to S125 indicates that the region is
important for interactions with Top1 (Edwards et al., 2000); our mutational scanning map
indicates that K140 to D145 is the most important region for Max F244 in the N-terminal IDR of
Nsrl. Overall, these findings suggest that charged interaction domains in nucleolar proteins are
often connected to the rest of the protein by a short window of positive-to-negative charge
transition. While we leave investigation of the possible function of this feature to future work,
this example illustrates how features learned by our unsupervised feature discovery approach can
implicate specific regions of sequences to provide hypotheses for follow-up experimental work.

Reverse homology trained on human IDRs also yields diverse features correlated with
literature-curated features

Having confirmed that our reverse homology task was effective at learning features that could be
interpreted to drive hypotheses about yeast biology, our next goal was to train a model for human
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IDRs. We trained a reverse homology model using 16,328 human IDR homology sets for a total
of 1,604,052 sequences (see Methods).

We qualitatively confirmed that this model was learning a similar diversity of features as our
yeast model (Supplementary File 4). We were able to identify features for both short linear
motifs, such as consensus motifs for phosphorylation sites or metal ion binding motifs, and bulk
features like repeats or charge. As with our yeast model, we found that our features were
significantly more correlated with literature-curated features than a random model (paired t-test
p-value 1.589E-10, average 0.084, standard deviation 0.090). Supplementary File 5 contains the
maximum correlations with the 66 features we previously tested for the yeast reverse homology
model (for human IDRs, no comprehensive set of features has yet been published.)

Analysis of diverse human IDRs reveals consistency between reverse homology predictions
and known features in literature

We tested whether our human reverse homology model is capable of predicting specific residues
and regions of functional significance for specific IDRs of interest. While our model is not
directly trained to predict function, our reverse homology task requires the model to identify
conserved features between homologues. We reasoned that features conserved by evolution are
also likely to be important to function, so analyzing what features our model was detecting in a
given IDR to determine homology would likely yield insights into function. Current
computational methods to predict IDR function are either not designed to pinpoint specific
residues, or yield lists of matches to pre-defined motifs. For example, the ANCHOR?2 method,
which predicts binding regions in IDRs (Mészaros, Erdds and Dosztanyi, 2018), predicts almost
the entire IDR of the human cell cycle regulator protein p27 (Supplementary Figure 1A). The
ELM prediction tool scans for matches to a database of pre-defined short linear motifs (Kumar et
al., 2020), and predicts 63 matches for the IDR of p27 (Supplementary Figure 1B).

To test if our model is capable of retrieving functionally relevant features for specific human
IDRs, we examined three cases. First, we focused on p27 (also known as CDKN1B), because it
has a well-studied C-terminal IDR spanning positions 83 to 198 in the sequence, known as the
kinase inhibitory domain (p27-KID). This region mediates promiscuous interactions with cyclin-
dependent kinase (Cdk)/cyclin complexes through a disorder-to-order transition (Yoon et al.,
2012). Given the abundance of literature allowing us to assess the relevance of our predictions,
p27-KID is a good case to test whether our model, which has never been trained on any of this
prior knowledge in literature, retrieves functionally relevant features.

We show a summary of known post-transcriptional modification sites and localization signals
(Vervoorts and Liischer, 2008; Abbastabar et al., 2018) in purple in Figure 7A. The top five
features predicted by our reverse homology model, which are all max pooled features for this
IDR, all overlap these sites (red in Figure 7A). (Note that there can be a mixture of both max and
average pooled features in the top ranked features, but in our examples, the top ranked features
all happen to be either all max or all average.)
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We observed through the mutational scanning letter maps that the important residues for our
reverse homology features are consistent with these known sites. Max F49 (Figure 7A.1)
overlaps Y88 and Y89, which are modification sites for Src family tyrosine kinases (Vervoorts
and Liischer, 2008); the letter map indicates that Y88 is the most important residue for this
feature. Max F54 (Figure 7A.2) overlaps the nuclear localization sequence (NLS); previous work
established that four basic residues K153, R154, K165, and R166, are especially critical to the
nuclear localization in site-directed mutation experiments, and consistent with this, K153 and
R154 are predicted as the most important residues for this feature. Finally, Max F11 (Figure
7A.3) overlaps a key phosphorylation site T198 (Vervoorts and Liischer, 2008); we observe that
the feature strongly favors the arginine residues preceding the phosphorylation site (especially
R195 and R196), and while T198 is generally favorable for this feature, S or H is also
permissible in this position.
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Figure 7. Summaries of known features (purple) compared to the top ranked reverse homology features
(red and blue) for three IDRs, plus letter maps for selected features. We show the position of max pooled
features in red (boundaries set using a cut-off of -10 or lower in magnitude), and the values of average
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features in blue. Average features are sorted in descending order (i.e. the top ranked feature is at the top.)
For the mutational scanning letter maps, positions above the axis are positions where retaining the
original amino acid is generally preferable, while positions below the axis are positions where the feature
could generally be improved by mutating to another amino acid. The height of the combined letters
corresponds to the total magnitude of the change in the feature for all possible mutations (which we
define as the favourability). For positions above the axis, we show amino acids that result in the highest
value for the feature (i.e. the most favored amino acids at that position.) For positions below the axis, we
show amino acids that result in the lowest value for the feature (i.e. the most disfavored amino acids at
that position.)

Second, as a case of an IDR that is more mediated by bulk functions as opposed to motifs, we
looked at hair keratin-associated proteins, many of which are characterized by abundant cysteine
repeats that form disulfide cross-links (Wu, Irwin and Zhang, 2008). We chose KRTAP9-3 as an
example, which has an N-terminal IDR spanning positions 1 to 157 in the sequence.

Figure 7B shows the cysteine residues in purple, and the top three features from our reverse
homology model, which are all average features, in blue. We observed that the top three features
all generally preferred the cysteine residues or their surrounding content. We show the
mutational scanning letter map for Average F78 as in Figure B.1. While most of the cysteine
residues are generally favored by this feature, the repeats of two cysteine residues are more
generally favorable over single residues, as evident from their greater height in the letter map.

Third, as an example of a less characterized IDR, we examined hnRNPA1, which has an N-
terminal IDR from positions 183 to 372. This IDR is known as a prion-like domain that
facilitates liquid-liquid phase separation (Wang et al., 2018). A recent study showed that the
uniform patterning of aromatic residues in this IDR is critical to phase-separation, while also
inhibiting aggregation (Martin ef al., 2020).

Consistent with these findings, we find that the top three features for our reverse homology
model (all average features, shown in blue in Figure 7C) are all sensitive to the aromatic amino
acids in the sequence of hnRNPA1. We show the in-silico mutational scanning map for Average
F87 in Figure 7C.1, which shows that the feature is sensitive to YG or YS repeats: in many of the
positions flanking tyrosine residues, glycine or serine is most favorable to the feature. While
previous work did not analyze what amino acids are permissible as spacers between aromatic
amino acids (Martin et al., 2020), we observe that in the wild-type sequence, the tyrosine
residues are often flanked by serine or glycine (purple in Figure 7C).

Overall, these cases demonstrate that our reverse homology model learns versatile features
capable of identifying important features for both IDRs where function is mediated by short
linear motifs as in p27, and where function is mediated by low-complexity repeats and patterning
as in KRTAP9-3. Moreover, our method is effective for both well-characterized IDRs, and less
or recently characterized IDRs such as in hnRNPA1, suggesting that it can be used to generate
hypotheses for IDRs that are currently poorly understood.
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Discussion

We present, to our knowledge, the first proteome-wide evolutionary approach for feature
discovery using neural networks. Compared to other systematic homology-based approaches for
intrinsically disordered regions with motif finding methods (Davey et al., 2012; Nguyen Ba et
al., 2012), our method discovers more flexible and expressive features than local motifs: we
show that our models learn features such as repeats or distributed charge properties, in addition
to motifs. This expressiveness is important in the context of IDRs, where previous studies have
shown that function is often mediated by global “bulk” properties (Zarin et al., 2019). Like
previous comparative proteomics methods, our method is systematic, in that it discovers a large
set of features informative of many different functions in the proteome, and unbiased by prior
knowledge, in that it relies only on automatically-assigned sequence homology to discover
features. The latter property sets our method apart from deep learning approaches on protein
sequences that use regression problems to train models, such as a recent study that discovered
features of disordered activation domains by training deep learning models to predict the results
of a transcriptional activation assay (Erijman et al., 2020). We argue that optimizing models to
predict prior knowledge of function, or assay measurements that reflect specific aspects of
function, will lead to the model learning features for these functions exclusively. In contrast,
training a model to predict evolutionary homology yields a potentially more general set of
features that are conserved over evolution.

In many cases, our method learns features that are highly consistent with consensus motifs or
bulk features previously known; this congruence is exciting because the model learns
independent of prior knowledge, so “re-discovering” this biology supports the claim that our
models are learning biological signals. At the same time, even when the model learns features
that are consistent with prior expert-defined features, there is often additional subtlety or depth.
For example, for our yeast RG-repeat feature Average F65, we showed that the feature has an
additional preference for aromatic amino acids, consistent with the recent knowledge that these
amino acids mediate similar interactions to RG-repeats in these sequences (Chong, Vernon and
Forman-Kay, 2018; Kharel et al., 2020). Similarly, we showed that our model develops two
subclasses of PKA-like consensus motifs, and one is more sensitive to double phosphorylation
sites. These examples demonstrate the power of unsupervised analysis to refine previous
knowledge.

From a computational biology perspective, we note that many of the individual feature analyses
we presented in this study resemble bioinformatics studies that make functional predictions
based on conserved motifs or other features (Beltrao and Serrano, 2005). For example, our
analysis of PKA phosphorylation sites parallels a previous evolutionary proteomics study that
systematically identified PKA substrates (Budovskaya et al., 2005): of the 25 of 92 conserved
PKA motifs identified that are present in IDRs, our automatically learned yeast PKA feature
Max F231 overlaps 10 in the 139 most activated IDRs, suggesting that our feature is in good
agreement with this previous study and can also be used to identify putative modification sites.
Unlike these studies that start with a known feature and search for new predictions, our approach
learns many features in parallel, without having to pre-specify motifs/features of interest. In
principle, these bioinformatics analyses can be applied to all of the 512 features learned by our
model, enabling hypothesis discovery at an unprecedented scale. (We do note that many of the
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features learned by our model appear to be redundant with each other (see our annotations in
Supplementary Files 1 and 4), so this is an upper bound.)

Perhaps more exciting, our analysis of individual regions (such as in p27 shown above) indicate
that unsupervised deep learning approaches like reverse homology, paired with appropriate
interpretation methods, will lead to highly specific predictions of functional residues and regions
within IDRs. This would represent an urgently needed advance, especially for IDRs that are
mutated in disease, for which we have few mechanistic hypotheses about function (Vacic et al.,
2012; PritiSanac et al., 2019; Tsang et al., 2020; Lindorff-Larsen and Kragelund, 2021).

From a technical perspective, reverse homology employs a self-supervised approach, as many
emerging representation learning approaches for protein sequences do (Alley et al., 2019;
Heinzinger et al., 2019; Rao et al., 2019; Lu et al., 2020; Rives et al., 2021). Unlike these
methods, which are mostly based on methods adapted from natural language processing, we
proposed a novel proxy task that purposes principles of evolutionary proteomics as a learning
signal instead (Lu, Lu and Moses, 2020). Another distinction in our study is that previous
approaches primarily focus on representation learning, with the aim of optimizing the
performance of the representation on downstream regression tasks reflecting protein design or
classification problems. In contrast, we focus more on feature discovery in this study. We argue
that representation learning and feature discovery are distinct aims that require different design
philosophies. For example, in this study, we employed a lightweight convolutional architecture,
because the interpretation of features is a necessary property. Moreover, we preprocessed the
data to remove global information like sequence length or whether the sequence was at the N-
terminus: while this information is often useful for downstream tasks, we observed that our
models learn fewer “interesting” local features without this preprocessing. In other words, while
representation learning does not care about what features are learned as long as they contribute
signal to downstream classification or regression problems, we designed our feature discovery
approach to learn general, interpretable features that reflect the biology of IDRs.

However, as deep learning architectures are developed for protein sequences, and as new
interpretation methods are designed to complement these architectures, updated implementations
of our method with these architectures are also possible. Currently, a major limitation of our
convolutional neural network architecture is that it does not capture distal interactions; to some
extent, our average pooled features allow for the representation of features distributed across the
entire sequence, but these features cannot capture any non-additive interactions. However,
transformer architectures are capable of modeling distal interactions, and there has been progress
in making these models tailored to multiple sequence alignments, and interpreting the self-
attention modules (Rao ef al., 2021). A second limitation is that our convolutional model
requires sequences to be standardized in length as input. This preprocessing requirement means
that we may lose key elements of longer sequences. Shorter sequences require padding; we used
“repeat” padding, since we found with a special padding token the neural network can use cues
about length to trivially eliminate many possible proteins from the contrastive task, but this runs
the risk of creating new spurious repeats. Recurrent architectures address this limitation and
allow for arbitrary-sized inputs (Alley et al., 2019; Heinzinger et al., 2019). Overall, integrating
these kinds of advances with our method in future work is expected to make the model more
expressive, increasing the scope of the features we can discover. Finally, further work on
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interpretation methods would also improve our ability to extract insights from these models:
currently, a limitation of our sequence logos for average features is that features that favor
specific combinations of repeats (e.g., RG-repeats) are difficult to distinguish between features
that favor amino acid content (e.g., R and G content.)

Methods
Details of Reverse Homology

In this paper, we studied sets of automatically obtained homologous IDRs. We concentrate on
IDRs in this work, but our contrastive learning task can easily be extended to other definitions of
homologous sequences including full protein sequences or structured domains. We will use these
sets of homologous sequences as the basis of our self-supervised task.

Let H; = {s;1,...,S;n} be a set of homologous sequences. We define a set of query sequences, ,
Sq such that all sequences in the query set are homologous to each other, so S, © H;. Then, we
define a set of target sequences associated with the query set, S; = {st_,l, . -'St—,m—l} U

{St+} where s, is a held-out homologue s;, € H;, sy & S4 and s;_ are not homologous to the
query set, S;4 € Hj,j # L.

Let g, be a function that embeds S, into a latent feature representation, so g;(Sq) = 23, and g,
be a function that embeds members of S; into a latent feature representation, so g,(s;) = z, (in
this work, g, and g, are convolutional neural network encoders.) Our task is to optimize the
categorical cross-entropy loss, also commonly called the InfoNCE loss in contrastive learning

literature (Oord, Li and Vinyals, 2018), where f ( g1 (Sq), 9> (st)) 1s a score function (in this
work, we use the dot product):

exp(f (91(5q),92(5t+)))
exp (f (9:(5,). 92 (St+))) + 2¥5 exp(f (91(Sq), 92(5e-1) )

Lyce = —]Esq,st+,st_ log

Implementation of reverse homology

In principle, the sequence encoders g, and g, are flexibly defined, and many neural network
architectures are possible here; previous self-supervised learning methods on protein sequences
have generally favored large transformer or LSTM models due to their ability to capture distal
interactions in sequences (Alley et al., 2019; Heinzinger et al., 2019; Rao et al., 2019). However,
since a priority of this work is interpreting the features learned by our model, not necessarily to
learn the most useful or complete representation possible, we decided to implement our encoders
as low-parameter convolutional neural networks (CNNs). Many interpretation methods designed
for neural networks trained on biological sequences are more specific to CNNs. Koo and Eddy

24


https://doi.org/10.1101/2021.07.29.454330
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454330; this version posted July 31, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

propose a method for generating motif-like visualizations that involves collecting the parts of
sequences that maximally activate neurons to calculate position frequency matrices (Koo and
Eddy, 2019). Other interpretation methods are less specific to architecture, but benefit from
efficient implementations. Alipanahi et al. propose systematically introducing every possible
point mutation in a sequence (Alipanahi et al., 2015), which requires 20 X L inputs to the model
for each protein sequence we want to interpret (where L is the length of a sequence). We
reasoned a model with fewer parameters and layers would simply run faster at inference time.

We show a summary of our architecture in Figure 1D. Both encoders g, and g, begin with three
convolutional layers; following Almagro Armenteros et al. (Almagro Armenteros et al., 2017),
the first layer contains neurons with different kernel sizes (1, 3, and 5). After the convolutional
layers, we max and average pool convolutional features over the length of the entire sequence.
The max and average-pooled features are concatenated and fed into two fully-connected layers;
we scale the average-pooled features by a factor of the post-processed input sequence length
divided by the receptive field of the final convolutional layer (17.06 times in this specific
architecture) to put the average and max pooled features on the same numerical scale. The output
of the final fully connected layer is considered the feature representation. We average the feature
representation for all homologues in the query set S, and calculate the dot product between this
average and the representation for each sequence in the target set s;. This dot product is

considered our score function f ( g1 (Sq), 9> (St)) in the InfoNCE loss (i.e. the largest dot product

is considered the model's prediction of which sequence in the target set is homologous to the
sequences in the query set.)

For our implementation, we use a query set size of 8, and a target set size of 400. The size of the
query set should, in principle, control the difficulty of the pretext task, as well as the kinds of
features learned: with larger query sets, we expect that information that is incidental to any one
homologue and not shared across all homologues will be averaged out. The size of the target set
has a similar effect, as the model has to distinguish the homologous sequence from greater or
fewer non-homologous sequences depending on the setting of this parameter: Oord et al. show
that in theory, increasing the size of the target set tightens the lower bound on maximizing
mutual information (Oord, Li and Vinyals, 2018). In this study, we set these parameters to
reasonable defaults, and leave a full exploration of these parameters to future work.

Training datasets

To train our model, we used sets of homologous yeast IDRs previously defined by Zarin et al.
(Zarin et al., 2020). Briefly, this dataset was produced by aligning orthologues (homologues
from different species) of yeast proteins previously calculated by the Yeast Gene Order Browser
(Byrne and Wolfe, 2005). Alignments shown in Figure 1 are visualized using Jalview (Clamp et
al., 2004); note that the alignment is only used to identify the boundaries of the IDRs across
species, and not supplied to the models during training (i.e. the models are given the unaligned
IDR sequence). DISOPRED3 was used to annotate IDRs in Saccharomyces cerevisiae
sequences, and residues in other species that fell within these regions were considered
homologous after some quality control steps (see (Zarin et al., 2019) for details.) We filtered this
dataset by removing sequences under 5 amino acids, with undetermined amino acids (“X”)
and/or non-standard amino acids, and only kept homologue sets with more than 9 sequences
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represented. Overall, this dataset consists of a total of 94,106 IDR sequences distributed across
5,306 sets of homologues.

In addition to our yeast reverse homology model, we produced a human model trained on sets of
homologous vertebrate IDRs. Homologous protein annotations for vertebrates were obtained
from the OMA homology database (Altenhoff et al., 2021). UniProt reference human protein
sequences were downloaded on September 2019 (UniProt Consortium, 2019), and we used
SPOT-Disorder vl (Hanson et al., 2017) for disorder prediction. These sequences were aligned
using MAFFT (Katoh et al., 2002), and the disorder boundaries of the human sequence were
used as a reference to annotate putative disordered regions in the set of vertebrate homologs.
After the same pre-processing operations for length, undetermined/non-standard amino acids,
and number of sequences that we used for the yeast model, this dataset consists of 1,702,348
sequences distributed across 17,519 sets of homologues. Finally, to ensure that the sequences did
not contain any structured domains, we filtered the sequences based on matches in Prosite
(Sigrist et al., 2013). We removed any homology sets where the Homo sapiens IDR had a match
in Prosite above 10 amino acids: this operation led to a total of 1,604,052 sequences across
16,328 human IDR homology sets.

Preprocessing and training

We one-hot encoded sequences as input into our models. To standardize the lengths of the
sequences, if the sequence was longer than 256 amino acids, we used the first and last 128 amino
acids from the sequence. If the sequence was shorter, we “repeat padded” the sequence until it
was over 256 amino acids (e.g. in this operation “ACD” becomes “ACDACD” after the first
repetition), and clipped off excess length at the end of the padded sequence.

In our preprocessing operations, we sought to reduce the impact of certain global properties,
which while potentially biologically informative, would allow the model to rule out the majority
of non-homologous sequences in the target set on the basis of relatively trivial features for most
query sets, reducing the effectiveness of our contrastive task. One is the length of the sequence,
motivating our use of the repeat padding operation, which reduces cues about length compared to
the use of a special padding token. The other global feature we identified was whether the IDR
occurs at the start of a protein or not, as indicated by a methionine (from the start codon) at the
beginning of the IDR. We clipped this methionine from the sequence if the IDR was at the N-
terminus of a protein.

We trained models for 1,000 epochs, where each epoch iterates over all sets of homologues in
the training dataset. For each set of homologues, we randomly drew 8 unique sequences at each
epoch to form the query set and 1 non-overlapping sequence for the target set. To save memory
and speed up training, we used a shared target set for each batch of query sets: homologous
sequences for one query set in the batch would be considered as non-homologous sequences for
the other query sets. If the target set size is larger than the batch size (as it was in our
experiments), the remainder of non-homologous sequences are sampled at random from
homologue sets not used in the batch. We trained models with a batch size of 64, and a learning
rate of le-4.
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Correlation with literature-curated features

To compare our features against literature-curated features, we binarized all amino acid positions
in all of the IDR sequences in our yeast data using each of these regular expressions. Amino
acids that are contained in a match to the regular expression are assigned a value of 1, while all
other amino acids are assigned a value of 0. We calculated the global correlation between these
binarized positions and the activation value of neurons in our convolutional neural network at
each position. A higher correlation indicates that a neuron outputs high feature values at
positions that match the regular expression of a literature-correlated feature and low values at
positions that do not match.

Interpretation

To interpret the features learned by our model, we adapted two previous interpretation methods.
We also reported the enrichment of features for GO enrichments; note that these are done using a
background of all proteins with IDRs (not all proteins), to avoid spurious enrichments.

Sequence logos summarize features

First, to produce a global summary of the kinds of sequences that activate each neuron in a layer
of our model, we adapted a method from Koo and Eddy (Koo and Eddy, 2019). This method
visualizes neurons by scanning them against every single sequence in a dataset (in our case, the
full dataset of yeast IDRs). We collect sequences that reach at least 70% of the maximum
activation for that neuron. If there are less than 20 sequences meeting this threshold, we instead
collect the 20 highest activating sequences. These sequences are used to produce position
frequency matrices (PFMs). For max-pooled features, we collect the maximally activating
subsequence, and add all amino acids in this window to the PFM with equal weight. For average-
pooled features, we add all windows to the PFM, but weigh all windows in the sequence by the
activation for that window divided by the activation of the maximally activating window in that
sequence. These PFEMs are converted to a position probability matrix and visualized as sequence
logos using the Biopython package, modified with a custom color scheme (Cock et al., 2009).
Unlike Koo and Eddy (Koo and Eddy, 2019), we do not discard windows that overlap with the
start or end of a sequence, to avoid too few inputs due to our larger receptive field and smaller
sequence sizes; we simply do not let parts of the sequence overlapping the start and end of the
sequence contribute any frequency to their corresponding position in the position frequency
matrix.

Overall, this method produces a sequence logo for each neuron, summarizing the kinds of
subsequences that activate the neuron. This method can only be applied to convolutional layers
before pooling, because it requires us to measure the activation at specific positions in a
sequence; in our experiments, we apply it to the final convolutional layer in our models (Conv3
in Figure 3).

In-silico mutational scanning visualizes specific features and sequences

The activation scanning method produces global summaries of the kinds of sequences that
activate each neuron but may fail to reveal more nuanced aspects of these neurons. For example,
some of our neurons appear to be sensitive to multiple patterns in sequences; the activation
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scanning logos may only show the most common pattern, with less frequent patterns not as
visible. We reasoned that a good way to reveal subtle details in our neurons would be to
systematically produce every possible point mutation in a sequence, and measure the effects of
the mutation on the output activation of a neuron, inspired by the method previously employed
by Alipanahi et al. (Alipanahi et al., 2015).

For a given feature and IDR, we systematically mutate each amino acid in the IDR sequence to
each other amino acid and measure the change in the value of the feature. We visualize this
matrix in two ways. First, we visualize the entire matrix as a heat map. Second, we visualize the
mutational scanning map as a sequence logo, which we term a letter map to distinguish them
from the per-feature sequence logos. In this letter map, any amino acids that would generally
reduce the value of the feature if mutated is shown above the axis, while any amino acids that
would generally increase the value of the feature if mutated are shown below the axis. The
combined height of the letters corresponds to the overall magnitude of the increase or decrease
mutating the position would induce on the feature. For positions above the axis, we show the
amino acids that are most permissible in that position. For positions below the axis, we show the
amino acids that are least permissible in that position. In summary, letters above the axis are
favored residues in favored positions, while letters below the axis are disfavored residues in
disfavored positions. We used the Logomaker package, modified with a custom color scheme, to
visualize these letter maps (Tareen and Kinney, 2020). More details and formulas for these letter
maps are available in Supplementary Methods.

Code and Data Availability

Code for training our models and visualizing/extracting features is available under a CC-BY
license at github.com/alexxijielu/reverse_homology/. Pretrained weights for our models, fasta
files of IDR sequences used to train both models, and labels for IDRs used in our classification

benchmarks are available at zenodo.org/record/5146063.
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Supplementary Figure 1. Predictions for p27 for ANCHOR?2 (A) and ELM (B). For both predictions, we
inputted the full protein, so we highlight the C-terminal IDR in gold. A) The blue line shows the
ANCHOR?2 score predicting disordered binding regions. B) The blue boxes show matches to short linear
motifs within the sequence, as labeled on the left. The darker the blue, the more conserved the motif is
across orthologues. The red circles indicate known instances annotated from literature.
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