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Abstract

Creative cognition relies on the ability to form remote associations between concepts, which allows to
generate novel ideas or solve new problems. Such an ability is related to the organization of semantic
memory; yet whether real-life creative behavior relies on semantic memory organization and its neural
substrates remains unclear. Therefore, this study explored associations between brain functional
connectivity patterns, network properties of individual semantic memory, and real-life creativity. We
acquired multi-echo functional MRI data while participants underwent a semantic relatedness judgment
task. These ratings were used to estimate their individual semantic memory networks, whose properties
significantly predicted their real-life creativity. Using a connectome-based predictive modeling
approach, we identified patterns of task-based functional connectivity that predicted creativity-related
semantic memory network properties. Furthermore, these properties mediated the relationship between
functional connectivity and real-life creativity. These results provide new insights into how brain
connectivity supports the associative mechanisms of creativity.

Teaser: New insight into the neurocognitive determinants of human creativity

Keywords: creativity, semantic network, brain networks, functional connectivity, cognition
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70  Introduction
71

72 Creativity is key to our ability to cope with change, innovate, and find new solutions to address
73 societal challenges (7). Understanding the complex and multidimensional construct of creativity is thus
74  fundamental to support societal, cultural, and economic progress. Creative behaviors in real life depend
75 on individual differences in cognitive ability, in addition to personality and environmental factors (2).
76  The cognitive mechanisms underlying creative abilities are not yet understood (3—6). The associative
77  theory hypothesizes that creative abilities are related to the organization of semantic associations in
78  memory (7). In support of this theory, several studies found that more creative individuals are able to
79  link distant concepts more easily (8—10), have less common or constrained word associations, and a
80  more flexible organization of semantic memory (9, //-15). In addition, in brain-damaged patients, rigid
81  semantic associations were associated with poor creative abilities (/6—18). Associative thinking has been
82  related to creative abilities as measured within several existing frameworks, such as divergent thinking
83 (8,9, 14, 19-21), insight problem solving (7, 22), analogical reasoning (23, 24), as well as to creative
84  achievements in real life (25—28). Overall, the properties of semantic memory play an essential role in
85  the cognitive processes that bring forth original ideas.
86 Recent research has demonstrated how computational network science methodologies (29-32)
87  based on mathematical graph theory allow exploring the properties and organization of the concepts in
88  semantic memory via semantic networks (SemNets). Applying these methods, several studies have
89  shown that creative abilities can be related to semantic memory organization (11, 33—-38). Kenett and
90  colleagues (/1) investigated the SemNets of groups of low and high creative individuals, based on free
91  associations generated by both groups to a list of 96 cue words. They found that the SemNets of low
92  creative individuals were less connected and more spread out compared to the SemNets of high creative
93  individuals. However, estimating SemNets at the group level may obscure individual differences related
94  to creativity. To address this issue, Benedek and colleagues (36) developed a method to estimate
95  individual SemNets, based on word relatedness judgment ratings. Participants rated the relationships
96  between all possible pairs of 28 cue words, serving as a proxy for the organization of these words in an
97  individuals' semantic memory. They demonstrated how individual-based SemNet metrics replicated the
98  group-based findings of Kenett et al. (/7), and were related to individual differences in divergent
99  thinking scores (the most widely assessed component of creative thinking) (39, 40). A recent study
100 reported similar results (41). In a previous study, (37) we replicated and extended this finding with two
101  improvements: We controlled the selection of the cue words using a computational method optimizing
102  the distribution of theoretical distances between words, and we assessed creative abilities and behaviors
103 using a more diverse set of tools. This study showed that the network metrics of the individual SemNets
104  correlated with several measures of creativity, including a questionnaire of creative activities and
105  achievements (42). Hence, individual SemNets measures—reflecting the properties of semantic
106  memory—allow exploring underlying cognitive mechanisms of creativity, suggesting that more creative
107  individuals have more flexible semantic associations and connect more distant concepts or words (38).
108  However, the neurocognitive determinants of individual differences in creativity related to the flexibility
109  of semantic associations are still unclear and unexplored.
110 Existing MRI-based neuroimaging studies have identified a large set of brain regions involved
111 increative cognition (5, 12, 43—47). A growing body of creativity neuroscience research has highlighted
112 the importance of functional interactions within and between several brain networks, including the
113 executive control network, salience network and the default mode network (5, 48). Additionally,
114  semantic and episodic memory regions (44, 49—52) and the motor and premotor regions have been
115  shown to play a role in creative cognition (44, 53). The advantage of a whole-brain functional
116  connectivity approach is to provide a holistic and functional view of how brain networks relate to
117 creative thinking. For example, resting-state functional connectivity within and between these networks
118  was shown to predict creative abilities (54, 55) and task-based functional connectivity within and
119  between these networks increased during a creativity task, compared to a control task (5, 43). A recent
120 approach in neuroimaging research is connectome-based predictive modeling (CPM) (56), which uses
121 machine learning methods to identify patterns of functional connectivity that predict complex cognitive
122 functions, including divergent thinking ability (43, 56-61). Unlike previous research that focused on the
123 brain connectivity associated with specific creativity tasks (e.g., divergent thinking), the current study
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124 explores the neurocognitive determinants of real-life creativity by studying the neural basis of semantic
125  memory organization related to creative behavior. We hypothesized that the associative mechanisms
126  reflected by SemNet metrics are relevant to real-life creative activities and achievements and can be
127  predicted by functional connectivity patterns, involving, in particular, the control, default, and salience
128  networks (43).

129 To this end, we first examine the organization of individual SemNets via network metrics and
130 identify the SemNet metrics that reliably predict differences in creative achievement and thus constitute
131 cognitive markers of real-life creativity. We then explore the functional connectivity of brain networks
132 predicting individual differences in these SemNet markers. We use the CPM method and analyze
133 functional brain connectivity during the performance of the semantic relatedness task that is used to
134 estimate individual SemNets. We identify the task-based functional connectivity patterns predicting
135  individual differences in SemNet properties. Finally, we examine whether SemNet properties mediate
136  the link between these brain connectivity patterns and real-life creativity, thus linking functional
137  connectivity to real-life creativity via individual differences in semantic memory organization.

138 Results
139 Individual Semantic Network metrics and creativity
140 First, we explored the properties of individuals' SemNets in relation to creativity. Similar to

141  previous studies (36-38), we estimated participants' individual semantic memory network as weighted
142 (WUN) and unweighted (UUN) SemNets based on performance in the semantic relatedness judgment
143 task (RJT; Figure 1). During the RJT, participants judged the relatedness between all possible pairs of
144 35 words (595 ratings). We then computed established network measures in cognitive network research
145  including (29): Average Shorter Path Length (ASPL, measuring average distances, or the spread of the
146 SemNet), Clustering Coefficient (CC,; measuring overall connectivity in the SemNet), Modularity (Q;
147  measuring the level of segregation of the SemNet) and Small Worldness (S; measuring the ratio between
148  connectivity and distances in the network (62) see Material and Methods). In addition, we assessed
149 individual differences in real-life creative activities (C-Act) and achievements (C-Ach) via the Inventory
150  of Creative Activities and Achievements (42) completed outside the MRI scanner (Descriptive statistics
151 for behavioral and network measures are reported in Table 1).

152 We then examined how SemNet metrics predict real-life creativity by applying linear regression
153  models, regressing creativity on each SemNet metric with leave-one-out cross-validations: We
154 iteratively fitted predictive linear models in N-1 participants and tested the model in the left-out
155  participant. The significance of the model prediction was assessed by the correlation between the
156  predicted value of C-Act (or C-Ach) computed by the model and the observed value using permutation
157  testing. These analyses revealed that both real-life creative activities and achievements are predicted
158  from different individual SemNet metrics (Figure 2). The Spearman correlations showing the direction
159  and size of the relationships between SemNet metrics and creativity are reported in Table 2. C-Act was
160  predicted from WUN ASPL and UUN Q. C-Ach was predicted from WUN Q and UUN Q. More creative
161  individuals had less modular SemNets.

162
163  Prediction of creativity-related SemNet properties from brain connectivity
164 We applied the connectome-based predictive modeling (CPM) approach (43, 56, 57, 59) to

165  explore whether task-based functional connectivity patterns predict semantic memory network metrics
166  that related to creativity (i.e., Q in WUN and UUN, and 4SPL in WUN; see Table 2; The applied CPM
167  approach is illustrated in Figure 3). We used a functional brain atlas to define 200 brain nodes belonging
168  to 17 functional networks (63). For each participant, Pearson correlations of the BOLD signal between
169  all unique pairs of brain regions (i.e., nodes; n = 19,900) were computed to estimate the task-related
170 functional connectivity of the whole brain connectivity network (Figure 3a). We then identified relevant
171  links of the brain connectivity network that positively (positive model network) or negatively (negative
172 model network) correlated with the SemNet metric across participants (Figure 3b). Next, we adapted
173 the classical CPM method (56) to better take into account the network properties of the brain model
174  networks. Instead of using the sum of the connectivity in the model networks, we computed two key
175  network metrics describing small-worldness properties of human brain networks (64—66): their CC
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176  (brain-CC) and efficiency (brain-Eff; Figure 3c). We then ran six separate linear models regressing each
177  SemNet metric (Q for WUN and UUN, and ASPL for WUN) on each model network metric (brain-CC
178  and brain-Eff). We used leave-one-out cross-validations, iteratively fitting predictive linear models in
179 N-1 participants and tested these models on the left-out participant (Figure 3d). Finally, the model
180  prediction was assessed by the Spearman correlation between the predicted value from the model and
181  the observed values.

182 We then tested the relation between predicted and observed CPM models on the various SemNet
183  metrics, using 1,000 iteration permutation testing (56) (Figure 4). The CPM-based prediction from
184  brain-CC was significant for the WUN Q metric (r = .386, p = .004). The CPM-based predictions from
185  brain-Eff were significant for the WUN Q metric (» = .476, p = .001) and the UUN Q metric (r =.272,
186  p=.036). The CPM-based predictions of WUN ASPL from both brain-CC and brain-Eff, and UUN Q
187  from brain-CC were not significant, showing either a negative correlation between predicted and
188  observed values or did not reach a significant p-value after permutation testing. In summary, CPM
189  analyses on task-based functional connectivity showed that brain connectivity CC and efficiency allowed
190  reliable predictions of SemNet Q.

191

192

193  Functional anatomy of the predictive brain connectivity patterns

194 To characterize the functional brain connectivity patterns predictive of SemNet metrics, we

195  explored the links of the model networks that account for SemNet properties relevant to creativity.
196  Unique positive and negative model networks were identified for each SemNet metric (56) (Figure 3b)
197  and used to compute their network properties (brain-CC and brain-Eff; Figure 3c¢). Since SemNet
198  modularity (Q) was negatively correlated with both creativity measures (C-Act and C-Ach; Table 2) as
199  expected from previous studies (//, 36-38), we focused on the description of the negative model
200  network predicting UUN Q (Figure 5) or WUN Q (SI Figure S1). In this model network, we considered
201  the links that were shared in all iterations of the leave-one-out analysis, as the links in the model network
202 can slightly vary at each iteration.

203 For the standard CPM negative model network of UUN Q, we identified 452 links. Connectivity
204  of these links related to lower SemNet Q, which again predicted higher real-life creativity. These links
205  represented connections mainly within and between temporal, parietal, limbic and prefrontal lobes
206  (Figure 5a-b). When we explored the distribution of these links at the functional networks level, based
207  on the functional networks included in the Schaefer atlas (63), most of the links were part of the
208  somatomotor, salience and default mode networks (Figure 5¢). The highest number of links were found
209  between control and default mode networks (8.2%), followed by links within the salience network and
210  between somatomotor and visual networks. In this model network, the highest degree nodes — nodes
211  with highest number of connections (; i.e., the number of functional connections) — belonged to the
212 right hemisphere being part of the visual network (i.e., extra-striate inferior, k& = 53), default mode
213 network (i.e., medial prefrontal cortex, k£ =39), salience (i.c., insula, £ = 31; parietal medial, £ = 28),
214  temporoparietal (i.e., temporal-parietal; £ =29) and limbic (temporal pole, k£ = 28) networks (Figure 5d).
215  In summary, the main patterns of functional connectivity that predicted lower SemNet Q (i.e., related to
216 higher creativity) had a whole-brain distribution and involved the control, default mode, salience and
217  somatomotor networks.

218

219

220  Mediation Analysis

221 In the previous analyses, we found a relationship between SemNets and real-life creativity, and

222 between brain functional connectivity and SemNets. In a final step, we analyzed whether the relationship
223 between functional brain connectivity and real-life creativity is mediated by the SemNet properties.
224 Hence, we conducted mediation analyses that focused on the indirect effect of functional connectivity
225  on creative activities and achievements, using either C-Act or C-Ach as the dependent variable for each
226  significant CPM model. To simplify interpretations, since UUN Q had a negative correlation with
227  creativity, its value was reversed (UUN QR) to be positively correlated with creativity.

228 Since C-Act was significantly predicted by the SemNet metric UUN O, we explored the
229  mediating role of UUN Q on the relationship between the properties of the functional brain network
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230  predicting UUN Q (brain-Eff) and C-Act (Figure 6a). As shown in the previous analyses, the regression
231  coefficient between brain-Eff and UUN Qr was statistically significant (beta = .305, p <.001), as was
232 the regression coefficient between UUN Qr and C-Act (beta = .443, p = .002). The total effect and the
233 direct effect were not statistically significant (beta = .116, p = .328; beta = -.019, p = .872). We tested
234 the significance of the indirect effect using a bootstrapping method. The bootstrapped indirect effect
235  was (.305)*(.443)=.135, and the 95% confidence interval ranged from 0.024 to 0.320. Thus, the indirect
236  effect was statistically significant (p =.002). Hence, SemNets UUN Q mediated the relationship between
237  the efficiency of functional brain connectivity (brain-Eff) and creative activities (C-Act): The higher the
238  efficiency of the negative model network that predicts UUN Q, the lower the SemNet Q, and the higher
239  are real-life creative activities.

240 C-Ach score was predicted from SemNet WUN Q and UUN Q metrics. We explored the
241  mediating role of UUN Q between the functional connectivity of the negative model network predicting
242 it (brain-Eff) and C-Ach (Figure 6b). The mediation analysis showed that the regression coefficient
243 between brain-Eff and UUN Qr was statistically significant (beta =.305, p <.001), as was the regression
244 coefficient between the C-Ach and UUN Qr (beta = 241, p = .005). The total effect and the direct effect
245  were not statistically significant (beta =.142, p = .056; beta = .069, p = .353). The bootstrapped indirect
246  effect was (.305)*(.241) = .073, and the 95% confidence interval ranged from 0.018 to 0.140. Thus, the
247  indirect effect was statistically significant (p <.001).

248 Hence, SemNets UUN Q mediated the link between the efficiency of brain functional
249  connectivity (brain-Eff) and real-life creative achievements (C-Ach): The higher the efficiency of the
250  negative model network that predicts UUN Q, the lower the modularity of SemNet, and the higher the
251  real-life creative achievements.

252 Similarly, we explored the mediating role of WUN Q on the relationship between the properties
253  of the functional connectivity of the negative model network predicting it (brain-Eff and brain-CC) and
254 C-Ach (Figure 6c¢). Using brain-Eff as an independent variable, the regression coefficient between
255  brain-Eff and WUN Qr was significant (beta = .286, p = .004), as was the regression coefficient between
256  C-Ach and WUN Qr (beta = .183, p = .015). The total effect and the direct effect were not statistically
257  significant (beta = .094, p = .183; beta = .042, p = .560). The bootstrapped indirect effect was
258  (.286)*(.183) = .052, and the 95% confidence interval ranged from 0.005 to 0.110. Thus, the indirect
259  effect was statistically significant (p = .018).

260 Using brain-CC as independent variable, the regression coefficient between brain-CC and WUN
261  QOrwas significant (beta = .280, p = .008), as was the regression coefficient between C-Ach and WUN
262  QOr (beta = 0.192, p = .01) (Figure 6d). The total effect and the direct effect were not statistically
263  significant (beta = .068, p = .365; beta = .014, p = .850). The bootstrapped indirect effect was
264  (.280)*(.192) = .054, and the 95% confidence interval ranged from 0.006 to 0.130. Thus, the indirect
265  effect was statistically significant (p = .018).

266 Hence, SemNet WUN Q mediated the link between the efficiency (brain-Eff) and the clustering
267  coefficient (brain-CC) of functional brain connectivity and real-life creative achievements (C-Ach): The
268  higher the efficiency and clustering of the negative model network that predicted WUN Q, the lower
269  SemNets Q, and the higher the real-life creative achievements. In summary, individual SemNets Q
270  measured in WUN and UUN networks mediated the relationship between brain functional connectivity
271  and real-life creativity.

272

273 Discussion
274

275 Our results provide a new neuroscientific understanding of the individual determinants of real-
276 life creative behavior. Recently developed computational approaches allowed us to predict complex
277  cognitive functions from brain connectivity (56—58) and to explore the organization of semantic memory
278  at the individual level using SemNets (36-38). The unprecedented combination of these approaches
279  revealed unique patterns of brain functional connectivity that reliably predict differences in real-life
280  creativity via semantic network structure. Using the CPM approach, we show that brain connectivity
281  during semantic relatedness judgments predicted individual differences in the modularity (Q) of
282  SemNets that was identified as a behavioral marker of creativity. Specifically, the efficiency and
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283  clustering of whole-brain connectivity patterns predicted differences in real-life creativity mediated by
284  SemNet modularity.

285 According to the associative theory of creativity 7, high creative individuals are characterized
286 by a more flexible organization of concepts in their semantic memory, allowing them to retrieve remote
287  associations more easily (/4, 16). A recent study revealed the mediating role of associative abilities
288  between semantic memory structure and creativity as measured by verbal creativity but not by figural
289  creativity (38). Here, we show that individual semantic memory network properties also relate to real-
290  life creativity: individuals with a more compact and less modular organization of their semantic memory
291  exhibit higher creative activities and achievements. This finding is consistent with previous studies
292 reporting a strong relationship between semantic associative ability and creative behavior in real-life
293 (27, 28). It suggests that this relationship may be explained by individual differences in semantic
294 memory structure. We showed that SemNet modularity represents both a behavioral marker of real-life
295  creativity and a mediating mechanism underlying the effect of brain functional connectivity on real-life
296  creative activities and achievements. The higher the efficiency and overall connectivity of the brain
297  predictive network, the more flexible the semantic network (characterized by being more compact and
298  less modular), and the more creative the participant is. This result is in line with previous studies (17,
299 36, 37) and suggests that more creative individuals have better access to remote concepts within their
300  semantic memory than less creative individuals (8, 10). Importantly, higher modularity in linguistic
301  networks has been linked to rigidity (67) and inefficient conceptual processing (68). Thus, less modular
302  networks allow more flexible thinking, with a higher connectivity between weakly related elements
303 facilitating their combination.

304 Previous studies exploring the cognitive processes involved in creativity have revealed brain
305  regions and functional networks associated with different creativity tasks (5, 44, 45). The use of
306  SemNets allowed us to explore cognitive mechanisms that appear more broadly relevant to associative
307  basis of creative cognition, avoiding the specificities of existing tasks. Using a whole-brain functional
308  connectivity approach, we identified the task-based functional connectivity patterns related to semantic
309  network properties predicting real-life creativity (activities and achievements). These patterns included
310  functional connections distributed across the whole brain, the densest being observed between brain
311  networks previously linked to creativity (5, 43, 53, 69-71). The major contributions to the prediction of
312 creativity resulted from functional links between control and default mode network, within salience
313 network, and between somatomotor and visual networks. The default mode network has been
314  consistently associated with self-generated thought and spontaneous associations (16, 19, 72, 73). In
315  contrast, the control network is associated with controlled processes such as attentional control, working
316  memory, inhibition, memory retrieval, and flexibility, which are necessary to accomplish the objectives
317  of aspecific task (15, 74, 75). The functional coupling between control and default mode networks has
318  been reported in relation to creative cognition in several studies using different approaches such as
319  verbal divergent thinking tasks (5, 69), musical improvisation (76), poetry composition (77) and visual
320  arts (78).

321 In addition to control and default mode network, the salience network has also been reported to
322 play a critical role in creativity. It has been associated with attentional switching and detection of salient
323  external or internal stimuli and appears to play a role in triggering the engagement of control and default
324  mode networks during creativity tasks (69, 79). Overall, our finding converges with previous
325  correlational (5, 69) and predictive studies of creativity using CPM approach (43, 58) indicating the
326  essential role of the functional connectivity within and between control, default and salience networks
327  for creative thinking abilities.

328 A considerable number of functional connections between somatomotor and visual networks
329  also contributed to the prediction of creativity via SemNet properties. Both networks have been
330  associated with creativity in previous studies (53, 70, 80, 81), but independently. The motor system has
331  been related to creativity (53, 82) as measured by different approaches, including verbal creativity (71),
332 music improvisation (80, 81, 83), and visuospatial creativity (70, 71). The brain regions of visual
333 networks also appear to play an important role mainly in artistic creativity (71) and their activation was
334  previously correlated with higher creative achievements (84). A recent study using the CPM approach
335  showed the contribution of visual networks in the overlapping brain patterns predicting creativity and
336 intelligence (58). Our study adds to this previous work by showing the involvement of the coupling of
337  motor and visual networks in creativity. The role of motor and visual regions in creativity can be plural.
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338  In the context of our RJT task used to estimate SemNets, semantic relatedness judgments may evoke
339  visual representations and motor experiences associated with the concepts (85). It is then possible that
340  less modular SemNets reflect less segregated motor and visual memory contents in higher creative
341 individuals than in less creative ones, and closer connections between remote concepts in memory.
342 Overall, our finding further supports and expands existing knowledge on the functional
343 interaction within and between control, default mode and salience networks for creativity (43) by
344 showing their link with real-life creativity and characterizing their role in the associative mechanisms
345  captured by SemNet metrics. In addition, the current findings shed light on the contribution of the
346  increased coupling between regions of the visual and motor networks for creativity.

347 To further characterize the predictive patterns of functional brain connectivity, we identified the
348  nodes with the highest number of connections being localized in the medial prefrontal cortex, insula, the
349  extra-striate inferior region, parietal medial and temporoparietal regions, and temporal pole in the right
350  hemisphere. Most of these regions have been reported to play a role in creative cognition. In a brain
351 lesion study, the medial prefrontal cortex of the default mode network has been shown to be relevant in
352 associative processes underlying creative cognition (/6). Moreover, this brain region and the insula of
353  the salience network have been highlighted as essential regions for verbal creativity (5, 43, 86). The
354  right lingual gyrus, part of the extra-striate cortex, is also recruited in verbal creativity tasks (44, 45) in
355  relation to the originality of semantic associations (28), and to internally directed attention reflecting
356  increased visual imagery (87). Other temporal areas, including the right temporoparietal regions and
357  temporal pole have been associated with verbal and visual creativity (45, 88), including insight problem
358  solving (89), and mental imagery (90). The involvement of the anterior temporal pole is consistent with
359 its role as a semantic hub (85, 91, 92) and in abstract thinking and categorization (93, 94).

360 One surprising result is that the highest degree brain nodes related to real-life creativity were
361  distributed within the right hemisphere. Previous analyses reported a left dominance for creativity
362  regions in functional (44, 45, 50), connectivity (43), and structural (95) imaging studies. Most verbal
363  creativity tasks highlight the critical role of brain regions of the left hemisphere, particularly in the
364  prefrontal and temporal cortex, possibly related to linguistic/semantic processing (44, 96, 97). Here, we
365  also identified left-sided highly connected nodes contributing to the prediction of differences in real-life
366  creativity in the left ventral prefrontal cortex of the control network and in the insula of the salience
367 network, regions that have been shown critical for verbal creativity (44, 45, 98, 99). Yet, the right
368  dominance of the predictive patterns in our study was unexpected because our study focused on the
369  semantic basis of creative cognition and used a verbal task. The strong engagement of the right
370  hemisphere might be related to the process of judging remote concepts during the RJT. Previous studies
371  have indeed associated the right hemisphere with a relatively coarser semantic coding (/00) and the
372 activation of broader semantic fields by words or contexts (101). Moreover, the engagement of broad
373  associative processes in the right hemisphere has been related to hemispheric brain asymmetries in
374  dopamine function (/02). More creative individuals may rate distant words as more related during the
375  RIJT than less creative ones, which might rely on a higher functional connectivity with or within the
376  right hemisphere. Hence, these findings show that diverse regions previously reported as central to
377  creative cognition participate together in the predictive connectivity patterns of real-life creativity
378  through a less segregated organization of semantic memory (lower SemNet modularity). Whether and
379  how SemNet modularity reflects remote thinking that would rely more specifically on the right
380  functional connectivity remain to be addressed in future studies.

381 Finally, the current SemNets-related results converge with and expand the few recent
382  neuroimaging studies exploring the associative processes of creativity. Higher associative abilities in a
383  free chain association task have been related to higher resting-state functional connectivity within the
384  default mode network (/9) and to larger gray matter volume in the left posterior inferior temporal gyrus
385  (49). In both studies, higher associative abilities mediated the relationship between a priori selected
386  regions of the brain and creativity. One recent study showed that efficiency in SemNets mediated the
387  link between gray matter volume in the left temporal pole and a divergent thinking task (47). Our
388  findings advance this knowledge in several critical ways. First, by using SemNets, we were able to
389  estimate the organization of semantic memory, which offers some mechanistic perspective on remote
390  and associative thinking, and showed its role in real-life creativity. Second, we employed a whole brain
391 approach without focusing on a priori regions or networks. Finally, we explored functional connectivity
392 not during rest, but during the RJT, while all participants performed the same trials. This approach


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

393 minimized individual differences in mental activity during scanning. It importantly gave access to the
394  functional connectivity configuration that occurs during semantic relatedness judgments that reflect
395  semantic associations.

396 Some limitations to this study need to be acknowledged. First, our sample is relatively small
397  and although the results are robust, the use of additional external validation would add strong support to
398  our findings. Second, we used the SemNet approach that is rooted in the associative theory of creativity
399  (7) to estimate individual semantic memory networks based on relatedness judgments of word pairs.
400  The RJT-based SemNet metrics may not capture all the complexity of associative thinking. Thus, future
401 studies are needed to replicate our findings, using alternative methods to estimate individual's SemNets.
402  How the results generalize across different creative performances and behaviors, in distinct domains,
403  also remains to be explored. Finally, real-life creativity is not exclusively predicted by semantic
404  memory. Many other internal and external factors are important to creativity, such as personality,
405  motivation, emotions and environment (/, 2, 103—106). Despite these other potential dimensions and
406  sources of variability, the brain connectivity patterns allowed us to predict real-life creativity through
407  the individual differences in semantic memory structure, suggesting its strong influence on creative
408  activities and achievements.

409 In conclusion, the current findings uniquely link brain functional connectivity, semantic
410  memory structure, and real-life creativity by combining advanced network-based methods in novel
411  ways. By exploring semantic memory organization using SemNet methods, we were able to predict
412 creative abilities independently of narrow frameworks or tasks. Our connectome-based modeling
413  approach identified brain connectivity patterns that predicted creative behaviors rooted in semantic
414  memory properties. By converging these two approaches together, our study illustrates how the network
415  organization of the brain and of memory can be related to each other, leading to exciting new frontiers
416  of scientific inquiry.

417

418

419 Materials and Methods

420  Participants

421 All participants were French native speakers, right-handed, with normal or corrected-to-normal
422 vision and no neurological disorder, cognitive disability or medication affecting the central nervous
423  system. One hundred one healthy participants (48 women) aged between 22 and 40 years (mean 25.6 +
424  SD 3.7) were recruited via the RISC platform (https://www.risc.cnrs.fr). In total, eight participants were
425  excluded from the fMRI analysis: Six were excluded because of the discovery of MRI brain
426  abnormalities, one fell asleep during the acquisition of the data, and another had a claustrophobia
427  episode at the beginning of the MRI scanning. The latter participant performed the RJT task outside the
428  scanner and was kept in the behavioral analyses only. The final sample was hence composed of 94
429  participants aged between 22 and 37 years (mean 25.4 & 4.2) in behavioral analyses and 93 participants
430  in the fMRI analyses (mean age 25.4 + 3.4; 44 women). A national ethical committee approved the
431  study. After being informed of the study, the participants signed a written consent form. They received
432 monetary compensation for their participation.

433
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434  General procedure

435  Participants underwent a task-based fMRI session during which they performed the Relatedness
436  Judgment Task (RJT). Several training tasks were conducted before acquiring the fMRI data, first
437  outside the scanner, then in the scanner. The training included a motor training task to become familiar
438  with giving responses using the MRI-compatible trackball on a visual scale in the RJT, and a task
439  training to get familiar with the actual task. The task training was similar to the actual task but using
440  different stimuli. In addition, all words used in the RJT were displayed to participants to check that they
441  were familiar with all of them (Details of the task training are described in SI S1). After the fMRI
442  session, participants completed a set of creativity tasks on a computer outside the scanner that lasted
443 around three hours.

444
445  Relatedness judgement task (RJT)

446  Task and material description

447 The RJT has been used to estimate individual-based SemNets and to explore the structure of
448  semantic memory (36—38). The task requires participants to judge the relatedness of all possible pairs
449  of words from a list of cue words. These judgements are then used to estimate an individuals' semantic
450  memory network of these words. The selection of the RJT stimuli words used in our study is detailed in
451  Bernard et al. (37). In brief, we first created a French SemNet, based on French verbal association norms
452  (107) (http://dictaverf.nsu.ru/dictlist), where the nodes represent the words, and the links were weighted
453 by the normative associative strength between words. Next, we computed the shortest path between
454  words and the minimal number of links between each pair was considered as the theoretical semantic
455  distance between the words. Finally, we applied a computational method to select the RJT words that
456  optimized the repartition of the theoretical semantic distance between all possible pairs of these words.
457  The optimal solution included 35 words, resulting in a total of 595 word-pairs that represented the 595
458  RJT trials.

459 Each trial began with the displaying word pair on the screen along with a visual scale below
460  ranging from 0 (unrelated) to 100 (strongly related). The stimuli were displayed for 4 seconds in total,
461  divided into a reflection period of 2 seconds to ensure a comparable minimum judgement time and a
462  response period of 2 seconds. During the first two seconds, the participants studied the word pair but
463  couldn't move the slider yet. Two seconds after stimuli onset, the response period began, the cursor
464  appeared in the middle of the visual scale, and the participants were allowed to move the slider on the
465  visual scale to indicate their rating using a trackball. Participants were instructed to validate their
466  response by clicking the left button of the trackball. The position of the cursor on the scale at the moment
467  of the validation was recorded as the relatedness judgment. When participants did not validate their
468  response, we recorded the slider position at the end of the two-second response period. After the
469  response period, a blank screen was shown during the inter-trial interval jittered from 0.3 to 0.7 seconds
470  (steps = 0.05; Figure 1a).

471 Task trials were distributed into six runs composed of 100 trials each, except for the last run (95
472  trials). Each run consisted of four blocks of 25 trials each (except the last block of the sixth run with
473  only 20 trials), separated by a 20 second rest period with a cross fixation on the screen. Trials were
474  pseudo-randomly ordered within blocks, such that each block contained a similar proportion of word
475  pairs of each theoretical semantic distance. At the beginning and end of each run, participants had a ten
476  second rest period with a cross fixation on the screen. During the last two seconds of fixation cross
477  periods, the cross changed color, warning the participant that the task was about to start. Participants
478  had a self-paced break inside the scanner between runs.

479
480  Assessment of individual semantic network structure.

481  Building individual semantic networks

482 The relatedness ratings given by the participant to each pair of words was used to weight the
483  links of the individual SemNet where each word is a node. We represent each of these networks as a
484  35x35 matrix with one column and one row for each word and cell values correspond to the judgment
485  given by the participant during the RJT task (Figure 1b). Based on previous studies and on our pilot
486  study (36-38), we estimated two types of networks, weighted undirected network (WUN) and
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487  unweighted undirected network (UUN; Figure 1¢). The WUN is a more conservative type of the
488  SemNet, by keeping the weights of all links between the words. The UUN is a less conservative
489  approach, retaining links above a defined threshold, and the links with a weight below the threshold are
490  removed. We defined the threshold as rating value of 50 (the middle of the visual scale) to keep the links
491  between words that were considered moderately or highly associated by the participants. The weights
492 of the remaining links are uniformly transformed to equal 1.

493

494

495  Calculation of the individual semantic network metrics

496 We estimated the properties of the individual SemNet independently for the UUN and the WUN

497  graphs. Based on previous studies relating SemNet to creative abilities (11, 34, 36-38), we computed
498  the following metrics: ASPL, CC, Q and S metrics. The Average Shortest Path Length (4SPL) is the
499  average shortest number of steps needed to be taken between any pair of nodes. In semantic networks,
500  path length reflects how related two concepts are to each other (108, 109). The Clustering Coefficient
501  (CC) measures the network's connectivity. It refers to the probability that two neighbors of a node will
502  themselves be neighbors. In semantic networks, higher CC relates to higher overall relatedness between
503  concepts. Modularity (Q) measures how a network is divided (or partitions) into smaller sub-networks;
504  ahigher Q relates to more sub-communities in the network (710, 111). Such subcommunities can reflect
505  semantic categories in a semantic network. In creativity research, for example, more creative individuals
506  often exhibit a more connected (higher CC), less segregated (lower ASPL and Q) semantic network than
507  less creative individuals ** and these differences were related to flexibility of thought (35). The small-
508  worldness (S) property of the network is calculated as the ratio between ASPL and CC and describes
509  how much the nodes that are not directly linked can be reached through connections between their
510  neighbors. In semantic networks, higher S has been linked to higher flexibility of thought (/7). The
511 computations were performed in Matlab, via the Brain Connectivity Toolbox (112)
512 (https://www.mathworks.com).

513
514  Assessment of real-life creativity
515 Outside the scanner, we used the Inventory of Creative Activities and Achievements (/CAA)

516  questionnaire (42) to assess the real-life creative activities and achievements across eight different
517 creative domains (e.g., literature, music, art and crafts, cooking, sport, visual arts, performing arts,
518  science and engineering). The creative activities (C-Act) score reflects the frequency in which
519  participants engaged in various creative activities. Six different questions were posed for each domain,
520  and participants reported the frequency with which they engaged in each activity during the last ten
521  years, using a scale ranging from 0 (never) to 4 (more than ten times). For each participant, the final
522 domain-general score of C-Act was the sum of the creative activities across all activities of the eight
523  different domains. The creative achievements (C-Ach) score estimated the level of achievement acquired
524  in a creative domain. Ten different levels of achievement were included for each domain going from 0
525  (never engaged in this domain) to 10 (I have already sold some of my work in this domain). For each
526  participant, the final domain-general score of C-Ach was the sum of the scores across the eight different
527  domains.

528
529 Relationships between individual Semantic Network metrics and creativity
530 We explored whether individual SemNet properties were predictive of real-life creative

531  activities (C-Act) and achievements (C-Ach; Figure 1e). In independent analyses, we performed linear
532  regressions using leave-one-out cross-validations to predict C-Act and C-Ach scores for each of the
533 SemNet metrics (ASPL, CC, Q, and S of WUN and UUN SemNets). The analyses consisted of building
534  a predictive linear model iteratively in N-1 participants using their SemNet metrics (e.g., WUN Q
535  SemNet metric) and testing it in the left-out participant. The model was applied on the SemNet metric
536  of the left-out participant to compute a predicted value of the ICAA scores. The significance of the
537  prediction was evaluated via Spearman correlations between the predicted and the observed creativity
538  scores. When the correlations between observed and predicted values were positive with p < .05, we
539  assessed its statistical significance using 1,000 iteration permutation testing. We report the Rho
540  coefficient and the p-value of the permutation test. Note that Spearman correlations are used for
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541  behavioral analyses as creative activities and achievements are typically skewed (/73). We also ran
542 Spearman correlations between SemNet metrics and ICAA scores to better represent the statistical
543  association between the different SemNet metrics and creativity (Table 1).

544
545  MRI Data Acquisition and Preprocessing
546 Neuroimaging data were acquired on a 3T MRI scanner (Siemens Prisma, Germany) with a 64-

547  channel head coil. Six functional runs were acquired during each six task runs using multi-echo echo-
548  planar imaging (EPI) sequences. No dummy scan was recorded during the acquisition; therefore, we did
549  not discard any volume. Each run included 335 whole-brain volumes acquired with the following
550  parameters: repetition time (TR) = 1,600 ms, echo times (TE) for echo 1 = 15.2 ms, echo 2 =37.17 ms
551 and echo 3 = 59.14 ms, flip angle = 73°, 54 slices, slice thickness = 2.50 mm, isotropic voxel size 2.5
552  mm, Ipat acceleration factor = 2, multi-band = 3 and interleaved slice ordering. After the EPI
553 acquisitions, a T1-weighted structural image was acquired with the following parameters: TR = 2,300
554  ms, TE =2.76 ms, flip angle = 9°, 192 sagittal slices with a 1 mm thickness, isotropic voxel size 1 mm,
555  Ipat acceleration factor = 2 and interleaved slice order. A resting state fMRI session of 15 minutes
556  followed, not analyzed in the current study.

557 The preprocessing of the on-task fMRI data was performed for each run separately using the
558  afni proc.py pipeline from the Analysis of Functional Neuroimages software (AFNI;
559  https://afni.nimh.nih.gov) (114). The different preprocessing steps of the data included despiking, slice
560  timing correction and realignment to the first volume (computed on the first echo). We then denoised
561  the preprocessed data using the TE-dependent analysis of multi-echo fMRI data (TEDANA,;
562 https://tedana.readthedocs.io/en/stable/), version 0.0.9 (115—-117). The advantage of using multi-echo
563  EPI sequences is that it allows better cleaning of the data by assessing the BOLD and non-BOLD signal
564  through the ICA-based denoising method, improving the reliability of the functional connectivity-based
565  measurement (/18). The TEDANA pipeline consisted first of an optimal combination of the different
566  echo time series. Then, the dimensionality of the optimally combined data is reduced through the
567  decomposition of the multi-echo BOLD data using principal component analysis (PCA) and
568  independent component analysis (ICA). TEDANA then classifies the resulting components as BOLD
569  or non-BOLD. The exclusion of the non-BOLD components allowed the removal of thermal and
570  physiological noise such as the artefacts generated by the movements, respiration and cardiac activity.
571  The resulting denoised data was co-registered on the T1-weighted structural image using the Statistical
572 Parametric Mapping (SPM) 12 package running in Matlab (Matlab R2017b, The MathWorks, Inc.,
573  USA). We then normalized the data to the Montreal Neurological Institute (MNI) template brain, using
574  the transformation matrix computed from the normalization of the Tl1-weighted structural image,
575  performed with the default settings of the computational anatomy toolbox (CAT 12;
576  http://dbm.neuro.uni-jena.de/cat/) (/19) implemented in SPM 12. The resulting denoised and
577  normalized images were then entered in a general linear model (GLM) in SPM to covary out the task-
578  related signal from each run. In this analysis, we entered 24 motion parameters (standard motion
579  parameters, first temporal derivatives, standard motion parameters squared and first temporal derivatives
580  squared) and the onsets and durations of each task related events (reflection period, response period,
581  inter trial interval, cross fixation periods and change of the cross-fixation color) as confounds that were
582  regressed from the BOLD signal. We standardized and detrended the residuals of this model for each
583  run and then concatenated the six runs, removing the rest periods between runs (six volumes in total).
584  This final dataset composed of the six task-run residuals concatenated was used as input for the
585  subsequent task-based functional connectivity analyses.

586
587 Building task-based functional connectivity matrices
588 Calculation of the task-based functional connectivity matrices for each participant was

589  performed using Nilearn v0.3 (/20) in Python 2.7 (121). We used the Schaefer brain atlas to define our
590  ROIs that consisted of 200 ROIs distributed into 17 functional subnetworks than can be summarized in
591  ecight main functional networks (63). For each ROI, we extracted the BOLD signal during the RJT
592  (averaged across voxels) and computed Pearson correlation coefficients of all pairs of ROIs. As a resullt,
593  we obtained for each participant a 200x200 matrix with the correlation coefficients between all ROIs.
594  These matrices were Z-Fisher-transform and rescaled in the range of -1 to 1 for the subsequent analyses.
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595  This matrix corresponds to the functional connectivity network of each participant in which ROIs are
596  the nodes and correlation coefficients the links.

597
598 A connectome-based predictive modeling approach
599 We used a CPM approach (43, 56, 57, 59) to explore how SemNet properties can be predicted

600  from functional connectivity patterns during the RJT task. We focused the CPM analyses on the SemNet
601  metrics that predicted creativity scores following the method described in Shen et al. (56) (Figure 3).
602  We used a leave-one-out cross-validation that consisted in building the model iteratively on N-1
603  participants and test the prediction on the left-out participants.

604 Since head motions during the fMRI acquisition can affect the CPM results, we verified that
605  there was no correlation between motion patterns during the fMRI acquisition and the SemNet metrics.
606  We estimated the mean FD, that is the sum of the absolute values of the derivatives of the six realignment
607  parameters (/22), and computed Spearman correlations between the mean FD and all SemNet metrics.
608  The correlations revealed no significant correlation between the motion patterns and WUN ASPL (r = -
609  .052, p=.622), WUN Q (r=.133, p =.203) and UUN Q (r =.127, p = .225).

610 The first step of the CPM consists of selecting the significant features of brain connectivity to
611  build the "model brain networks". In the training set (N-1), we selected the links of the functional
612  connectivity matrix (correlation coefficients between the ROIs) that significantly correlated with the
613  tested SemNet metric (threshold p < .05) either positively (the positive model network) or negatively
614  (the negative model network) across participants (Figure 3a-b). Since SemNet metrics had non-
615 Gaussian distributions, we used Spearman correlations. In these model networks of brain connectivity,
616  negative links were removed (/23). We normalized the values of the links (i.e., the correlation
617  coefficients between ROISs) to have the same range of values for the calculation of the brain networks in
618  the following step.

619 The second step consists in estimating functional connectivity properties within each
620  participant's positive and negative model networks. This is one amendment from the classical protocol
621  (56) to better take into account the structural properties of functional brain connectivity patterns. Instead
622  of summing the links in the model networks (as in the classical CPM method), we estimated the network
623  properties of the positive and the negative model networks using network metrics (Figure 3c). We
624  computed two different whole-brain model network metrics: 1) Network efficiency (brain-Eff),
625  measuring rapid and efficient integration across the network (69, 124) and 2) CC (brain-CC), key
626  property describing a small-world properties network characterizing the human brain (64, 65, 125-127).
627  The brain-Eff metric was calculated as the average of the inverse shortest path length. The computation
628  of the brain-CC metrics was similar to the CC of the SemNet described above in the "Calculation of the
629  individual semantic network metrics" section.

630 The third and fourth steps consist in building the predictive model using the computed network
631  properties and then applying it to a novel participant (the left out one for each iteration; Figure 3d).
632  These steps were conducted separately for each SemNet metric and each model network property. We
633  built a single linear model combining the network metric of the positive and negative model networks
634  of N-1 participants as predictors of a given SemNet metric. The mean FD was included in the model to
635  deal with possible effects of the head motion related to fMRI acquisition on the CPM process. At each
636 iteration, we computed the network metric of the positive and the negative model networks in the left-
637  out participant. We used these values as predictors in the linear model to compute its predicted value of
638  the SemNet metric tested.

639 The final step evaluated the predictive model by performing a Spearman correlation between
640  the predicted and the observed SemNet metric (56). Since we used within-data set cross-validation, for
641  the significant predictions, it was necessary to evaluate the predictive power of the CPM using
642  permutation testing to assess the statistical significance of the results. To this end, we randomly shuffled
643  the values of the SemNet metric 1,000 times, and we ran the new random data through the pipeline of
644  our predictive model in order to generate an empirical null distribution and estimate the distribution of
645  the test statistic given by the correlation between predicted and observed values. The CPM analyses
646  were performed using Matlab Statistical Toolbox (Matlab R2020a, The MathWorks, Inc., USA). The
647  pipeline for the CPM is an adaptation from the protocol by Shen et al. (56).

648
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649  Functional anatomy of the predicting brain model networks

650 To explore the patterns of connectivity predicting the SemNet metrics, we characterized the
651  main nodes and links of the significant model networks. We examined the distribution of the connections
652  atthe lobar level (between and within brain lobes) and at the intrinsic network level (within and between
653  the eight main functional networks defined by the Schaefer atlas). Finally, we explored the brain
654  distribution of the six highest degree nodes (i.e., ROIs), which are the nodes with the highest number of
655  connections. Due to the nature of the cross-validation approach (running one model for each iteration
656  on N-1 participants), each iteration likely resulted in slightly different links in the model networks.
657  Therefore, we considered the links that were shared between all iterations. The data visualization and
658  plots were performed using Biolmage Suite Web 1.0 (http://bisweb.yale.edu/connviewer), BrainNet
659  viewer (128) (http://www.nitrc.org/projects/bnv/) in Matlab, and custom scripts in RStudio
660  version 1.3.1056.

661
662  Mediation Analysis
663 To test whether the patterns of functional connectivity that predict SemNet properties are also

664  relevant for real-life creativity, we ran mediation analyses. For significant CPM predictions, we tested
665  whether the SemNet metrics mediated the relationship between the patterns of brain functional
666  connectivity and creativity. As for the CPM analyses, the mediation analyses focused on the SemNet
667  metrics that correlated with creativity scores. Hence, they explored an indirect effect of the functional
668  brain connectivity on creativity through the SemNet properties.

669 The mediation analysis (/29—131) consisted in calculating the product of (a) the regression
670  coefficient of the regression analysis on the independent variable (i.e., brain functional connectivity
671  metric, brain-CC or brain-Eff of the positive or the negative model networks) to predict the mediator
672  (i.e., SemNet metrics) and (b) the regression coefficient of the regression analysis on the mediator to
673  predict the dependent variable (i.e., creativity score), when controlling for the independent variable. We
674  also calculated the regression coefficient of the regression analysis on the independent variable to predict
675  the dependent variable without controlling for the mediator (total effect) and when controlling for it
676  (direct effect; Figure 6). All the variables entered in the mediation analyses were normalized, and
677  variables with non-normal distributions were log-transformed. The variables that had a negative
678  correlation with creativity were reversed (multiplied by -1). The selection of the positive or the negative
679  network to be used on the mediation analysis depended on which of them is expected to be positively
680  correlated to the creativity score. We tested the significance of the indirect effect using bootstrapping
681  method, computing unstandardized indirect effects for each 5,000 bootstrapped samples, and the 95%
682  confidence interval was computed by determining the indirect effects at the 2.5™ and 97.5" percentiles.
683  The mediation analyses were performed using the PROCESS macro (/32) in SPSS 22.0 (IBM Corp. in
684  Armonk, NY, USA).

685

686

14


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

687  References

688 1.  A. Lopez-Persem, T. Bieth, S. Guiet, M. Ovando-Tellez, E. Volle, Through thick and thin:
689 changes in creativity during the first lockdown of the Covid-19 pandemic. (2021),
690 doi:10.31234/0sf.i0/26qde.

691 2. T. Lubart, C. Mouchiroud, S. Tordjman, F. Zenasni, Psychologie de la créativité - 2e édition
692 (Armand Colin, Paris, 2e édition., 2015).

693 3. S. Mastria, S. Agnoli, M. Zanon, T. Lubart, G. E. Corazza, in Exploring Transdisciplinarity in
694 Art and Sciences, 7. Kapoula, E. Volle, J. Renoult, M. Andreatta, Eds. (Springer International
695 Publishing, Cham, 2018; https://doi.org/10.1007/978-3-319-76054-4_1), pp. 3-29.

696 4. A. Dietrich, The cognitive neuroscience of creativity. Psychon. Bull. Rev. 11, 1011-1026 (2004).

697 5. R. E. Beaty, M. Benedek, P. J. Silvia, D. L. Schacter, Creative Cognition and Brain Network
698 Dynamics. Trends Cogn. Sci. 20, 87-95 (2016).

699 6. P. T. Sowden, A. Pringle, L. Gabora, The shifting sands of creative thinking: Connections to
700 dual-process theory. Think. Reason. 21, 40-60 (2015).

701 7. S. A. Mednick, The associative basis of the creative process. Psychol. Rev. 69, 220-232 (1962).

702 8. E. Rossmann, A. Fink, Do creative people use shorter associative pathways? Personal. Individ.
703 Differ. 49, 891-895 (2010).

704 9. R. E. Beaty, P. J. Silvia, E. C. Nusbaum, E. Jauk, M. Benedek, The roles of associative and
705 executive processes in creative cognition. Mem. Cognit. 42, 1186-1197 (2014).

706 10. M. Benedek, A. C. Neubauer, Revisiting Mednick’s Model on Creativity-Related Differences in

707 Associative Hierarchies. Evidence for a Common Path to Uncommon Thought. J. Creat. Behav.
708 47,273-289 (2013).

709 11. Y. N. Kenett, D. Anaki, M. Faust, Investigating the structure of semantic networks in low and
710 high creative persons. Front. Hum. Neurosci. 8 (2014), doi:10.3389/fnhum.2014.00407.

711 12.  E. Volle, in The Cambridge Handbook of the Neuroscience of Creativity (Editors: R.E. Jung and
712 O. Vartanian, New York:, Cambridge University Press., 2017), Cambridge Handbooks in
713 Psychology.

714 13.  D. Bendetowicz, M. Urbanski, C. Aichelburg, R. Levy, E. Volle, Brain morphometry predicts
715 individual creative potential and the ability to combine remote ideas. Cortex J. Devoted Study
716 Nerv. Syst. Behav. 86, 216-229 (2017).

717 14. M. Benedek, T. Konen, A. C. Neubauer, Associative abilities underlying creativity. Psychol.
718 Aesthet. Creat. Arts. 6,273-281 (2012).

719 15. M. Benedek, E. Jauk, in The Oxford Handbook of Spontaneous Thought: Mind-Wandering,
720 Creativity, and Dreaming (2018).

721 16. D. Bendetowicz, M. Urbanski, B. Garcin, C. Foulon, R. Levy, M.-L. Bréchemier, C. Rosso, M.

722 Thiebaut de Schotten, E. Volle, Two critical brain networks for generation and combination of
723 remote associations. Brain J. Neurol. 141,217-233 (2018).

15


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

724
725
726

727
728

729
730
731

732
733
734

735
736
737

738
739

740
741

742
743
744
745

746
747

748
749

750
751

752
753
754

755
756
757

758
759

760
761

762
763

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

made available under aCC-BY-NC-ND 4.0 International license.

T. Paulin, D. Roquet, Y. N. Kenett, G. Savage, M. Irish, The effect of semantic memory
degeneration on creative thinking: A voxel-based morphometry analysis. Neurolmage. 220,
117073 (2020).

M. P. Ovando-Tellez, T. Bieth, M. Bernard, E. Volle, The contribution of the lesion approach to
the neuroscience of creative cognition. Curr. Opin. Behav. Sci. 27, 100-108 (2019).

T. R. Marron, E. Berant, V. Axelrod, M. Faust, Spontaneous cognition and its relationship to
human creativity: a functional connectivity study involving a chain free association task.
Neurolmage, 117064 (2020).

C. S. Lee, D. J. Therriault, The cognitive underpinnings of creative thought: A latent variable
analysis exploring the roles of intelligence and working memory in three creative thinking
processes. Intelligence. 41, 306320 (2013).

R. E. Beaty, D. C. Zeitlen, B. S. Baker, Y. N. Kenett, Forward Flow and Creative Thought:
Assessing Associative Cognition and its Role in Divergent Thinking. Think. Ski. Creat., 100859
(2021).

M. T. Mednick, S. A. Mednick, C. C. Jung, Continual association as a function of level of
creativity and type of verbal stimulus. J. Abnorm. Psychol. 69,511-515 (1964).

A. E. Green, D. J. M. Kraemer, J. A. Fugelsang, J. R. Gray, K. N. Dunbar, Neural correlates of
creativity in analogical reasoning. J. Exp. Psychol. Learn. Mem. Cogn. 38, 264-272 (2012).

A. E. Green, K. A. Spiegel, E. J. Giangrande, A. B. Weinberger, N. M. Gallagher, P. E.
Turkeltaub, Thinking Cap Plus Thinking Zap: tDCS of Frontopolar Cortex Improves Creative
Analogical Reasoning and Facilitates Conscious Augmentation of State Creativity in Verb
Generation. Cereb. Cortex N. Y. NY. 27,2628-2639 (2017).

T. Merten, I. Fischer, Creativity, personality and word association responses: associative
behaviour in forty supposedly creative persons. Personal. Individ. Differ. 27,933-942 (1999).

A. Gruszuka, E. Necka, Priming and acceptance of close and remote associations by creative and
less creative people. Creat. Res. J. 14, 193-205 (2002).

R. Prabhakaran, A. E. Green, J. R. Gray, Thin slices of creativity: Using single-word utterances
to assess creative cognition. Behav. Res. Methods. 46, 641-659 (2014).

M. Benedek, J. Jurisch, K. Koschutnig, A. Fink, R. E. Beaty, Elements of creative thought:
Investigating the cognitive and neural correlates of association and bi-association processes.
Neurolmage. 210, 116586 (2020).

C.S.Q.Siew, D. U. Wulff, N. M. Beckage, Y. N. Kenett, Cognitive Network Science: A Review
of Research on Cognition through the Lens of Network Representations, Processes, and

Dynamics. Complexity. 2019, 2108423 (2019).

A. Baronchelli, R. Ferrer-i-Cancho, R. Pastor-Satorras, N. Chater, M. H. Christiansen, Networks
in cognitive science. Trends Cogn. Sci. 17, 348-360 (2013).

J. Borge-Holthoefer, A. Arenas, Semantic Networks: Structure and Dynamics. Entropy. 12,
1264-1302 (2010).

J. Borge-Holthoefer, A. Arenas, in [Int. j. complex syst. sci. (2011;
https://zaguan.unizar.es/record/61329).

16


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

764
765
766

767
768

769
770

771
772
773

774
775

776
777
778

779

780
781

782
783

784
785
786

787
788
789

790
791
792

793
794
795

796
797
798

799
800
801

802
803

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

made available under aCC-BY-NC-ND 4.0 International license.

Y. N. Kenett, in Exploring Transdisciplinarity in Art and Sciences, Z. Kapoula, E. Volle, J.
Renoult, M. Andreatta, Eds. (Springer International Publishing, Cham, 2018;
https://doi.org/10.1007/978-3-319-76054-4_3), pp. 49-75.

Y. N. Kenett, M. Faust, A Semantic Network Cartography of the Creative Mind. Trends Cogn.
Sci. 23, 271-274 (2019).

A. L. Cosgrove, Y. N. Kenett, R. E. Beaty, M. T. Diaz, Quantifying flexibility in thought: The
resiliency of semantic networks differs across the lifespan. Cognition. 211, 104631 (2021).

M. Benedek, Y. N. Kenett, K. Umdasch, D. Anaki, M. Faust, A. C. Neubauer, How semantic
memory structure and intelligence contribute to creative thought: a network science approach.
Think. Reason. 23, 158-183 (2017).

M. Bernard, Y. Kenett, M. Ovando-Tellez, M. Benedek, E. Volle, Building Individual Semantic
Networks and Exploring their Relationships with Creativity (2019).

L. He, Y. N. Kenett, K. Zhuang, C. Liu, R. Zeng, T. Yan, T. Huo, J. Qiu, The relation between
semantic memory structure, associative abilities, and verbal and figural creativity. Think. Reason.
27,268-293 (2021).

M. A.Runco, G.J. Jaeger, The Standard Definition of Creativity. Creat. Res. J.24,92-96 (2012).

S. Acar, M. A. Runco, Divergent thinking: New methods, recent research, and extended theory.
Psychol. Aesthet. Creat. Arts. 13, 153—158 (2019).

T. Yan, K. Zhuang, L. He, C. Liu, R. Zeng, J. Qiu, Left temporal pole contributes to creative
thinking via an individual semantic network. Psychophysiology. e13841 (2021).

J. Diedrich, E. Jauk, P. J. Silvia, J. M. Gredlein, A. C. Neubauer, M. Benedek, Assessment of
real-life creativity: The Inventory of Creative Activities and Achievements (ICAA). Psychol.
Aesthet. Creat. Arts. 12, 304-316 (2018).

R. E. Beaty, Y. N. Kenett, A. P. Christensen, M. D. Rosenberg, M. Benedek, Q. Chen, A. Fink,
J. Qiu, T. R. Kwapil, M. J. Kane, P. J. Silvia, Robust prediction of individual creative ability
from brain functional connectivity. Proc. Natl. Acad. Sci. 115, 1087-1092 (2018).

G. Gonen-Yaacovi, L. C. de Souza, R. Levy, M. Urbanski, G. Josse, E. Volle, Rostral and caudal
prefrontal contribution to creativity: a meta-analysis of functional imaging data. Front. Hum.
Neurosci. 7 (2013), doi:10.3389/fnhum.2013.00465.

M. Boccia, L. Piccardi, L. Palermo, R. Nori, M. Palmiero, Where do bright ideas occur in our
brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front.
Psychol. 6 (2015), doi:10.3389/fpsyg.2015.01195.

M. Benedek, in Exploring Transdisciplinarity in Art and Sciences, Z. Kapoula, E. Volle, J.
Renoult, M. Andreatta, Eds. (Springer International Publishing, Cham, 2018;
https://doi.org/10.1007/978-3-319-76054-4_2), pp. 31-48.

R. E. Beaty, P. Seli, D. L. Schacter, Network Neuroscience of Creative Cognition: Mapping
Cognitive Mechanisms and Individual Differences in the Creative Brain. Curr. Opin. Behav. Sci.

27,22-30 (2019).

D. L. Zabelina, J. R. Andrews-Hanna, Dynamic network interactions supporting internally-
oriented cognition. Curr. Opin. Neurobiol. 40, 86-93 (2016).

17


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

804 49. C.Liu,Z.Ren, K. Zhuang, L. He, T. Yan,R. Zeng, J. Qiu, Semantic association ability mediates

805 the relationship between brain structure and human creativity. Neuropsychologia. 151, 107722
806 (2021).

807 50. L. S. Cogdell-Brooke, P. T. Sowden, I. R. Violante, H. E. Thompson, A meta-analysis of
808 functional magnetic resonance imaging studies of divergent thinking using activation likelihood
809 estimation. Hum. Brain Mapp. 41, 5057-5077 (2020).

810  51. M.Benedek, T. Schiies, R. E. Beaty, E. Jauk, K. Koschutnig, A. Fink, A. C. Neubauer, To create
811 or to recall original ideas: Brain processes associated with the imagination of novel object uses.
812 Cortex. 99,93-102 (2018).

813  52. K. Madore, P. Thakral, R. Beaty, D. Addis, D. Schacter, Neural Mechanisms of Episodic
814 Retrieval Support Divergent Creative Thinking. Cereb. Cortex N. Y. N 1991.29, 1-17 (2017).

815 53. H. E. Matheson, Y. N. Kenett, The role of the motor system in generating creative thoughts.
816 Neurolmage. 213, 116697 (2020).

817 54. T. Wei, X. Liang, Y. He, Y. Zang, Z. Han, A. Caramazza, Y. Bi, Predicting Conceptual

818 Processing Capacity from Spontaneous Neuronal Activity of the Left Middle Temporal Gyrus.
819 J. Neurosci. 32,481-489 (2012).

820 55. Q. Chen, W. Yang, W. Li, D. Wei, H. Li, Q. Lei, Q. Zhang, J. Qiu, Association of creative
821 achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state
822 functional connectivity study. Neurolmage. 102 Pt 2, 474-483 (2014).

823  56. X. Shen, E. S. Finn, D. Scheinost, M. D. Rosenberg, M. M. Chun, X. Papademetris, R. T.
824 Constable, Using connectome-based predictive modeling to predict individual behavior from
825 brain connectivity. Nat. Protoc. 12, 506-518 (2017).

826  57. M. D. Rosenberg, E. S. Finn, D. Scheinost, X. Papademetris, X. Shen, R. T. Constable, M. M.
827 Chun, A neuromarker of sustained attention from whole-brain functional connectivity. Nat.
828 Neurosci. 19, 165-171 (2016).

829  58.  E.Frith, D. B. Elbich, A. P. Christensen, M. D. Rosenberg, Q. Chen, M. J. Kane, P. J. Silvia, P.
830 Seli, R. E. Beaty, Intelligence and creativity share a common cognitive and neural basis. J. Exp.
831 Psychol. Gen. 150, 609-632 (2021).

832 59. E. V. Goldfarb, M. D. Rosenberg, D. Seo, R. T. Constable, R. Sinha, Hippocampal seed
833 connectome-based modeling predicts the feeling of stress. Nat. Commun. 11, 2650 (2020).

834 60. Z.Ren,R.J. Daker, L. Shi, J. Sun, R. E. Beaty, X. Wu, Q. Chen, W. Yang, I. M. Lyons, A. E.
835 Green, J. Qiu, Connectome-Based Predictive Modeling of Creativity Anxiety. Neurolmage. 225,
836 117469 (2021).

837 61. P.Liu, W. Yang, K. Zhuang, D. Wei, R. Yu, X. Huang, J. Qiu, The functional connectome
838 predicts feeling of stress on regular days and during the COVID-19 pandemic. Neurobiol. Stress.
839 14, 100285 (2021).

840 62. M. D. Humphries, K. Gurney, Network ‘Small-World-Ness’: A Quantitative Method for
841 Determining Canonical Network Equivalence. PLOS ONE. 3, €0002051 (2008).

842  63.  A.Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff,
843 B.T.T. Yeo, Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional
844 Connectivity MRI. Cereb. Cortex N. Y. N 1991. 28,3095-3114 (2018).

18


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

845 64. D.J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world” networks. Nature. 393, 440—
846 442 (1998).

847 65. O. Sporns, The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224, 109-125
848 (2011).

849 66. F. De Vico Fallani, J. Richiardi, M. Chavez, S. Achard, Graph analysis of functional brain
850 networks: practical issues in translational neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 369,
851 20130521 (2014).

852  67. Y.N.Kenett, R. Gold, M. Faust, The hyper-modular associative mind: A computational analysis
853 of associative responses of persons with Asperger syndrome. Lang. Speech.59,297-317 (2016).

854 68. C.S.Q. Siew, Community structure in the phonological network. Front. Psychol. 4 (2013),
855 doi:10.3389/fpsyg.2013.00553.

856 69. R. E. Beaty, M. Benedek, S. Barry Kaufman, P. J. Silvia, Default and Executive Network

857 Coupling Supports Creative Idea Production. Sci. Rep. 5, 10964 (2015).

858  70. L.Aziz-Zadeh, S.-L.Liew, F. Dandekar, Exploring the neural correlates of visual creativity. Soc.
859 Cogn. Affect. Neurosci. 8,475-480 (2013).

860 71. Q.Chen,R.E.Beaty,Z. Cui,J. Sun, H. He, K. Zhuang, Z. Ren, G. Liu, J. Qiu, Brain hemispheric
861 involvement in visuospatial and verbal divergent thinking. Neurolmage. 202, 116065 (2019).
862  72. M.E. Raichle, The restless brain: how intrinsic activity organizes brain function. Philos. Trans.
863 R. Soc. Lond. B. Biol. Sci. 370 (2015), doi:10.1098/rstb.2014.0172.

864 73. T.R.Marron, Y. Lerner, E. Berant, S. Kinreich, I. Shapira-Lichter, T. Hendler, M. Faust, Chain
865 free association, creativity, and the default mode network. Neuropsychologia. 118,40-58 (2018).
866 74. R.E. Beaty, A. P. Christensen, M. Benedek, P. J. Silvia, D. L. Schacter, Creative constraints:
867 Brain activity and network dynamics underlying semantic interference during idea production.
868 Neurolmage. 148, 189-196 (2017).

869 75. E. Mandonnet, M. Vincent, A. Valero-Cabré, V. Facque, M. Barberis, F. Bonnetblanc, F.
870 Rheault, E. Volle, M. Descoteaux, D. S. Margulies, Network-level causal analysis of set-shifting
871 during trail making test part B: A multimodal analysis of a glioma surgery case. Cortex J.
872 Devoted Study Nerv. Syst. Behav. 132, 238-249 (2020).

873 76.  A. L. Pinho, F. Ullén, M. Castelo-Branco, P. Fransson, O. de Manzano, Addressing a Paradox:
874 Dual Strategies for Creative Performance in Introspective and Extrospective Networks. Cereb.
875 Cortex. 26,3052-3063 (2016).

876  77. S.Liu, M. G. Erkkinen, M. L. Healey, Y. Xu, K. E. Swett, H. M. Chow, A. R. Braun, Brain
877 activity and connectivity during poetry composition: Toward a multidimensional model of the
878 creative process. Hum. Brain Mapp. 36,3351-3372 (2015).

879 78. M. Ellamil, C. Dobson, M. Beeman, K. Christoff, Evaluative and generative modes of thought
880 during the creative process. Neurolmage. 59, 1783-1794 (2012).

881 79. L. Q. Uddin, Salience processing and insular cortical function and dysfunction. Nat. Rev.
882 Neurosci. 16,55-61 (2015).

19


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

883 80.  A.L.Pinho, O.de Manzano, P. Fransson, H. Eriksson, F. Ullen, Connecting to Create: Expertise
884 in Musical Improvisation Is Associated with Increased Functional Connectivity between
885 Premotor and Prefrontal Areas. J. Neurosci. 34, 6156-6163 (2014).

886 81. R.E. Beaty, The neuroscience of musical improvisation. Neurosci. Biobehav. Rev. 51, 108-117
887 (2015).

888  82. Q.Chen,R.E.Beaty,J. Qiu, Mapping the artistic brain: Common and distinct neural activations

889 associated with musical, drawing, and literary creativity. Hum. Brain Mapp. 41, 3403-3419
890 (2020).

891 83. C.J.Limb, A.R.Braun, Neural Substrates of Spontaneous Musical Performance: An fMRI Study
892 of Jazz Improvisation. PLoS ONE. 3, 1679 (2008).

893  84. K. Japardi, S. Bookheimer, K. Knudsen, D. G. Ghahremani, R. M. Bilder, Functional magnetic
894 resonance imaging of divergent and convergent thinking in Big-C creativity. Neuropsychologia.
895 118, 59-67 (2018).

896  85. J.R.Binder, R. H. Desai, The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527—
897 536 (2011).

898 86. R. E. Jung, The structure of creative cognition in the human brain. Front. Hum. Neurosci. 7
899 (2013), d0i:10.3389/fnhum.2013.00330.

900 87. M. Benedek, in The Cambridge Handbook of the Neuroscience of Creativity, R. E. Jung, O.

901 Vartanian, Eds. (Cambridge University Press, ed. 1, 2018;
902 https://www.cambridge.org/core/product/identifier/9781316556238 %23CN-bp-

903 10/type/book_part), pp. 180—-194.

904 88.  T. Asari, S. Konishi, K. Jimura, J. Chikazoe, N. Nakamura, Y. Miyashita, Right temporopolar
905 activation associated with unique perception. Neurolmage. 41, 145-152 (2008).

906 89. L. Aziz-Zadeh, J. T. Kaplan, M. Tacoboni, “Aha!”: The neural correlates of verbal insight
907 solutions. Hum. Brain Mapp. 30, 908-916 (2009).

908 90. A. Abraham, S. Beudt, D. V. M. Ott, D. Yves von Cramon, Creative cognition and the brain:
909 Dissociations between frontal, parietal-temporal and basal ganglia groups. Brain Res. 1482, 55—
910 70 (2012).

911 91. M. A. Lambon Ralph, Neurocognitive insights on conceptual knowledge and its breakdown.
912 Philos. Trans. R. Soc. B Biol. Sci. 369, 20120392 (2014).

913 92. M. A. Lambon Ralph, S. Ehsan, G. A. Baker, T. T. Rogers, Semantic memory is impaired in
914 patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain. 135,
915 242-258 (2012).

916 93. B. Garcin, M. Urbanski, M. Thiebaut de Schotten, R. Levy, E. Volle, Anterior Temporal Lobe
917 Morphometry Predicts Categorization Ability. Front. Hum. Neurosci. 12 (2018),
918 doi:10.3389/fnhum.2018.00036.

919 94. C. Aichelburg, M. Urbanski, M. Thiebaut de Schotten, F. Humbert, R. Levy, E. Volle,
920 Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.
921 Cereb. Cortex.26,915-932 (2016).

20


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

922  95. B.Shi, X.Cao, Q. Chen, K. Zhuang, J. Qiu, Different brain structures associated with artistic and

923 scientific creativity: a voxel-based morphometry study. Sci. Rep.7,42911 (2017).

924  96. A. Abraham, K. Pieritz, K. Thybusch, B. Rutter, S. Kroger, J. Schweckendiek, R. Stark, S.
925 Windmann, C. Hermann, Creativity and the brain: Uncovering the neural signature of conceptual
926 expansion. Neuropsychologia. 50, 1906-1917 (2012).

927 97. A. Abraham, B. Rutter, T. Bantin, C. Hermann, Creative conceptual expansion: A combined
928 fMRI replication and extension study to examine individual differences in creativity.
929 Neuropsychologia. 118, 29-39 (2018).

930 98. M. Benedek, E. Jauk, A. Fink, K. Koschutnig, G. Reishofer, F. Ebner, A. C. Neubauer, To create
931 or to recall? Neural mechanisms underlying the generation of creative new ideas. Neurolmage.
932 88, 125-133 (2014).

933  99. E.G. Chrysikou, H. M. Morrow, A. Flohrschutz, L. Denney, Augmenting ideational fluency in
934 a creativity task across multiple transcranial direct current stimulation montages. Sci. Rep. 11,
935 8874 (2021).

936 100. M. Jung-Beeman, Bilateral brain processes for comprehending natural language. Trends Cogn.
937 Sci. 9, 512-518 (2005).

938 101. C. Chiarello, N. A. Kacinik, C. Shears, S. R. Arambel, L. K. Halderman, C. S. Robinson,

939 Exploring cerebral asymmetries for the verb generation task. Neuropsychology. 20, 88—104
940 (20006).

941 102. K. C. Aberg, K. C. Doell, S. Schwartz, The “Creative Right Brain” Revisited: Individual
942 Creativity and Associative Priming in the Right Hemisphere Relate to Hemispheric Asymmetries
943 in Reward Brain Function. Cereb. Cortex. 27, 4946-4959 (2017).

944 103. T. Lubart, F. Zenasni, B. Barbot, Creative potential and its measurement. Int. J. Talent Dev.
945 Creat.1,41-50 (2013).

946  104. 1. A. Plucker, M. Karwowski, J. C. Kaufman, in The Cambridge handbook of intelligence, 2nd
947 ed (Cambridge University Press, New York, NY, US, 2020), pp. 1087-1105.

948  105. G.J. Feist, A Meta-Analysis of Personality in Scientific and Artistic Creativity. Personal. Soc.
949 Psychol. Rev. 2,290-309 (1998).

950 106. M. Karwowski, M. Czerwonka, E. WiSniewska, B. Forthmann, How Is Intelligence Test
951 Performance Associated with Creative Achievement? A Meta-Analysis. J. Intell. 9,28 (2021).

952 107. M. Debrenne, Le dictionnaire des associations verbales du francais et ses applications (2011).
953 108. Y. N. Kenett, E. Levi, D. Anaki, M. Faust, The semantic distance task: Quantifying semantic
954 distance with semantic network path length. J. Exp. Psychol. Learn. Mem. Cogn. 43, 1470-1489
955 (2017).

956 109. A.A.Kumar, D. A. Balota, M. Steyvers, Distant connectivity and multiple-step priming in large-
957 scale semantic networks. J. Exp. Psychol. Learn. Mem. Cogn. 46, 2261-2276 (2020).

958  110. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103,
959 8577-8582 (2006).

960 111. S.Fortunato, Community detection in graphs. Phys. Rep. 486, 75-174 (2010).

21


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

961 112. M. Rubinov, O. Sporns, Weight-conserving characterization of complex functional brain

962 networks. Neurolmage. 56, 2068-2079 (2011).

963 113. E. Jauk, M. Benedek, A. C. Neubauer, The Road to Creative Achievement: A Latent Variable
964 Model of Ability and Personality Predictors. Eur. J. Personal. 28, 95-105 (2014).

965 114. R. W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance
966 neuroimages. Comput. Biomed. Res. Int. J. 29, 162-173 (1996).

967 115. P. Kundu, N. D. Brenowitz, V. Voon, Y. Worbe, P. E. Vértes, S. J. Inati, Z. S. Saad, P. A.
968 Bandettini, E. T. Bullmore, Integrated strategy for improving functional connectivity mapping
969 using multiecho fMRI. Proc. Natl. Acad. Sci. 110, 16187-16192 (2013).

970 116. P.Kundu, S.J. Inati,J. W. Evans, W.-M. Luh, P. A. Bandettini, Differentiating BOLD and non-
971 BOLD signals in fMRI time series using multi-echo EPI. Neurolmage. 60, 1759—-1770 (2012).
972 117. The tedana Community, Z. Ahmed, P. A. Bandettini, K. L. Bottenhorn, C. Caballero-Gaudes, L.
973 T. Dowdle, E. DuPre, J. Gonzalez-Castillo, D. Handwerker, S. Heunis, P. Kundu, A. R. Laird,
974 R. Markello, C. J. Markiewicz, T. Maullin-Sapey, S. Moia, T. Salo, 1. Staden, J. Teves, E.
975 Urufiuela, M. Vaziri-Pashkam, K. Whitaker, ME-ICA/tedana: 0.0.10 (Zenodo, 2021;
976 https://zenodo.org/record/4725985#.YKjmQus6_RU).

977 118. C. J. Lynch, J. D. Power, M. A. Scult, M. Dubin, F. M. Gunning, C. Liston, Rapid Precision
978 Functional Mapping of Individuals Using Multi-Echo fMRI. Cell Rep. 33, 108540 (2020).

979  119. C. Gaser, R. Dahnke, CAT-A Computational Anatomy Toolbox for the Analysis of Structural
980 MRI Data (2016), (available at /paper/CAT-A-Computational-Anatomy-Toolbox-for-the-of-
981 MRI-Gaser-Dahnke/2682¢2¢5f925dal18f465952f1a5¢904202ab2693).

982 120. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B.
983 Thirion, G. Varoquaux, Machine learning for neuroimaging with scikit-learn. Front.
984 Neuroinformatics. 8 (2014), doi:10.3389/fninf.2014.00014.

985 121.  G. van Rossum, Python reference manual (1995) (available at https://ir.cwi.nl/pub/5008).

986 122. J.D.Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, S. E. Petersen, Methods to
987 detect, characterize, and remove motion artifact in resting state fMRI. Neurolmage. 84 (2014),
988 doi:10.1016/j.neuroimage.2013.08.048.

989 123. A. Fornito, A. Zalesky, M. Breakspear, Graph analysis of the human connectome: promise,
990 progress, and pitfalls. Neurolmage. 80, 426444 (2013).

991 124. V.Latora, M. Marchiori, Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701
992 (2001).

993  125. 0. Sporns, C.J. Honey, Small worlds inside big brains. Proc. Natl. Acad. Sci. 103, 19219-19220
994 (2006).

995 126. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and
996 functional systems. Nat. Rev. Neurosci. 10, 186—-198 (2009).

997 127. D. S. Bassett, E. Bullmore, Small-World Brain Networks. The Neuroscientist. 12, 512-523
998 (2006).

999 128. M. Xia, J. Wang, Y. He, BrainNet Viewer: A Network Visualization Tool for Human Brain
1000 Connectomics. PLoS ONE. 8, 68910 (2013).

22


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1001  129. K.J.Preacher, A. F. Hayes, SPSS and SAS procedures for estimating indirect effects in simple
1002 mediation models. Behav. Res. Methods Instrum. Comput. 36, 717-731 (2004).

1003 130. A.F.Hayes, Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium.
1004 Commun. Monogr. 76, 408-420 (2009).

1005 131. D. D. Rucker, K. J. Preacher, Z. L. Tormala, R. E. Petty, Mediation Analysis in Social

1006 Psychology: Current Practices and New Recommendations: Mediation Analysis in Social
1007 Psychology. Soc. Personal. Psychol. Compass. 5,359-371 (2011).

1008  132. A.F. Hayes, A. K. Montoya, A Tutorial on Testing, Visualizing, and Probing an Interaction
1009 Involving a Multicategorical Variable in Linear Regression Analysis. Commun. Methods Meas.
1010 11, 1-30 (2017).

1011

1012 Acknowledgments

1013 We thank D. Margulies, A. Lopez-Persem, F. De Vico Fallani, M. Chavez for advice and helpful
1014  discussion and commentary. We also thank the participants for making this work possible.

1015

1016  Funding

1017

1018  The research was supported by “Agence Nationale de la Recherche" [grant numbers ANR-19-CE37-
1019  0001-01] (EV) and received infrastructure funding from the French programs "Investissements d'avenir"
1020 ANR-11-INBS-0006 (EV) and ANR-10-IATHU-06 (EV). This work was also funded by Becas-Chile of
1021  ANID-CONICYT (MOT). The funder had no role in study design, data collection and analysis, decision

1022 to publish, or preparation of the manuscript.
1023

1024  Author Contributions

1025  EV, YNK and MBEN designed the study. MOT, MBER and JB collected the data. MOT analyzed the
1026  data with contribution from BB, MBER, TB, JB, EV, and YNK. MOT wrote the first draft of the article.
1027  MOT, YNK, MBEN, BB and EV wrote and revised the manuscript. All authors revised and approved
1028  the manuscript.

1029

1030 Competing Interests

1031  The authors declare no competing interests.

1032  Data and materials availability

1033

1034  The data that support the findings of this study can be available on request from the corresponding
1035  author. All the data used in this study were collected on the PRISME and CENIR platforms at the Paris
1036  Brain Institute (ICM). Most analyses were conducted using open softwares and toolboxes available
1037  online (SPM, AFNI, Nilearn and TEDANA) and using homemade scripts. Custom codes are available
1038  from the corresponding authors on request.

1039

1040

23


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1041  Figures

. . Adjacency matrix
A reflection period response period B ) N \
) p— -+ All 35 RIT words
o=
nose flower nose flower qnose
P ower
- .
0 unrelated 100 strongly related 0 unrelated 100 strongly related 2
2 seconds " ) 2 seconds " 0.<3 -0.7 secc;nds \ %
N
C Analysis of SemNet metrics: ASPL, CC, Q, S D InlelduaI semantic network | g N-1 subjects

Weighted undirected Unweighted undirected @
networks (WUN) networks (UUN) @ @@

ol
20 @ =
0006
°o
Q
Creativity score

High creative individual SemNet metric
f o

left-out subject

21

Creativity score

SemNet metric

(0]
Low creative individual

1042

1043  Figure 1. Estimation of individual semantic networks (SemNets) to predict creativity. (A) Trial
1044  representation of an exemplary trial of the RJT asking participants to judge the relatedness of 595 word
1045  pairs. Each trial began with the display of a pair of words along with a visual scale (reflection period)
1046  ranging from O (unrelated words) to 100 (strongly related words). During the next 2 seconds (response
1047  period), participants were allowed to move the cursor (in red) using a trackball to indicate the relatedness
1048  of the two words. An intertrial interval of 0.3-0.7s separated trials. (B) For each participant, we
1049  computed a 35 by 35 adjacency (connectivity) matrix with columns and rows representing each of the
1050 35 RJT words, and cell values correspond to the relatedness judgments given by the participant during
1051  the RJT. (C) We estimated individual semantic memory networks following two established approaches:
1052  weighted (WUN) and unweighted (UUN) undirected networks, using the RJT words as the network
1053  nodes. In the WUN networks, the RJT judgments reflected the strength of links between nodes. In the
1054  UUN networks, the RJT judgments above average (50) were kept and set to one. The SemNet metrics
1055  were computed for both WUN and UUN separately: ASPL, CC, Q and S. (D) Representation of the
1056  individual WUN SemNets for a low creative and a high creative participant. (E) Linear regressions using
1057  leave-one-out cross-validations were performed to explore whether real-life creative activities (C-Act)
1058  and achievements (C-Ach) were predicted from SemNet properties estimated in (b). The SemNet metrics
1059  were used to build predictive linear models in N-1 participants. The predictive model was tested on the
1060  left-out participant using its SemNet metric (m) to predict its creativity scores. RJIT = relatedness
1061  judgment task; SemNet = semantic network; ASPL = average shortest path length; CC = clustering
1062  coefficient; Q = modularity; S = small-worldness.
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1066  Figure 2. Prediction of creativity scores from Semantic network metrics. The plots show the
1067  Spearman correlations between the predicted values (y-axis) and observed values (x-axis) of creative
1068  activities and achievements based on individual SemNet metrics for the significant predictions. At the
1069  bottom-right part of each plot, we present the r; and the p values, based on permutation testing.
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1073  Figure 3. Connectome Predictive Modeling-based prediction method. (A) We defined the brain
1074  nodes based on the Schaefer atlas consisting of 200 ROIs (63). For each participant, we assessed the
1075  BOLD activity during the RJT in each ROI and used pairwise Pearson correlations to estimate a 200 by
1076 200 task-related functional connectivity matrix. Using a leave-one-out approach, all of the CPM steps
1077  were conducted in N-1 participants. (B) The functional connectivity matrix (all links) was correlated to
1078  SemNet metrics using Spearman correlations. The links that significantly positively or negatively
1079  correlated with the SemNet metric (p < .05) formed a positive and a negative model network,
1080  respectively. (C) We calculated two network properties (in separate CPM analyses) of the positive and
1081  negative model networks, brain-CC and brain-Eff metrics. (D) The brain metrics in the positive (p) and
1082  negative (n) model networks were used to build a linear model predicting the SemNet metric in the left-
1083  out participant. Since head motion can impact CPM, we included the meanFD variable (m), a head
1084  motion parameter, as a regressor in the model to avoid a possible effect in the prediction. Finally, the
1085  model was applied to the left-out participant to compute a predicted SemNet value from his/her brain
1086  model networks. The predicted value was then correlated with the observed value to assess the model
1087  predictive validity.

1088

1089

26


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

WUN Q (brain-CC) WUN Q (brain-Eff) UUN Q (brain-Eff)
8 025 ry=.386 025 r,=.476 r,=.272
TDU o2 p =.004 020 p= .001 030 . . p= .036
> . . .o * - 0.25 .. * .
0.15
:?3 . 0.15 050
o 0.10 015
"o . 3 .
&) " o0 o 02 03 o 00 °"1' 0.2 03 o 01 02 03 04
Observed values
1090
1091

1092  Figure 4. Predicted and observed SemNet metrics. The plots show the Spearman correlations between
1093 the predicted values (y-axis) and observed values (x-axis) of SemNet metrics based on brain connectivity
1094  for the significant predictions. Green plots are presented for brain-Eff and magenta ones for brain-CC.
1095  In the upper-right side of each plot, we present the 7s and the p values. The reported p values are based
1096  on permutation testing.

1097

1098

1099

1100

27


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Prefrontal | 3.3

Motor ' 27 2.2

2 15 13 ¢ 5

Temporal
Occipital

Limbic

1.55 2.1 2.65 3.21 3.76 4.31 4.87 5.42 597 6.53 7.08

C Qg@
Visual
2 &
Dorsal attention 1.3 F8:iY 0.4 <—§e

" o
Salience 0.7 &
W A
O

Limbic = 2 11 22 04 &

o

Control 124 2 0.4 2 29 Qe

Default 1.1 1.5 -

mporoparietal 0.9 0.2 j1253 0.7 F1.151:34 0.4

1101 022 1.02 181 261 341 42 5 58 6.59 739 819

1102

1103 Figure 5. Functional anatomy of the CPM model predicting the SemNet metric UUN Q. (A) First,
1104  we examined the distribution of the links of the model network at the brain location level, specifically
1105  into the brain lobes. The correlation matrix represents the percentage of links within the model network
1106  connecting seven different brain lobes (total links = 452). (B) A circular graph represents the distribution
1107  of links within and between brain regions in the left and right hemispheres. Brain regions are color-
1108  coded as in (A), and the cyan lines represent the links connecting the ROIs. For visualization purposes,
1109  we used a nodal degree threshold of £ > 10. (C) Second, we examined the distribution of the links across
1110  intrinsic functional networks based on Schaefer's atlas (63). The matrix represents the percentage of
1111  links within the model network occurring within and between eight intrinsic brain networks. (D) The
1112 nodes and links of the model network are superimposed on a volume rendering of the brain. The color
1113 of the nodes represents the functional network they belong to, using a similar color code as in (B). The
1114  size of the nodes is proportional to their degree, and the highest degree nodes are marked by arrows.
1115  Nodes with degree k = 0 are not displayed.
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1119  Figure 6. Mediation Analyses. Results of the mediation models are presented in path diagrams. Each
1120  diagram indicates the beta weights of the regression coefficients with the brain metrics of the model
1121  network (brain-Eff and brain-CC) as the independent variable (predictor), SemNet metrics as the
1122 mediator (UUN Qr and WUN Qr), and real-life creativity (C-Act and C-Ach) as the dependent variable
1123 (outcome). The total effect is indicated by path c, the direct effect by path ¢', and the indirect effect is
1124  given by the product of path a and path b. The indirect effect was significant in all the reported
1125  mediations (A) The mediating role of UUN Q on the relationship between the brain-Eff of the brain
1126  functional network predicting it and C-Act. (B) Mediating role of UUN Q between the brain-Eff of the
1127  brain network predicting it and C-Ach. (C) Mediating role of the weighted networks WUN Q on the
1128  relationship between the brain-Eff of the functional connectivity of the negative model network
1129  predicting it and C-Ach. (D) Mediating role of WUN Q on the relationship between the brain-CC of the
1130  functional connectivity of the negative model network predicting it and C-Ach. * p <.05; ** p <.01;
1131  *** p<.001

1132

1133

1134

1135

1136

1137

1138

1139

1140

29


https://doi.org/10.1101/2021.07.28.453991
http://creativecommons.org/licenses/by-nc-nd/4.0/

1141

1142
1143
1144
1145
1146
1147

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159
1160

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453991; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Tables

Table 1. Descriptive statistics of creativity scores and semantic network measures. Data are shown
for real-life creativity activities (C-Acf) and achievements (C-Ach), and for SemNet metrics of weighted

(WUN) and unweighted (UUN) networks.

Mean SD Min Max
Creativity scores
C-Act 47.894 21.695 13 102
C-Ach 74.638 42.249 1 207
WUN metrics
ASPL 0.021 0.004 0.015 0.037
cC 0.363 0.096 0.142 0.628
0 0.122 0.058 0.032 0.319
S 1.003 0.073 0.828 1.387
UUN metrics
ASPL 1.633 0.221 1.262 2.361
ccC 0.585 0.082 0.438 0.781
0 0.178 0.064 0.058 0.392
S 1.386 0.271 1.011 2.936

Note. ASPL= Average Shortest Path Length; CC = Clustering coefficient; O = Modularity; S = Small-

Worldness.

Table 2. Relationship between individual semantic network metrics and creativity. The Spearman
correlations between SemNet metrics and creativity scores are reported (v, for C-Act and C-Ach). In bold
are the significant predictions of creativity from the SemNet properties after permutation testing shown
in Figure 2. * indicate correlations that reached significance after FDR correction for multiple

comparisons.

Creativity scores C-Act C-Ach
I's p T's p

WUN metrics
ASPL -.276 .007* -.208 .044
cc 165 A11 201 .052
0 -.179 .085 -.295 .004*
S 234 .023 -.017 .868
UUN metrics
ASPL -.125 230 -.149 152
ccC .092 378 .080 441
0 -.281 .006* -.287 .005*
S -.154 139 -219 .034
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